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Abstract

Density functional theory (DFT) has been widely used in condensed matter physics to explore

different material properties and is the most successful theory in electronic structure calculations. In

the present thesis, DFT has been used to compute the Fermi surface (FS) topology under compression

in lanthanum and yttrium based binary and ternary Cu3Au-type superconducting compounds and

some lanthanum based filled skutterudites. In addition, we try to correlate the variation of the

density of states at the Fermi level, N(EF ), elastic softening, variation of superconducting transition

temperature, Tc, under compression with the FS topology change.

In the present work the electronic structure, Fermi surface topology, mechanical and supercon-

ducting properties of AX3 (A = La, Y; X = Sn, Pb, In, Tl), A3X (A= La; X=In, Tl, Sn), La3InZ (Z

= N, O) and LaRu4X12 (X = P, As, Sb) compounds are studied under compression. In AX3 series,

the Fermi surface topology change is observed within the complex sheet under compression except

in YSn3 and YPb3. The reason for the isoelectronic and isostructural LaSn3 and YSn3 to behave

differently is deliberated in terms of the spin-orbit effect and the La ‘4f ’ hybridization due to which

we find an extra hole pocket within the complicated FS sheet in LaSn3 which is absent in YSn3. In

addition, an extra electron pocket exist in YSn3 at ambient and the same is seen to appear under

pressure in LaSn3. On the other hand the C44 softening under pressure in LaPb3 differentiate the

same from YPb3 though the electronic structure at the vicinity of the Fermi level is found to be

similar with the inclusion of the spin-orbit coupling, at ambient conditions.

A comparative study of LaX3 with La3X revealed the different La ‘d’ orbital splitting and is

attributed to the local tetragonal and octahedral site symmetry of La in La3X and LaX3, respectively

in the above two cases. In addition to this, a FS topology change is observed in all FS sheets of La3X

series in contrast to LaX3 series where we noticed the FS topology to change only in complicated

sheet. More interestingly the positive and negative pressure dependence of Tc in La3X and LaX3,

respectively is analyzed in detail along with the phonon dispersion relation.

Further the electronic, Fermi surface, mechanical and superconducting properties are explored for

La3InZ-type compounds, which is formed by adding Z (Z = N, O) atom in the body center of La3In

without changing the crystal structure of the host compound. We find the suppression of Tc with

the inclusion of Z atom in La3In. More interestingly initial decrease of Tc under pressure followed

by an increase with the increase in pressure in the case of La3InO is seen, which is quite different
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from the Tc trend observed in La3In and is attributed to the appearance of the new hole surface and

an extra electron sheet under compression (pressure = 15 GPa) in La3InO.

From the above findings, it is imperative that FS topology change under pressure induce a non-

monotonic variation of Tc, and we have further extended our study to analyze La based filled

skutterudites and find a FS topology change in As and Sb containing compounds which might

further lead to the same anomaly in Tc, as explained in the above mentioned compounds.

Overall the present thesis gives an overview of the trend in the variation of Tc which can be related

with the Fermi surface topology change and it has been clearly verified for quite a few compounds.

It further provokes us to state that one can look for a non-monotonic Tc variation under pressure in

superconductors, where the FS topology change is observed.
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Nomenclature

List of symbols (units)

Tc Superconducting transition Temperature (K)

kB Boltzman’s constant (J K−1)

h Planck’s constant (J. s)

h̄ Reduced Planck’s constant (J. s)

Veff Interaction between the electrons

mediated by the electron-phonon coupling

F(ω) Phonon density of states

〈I2〉 Square of the electron-ion interaction

M Atomic mass

N(EF ) Density of states at Fermi level (states/eV /f.u.)

EF Fermi level

Vext External nuclear potential

Ĥ Hamiltonian

mi Electronic mass

ZI Nuclear charges

MI Nuclear mass

Te Kinetic energy of the electron

Vee Potential energy of the electron

Tn Kinetic energy of the nucleus

Ven Potential energy of the electron and nucleus

Vnn Potential energy of the nucleus

E0 Ground state energy

Exc Exchange-correlation energy

Vks Kohn-Sham potential

jl Spherical Bessel functions

n(r) Electronic density as a function of position

RMT Muffin-tin radius

KMax Plane wave cut-off

TN Antiferromagnetic temperature
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Gmax Charge-density Fourier expansion (a.u.−1)

C11, C12 and C44 Elastic constants (GPa)

GH Hill’s shear modulus (GPa)

GR Reuss shear modulus (GPa)

Gv Voigt shear modulus (GPa)

E Young’s modulus (GPa)

B Bulk modulus (GPa)

Cp Cauchy pressure (GPa)

A Anisotropy factor

vl Longitudinal sound velocity (km/s)

vt Transverse sound velocity (km/s)

vm Mean sound velocity (km/s)

ΘD Debye temperature (K)

NA Avogadro’s number

Greek Letters

ω Phonon frequency

ωc Cutoff phonon frequency

λep Electron-phonon coupling constant

ωln Logarithmically averaged phonon frequency

µ∗ Coulomb pseudo potential

η Hopfield parameter

α(ω) strength of an average electron-phonon interaction

〈ω2〉 average of the square of the phonon frequency

ψ wave function

σ Poisson’s ratio

ρ Mass density

Subscripts

i, j Number of electron index

I, J Number of nucleus index

e Electron

n Nucleus

0 Ambient condition
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Abbreviations

FS Fermi surface

CDW Charge-density-wave

SDW Spin-density wave

SQUID Superconducting quantum interference device

MRI Magnetic resonance imaging

DFT Density-functional theory

LDA Local density approximation

GGA Genelarized gradient approximation

LAPW Linearized augmented planewave

FP-LAPW Full-potential linearized augmented planewave

SOC Spin-orbit coupling

BZ Brillouin zone

DOS Density of states

HF Hartree-Fock

AE All electron

ps Pseudo function

dHvA de Haas van Alphen
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Chapter 1

Introduction

One of the most important characteristics of a metal is its Fermi surface (FS), the surface of constant

energy in k-space. During 1950’s it was realised first that, special efforts are needed to reveal anything

directly from the geometry of the energy surface. I. M. Lifshitz and Onsagar [1, 2] first described

the connection between the magnetic oscillation and the Fermi surface on the basis of the electron

dynamics and the quantum mechanical concepts. The knowledge about the FS of a metal is an

important tool to understand various properties of a metallic material such as structural transition,

elastic, magnetic properties etc. First principles band structure calculations serve as a good source to

analyze these above properties which are related to the FS topology. The geometrical characteristics

of Fermi surface, such as the shape, curvature, and cross-sectional area, are related to the physical

properties of metals. For example, the velocity of electron on the Fermi surface can be estimated

from the knowledge of the effective mass, which is calculated from the cyclotron resonance frequency.

Importance of FS topology in different class of material: The Fermi surface nesting can

help to determine the charge-density-wave (CDW) and spin-density-wave (SDW) instabilities. A

Fermi surface instability which is associated with the spin-density wave has been reported in the

case of superconducting material UPt3 [3]. Fermi surface topology change is observed under pressure

in certain cobalt based Heusler alloys Co2XY (X = Cr, Mn, Fe; Y = Al, Ga), where a transition from

half-metallic to metallic or vice versa [4, 5] is present. Apart from this the most interesting property

is the co-existence of anti-ferromagnetism and the superconductivity in certain materials such as

LuNi2B2C [6] and HoNi2B2C [7], which lead to the Fermi surface nesting. A drastic FS topology

change is observed due to the change in ‘4f ’ electron character of Ce (from localized to itinerant) in

CeRhIn5 at a pressure around 2.35 GPa, where the superconducting transition temperature was also
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noticed to be maximum [8]. A Fermi surface topology change occurs in the case of UGe2 [9, 10] when

the weakly polarized phase is changed into strongly polarized phase with increasing magnetic field.

