Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing

Abbott, T.M.C. and Aguena, M. and Desai, Shantanu (2022) Dark Energy Survey Year 3 results: Cosmological constraints from galaxy clustering and weak lensing. Physical Review D, 105 (2). pp. 1-42. ISSN 2470-0010

[img] Text
Physical_Review_D2.pdf - Published Version
Available under License Creative Commons Attribution.

Download (4MB)

Abstract

We present the first cosmology results from large-scale structure using the full 5000 deg2 of imaging data from the Dark Energy Survey (DES) Data Release 1. We perform an analysis of large-scale structure combining three two-point correlation functions (3×2pt): (i) cosmic shear using 100 million source galaxies, (ii) galaxy clustering, and (iii) the cross-correlation of source galaxy shear with lens galaxy positions, galaxy-galaxy lensing. To achieve the cosmological precision enabled by these measurements has required updates to nearly every part of the analysis from DES Year 1, including the use of two independent galaxy clustering samples, modeling advances, and several novel improvements in the calibration of gravitational shear and photometric redshift inference. The analysis was performed under strict conditions to mitigate confirmation or observer bias; we describe specific changes made to the lens galaxy sample following unblinding of the results and tests of the robustness of our results to this decision. We model the data within the flat ΛCDM and wCDM cosmological models, marginalizing over 25 nuisance parameters. We find consistent cosmological results between the three two-point correlation functions; their combination yields clustering amplitude S8=0.776-0.017+0.017 and matter density ωm=0.339-0.031+0.032 in ΛCDM, mean with 68% confidence limits; S8=0.775-0.024+0.026, ωm=0.352-0.041+0.035, and dark energy equation-of-state parameter w=-0.98-0.20+0.32 in wCDM. These constraints correspond to an improvement in signal-to-noise of the DES Year 3 3×2pt data relative to DES Year 1 by a factor of 2.1, about 20% more than expected from the increase in observing area alone. This combination of DES data is consistent with the prediction of the model favored by the Planck 2018 cosmic microwave background (CMB) primary anisotropy data, which is quantified with a probability-to-exceed p=0.13-0.48. We find better agreement between DES 3×2pt and Planck than in DES Y1, despite the significantly improved precision of both. When combining DES 3×2pt data with available baryon acoustic oscillation, redshift-space distortion, and type Ia supernovae data, we find p=0.34. Combining all of these datasets with Planck CMB lensing yields joint parameter constraints of S8=0.812-0.008+0.008, ωm=0.306-0.005+0.004, h=0.680-0.003+0.004, and mν<0.13 eV (95% C.L.) in ΛCDM; S8=0.812-0.008+0.008, ωm=0.302-0.006+0.006, h=0.687-0.007+0.006, and w=-1.031-0.027+0.030 in wCDM. © 2022 American Physical Society.

[error in script]
IITH Creators:
IITH CreatorsORCiD
Desai, Shantanuhttp://orcid.org/0000-0002-0466-3288
Item Type: Article
Additional Information: Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, NFS’s NOIRLab, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF’s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under Grants No. AST-1138766 and No. AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants No. ESP2017-89838, No. PGC2018-094773, No. PGC2018-102021, No. SEV-2016-0588, No. SEV-2016-0597, and No. MDM-2015-0509, some of which include ERDF funds from the European Union. I. F. A. E. E. is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements No. 240672, No. 291329, and No. 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) do e-Universo (CNPq grant No. 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work also used resources on Duke Compute Cluster (DCC), the CCAPP condo of the Ruby Cluster at the Ohio Supercomputing Center , and computing resources at SLAC National Accelerator Laboratory. We also thank the staff of the Fermilab Computing Sector for their support. Plots in this manuscript were produced partly with matplotlib , and it has been prepared using NASA’s Astrophysics Data System Bibliographic Services.
Uncontrolled Keywords: Dark Energy Survey (DES) Data,cosmic shear using 100 million source galaxies,galaxy clustering,the cross-correlation of source galaxy shear with lens galaxy positions, galaxy-galaxy lensing.
Subjects: Physics
Physics > Astronomy Astrophysics
Divisions: Department of Physics
Depositing User: . LibTrainee 2021
Date Deposited: 15 Jul 2022 04:21
Last Modified: 15 Jul 2022 04:21
URI: http://raiith.iith.ac.in/id/eprint/9713
Publisher URL: https://doi.org/10.1103/PhysRevD.105.023520
OA policy: https://v2.sherpa.ac.uk/id/publication/32263
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 9713 Statistics for this ePrint Item