A combined spectroscopic and computational investigation on dispersion-controlled docking of Ar atoms on 2-(2′-pyridyl)benzimidazole

Khodia, Saurabh and Maity, Surajit (2021) A combined spectroscopic and computational investigation on dispersion-controlled docking of Ar atoms on 2-(2′-pyridyl)benzimidazole. Physical Chemistry Chemical Physics, 23 (33). pp. 17992-18000. ISSN 1463-9076

[img] Text
Physical_Chemistry_Chemical_Physics.pdf - Published Version
Restricted to Registered users only

Download (3MB) | Request a copy


The dispersion-controlled docking of inert Ar atoms on the face of polycyclic 2-(2′-pyridyl)-benzimidazole (PBI) was studied experimentally aided by computational findings. The PBI-Arn (n = 1-3) complexes were produced in a supersonically jet-cooled molecular beam and probed using resonant two-photon ionization coupled with a time-of-flight mass spectrometric detection scheme and laser-induced fluorescence spectroscopy. The ground state vibrational frequencies were obtained from single vibronic level fluorescence spectroscopy. The formation of multiple isomers was verified using UV-UV hole-burning spectroscopy. The geometries of PBI-Arn (n = 1-3) complexes were derived by mutual agreement between experimental findings and computational results such as vibrational frequencies in the ground and excited electronic states, Franck-Condon factors and spectral shift of the S1 ← S0 transitions. All the above analyses provided good agreement between the experimental and simulated spectrum with the most stable PBI-Arn (n = 1-3) clusters. The highest intermolecular interaction between PBI and Ar was obtained with the Ar atom positioned above the imidazolyl ring. A second Ar atom was preferably docking on the other side of the imidazolyl ring than the pyridyl ring. The subsequent addition of the third Ar atom preferred the position above the pyridyl ring. The current investigation can be useful to investigate the preferential docking of dispersion-controlled interacting partners in multifunctional aromatic side chains present in biological systems. © the Owner Societies.

[error in script]
IITH Creators:
IITH CreatorsORCiD
Item Type: Article
Additional Information: This work has been supported by the Department of Chemistry, IIT Hyderabad and MHRD, the Government of India. SK thanks MHRD, India for the research fellowship. SM expresses sincere gratitude towards Prof. Samuel Leutwyler, University of Bern, for his generous instrumentation aid to IITH for the experimental setup. SM thanks SERB, DST government of India (Grant no. CRG/2019/003335) for funding.
Uncontrolled Keywords: Computational investigation; Computational results; Excited electronic state; Hole burning spectroscopy; Intermolecular interactions; Laser induced fluorescence spectroscopy; Mass spectrometric detection; Single vibronic level fluorescences
Subjects: Chemistry
Divisions: Department of Chemistry
Depositing User: . LibTrainee 2021
Date Deposited: 02 Aug 2022 09:33
Last Modified: 02 Aug 2022 09:33
URI: http://raiith.iith.ac.in/id/eprint/10060
Publisher URL: http://doi.org/10.1039/d1cp02184b
OA policy: https://v2.sherpa.ac.uk/id/publication/18031
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 10060 Statistics for this ePrint Item