More interestingly, the lattice collapse was observed in hexagonal metallic compound YCo5 under

hydrostatic pressure of 19 GPa, driven by magnetic interactions where the Fermi surface topology

also changes and can be characterized as a first-order Lifshitz transition [11]. The anomaly in

superconducting transition temperature (Tc) under pressure was also observed in HgBa2CaCu2O6+δ

and was suspected to be driven by the FS topology change [12]. The dramatic change in topology

of the FS of CaFe2P2 suggests, a state with reduced (c/a) ratio, and the Fermi surface sheets are

unlikely to be nested [13]. Similarly the phase transition in some iron pnictide superconductors

was attributed to the nesting feature rather than spin frustration [14]. The anomaly in resistivity

at pressure around 1 GPa for Ba1−xKxFe2As2 could be mainly due to the reconstruction of the

Fermi surface [15]. Most of the superconducting elements show a monotonous decrease of Tc under

pressure, but with the exception of thallium and rhenium, where people have observed more complex

pressure dependence of Tc without any structural transition and suspected the same to be due to

the modification of the electronic structure [16, 17, 18]. On further analysis of these elements it was

proposed that the observed anomaly is due to the FS topology change [19, 20]. In addition to this,

alloying rhenium with other metals like Os, W, Mo also has an effect on the pressure dependence

of Tc and this anomaly again is linked to the FS topology change [18, 21]. The anomaly in Tc

under pressure was reported in the case of Nb, where the authors suspected the same to be due

to the electronic topological transition [22]. The increase of Tc under pressure in V was explained

by Vaitheeswaran et. al [23], where the authors attributed the positive pressure dependence of Tc

to s → d electron transfer and later some other group reported the mechanical instability and C44

softening in vanadium and niobium to be respectively due to the nesting feature of FS [24]. Recently

the FS topology change under pressure in iron chalcogenides and pnictides is correlated with Tc,

where the authors find FS nesting under pressure and suspected the Tc to increase under pressure

[25]. In this present work, we have also shown the importance of the FS topology in Cu3Au type

compounds and in some skutterudite superconducting materials and show the role of FS topology

on electronic and the superconducting properties of these materials at ambient as well as under

compression.

Experimentally many techniques have been developed to study the FS topology such as angle-

resolved photoemision spectroscopy [26, 27, 28], the de-Haas van Alphen effect [29], the shubnikov-de

Haas effect [30, 31], cyclotron resonance and periodic orbit resonance etc. Bismuth is the first metal
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for which FS was determined experimentally. In the case of low dimensional materials only surface

sensitive technique, such as angle-resolved photo-emission, which is the most powerful technique to

probe the Fermi surface of a solid can be used to analyze the Fermi surface. All the above facts lead

us to study the Fermi surface of solids theoretically in this present work. The interplay between

superconductivity and Fermi surface is a frequent theme in condensed matter physics.

1.1 History of superconductivity

At critical temperature (Tc), the total disappearance of the electrical resistivity leads to the transition

of a normal metal to a superconducting state [32, 33] and the superconductors are the materials

which allow the conduction of electricity with absolutely zero resistance. Soon after the discovery

of superconductivity in mercury in 1911 [32], a broad and significant research efforts were aimed to

identify superconducting materials. The microscopic theory of superconductivity was explained by

John Bardeen, Leon Cooper and Robert Schrieffer in 1957 [34], the first widely-accepted theory for

understanding superconductivity (BCS theory). According to the BCS theory the electrons form

Cooper pairs due to the interaction with the crystal lattice at low temperature. Alternatively we

can say that Cooper pair is nothing but an attraction between two electrons with opposite spin

and momentum, mediated by the lattice which creates a ’bound’ state of the two electrons and the

ground state of a material is unstable with respect to this pairs of ’bound’ electrons. The formation

of Cooper pairs lead to the formation of the energy gap, indicating no single electron can occupy

the state near the Fermi surface. Cooper pairs are produced at low temperature and this is the

only interaction that exist in the superconductor resulting in an energy difference from the normal

metal. In 1953, the zero resistance was identified for the first time in the multi-metal compound

based on niobium [35]. The first 20 years were restricted in finding the superconducting materials

with niobium like NbN, Nb3Sn and Nb3Ge [35, 36]. D. Josephson in 1962 predicted the flow of

electric current between two superconducting materials, even when they are separated by a non-

superconductor or insulator and is known as ”Josephson effect”, which has been used in electronic

devices such as the SQUID (superconducting quantum interference device). Afterwards research

further evolved with focus on the intermetallic compounds and at the beginning of the 21st century

the discovery of the superconductivity with multiple superconducting gap in MgB2 lead to special

interest in the intermetallic superconductors [37].
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Figure 1.1: Periodic table for superconducting elements. The purple color in this periodic table
is for the elements that are superconductors under normal atmospheric pressure conditions and
orange color is for those that are superconductors when subjected to high pressure. Under normal
pressure conditions, 29 elements are superconductors and under pressure 23 elements behave as a
superconductor. This figure is adapted from the Ref. [42]

Finding new superconducting materials and understanding the origin of the superconductivity is

still one of the most interesting and the challenging task in modern physics and chemistry. Alloys

and intermetallic compounds are the most important man made materials and remain the subject

of interest for physicist, chemists and material scientist [38, 39, 40]. For the past several years it was

noticed that intermetallic compounds mostly have high strength, good magnetic nature and some

are superconductors [41] (references found therein). Applications of superconductors have emerged

in diverse areas of science and technology including transportation (a superconducting magnetic

levitation (maglev) train), medical care (magnetic resonance imaging (MRI) equipment used in

hospital), etc. Superconductors also find important applications in electronics, including resonators,

magnetometers (SQUID), voltage storages, arithmetic circuits, and memory circuits. SQUID in

particular is capable of detecting externally weak magnetic fields and, thus, is used for studying

magnetic properties of materials and for observing weak magnetic fields emitted by hair or brain.

At ambient pressure there are few known superconducting elements in the periodic table, and few

elements behave as superconductors under pressure as shown in periodic table in Fig. 1.1.
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1.2 Pressure effect on superconductivity

After the discovery of superconductivity by Kamerlingh Onnes [32], the same group carried out the

first high pressure experiments on superconductor [33]. In 1969 the superconductivity of Li was

proposed by Allen and Cohen [43], but no such superconductivity was evident at temperature below

4 mK [44]. However the superconductivity in Li was predicted by Christensen et. al [45] under

high pressure with transition temperature of 80 K. The average phonon frequency and the electronic

density of states at the Fermi level (N(EF )) are the fundamental parameters to estimate the Tc of

the material under pressure. So according to the BCS theory, Tc can be expressed as

kBTc = 1.13h̄ωcexp(−1/λep) (1.1)

where kB is the Boltzman’s constant and h̄ is the Planck’s constant, ωc is cutoff frequency, λep

= N(EF )Veff , is the electron-phonon coupling constant and Veff is the interaction between the

electrons mediated by the electron-phonon coupling.

In the extension of the BCS theory, Eliashberg developed a theory in the limit of strong-coupling

superconductivity [46]. McMillan [47] derived an equation by considering the Eliashberg theory to

calculate the Tc of the material which was later modified slightly by Allen-Dynes [48] as following.

Tc =
ωln
1.2

exp

(

− 1.04(1 + λep)

λep − µ∗(1 + 0.62λep)

)

(1.2)

Here ωln is the logarithmically averaged phonon frequency and dimensionless µ∗ is the Coulomb

pseudo potential. Calculations of µ∗ is computationally demanding and are not yet under theoretical

control.

