Study, Design and Analysis of Antennas for Millimeter Waves and UWB Applications

Panwar, Lakhan (2016) Study, Design and Analysis of Antennas for Millimeter Waves and UWB Applications. Masters thesis, Indian Institute of Technology Hyderabad.

EE13M1025.pdf - Submitted Version

Download (9MB) | Preview


Since the release by the Federal Communications Commission (FCC) of a license free UWB (Ultra-Wide Band) bands mainly offering bandwidth of 7.5 GHz (from 3.1 GHz to 10.6 GHz) and UWB at Millimetre(MM) wave frequency centred at 60 GHz (57 GHz to 64 GHz) for wireless communications, UWB is rapidly advancing as a high data rate wireless communication technology. As is the case in conventional wireless communication systems, antennas plays a very crucial role in UWB systems. However, there are more challenges in designing a UWB antenna than designing narrow band one. A suitable UWB antenna should be capable of operating over an UWB as allocated by the FCC. At the same time, satisfactory radiation properties over the entire frequency range with minimal distortion are also necessary. This thesis focuses on UWB antenna design and analysis for two different frequency bands, the first UWB antenna designed for frequency range from 3.1 GHz to 10.6 GHz and the second one is a MM wave UWB antenna which is centred around 60 GHz and ranges from 57 GHz to 64GHz. Studies have been undertaken covering the areas of UWB fundamentals and antenna theory. Extensive investigations and theoretical analysis were also carried out on proposed UWB antennas. In this work literature survey is carried out about different antenna structures used for UWB applications. To design antenna for UWB (3.1 GHz to 10.6 GHz), studies have been carried out and four Swastika-shaped slot antenna designs have been proposed. Both ground plane and radiating patch are modified in proposed antennas. In the first three antenna designs (antenna design 1, antenna design 2, antenna design 3) the radiating patch is modified with concentric circular slots of different dimensions while in antenna design 4, two inverted L-shaped slots on ground plane are used to achieve enhanced bandwidth and reduced return losses. All these proposed novel antennas are of compact size having dimensions of 24 mm x 24 mm and they almost cover entire UWB range (3.1GHz to 10.6 GHz). The antenna parameters like bandwidth, return loss, radiation pattern and impedance of these antennas are analysed and discussed in chapter 2.

[error in script]
IITH Creators:
IITH CreatorsORCiD
Item Type: Thesis (Masters)
Uncontrolled Keywords: wireless communications, WB antenna, TD630
Subjects: Physics > Electricity and electronics
Divisions: Department of Electrical Engineering
Depositing User: Library Staff
Date Deposited: 20 Jul 2016 04:50
Last Modified: 30 Jul 2019 07:43
Publisher URL:
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 2532 Statistics for this ePrint Item