Design and implementation of beamformed physical downlink control channel for 4G massive MIMO systems

M., Pavan Reddy and D., Harish Kumar and Amuru, Saidhiraj and Kuchi, Kiran (2021) Design and implementation of beamformed physical downlink control channel for 4G massive MIMO systems. Ad Hoc Networks, 111. p. 102358. ISSN 15708705

Full text not available from this repository. (Request a copy)


The Full Dimension-MIMO (FD-MIMO) technology is capable of achieving huge improvements in network throughput with simultaneous connectivity of a large number of mobile wireless devices, unmanned aerial vehicles, and the Internet of Things (IoT). In the Long Term Evolution (LTE), with a large number of antennae at the base station and the ability to perform beamforming, the capacity of the physical downlink shared channel (PDSCH) has increased a lot. However, the current 3rd Generation Partnership Project (3GPP) specifications of the LTE do not allow the base station to perform any beamforming techniques for the physical downlink control channel (PDCCH). Hence, PDCCH has neither the capacity nor the coverage of PDSCH. Therefore, PDCCH capacity still limits the performance of a network, as it dictates the number of users that a base station can schedule at a given time instant. In Release 11, 3GPP introduced enhanced PDCCH (EPDCCH) to increase the PDCCH capacity at the cost of sacrificing the PDSCH resources. The problem of enhancing the PDCCH capacity within the available control channel resources has not been addressed yet in the literature. Hence, in this paper, we propose a novel beamformed PDCCH (BF-PDCCH) design which is aligned to the 3GPP specifications and requires simple software changes at the base station. For the evaluation of the proposed BF-PDCCH, we model various link abstractions. We evaluate them through link-level simulations and then use all these abstractions in the system-level simulations. We show that the proposed BF-PDCCH achieves significant improvement in network throughput and outperforms the current state of the art algorithms, PDCCH, and EPDCCH schemes.

[error in script]
IITH Creators:
IITH CreatorsORCiD
Amuru, SaidhirajUNSPECIFIED
Item Type: Article
Uncontrolled Keywords: Design and implementations; Downlink shared channels; Internet of thing (IOT); Link-level simulations; Mobile wireless devices; Physical downlink control channels (PDCCH); State-of-the-art algorithms; System level simulation;4G mobile communication systems; Antennas; Base stations; Beamforming; Internet of things; Long Term Evolution (LTE); MIMO systems; Specifications
Subjects: Electrical Engineering
Divisions: Department of Electrical Engineering
Depositing User: . LibTrainee 2021
Date Deposited: 26 Jul 2021 04:12
Last Modified: 26 Jul 2021 04:12
Publisher URL:
OA policy:
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 8509 Statistics for this ePrint Item