The dimensionless electron-phonon coupling constant, λep used in the theory of the supercon-

ductivity is given by [47]

λep = 2

∫

dωα2(ω)F (ω)

ω
=
N(EF )〈I2〉
M〈ω2〉 (1.3)

α(ω) and F(ω) are the strength of an average electron-phonon interaction and the phonon density

of states, respectively. 〈I2〉 is the mean of the square of the electron-ion interaction, M is the atomic

mass and 〈ω2〉 is the average of the square of the phonon frequency. The above equation contains two

parts, the numerator representing the electronic part and the denominator represents the phononic

part. The numerator N(EF ) 〈I2〉 is the Hopfield parameter, η, an atomic property and can be
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calculated directly from band-structure theory. The calculations of λep is generally required to

compute the phonon frequencies.

From equation (1.2) and (1.3), it is quite clear that the pressure dependence of Tc is very complex

and depends upon different parameters of the electronic and phononic part. Generally under pressure

the phonon frequency is expected to harden which implies that Tc as per the equation (1.2) may

increase, but at the same time from equation (1.3), it is evident that λep would decrease under

pressure as 〈ω2〉 increases and N(EF ) decreases for most of the materials, ultimately leading to the

decrease of Tc under pressure. The Allen-Dynes formula as in equation (1.2) is quite successful in

determining the Tc of various superconducting materials.

It is very well known that intermetallic compounds possess wide range of properties and need

to be explored from various directions. Our present interest focus especially on the Fermi surface

topology of the superconducting materials and to predict the trend of Tc at ambient as well as

under compression. In this thesis we present the electronic, FS topology, elastic, mechanical and

superconducting properties of different series of compounds such as AX3 (A = La, Y; X = In, Tl,

Sn, Pb), La3X (X = In, Tl, Sn), La3InZ (Z = N, O) and LaRu4X12 (X = P, As, Sb).

1.3 Overview of the Cu3Au-type and skutterudite compounds

The intermetallic compounds which crystallize in the Cu3Au type structure are quite interesting

because of their wide range of properties such as superconductivity [49], spin-fluctuation [50], an-

tiferomagnetic phase transition [51], heavy fermion behaviour [52] etc. The lanthanum, yttrium

and some of the scandium based intermetallic compounds have served as reference material which

is helpful to study the various properties of the rare-earth compounds. For example, the de Haas

van Alphen effect (dHvA) study showed the FS topology of magnetic GaIn3 to be similar with non

magnetic LaIn3 and the effective mass was reported close to LaSn3 [53]. Again the dHvA study

on PrIn3 show a branch which is inert to the applied magnetic field, to be the same as in LaIn3

and is agreeable with the band structure calculation [54]. A comparative study of FS topology on

CeIn3 and LaIn3 was performed by Betsuyaku et. al [55] and the pressure study on FS topology

showed the existence of the similar branch in both of these compounds. More interestingly it was

also noticed that the electric field gradient at In site is the same in both CeIn3 and LaIn3 with the

consideration of Ce ‘4f ’ electron to be itinerant [55]. The antiferro-quadrupolar ordering was found
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to be collapsed in PrPb3 with 2.5% dilution of Pr ion with non-magnetic La ion [56]. From the

comparative study of LaxPr1−xPb3 (x = 0.97) and LaPb3 it was found that the anomaly seen in the

specific heat of LaxPr1−xPb3 (x = 0.97) below 1.5 K comes from the Pr moment and not from the

superconductivity of LaPb3 [57]. From the above discussions, it is quite clear that the comparative

study of the different compounds can serve as a better way for understanding the various properties

possessed by the individual material. To explore the properties of series of isostructural Cu3Au type

of compounds, such as AX3 (A = La, Y; X = In, Tl, Sn, Pb), A3X (A = La; X = In, Sn) and La3InZ

(Z = N, O), we have performed a detailed theoretical calculation on electronic, Fermi surface, elastic

and superconducting properties and presented a comparative study among these above mentioned

group of compounds in this work. Apart from this we have also investigated a series of skutterudite

compounds LaRu4X12 (X = P, As, Sb) and calculated the Fermi surface topology at ambient as well

as under compression and try to relate the superconducting properties with Fermi surface topology

change. Next we present a brief introduction about the compounds which we have studied in this

work.

Among all the Cu3Au type compounds, AX3 (A = La, Y; In, Tl, Sn, Pb) type of compounds

are of special interest [58, 59, 60, 49]. The LaX3 alloys show non-monotonic variation in their bulk

properties such as superconductivity, magnetic susceptibility, density of states, thermopower as a

function of their valence electron concentration [49, 61, 62] and this behaviour has been attributed

to the Brillouin zone effect, which concluded that the Fermi surface close to the boundary of the

Brillouin zone would be expected to produce more pronounced effect on the variation of above

properties than the Fermi surface towards the center of the Brillouin zone. It is quite interesting to

note that the superconducting properties of LaX3 compounds are mainly derived from the X-atom

instead of La and these compounds behave similar to transition metals [49].

Apart from AX3, there exist few A3X (A = La, X = In, Tl, Sn) type of compounds [63, 64]

which also crystallize in Cu3Au type structure and possess Tc comparatively larger than the AX3

compounds for a particular X atom [63]. A3X compounds also show anomaly in resistivity, ther-

mopower etc [65]. Previous experimental studies have reported these In and Tl containing La3X type

compounds to be strong coupling superconductors with Tc around 9.54 K and 8.86 K for La3In and

La3Tl, respectively [63]. More interestingly it was found that La3In and La3Tl are superconductors

having large temperature dependent magnetic susceptibility, and was attributed to the presence of

a peak in the density of state at Fermi level [66]. Apart from this, in the case of La3In the positive

10



dependence of Tc under pressure was reported experimentally by Smith et. al [67]. Now it is inter-

esting to verify the variation of superconducting properties of La3In and the isostructural La3X (X

= Tl, Sn) compounds theoretically at ambient as well as under compression. To know more about

the behaviour of these compounds it is necessary to study in detail the electronic structure, Fermi

surface, elastic and superconducting properties of A3X (A = La, X = In, Tl, Sn) compounds.

Yet another class of compounds La3InZ (Z = C, B, N, O), also crystallize in cubic Cu3Au type

structure. Experimentally the authors have studied the superconducting nature of La3InZ for Z =

C, B, N and O and found Tc to be nearly same as that of La3In for Z = B, O and superconductivity

was not found above 2 K for La3InC and La3InN [68]. Ravindran et. al [69] studied the structural

stability, electronic properties and superconductivity of La3X as well as La3XC (X= Al, Ga, In,

Tl) compounds. Kirchner et. al [70] have studied experimetally as well as theoretically some

R3InN (R = Rare earth elements) type compounds and compared the bonding nature of the La3In

with La3InN. Apart from this there are no studies available regarding the FS and the origin of

the superconductivity in La3InZ (Z = N, O) compounds at ambient as well as under compression,

which is the main interest in these compounds and we discuss the effect of Z atom on the electronic

structure, FS, vibrational and superconducting properties.

