Efficient Maize Tassel-Detection Method using UAV based remote sensing

Kumar, Ajay and Desai, Sai Vikas and Balasubramanian, Vineeth N. and Rajalakshmi, P. and Guo, Wei and Balaji Naik, B. and Balram, M. and Desai, Uday B. (2021) Efficient Maize Tassel-Detection Method using UAV based remote sensing. Remote Sensing Applications: Society and Environment, 23. p. 100549. ISSN 23529385

Full text not available from this repository. (Request a copy)


Regular monitoring is worthwhile to maintain a healthy crop. Historically, the manual observation was used to monitor crops, which is time-consuming and often costly. The recent boom in the development of Unmanned Aerial Vehicles (UAVs) has established a quick and easy way to monitor crops. UAVs can cover a wide area in a few minutes and obtain useful crop information with different sensors such as RGB, multispectral, hyperspectral cameras. Simultaneously, Convolutional Neural Networks (CNNs) have been effectively used for various vision-based agricultural monitoring activities, such as flower detection, fruit counting, and yield estimation. However, Convolutional Neural Network (CNN) requires a massive amount of labeled data for training, which is not always easy to obtain. Especially in agriculture, generating labeled datasets is time-consuming and exhaustive since interest objects are typically small in size and large in number. This paper proposes a novel method using k-means clustering with adaptive thresholding for detecting maize crop tassels to address these issues. The qualitative and quantitative analysis of the proposed method reveals that our method performs close to reference approaches and has an advantage over computational complexity. The proposed method detected and counted tassels with precision: 0.97438, recall: 0.88132, and F1 Score: 0.92412. In addition, using maize tassel detection from UAV images as the task in this paper, we propose a semi-automatic image annotation method to create labeled datasets of the maize crop easily. Based on the proposed method, the developed tool can be used in conjunction with a machine learning model to provide initial annotations for a given image, modified further by the user. Our tool's performance analysis reveals promising savings in annotation time, enabling the rapid production of maize crop labeled datasets.

[error in script]
IITH Creators:
IITH CreatorsORCiD
Balasubramanian, Vineeth NUNSPECIFIED
Item Type: Article
Uncontrolled Keywords: Automatic annotation; Labeled data; Maize crop; Tassel detection; UAV based Remote sensing
Subjects: Computer science
Electrical Engineering
Divisions: Department of Electrical Engineering
Depositing User: . LibTrainee 2021
Date Deposited: 05 Jul 2021 05:08
Last Modified: 01 Mar 2022 07:30
URI: http://raiith.iith.ac.in/id/eprint/8082
Publisher URL: http://doi.org/10.1016/j.rsase.2021.100549
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 8082 Statistics for this ePrint Item