Impact of directivity on seismic risk assessment: rupture distance, component and propagation length

Payyappilly, Leanda J. and Karthik Reddy, K. S. K. and Somala, Surendra Nadh (2021) Impact of directivity on seismic risk assessment: rupture distance, component and propagation length. Asian Journal of Civil Engineering. ISSN 1563-0854

Full text not available from this repository. (Request a copy)


Near-field effects like directivity pulses are known to cause severe damage to particular kinds of infrastructure but most studies have limited themselves to the level of structural response and fragility computations. In this study, state-of-the-art tools are used from the Natural Hazards Engineering Research Infrastructure to estimate normalized economic losses and injuries, by considering one particular building type and occupancy category listed in HAZUS-MH. One non-directivity scenario, and three directivity scenarios with different levels of one sided propagation are simulated using dynamic rupture modeling by shifting the hypocenter from the center of the fault towards one side by different amounts for each directivity scenario. Furthermore, multiple five station networks at fixed offsets (rupture distances) from the fault are used to establish the influence of distance away from the fault on the economic losses. Both fault parallel and fault normal components of ground motion are simulated using a spectral finite element software SPECFEM3D. The engineering demand parameter computed in terms of peak inter-storey drift is used with 2000 realizations for a three-, six- and nine-storey commercial steel moment frames to estimate the percentage of economic losses normalized in terms of repair cost and injuries normalized in terms of population. The inclusion of complex phenomena like directivity to evaluate economic losses and risk will contribute to potential reassessment of risk mitigation policies by the United Nations Office for Disaster Risk Reduction (UNDRR).

[error in script]
IITH Creators:
IITH CreatorsORCiD
Somala, S N
Item Type: Article
Uncontrolled Keywords: Disaster risk reduction; Economic losses; Fault normal; HAZUS; Performance-Based Engineering; Resilience
Subjects: Civil Engineering
Divisions: Department of Civil Engineering
Depositing User: . LibTrainee 2021
Date Deposited: 30 Aug 2021 09:22
Last Modified: 09 Mar 2022 10:30
Publisher URL:
OA policy:
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 8806 Statistics for this ePrint Item