Filled skutterudites of LaRu4X12 with X = P, As, Sb are another group of superconducting ma-

terials, crystallizing in cubic structure with space group Im3̄ (no. 204). The Tc of these compounds

are reported to be 7.2, 10.3 and 2.8 K respectively [71] for X = P, As, Sb. The La-based skutterudite

compounds are having special interest because of their unusual properties such as FS nesting and

multiple superconducting gap in LaRu4P12 [72] and LaRu4As12 [73], respectively. Many groups have

investigated and reported the nesting feature of LaRu4P12 with nesting vector −→q = (100), which is

the reference material for PrRu4P12. The Fermi surface studies have been performed for many filled

skutterudites including LaRu4P12 [72, 74, 75, 76], however the resistivity and specific-heat measure-

ments in LaRu4P12 show no metal-insulator transition above superconducting transition tempera-

ture (Tc) as observed in PrRu4P12 [77]. A comparative study on the FS topology of CeRu4Sb12

and LaRu4Sb12 has been performed where the authors find the topology to be different due to the

presence of strong electron correlation in the former compound. Now it is interesting to think about

the FS topology and the electronic properties of LaRu4X12 for X = P, As, Sb at ambient as well as

under compression and try to understand the correspondence between the electronic properties and

the origin of superconductivity.
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Table 1.1: The superconducting transition temperature, (Tc) of AX3 compounds with A = La, Y
and X = In, Tl, Sn, Pb, calculated experimentally.

Compounds Tc (K)

LaIn3
a 0.70

YIn3
a 0.78

LaTl3
a 1.57

YTl3
a 1.52

LaSn3
a 6.45

YSn3
b 7

LaPb3
a 4.05

YPb3
a 4.72

a: Ref. [61]; b: Ref.[80]

1.4 Motivation of the work

Cu3Au type compounds had been investigated earlier and various studies on these compounds

concluded that Tc is correlated to the valence electron concentration [78, 79]. Pressure effect on

FS was performed for few Cu3Au type compounds and are correlated with different properties such

as superconductivity, magnetism etc. Most of the AX3 compounds are superconducting in nature

and the nuclear magnetic resonance study show the origin of superconductivity to be mainly derived

from the X-site and also expect that they can be treated as transition metal compounds, which is

of particular interest and need to be explored in detail. Experimentally Tc of LaX3 compounds was

reported to be nearly same with YX3 compounds for a particular X (X = In, Tl, Sn, Pb) atom and

the values are reported in Table-1.1. Now it is interesting to compare the properties of LaX3 and

YX3 to explore the influence of similar valence electron configurations of Y and La on the electronic

structure and superconductivity.
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The next important point to study would be to predict the trend of Tc under pressure and try

to correlate with the FS topology change. Experimentally Huang et. al [81] have proposed the

superconductivity of LaSn3 to be highest among LaX3 series and found an anomaly in Tc under

pressure which was attributed to the FS topology change. The main point here is to analyze

theoretically the FS topology change in the case of LaSn3 and correlate with the superconducting

transition temperature under pressure. Secondly one can expect the same anomaly in the case of

the isostructural YSn3 as both La and Y have no ‘f ’ electron, whereas in our present work we have

shown and discussed the possible reason for LaSn3 and YSn3 to behave differently. In the previous

study on superconducting transition temperature in the (La,Th)Sn3 alloy system [82], authors have

attributed the singular behaviour of the electronic density of states in the vicinity of the Fermi level

of LaSn3 to be the main reason for the observed oscillatory behaviour of Tc as a function of alloy

composition. Again Huang et. al [81] have correlated the irregular behaviour of Tc in LaSn3 under

pressure with the Fermi surface topology change, where these authors reported an initial increase in

Tc with a maximum at a pressure around 0.8 GPa, beyond which Tc gradually decreases. Within

the BCS framework of superconductivity, the change in Tc observed could reflect a change in the

density of states at the Fermi level. The above discussion and findings stimulate us to search for the

Fermi surface topology change in LaSn3 theoretically under compression, which can be related to

the variation of superconducting transition temperature and the density of states at the Fermi level.

To understand the physical properties of these compounds in detail, we have shown the behaviour

of FS topology and superconductivity in the isoelectronic and isostructural YX3 and LaX3 series of

compounds with X = In, Tl, Sn, Pb, at ambient as well as under compression. Again it was noticed

that among all LaX3 and La3X compounds, Tc was reported to be highest in La rich La3In (Tc =

10.4 K [63]) and lowest in the case of In rich LaIn3 with Tc = 0.7 K [82, 83] at ambient pressure. So

it is quite important and interesting to analyze the origin of superconductivity in both the series of

compounds. Apart from this it was reported experimentally that Tc increases with pressure in the

case of La3In [84]. To track the pressure dependence of Tc in X rich LaX3 compounds as well as in

La rich La3X compounds, which can be related to the Fermi surface topology, it is most necessary

to present a comparative study on both the series of compounds LaX3 and La3X. On the other hand

experimentally Jing-Tai Zhao et. al [68] have synthesized La3InZ (Z = N, O) type compounds and

reported the superconducting behaviour at nearly 10 K for La3InO, which is of the same range as

that of La3In, whereas the authors have not found any superconducting nature in La3InN above

2 K. The addition of the Z (Z = N, O) atom in the body center of La3In result in La3InZ type

inverse perovskite structure. Alternatively we can say that La3InZ compounds originate from the
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Cu3Au type parent compound La3In, without loosing the space group of the host compound, and

this enable us to analyze the role of the Z atom in La3InZ compounds. Apart from this the variation

of superconducting transition temperature in La3InZ compounds can also be correlated with the

Fermi surface topology change and density of states at the Fermi level under compression, which

will be discussed in the present work.

Overall the presence of high Tc in YX3 compounds in comparison with LaX3 for a particular X

atom, though both La and Y possess no f -electron is the most interesting part among the studied

AX3 series of compounds. Secondly Tc being reported to be higher in La3X compounds than LaX3

together with the positive dependence of Tc under pressure in La3In and positive dependence initially

up to 0.8 GPa and negative dependence at higher pressure in LaSn3 which is attributed to the FS

topology change is another striking point to analyze. Apart from this Tc was reported to be almost

the same with the inclusion of O in La3In, but found to be suppressed with the inclusion of N in the

same La3In, provoking us to study in detail the electronic, Fermi surface and superconductivity of

these series of AX3 type compounds such as LaIn3, LaTl3, LaSn3, LaPb3, YIn3, YTl3, YSn3, YPb3,

A3X type compounds, La3In, La3Tl, La3 Sn along with La3InN and La3InO.

In addition, we have extended our study to explore the electronic and Fermi surface topology of

LaRu4X12 (X = P, As, Sb), well known filled skutterudites. Recent experimental study described the

multigap superconductivity in LaRu4As12 [73] and the Fermi surface nesting feature in LaRu4P12

[72]. Again it is to be noted that, though X (X = P, As, Sb) belong to the same group in the

periodic table a large difference in the superconducting transition temperature was noticed from the

experimental report (7.2, 10.3 and 2.8 K respectively [71] in LaRu4X12 with X = P, As, Sb). Apart

from this, from the recent experimental study it was found that Tc decreases under pressure in the

case of LaRu4P12 [85] and in our present calculation we try to correlate this decreasing behaviour

of Tc under pressure from the electronic structure calculation and also try to find out the origin

of the superconductivity from the electronic structure. From the available experimental reports as

explained above, various properties possessed by LaRu4As12 and LaRu4P12 trigger us to scrutinize

these La based skutterudites LaRu4X12 with X = P, As, Sb.

Overall, we have studied the Fermi surface topology of 16 different compounds at ambient pressure

as well as under compression and try to correlate the same with the density of states at the Fermi

level, elastic constant, variation of the superconducting transition temperature within a particular

series of compounds as well as among different series of the studied compounds.
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In the present thesis we have described in detail the importance of Fermi surface in the field

of condensed matter physics along with the review of the studied Cu3Au type and skutterudite

compounds and this forms our first chapter. The rest of the thesis is divided in to three parts,

the second part which is our chapter 2 include the details of the methodology which is used to

investigate the different class of the studied compounds, in chapter 3-7 we have presented the results

and discussion of the compounds studied and the last chapter which is the 8th chapter contains the

conclusions and future plan. Here we are systematically presenting the summary of the rest of the

chapters of our thesis.

