Performance-Based Structural Fire Engineering of Steel Building Structures: Design-Basis Compartment Fires

Fischer, Erica C and Varma, Amit H and Agarwal, Anil (2019) Performance-Based Structural Fire Engineering of Steel Building Structures: Design-Basis Compartment Fires. Journal of Structural Engineering, 145 (9). 04019090. ISSN 0733-9445

Full text not available from this repository. (Request a copy)


This paper focuses on the performance-based structural fire engineering of steel buildings subjected to realistic design-basis fire scenarios. Medium-rise office buildings were designed in accordance with U.S. building codes and standards. These buildings were designed with steel gravity frames and different lateral force resisting systems: (1) interior rigid core walls, and (2) perimeter moment resisting frames. Code-based prescriptive approaches were used to design the passive fire protection for the structural members of the steel buildings. The structural performance of these buildings, when subjected to realistic design-basis compartment fire scenarios (one-hour fire with cooling), was evaluated by conducting detailed nonlinear inelastic finite-element analysis of the complete three-dimensional (3D) building system. The analysis results indicated that steel gravity columns were the most vulnerable component, susceptible to inelastic buckling during the fire events. This could further precipitate the partial or overall collapse of the building during the fire event. This fundamental understanding of structural performance and vulnerabilities of the steel buildings (designed according to prescriptive approaches in codes) was leveraged to optimize the layout and distribution of passive fire protection in the steel buildings, leading to performance-based structural fire engineering. Detailed analysis results indicated that moving the fire protection from intermediate filler beams in the floor systems to the gravity columns improved structural performance, fire resistance, and collapse resistance of the steel buildings. This exemplifies the potential of performance-based fire protection engineering linked with structural engineering analyses to optimize design and economy.

[error in script]
IITH Creators:
IITH CreatorsORCiD
Item Type: Article
Uncontrolled Keywords: Finite-element, Fire, Stability, Steel-frame building
Subjects: Civil Engineering
Divisions: Department of Civil Engineering
Depositing User: Team Library
Date Deposited: 29 Jul 2019 04:26
Last Modified: 29 Jul 2019 04:26
Publisher URL:
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 5815 Statistics for this ePrint Item