LWIR: LTE-WLAN Integration at RLC Layer with Virtual WLAN Scheduler for Efficient Aggregation

Sharma, P and Brahmakshatriya, A and Pasca S, T V and Tamma, Bheemarjuna Reddy and Franklin, Antony (2016) LWIR: LTE-WLAN Integration at RLC Layer with Virtual WLAN Scheduler for Efficient Aggregation. In: IEEE Global Communications Conference (GLOBECOM), 4-8 Dec. 2016.

Full text not available from this repository. (Request a copy)


LTE-WLAN Aggregation (LWA) at Radio Access Network (RAN) level offers better performance compared to other WLAN inter-working and offloading mechanisms due to its tighter integration. In rel.~13, 3GPP standardized an LWA architecture which works at the Packet Data Convergence Protocol (PDCP) layer of LTE eNodeB and provides packet-level steering. But this architecture provides sub-optimal performance because of various delays incurred on both sender (eNodeB) and receiver (UE) sides. To overcome this, we propose a new architecture LTE-WLAN integration at RLC Layer (LWIR) which works at the Radio Link Control (RLC) layer of LTE eNodeB. Along with this, Virtual WLAN Scheduler (VWS) which employs traffic steering scheme has been proposed. The VWS minimizes waiting time on Wi-Fi queue and thereby reduces out-of-order delivery at the UE side. Five different bearer selection schemes have also been proposed which provide efficient steering by smartly choosing a bearer to route some data onto Wi-Fi based on available bandwidth of Wi-Fi link. The VWS also contains an LTE feedback mechanism which coordinates with the LTE scheduler to ensure fairness as well as better utilization of system capacity. The evaluation considers collocated scenario in which LTE small cell (SeNB) and Wi-Fi Access Point (AP) are tightly integrated in LWIR node. We show that the proposed LWIR with VWS increases throughput up to 85\% when compared to LWA based packet-level steering.

[error in script]
IITH Creators:
IITH CreatorsORCiD
Tamma, Bheemarjuna ReddyUNSPECIFIED
Franklin, AntonyUNSPECIFIED
Item Type: Conference or Workshop Item (Paper)
Uncontrolled Keywords: IEEE 802.11 Standard, Long Term Evolution, Computer architecture, Wireless LAN, Delays, Throughput, Out of order
Subjects: Computer science > Big Data Analytics
Divisions: Department of Computer Science & Engineering
Depositing User: Team Library
Date Deposited: 13 Feb 2017 09:14
Last Modified: 07 Sep 2017 09:26
URI: http://raiith.iith.ac.in/id/eprint/3047
Publisher URL: https://doi.org/10.1109/GLOCOM.2016.7841971
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 3047 Statistics for this ePrint Item