Chapter-2: The description of the interacting many-particle systems is too complicated and it

was solved by using several approximations. To predict the behaviour of any electronic system, one

should be able to solve the Schrödinger equation which is having the wave functions in the form of

ψ(r1, r2, ..., rN ), a function of 3N variables, where N is the number of particles. But it is difficult

to solve the quantum mechanical problem with too many degrees of freedom. Thereafter several

approximate methods evolved to model the interacting many-particle systems such as Hatree-Fock

method, augmented plane wave method, orthogonalized plane wave method etc. In 1960’s accurate

and improved calculations are done on electronic structure after the density functional theory (DFT)

based on the Hohenberg-Kohn theorem came to existence. Since 1990, the electronic structure

calculation based on the density functional theory has a great success in determining the ground

state properties and became more popular in condensed mater physics, chemistry and material

science. DFT now serves as an excellent tool to have a basic and quantitative understanding of solids

in condensed matter at microscopic level since it is based on quantum theory. In this chapter we

have described the details of DFT and the full-potential linearized augumented plane wave method

and pseudopotential method as implemented in WIEN2k and PWSCF code and an overview of the

exchange-correlation functional such as local-density approximation (LDA) and generalized gradient

approximation (GGA) is also presented.

Chapter-3: In this chapter we have discussed the electronic, elastic and Fermi surface prop-

erties of the AX3 (A = La, Y; X = In, Tl,Sn, Pb) type compounds at ambient as well as under

compression. Fermi surface topology change is observed for all the iso-structural AX3 compounds

under compression except in YSn3 and YPb3. The reason for the different FS behaviour noticed

among these compounds are analyzed and discussed.

Chapter-4: This chapter elaborates the electronic and Fermi surface properties of La3X (X

= In, Tl, Sn) together with the comparative study of La3X with LaX3. We observed a strong

interaction between the atoms in La3X compounds, which is more pronounced than the LaX3 type
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compounds and the reason for the same is also reported here. More interestingly we find the

mechanical properties of all La3X and LaX3 compounds to be similar, although their electronic

structures and Fermi surface topologies are different.

Chapter-5: Superconductivity of AX3 (A = La, Y; X = In, Tl, Sn, Pb) and A3X (A = La;

X = In, Tl, Sn) compounds are analyzed under compression and we discuss the reason for Tc to

be higher in A3X compounds in comparison with AX3 compounds in this chapter. Apart from this

the opposite response of Tc with pressure in AX3 and A3X series of compounds is presented and

taken up elaborately, as our calculations report Tc to increase with pressure in A3X compounds and

decrease with pressure in the case of AX3 compounds. In addition the calculated superconducting

transition temperatures of these compounds show a non-monotonic variation under pressure, where

we have observed the FS topology change.

Chapter-6: The electronic structure, Fermi surface (FS) topology and superconducting prop-

erties of La3InZ (Z = N, O) compounds are explained in this chapter and are compared with La3In

which is of the same space group, thereby emphasizing the role of Z atom in La3InZ compounds.

More interestingly FS topology change is observed only in La3InO, but not in the case of La3InN

and the possible reason for this difference is also presented.

Chapter-7: In this chapter we have discussed the ab-initio calculation of the band structure,

density of states and Fermi surface (FS) properties of filled skuterudittes LaRu4P12, LaRu4As12 and

LaRu4Sb12, at ambient as well as under compression. A Fermi surface nesting feature in LaRu4P12

and FS topology change in the case of LaRu4As12 and LaRu4Sb12 under compression is shown here.

Chapter-8: This chapter contains the summary and future plan of the whole thesis. A non-

monotonic variation of Tc was noticed for the compounds where we find the topology of the FS

to change. The correlation of the non-monotonic variation of Tc with the FS topology change

is verified for different series of compounds AX3 (A = La, Y; X = In, Sn, Pb), La3X (X = In,

Sn, Pb) and La3InO. Apart from these Cu3Au type compounds, we have also analyzed the Fermi

surface topology of the La based skutterudite LaRu4X12 (X = P, As, Sb) at ambient as well as

under compression. As mentioned and discussed above, skutterudites are quite interesting and have

promising application. Though it would be computationally quite expensive, it would be worthy to

analyze the complete phonon dispersion of these compounds at ambient and under pressure, which

might give us a complete insight about the electron-phonon coupling and the Tc of these compounds

under pressure which would be taken up as a future work.
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Chapter 2

Density Functional theory

To completely describe the quantum-mechanical behaviour of a system of N interacting electrons it

is necessary to calculate its many-electron wave-function, since a solid typically contains around 1023

atoms. It is difficult to solve the corresponding Schrödinger equation. In the 1960’s, Hohenberg,

Kohn and Sham provided a powerful tool to solve the quantum states of many-electron systems:

Density Functional Theory (DFT). The idea mentioned there is, the total particle density is the

primary quantity from which properties of the system can be calculated and is sufficient to describe

the macroscopic properties of the solid in its ground state. This chapter is an introduction to the

key concepts in the density functional theory. The DFT band structure codes (focusing on WIEN2k

and Quantum Espresso) will be explained in this chapter.
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2.1 Background

With the introduction of the time independent Schrödinger equation, different approaches have

come out to solve the equation that govern the interaction between the electrons and nuclei of solids

and have received substantial attention by physicist and chemists. To find out the total energy

of the system, a series of approximations have been used. The Schrödinger equation depends upon

3(n+N) number of variables, where n is the number of electrons and N is number of nuclei in a solid

and it practically impossible to solve. Next by considering the Born-Oppenheimer approximation

which we would discuss shortly, 3(n+N) variables may reduce to 3n variables but still difficult to

solve. So based on the total electron density as a fundamental variable, density functional theory

has evolved as a powerful tool in condensed matter physics to calculate different properties of the

materials [86, 87, 88]. The significance of this method (DFT or first principles theory or ab initio

calculation) is that, the wave function depends on 3n variables, whereas the electron density is a

function of only 3 spatial variables, thereby reducing the computational cost. DFT is based on

the Kohn- Sham equations. Kohn-Sham potential, in density functional theory appear as functional

derivatives of energy with respect to the density. DFT is most widely used theory for calculating and

providing sufficient information regarding various properties such as electronic structure including

Fermi surface, magnetic properties, superconducting properties, elastic, mechanical properties etc

even for large system.

2.2 The Many-body problem

In quantum mechanics, a solid is described by the many-particle (electron and nuclei) wave function.

The starting point will be the time independent Schrödinger equation, which is

Ĥψ = Eψ (2.1)

Here Ĥ is the Hamiltonian, ψ is the wave function of the system, and E is the energy.

The Hamiltonian of the system again can be written as

Ĥ = −
N
∑

i=1

h̄2

2mi
∇2
i +

e2

2

N
∑

i=1

N
∑

i6=j

1

|ri − rj |
−

P
∑

I=1

h̄2

2MI
∇2
I +

e2

2

P
∑

I=1

N
∑

i=1

ZI
|ri −RI |

+
e2

2

P
∑

I=1

P
∑

J 6=I

ZIZJ
|RI −RJ |

= Te + Vee + Tn + Ven + Vnn (2.2)
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where R = {RI , I = 1, 2, ...P} is a set of P nuclear coordinates, and r = {ri, i = 1, 2, ...N} is a

set of N electronic coordinates. ZI , ZJ and MI are the nuclear charges and masses, respectively, e

and mi are the electronic charges and masses, respectively. The first term, Te = kinetic energy of

the electron, second term, Vee = potential energy of the electron, third term, Tn = kinetic energy

of the nucleus, forth term, Ven = potential energy of the electron and nucleus and last term, Vnn

= potential energy of the nucleus.

