PZT Sensor Arrays for Integrated Damage Monitoring in Concrete Structures

Narayanan, A and K V L, Subramaniam (2018) PZT Sensor Arrays for Integrated Damage Monitoring in Concrete Structures. PhD thesis, Indian institute of technology Hyderabad.

Thesis_Phd_CE_4334.pdf - Published Version

Download (9MB) | Preview


The broad objective of the work reported here is to provide a fundamental basis for the use of Lead Zirconate Titanate (PZT) patches in damage detection of concrete structures. Damage initiation in concrete structures starts with distributed microcracks, which eventually localize to form cracks. By the time surface manifestation in the form of visible cracking appears there may be significant degradation of the capacity of the structure. Early detection of damage, before visible signs appear on the surface of the structure is essential to initiate early intervention, which can effectively increase the service life of structures. Development of monitoring methodologies involves understanding the underlying phenomena and providing a physical basis for interpreting the observed changes in the parameters which are sensed. PZT is a piezoelectric material, which has a coupled constitutive relationship. In the case of the PZT patches bonded to a concrete structure, any sensing strategy requires developing an understanding of the coupled electromechanical (EM) response of the PZT-concrete system. The challenges associated with the use of PZT patches for damage monitoring in a concrete substrate include providing the following: a clear understanding of the fundamental response of the PZT patch when bonded to a concrete substrate; interpretation of the coupled response of the PZT patch under load induced damage; and development of an efficient, continuous monitoring methodology to sense a large area of the concrete substrate. Due to a lack of a fundamental basis, the use of PZT patches in concrete structures often involves inferring the measured response using model-based procedures. The work outlined in this thesis addresses the key issue of developing the theoretical basis and providing an experimental validation for PZT-based damage monitoring methodology for concrete structures. A fundamental understanding of response of the PZT patch when bonded to concrete substrate is developed. The outcome of the work is an integrated local and distributed sensing methodology for concrete structures by combining the electromechanical impedance and stress wave propagation methods using an array of bonded PZT patches. The work presented in this thesis is focused on using PZT patches bonded to a concrete substrate. A fundamental understanding of the coupled electromechanical behaviour of a PZT patch under an applied electrical excitation in an electrical impedance (EI) measurement, is developed. The influence of the substrate size and its material properties on the frequency dependent EI response of a PZT patch is investigated using concrete substrates of different sizes. The dynamic response of a PZT patch is shown to consist of resonance modes of the PZT patch with superimposed structural response. The resonance behaviour of the PZT patch is shown to be influenced by the material properties of the substrate. The size dependence in the EI response of a PZT patch bonded to a concrete substrate is produced by the dynamic behaviour of the structure. The size of the local zone of the concrete material substrate in the vicinity of the bonded PZT patch, which influences the frequency dependent EI response of the PZT patch is identified. For each resonant mode, a local zone of influence, which is free from the influence of boundary is identified. The dynamic response of the PZT resonant mode is influenced by the elastic material properties and damping within the zone of influence. The structural effects of the concrete substrate produced by the finite size of the specimen are separated from the material effects produced by the material properties and the material damping in the coupled EM response of the bonded PZT patch. The influence of size of the concrete substrate on the coupled impedance response of the PZT is identified with peaks of structural resonance, which are superimposed on the resonant peaks of the bonded PZT patch The EI response of the PZT patch when bonded to concrete for detecting load-induced damage from distributed microcrack to localized cracks within the zone of influence of the PZT patch is investigated. Using an approach which combines an understanding of the coupled EM constitutive behaviour of PZT with experimental validation, a methodology is developed to decouple the effects of stress and damage in the substrate on the coupled EM response of a PZT patch. The features in the EI signature of a bonded PZT patch associated with stress and damage are identified. An increasing level of distributed damage in the concrete substrate produces a decrease in the magnitude and the frequency of the resonant peak of the bonded PZT patch. The substrate stress produces a counter acting effect in the EI spectrum of the bonded PZT patch. A measurement procedure for the use of bonded PZT patches for continuous monitoring of stress-induced damage in the form of distributed microcracks in a structure under loading is developed. An integrated methodology for damage monitoring in concrete structures is developed by combining the EI method for local sensing and the stress wave propagation-based method in a distributed sensing mode. An array of surface mounted PZT sensors are deployed on a concrete beam. The EI measurements from individual PZT sensors are used for detecting damage within the local zone of influence. PZT sensor pairs are used as actuators and sensors for distributed monitoring using stress wave propagation. A stress-induced crack is introduced in a controlled manner. It is detected very accurately from the full-field displacement measurement obtained using digital image correlation. The crack opening profile in concrete produced by the fracture is established from the surface displacement measurements. From the measurements of bonded PZTs, the localized crack is detected in the zone of influence by EI. The change in compliance of the material medium due to a localized crack is small and it is reflected in the smaller change in the measured EI when compared to distributed damage. Stress wave based measurements sensitively detect crack openings on the order of 10m. The material discontinuity produced by a closed crack, after removal of the stress is also detected. A damage matrix is developed for stress wave based method which is independent of transmission path to assess the severity of damage produced by the crack in a concrete structure.

[error in script]
IITH Creators:
IITH CreatorsORCiD
K V L, Subramaniamhttp://orcid.org/0000-0002-5995-0911
Item Type: Thesis (PhD)
Uncontrolled Keywords: PZT, conductance, concrete, Electromechanical Impendance, microcracks
Subjects: Civil Engineering
Divisions: Department of Civil Engineering
Depositing User: Team Library
Date Deposited: 30 Jul 2018 10:50
Last Modified: 30 Jul 2018 10:50
URI: http://raiith.iith.ac.in/id/eprint/4334
Publisher URL:
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 4334 Statistics for this ePrint Item