Multistep Electron Injection Dynamics and Optical Nonlinearity Investigations of π-Extended Thioalkyl-Substituted Tetrathiafulvalene Sensitizers

Biswas, Chinmoy and Katturi, Naga Krishnakanth and Duvva, Naresh and Giribabu, Lingamallu and Soma, Venugopal Rao and Raavi, Sai Santosh Kumar (2020) Multistep Electron Injection Dynamics and Optical Nonlinearity Investigations of π-Extended Thioalkyl-Substituted Tetrathiafulvalene Sensitizers. The Journal of Physical Chemistry C, 124 (44). pp. 24039-24051. ISSN 1932-7447

Full text not available from this repository. (Request a copy)

Abstract

A comprehensive investigation is presented on the photophysical and third-order nonlinear optical (NLO) properties of two thioalkyl-substituted tetrathiafulvalene molecules (referred here as G1 and G3) to understand their utility as photosensitizers for dye-sensitized solar cell (DSSC) and optoelectronic applications. Both steady-state and time-resolved (in the fs−ns time regime) absorption and photoluminescence (PL) spectroscopy techniques were employed to comprehend the excited-state properties of the molecules in solution as well as in thin films deposited on both quartz and mesoporous TiO2 layers. The spectroscopy measurements in solution and thin films deposited on quartz provided the excited-state properties of dye molecules. Time-resolved PL measurements at the dye−TiO2 interface provided initial evidence of electron injection by fast PL quenching decay dynamics for both the molecules. Detailed target analysis of the femtosecond transient absorption spectroscopy (TAS) data of the dye−TiO2 sample revealed a multistep ultrafast electron injection for both molecules with the fastest injection component being 374 and 314 fs for G1 and G3 molecules, respectively. The ultrafast NLO properties of G1 and G3 were studied using the Z-scan technique with 800 nm, ∼70 fs laser pulses. The open aperture measurements showed three-photon absorption with magnitudes of coefficients 4.7 × 10−5 cm3/GW2 and 5.2 × 10−5 cm3/GW2, and the closed aperture measurements provided second hyperpolarizability (γ) values of 3.5 × 10−31 esu and 4.2 × 10−31 esu for G1 and G3, respectively. Additionally, the onset of optical limiting was estimated to be 5.8 × 10−3 J/cm2 and 5.7 × 10−3 J/cm2 for G1 and G3 molecules, respectively.

[error in script]
IITH Creators:
IITH CreatorsORCiD
Biswas, ChinmoyUNSPECIFIED
Raavi, Sai Santosh KumarUNSPECIFIED
Item Type: Article
Uncontrolled Keywords: Absorption and photoluminescence; Femtosecond transient absorption spectroscopy; Optoelectronic applications; Second hyperpolarizabilities; Spectroscopy measurements; Third-order nonlinear optical; Time-resolved PL measurement; Ultrafast electron injection
Subjects: Physics
Divisions: Department of Physics
Depositing User: . LibTrainee 2021
Date Deposited: 07 Jul 2021 06:36
Last Modified: 07 Jul 2021 06:36
URI: http://raiith.iith.ac.in/id/eprint/8155
Publisher URL: http://doi.org/10.1021/acs.jpcc.0c06010
OA policy: https://v2.sherpa.ac.uk/id/publication/7799
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 8155 Statistics for this ePrint Item