Since the motion of each electron is coupled to that of the other electrons in the system, in practice

the above equation is not solvable analytically and approximations are needed.

2.2.1 Born-Oppenheimer approximation

In the Born-Oppenheimer approximation the electronic state is taken to be independent of the motion

of the nuclei and depends only on their positions. Since the mass of the nuclei are much heavier

than the electrons, the motion of the nuclei can be ignored in comparison with the electron, and

we can consider the electrons as moving in the field of fixed nuclei. This is the Born-Oppenheimer

approximation. So in the above equation (2.2) the third term can be neglected and the last term is

just a classical constant which will be denoted as EII . This Hamiltonian can be written in simplified

form as

Ĥ = −
N
∑

i=1

1

2
∇2
i +

1

2

N
∑

i=1

N
∑

i6=j

1

|ri − rj |
+
e2

2

P
∑

I=1

N
∑

i=1

ZI
|ri −RI |

+ EII

= Te + Vee + Vext + EII (2.3)

In this above equation h̄= e=me = 1 has been considered according to the atomic units. Vext is

the Coulomb potential arising from the nuclei.

For a system of N electrons with nuclear potential Vext, the variational principle defines a

procedure to determine the ground-state wave function ψ0, and the ground-state energy, E0. In

other words, the ground state energy is a functional of the number of electrons N and the nuclear

potential Vext, i.e E0 = E[N, Vext]

2.2.2 The Hartree-Fock approximation

The Hartree-Fock method is a variational, wavefunction-based approach. Each electron feels the

presence of the other electrons indirectly through an effective potential. Thus each orbital is affected
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by the presence of electrons in other orbital. Before Hatree-Fock, Hatree approximation has come

out, but it fails to explain about the antisymmetry principle, which states that a wavefunction

describing fermions should be antisymmetric with respect to the interchange of position of the

electron. In this Hatree-Fock, the antisymmetry principle has been taken care. The wave function

of the two electrons in Hatree approximation is

ψH(x1, x2) = φ1(x1)φ2(x2) (2.4)

But to satisfy the antisymmetry principle we can write the wavefunction as:

ψHF (x1, x2) =
1√
2
[φ1(x1)φ2(x2)− φ1(x2)φ2(x1)] (2.5)

For N electron system, this above equation can be written in determinant form, which is nothing

but the Slater determinant.

Ψ(x1, x2, ..., xN ) =
1√
N !
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(2.6)

So from this, it emerges that the electron can move independently except that it experience

Coulomb repulsion due to the interchange of the position, which is nothing but the exchange inter-

action of the electron. Hence in the Hatree fock model the exchange interaction of the electron is

taken care. So the Hatree-Fock energy can be written as

EHF =

∫

φ∗i (r)

(

−1

2

N
∑

i

∇2
i + Vext

)

φi(r)dr

+
1

2

N
∑

i,j

∫

φ∗i (r1)φi(r1)φ
∗
j (r2)φj(r2)

|ri − rj |
dr1dr2

−1

2

N
∑

i,j

∫

φ∗i (r1)φj(r1)φi(r2)φ
∗
j (r2)

|ri − rj |
dr1dr2 (2.7)
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The second term is simply the classical Coulomb energy written in terms of the orbitals, which is

nothing but Hatree-energy and the third term is the exchange energy. So the Hatree-Fock equation

becomes

[

−1

2
∇2 + Vext(r) + VH

]

φi(r) +

∫

vx(r, r
′

)φi(r
′

)dr
′

= ǫiφi(r) (2.8)

VH , in the equation (2.8) is the Hatree potential. The non-local exchange potential, vx, is such

that:

∫

vx(r, r
′

)φi(r
′

)dr
′

= −
N
∑

j

∫

φj(r)φ
∗
j (r′)

|r − r′ | φi(r
′

)dr
′

(2.9)

In order to compute the total energy we need to know the 3N dimensional wavefunction, which

is still difficult. So in condensed matter physics this is the main motivation which paved way for the

development and use of density functional theory.

2.3 Density functional theory

Density-functional theory (DFT) differs from the wave function based methods by using the electron

density n(r) as the starting point. An important advantage of using the electron density over the

wave function is the reduction in dimensionality, i. e 3(n+N) to 3. A comprehensive discussions of

DFT can be found in excellent review articles[89, 90] and textbooks[88, 91, 92].

First, the electron density is defined as

n(r) = N

∫

...

∫

|ψ(x1, x2, ...xN )|2dx2...dxN (2.10)

and the total number of electrons is given by

∫

dr3n(r) = N (2.11)

2.3.1 Thomas-Fermi model

Thomas and Fermi[93, 94] independently considered a model for the first time where the kinetic

energy is expressed in terms of the particle density n(r). So the average kinetic energy per particle
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as a function of the particle density n is

ǫkin(n) = CFn
2/3, CF =

3

10
(3π2)2/3 (2.12)

The kinetic energy per unit volume, Ekin, of a noninteracting homogeneous electron gas in the case

is nǫkin and can be written as

Ekin ≈
∫

d3rn(r)ǫkin(r) = CF

∫

d3rn5/3(r) (2.13)

Thomas-Fermi model illustrated that the energy can be determined purely using the electron

density.

2.3.2 Hohenberg-Kohn Theorems

In 1964 Hohenberg and Kohn[86] proved two theorems.

Theorem I: The electron density determines the external potential and the density is the ground

state particle density n0(r). So for a given ground state density n0(r), it is possible to calculate the

ground-state wave function ψ0(r) and vice versa and contain exactly the same information.

Theorem II : An universal functional for the energy E[n] can be defined in terms of the density.

The exact ground state is the global minimum value of this functional.

So for a given ground state density n0(r),

E0 = minψ→n0
〈ψ|Te + Vext + VH |ψ〉 (2.14)

2.3.3 The Kohn-Sham equations

The Kohn-Sham equation is based on the following assumption (called Kohn-Sham ansatz): The

exact ground-state density can be represented by the ground-state density of an auxiliary system of

non- interacting particles.

From the Hohenberg-Kohn Theorems the total energy of the system can be written as

E[n(r)] =

∫

Vext(r)dr + F [n(r)] (2.15)
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But Kohn-Sham separated F [n(r)] into three parts

F [n(r)] = Te[n(r)] +
1

2

∫

drdr
′ n(r)n(r

′

)

|r − r′ | + Exc[n(r)] (2.16)

where Te[n(r)] is the kinetic energy of a non-interacting electron gas of density n(r), and the sec-

ond term of equation (2.16) is the classical electrostatic (Hartree) energy. Exc[n(r)] is the exchange-

correlation energy.

From equation (2.15) and (2.16) we get the Kohn-Sham potential as

V σks(r) =

∫

dr
′ n(r

′

)

|r − r′ | + V σxc(r) + Vext(r) (2.17)

where the exchange-correlation potential V σxc(r) is defined as

V σxc(r) =
δExc[n(r)]

δn(r, σ)
(2.18)

and σ is the spin variable, N =
∑

σ

Nσ= N↑ + N↓

So the Kohn-Sham equation becomes

{

−1

2
∇2 + V σks(r)

}

ψσi (r) = ǫσi ψ
σ
i (r) (2.19)

Here ψσi is defined as the Kohn-Sham one-electron orbitals and the electron density is defined

as,

n(r) =

Nocc
∑

i

|ψi(r)|2 (2.20)

By solving these above equations we will get the total energy of the Kohn-Sham equation as

E = Eks =

Nocc
∑

i=1

ǫi −
∫

dr

{

1

2
VH(r) + Vxc(r)

}

n(r) + Exc + EII (2.21)

Where

Nocc
∑

i=1

ǫi = 2

N/2
∑

i=1

ǫi

where Nocc = N . EII(R) represents the interaction between ions.

