Scandium induced structural transformation and B':B' cationic ordering in Pb(Fe0.5Nb0.5)O3 multiferroic ceramics

Mallesham, B and Ramadurai, Ranjit and Manivelraja, M (2014) Scandium induced structural transformation and B':B' cationic ordering in Pb(Fe0.5Nb0.5)O3 multiferroic ceramics. Journal of Applied Physics, 116 (3). ISSN 0021-8979

Full text not available from this repository. (Request a copy)


The current study explores non-magnetic Sc3+ induced structural transformation, evolution of local B-site cation ordering and associated effect on ferroelectric phase transition temperature Tmax (temperature corresponding to dielectric maxima) on increasing the atom percent of Sc substitution in [Pb(Fe0.5Nb0.5)O3 (PFN)] ceramics. In this regard, the phase pure Pb[(Fe0.5-xSc x)Nb0.5]O3 ceramics with x varying from 0 to 0.5 were synthesized through solid state reaction route. The detailed structural analysis through Rietveld refinement confirms the room temperature transformation from a monoclinic Cm to rhombohedral R3m structure at x = 0.3 mol. % of Sc. Absorption spectra studies show that there is a considerable increment in the bandgap at higher scandium content. Most interestingly, the Tmax exhibited an increment for lower scandium contents (x = 0.1 to 0.25) followed by a drop in Tmax (x = 0.3 to 0.5). Such anomalous behavior in Tmax is expected to arise due to the onset of B', B' local cation ordering beyond Sc content x = 0.25. The B-site cation ordering at and beyond x = 0.3 was also confirmed by the evolution of cation order induced Pb-O coupled vibrational mode in Raman scattering studies. In addition, the Mössbauer spectra of PFN (x = 0) and Pb(Fe0.4Sc 0.1Nb0.5)O3 (x = 0.1) are reported to verify the spin state and oxidation state of iron. The lattice distortion due to the radius ratio difference between a Sc3+ cation and Fe3+ cation in low spin state is responsible for the structural transformation, which in turn facilitates a B':B' cation ordering.

[error in script]
IITH Creators:
IITH CreatorsORCiD
Ramadurai, Ranjit
Item Type: Article
Uncontrolled Keywords: Ceramic materials; Lead; Positive ions; Rietveld refinement; Scandium; Solid state reactions; Spin dynamics
Subjects: Materials Engineering > Materials engineering
Divisions: Department of Material Science Engineering
Depositing User: Team Library
Date Deposited: 02 Dec 2014 08:54
Last Modified: 20 Sep 2017 07:17
Publisher URL:
OA policy:
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 1108 Statistics for this ePrint Item