Mo-doped BiVO 4 @reduced graphene oxide composite as an efficient photoanode for photoelectrochemical water splitting

Palyam, Subramanyam and Vinodkumar, T and Nepak, Devadutta and M, Deepa and Ch, Subrahmanyam (2018) Mo-doped BiVO 4 @reduced graphene oxide composite as an efficient photoanode for photoelectrochemical water splitting. Catalysis Today. ISSN 0920-5861 (In Press)

Full text not available from this repository. (Request a copy)


Monoclinic Bismuth vanadate (BiVO4) nanomaterial is an attractive, efficient photoanode for photoelectrochemical (PEC) water splitting due to excellent visible light activity and good photo-chemical stability. However, poor charge separation and low charge carrier mobility hinder the improvement of PEC performance of BiVO4. In this work, molybdenum (Mo)-doped BiVO4@reduced graphene oxide (rGO) nanocomposites are fabricated and their potential to serve as photoanodes for PEC water splitting is evaluated. This composite, by the introduction of Mo-dopant and rGO in BiVO4 enhances the PEC performance for water oxidation for they assist in reducing charge recombination and enhancement of photocurrent. As a result, the Mo-BiVO4@rGO composite photoanode exhibited a photocurrent density of 8.51 mA cm−2 at 1.23 V versus reversible hydrogen electrode (RHE), which is two and four times greater than that of Mo-BiVO4 (5.3 mA cm-2 at 1.23 V versus RHE) and pristine BiVO4 (2.01 mA cm−2 at 1.23 V versus RHE) photoactive electrodes. In addition, good photo-conversion efficiency, low charge transfer resistance and good external quantum efficiency (EQE) are achieved for this ternary nanocomposite. These studies reveal the improved PEC activity for water splitting by the Mo-doped BiVO4@rGO, and indicated that this approach can be used to design more efficient photoanodes for PEC water splitting.

[error in script]
IITH Creators:
IITH CreatorsORCiD
Ch, Subrahmanyam
Item Type: Article
Uncontrolled Keywords: Photoelectrochemical cell, BiVO4, Water splitting, Reduced graphene oxide, Photoanode, Charge transportation,
Subjects: Chemistry
Divisions: Department of Chemistry
Depositing User: Team Library
Date Deposited: 10 Jul 2018 08:04
Last Modified: 10 Jul 2018 08:04
Publisher URL:
OA policy:
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 4224 Statistics for this ePrint Item