The Kohn-Sham equation must be solved self-consistently. The general procedure begin with
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an initial guess of the electron density, construct the V σks from Eq. (2.17), and then get the Kohn-

Sham orbitals. Based on these orbitals, a new density is obtained from Eq. (2.20) and the process

is repeated until convergence is achieved. Finally, the total energy will be calculated from Eq.

(2.21) with the final electron density and the flow chart depicting the method of solving Kohn-Sham

equation is given in Fig. 2.1.

Figure 2.1: Flow chart of the Kohn-Sham equation, (figure is taken from online resource).

If each term in the Kohn-Sham energy functional was known, we would be able to obtain the

exact ground state density and total energy. This expression of Eks (or ǫi) would be exact if the exact

functional Exc[n] is known. Unfortunately, there is one unknown term, the exchange-correlation (xc)

functional (Exc[n]). Since Exc is not known exactly, it is necessary to approximate it, which is the

focus of the next section.
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2.3.4 Exchange-Correlation Functionals

Even since the people started using DFT, some approximation for Exc have been used and local

density approximation (LDA) and genelarized gradient approximation (GGA) are widely used.

Local Density Approximation (LDA)

The LDA uses the exchange-correlation energy of the homogeneous electron gas. Here, the electrons

are exposed to a constant external potential, i.e., the nuclei are replaced by a homogeneous positive

charge density. Thus, the total exchange-correlation energy of the system can be written as

ELDAxc [n] =

∫

n(r)ǫhomxc (n(r))dr (2.22)

where ǫhomxc is the exchange-correlation energy per particle of the interacting homogeneous elec-

tron gas of density n(r). The LDA is valid for slowly varying densities such as the weakly perturbed

electron gas. Indeed LDA works well, especially for metals. However, many studies have shown that

LDA tends to overestimate cohesive energies, bulk modulus and underestimates lattice constants.

The Perdew-Zunger (PZ)[95] and Perdew-Wang (PW)[96] functionals are common LDA functionals.

Genelarized Gradient Approximation (GGA)

In LDA one uses the knowledge of the density in a point r. In real systems the density varies in

space. For the rapidly varying electron densities of many materials a reasonable approximation has

to be considered and the gradient of the density (∇n(r)) needs to be included. In GGA, the densities

of the surrounding infinitesimal volumes are considered, which means the gradient of the density

plays a role. Numerically it is defined as

EGGAxc [n] =

∫

fGGA(n(r),∇n(r))dr (2.23)

GGA improves significantly on the LDA’s description of the binding energy of molecules. A number

of functionals within the GGA family[97, 98, 99, 100] have been developed.
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2.4 Linearized Augmented Planewave (LAPW) Method

In our thesis, we have used the Linearized Augmented Plane wave (LAPW) method as implemented

in WIEN2k to calculate the material properties. LAPW method is the most accurate methods for

performing electronic structure calculations for crystals. To solve the Kohn-Sham equation, which

further help us to calculate the ground state density, total energy, eigen values of a many-electron

system, a basis set has to be introduced. In this method the unit cell is divided into two parts:

spheres around each atom (muffin tin sphere), where wave functions are rapidly varying, i. e.

atomic like and the interstitial region, where the wave functions are smoothly varying and satisfy

the condition that the wave function and their derivatives are continuous at the boundary. In the

WIEN2k [101] code the parameter energy cutoff, Ecut separate the core region which is confined in

the muffin tin sphere from the valence state which is treated as the interstitial region as per above

discussion. The muffin tin radius is controlled by the parameter RMT . So the basis function is a

plane wave in the interstitial region and inside the sphere it is atomic like function.

φkn =















Ω−1/2eiknr outside sphere
∑

lm

[Almul(r, El) +Blmu̇l(r, El)]Ylm(r̂) inside sphere
(2.24)

Where Ylm(r̂) is the spherical harmonics and ul(r, El) is the solution of the radial schrödinger

equation for energy El and azimuthal quantum number l and u̇l is its energy derivative evaluated

at a fixed linearization energy El. Alm and Blm are chosen such that basis functions are continuous

and smooth at sphere boundaries, and kn=k+Kn;Kn are the reciprocal lattice vectors and k is the

wave vector inside the Brillouin zone.

According to the linear variation method, the solution of the Kohn-Sham equations are expanded

as follows.

φk =
∑

n

cnφkn (2.25)

where the coefficients cn are determined by the Rayleigh-Ritz variational principle. The conver-

gence of the basis set is controlled by the cut-off parameter RMT KMax, RMT is the smallest atomic

sphere (Muffin-Tin sphere) and the KMax is the magnitude of the largest K vector (plane-wave

cut-off).

The potential (and charge density) can be of general form, no shape approximation is considered
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and this is called full-potential.

V (r) =



















∑

lm

Vlm(r)Ylm(r̂) inside sphere

∑

K

VKe
iKr outside sphere

(2.26)

2.5 Pseudopotential method

Since most of the material properties depend upon the valence electrons, one can distinguish core and

valence electrons and this is implemented in the pseudopotential method. In this method the core

electrons are replaced by a pseudopotential. This method is simple and requires lesser computational

resources. So it is easier to solve the heavier system with more electrons. The pseudo potentials will

be set in such a way that the pseudo wavefunction must not have any radial nodes within the core

region and at a certain distance, rc the pseudo wavefunction becomes equal to the real wavefunction.

The criteria which it must satisfy is that, the pseudo wavefunctions and pseudopotential should

be identical to the all electron wavefunction and potential outside a radius of cut-off rc. In addition

pseudo wavefunctions must be continuous at rc as well as its first and second derivative and also be

non-oscillatory. So to get the pseudo potential, the all-electron(AE) Schrödinger equation has to be

solved:

(

1

2
∇2 + V

)

ψAEl = ǫψAEl (2.27)

Here ψAEl is the wavefunction for the all electron (AE) atomic system with angular momentum

component l. The pseudo wavefunction is of the form

ψpsl =

n
∑

i=1

αijl (2.28)

Where jl are the spherical Bessel functions and αi is the fitting parameter. The scattering

properties of pseudo-potential or pseudo wavefunction are identical to the all-electron scattering

properties, i. e it is an angular dependent quantity. A pseudo-potential that satisfy this constraint is

called norm-conserving pseudopotential. The schematic diagram for all-electron and pseudo potential

and the corresponding wavefunctions are presented in Fig. 2.2.
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Figure 2.2: Schematic diagram of the potential and wave function for all-electron and pseudopotential
schemes. Outside of the core radius, rc, the potential and wave functions are identical. The figure
is taken from Ref.[102].

Limitation of norm-conserving pseudo-potential

The norm-conserving pseudo-potentials are still hard and require a large plane wave basis sets, and

consume more computational time.

Ultrasoft pseudo-potentials

Throughout this work to study the phonon and dynamical properties of the material the ultrasoft

pseudo-potentials (USPP) have been used as implemented in Quantum Espresso package[103, 104].

The USPP generator is developed by Professor David Vanderbilts group[105]. To generalize the

eigen value problem, they defined an operator Ŝ such that the pseudo-wavefunction |φnk〉 satisfy the

orthonormalization condition:

〈

φnk|Ŝ|φn′k′

〉

= δnn′ (2.29)

The orbital in the core region are allowed to be soft and low kinetic energy cut-off is used. The

obtained integral of the charge-density distribution of each pseudo-wavefunction inside the core

region and all-electron wave function is different. The Hamiltonian is solved by introducing the
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operator Ŝ .

Ĥ|φnk〉 = ǫnkŜ|φnk〉 (2.30)

To conserve the total charge, the valence charge-density is redefined and the details of the calculations

are found elsewhere[105]. Pseudo-potentials obtained using this method are called ultrasoft.

2.6 The de Haas van Alphen effect

Fermi surface is an important feature for the metallic system, as most of the material properties

depend upon the valence electrons. A programme called ”Supercell K-space Extremal Area Finder”

(SKEAF)[106], which is interliked to the WIEN2k can be used to calculate the de Haas van Alphen

effect, effective mass etc. from the calculated Fermi surface, and we have used the same in our

present study on skutterudites.
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Chapter 3

Pressure effect on Fermi surface

topology of AX3 compounds

The electronic structure, density of states, Fermi surface (FS), and elastic properties of the isostruc-

tural and isoelectronic AX3 (A = La, Y; X = In, Tl, Sn, Pb) intermetallic compounds are studied

under pressure, within the framework of density functional theory including spin-orbit coupling. The

states at the Fermi level (EF ) are dominated by X ‘p’ states with significant contributions from the

A ‘d’ states. Under ambient conditions, all AX3 compounds are found to have two Fermi surface

sheets, except YSn3, where we have an extra electron sheet and the same is found to appear in

LaSn3 under compression (V/V0= 0.94, pressure (P) = 1 GPa ). Among the two sheets the second

one appears to be more complex. Fermi surface topology changes are observed within the complex

sheet for all the isostructural AX3 compounds under compression except in YSn3 and YPb3. The

reason for the different FS behaviour noticed between LaSn3 and YSn3 could be mainly due to the

effect of spin-orbit coupling (SOC), leading to considerable change near the vicinity of the Fermi

level particularly at the X point, which is well explained using the band structure calculation. In the

case of LaPb3, softening of the C44 elastic constant under pressure may be related to the appearance

of a new hole pocket around the X point in the same complex sheet, leading to the observed FS

topology change, which is absent in YPb3, despite the electronic structures being similar in LaPb3

and YPb3 at ambient.
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3.1 Introduction

The RX3-type (R = rare earth elements, X = In, Sn, Tl, Pb) intermetallic compounds, which

crystallize in the simple cubic Cu3Au-type structure, have been the subject of many experimental

and theoretical investigations because of their diverse properties such as oscillatory behaviour in

superconducting property, magnetic susceptibility and thermopower, as a function of their valence

electron concentration [82, 49, 107]. At first, this behaviour was interpreted in a nearly-free electron

model as a reflection of the Fermi surface close to the Brillouin zone boundary [61, 108], a viewpoint

later contested by Grobman [109] where the authors concluded that these compounds behave like

transition metal. Many of these compounds are superconductors. Some of the RX3 compounds,

such as PrSn3 and NdSn3, are found to order antiferromagnetically at TN= 8.6 K and 4.5 K,

respectively [110] and CeSn3 has been categorized as a dense Kondo compound exhibiting valence

fluctuations [111]. The pressure dependence of the superconducting transition temperature of LaSn3

is anomalous, as shown by Huang et. al [81] in which these authors expect the same to be driven

by a Fermi surface topology change. Recently Bittar et. al [112] found that the effective exchange

interaction parameter of LaIn3−xSnx decreases by substitution of Sn in LaIn3 and suggested that it

might be due to the increase of the lattice parameter. Canepa et. al [113] explained the anomalous

behaviour of the heat capacity at constant volume (Cv) for LaPb3 with temperature. Recently, the

superconducting transition temperature (Tc) of LaIn3 has been reported to be 1.08 K, 0.95 K and 0.9

K by resistivity, susceptibility and heat capacity measurements, respectively [114]. To understand

and explore the various properties of AX3 intermetallic compounds, we have examined the electronic

structure of AX3 (A = La, Y and X = In, Tl, Sn, Pb) at ambient as well as at high pressure. A

number of studies are available on the band structures of LaSn3 and YSn3 [115, 116, 117, 118],

while less efforts have been devoted for the studies related to pressure dependence of the electronic

structure, Fermi surface and elastic properties of these compounds. Hence we focus our attention in

this chapter on analysing the pressure induced FS topology change in AX3 type compounds, which

might be associated with the anomalous behaviour of Tc under pressure. In the present study, we

calculate the FS of AX3 and indeed observe a change in topology under pressure for all compounds

except in YSn3 and YPb3, despite the electronic structures being similar at ambient. The rest of the

chapter is organized as follows: section-3.2 describes the method of calculation used in this study.

The results and discussions are presented in section-3.4, while section-3.4 concludes this chapter.
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3.2 Method of calculation

The calculations were performed using the full-potential linearized augmented plane wave (FP-

LAPW) method [119] as implemented in the WIEN2k computer code [101], based on density func-

tional theory (DFT) [86], which has been shown to yield reliable results for the electronic and

structural properties of crystalline solids. All the calculation were performed with the inclusion of

spin-orbit coupling (SOC). For the exchange-correlation functional the local density approximation

(LDA) in the form proposed by Perdew and Wang [96] was used. In order to achieve desired conver-

gence on the energy eigenvalues, the wave functions in the interstitial region were expanded using

plane waves with a cutoff of RMTKmax= 9, where Kmax is the plane wave cut-off, and RMT is the

muffin tin radii. The charge density was Fourier expanded up to Gmax = 9 (a.u.−1). We carried

out convergence tests for the charge-density Fourier expansion using higher Gmax values and found

no significant changes in the calculated properties. The muffin-tin radii were chosen as 2.95 a.u for

both La and Y and 2.85 a.u for the X atoms. A (32 × 32 × 32) k-point mesh in the Monkhorst-Pack

[120] scheme was used during the self-consistency cycle. The total energy was converged up to 10−6

Ry. The Birch-Murnaghan equation of state [121] was used to fit the total energy as a function

of unit cell volume to obtain the equilibrium lattice constants and bulk moduli for the investigated

systems. A ( 44 × 44 × 44 ) k-mesh, corresponding to 2300 k-points in the irreducible part of the

Brillouin zone (BZ), was used for the FS calculations to ensure accurate determination of the Fermi

level. The three-dimensional FS plots were generated with the help of the XCrySDen ((X-Window)

CRYstalline Structures and DENsities) molecular structure visualization program [122].

The elastic constants have been calculated within the total-energy method, where the unit cell is

subjected to a number of small amplitude strains along several directions. The elastic constants of

solids provide links between the mechanical and dynamical properties of the crystals. In particular,

they provide information on the stability and stiffness of materials. It is well known that a cubic

crystal has only three independent elastic constants [123, 124, 125] C11, C12 and C44. From these

one may obtain the Hill’s [126] shear modulus GH , (which is the arithmetic mean of the Reuss, GR

[127] and Voigt, GV [128] approximations), Young’s modulus E, and the Poisson’s ratio σ by using

standard relations.

GV =
C11 − C12 + 3C44

5
(3.1)
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GR =
5(C11 − C12)C44

4C44 + 3(C11 − C12)
(3.2)

GH =
GV +GR

2
(3.3)

σ =
3B − 2GH
2(3B +GH)

=
1

2
(1− E

3B
) (3.4)

E =
9BGH

3B +GH
(3.5)

For a completely isotropic system, the anisotropy factor (A) takes the value of unity and the

deviation from unity measures the degree of elastic anisotropy and can be calculated from the

equation given below.

A =
2C44

C11 − C44

(3.6)

Furthermore, the Debye temperature may be obtained in terms of the mean sound velocity vm:

ΘD =
h

kB

(

3nρNA
4πM

)1/3

vm, (3.7)

where h, kB and NA are Planck’s, Boltzmann’s constants, and Avogadro’s number, respectively. ρ

is the mass density, M is the molecular weight, and n is the number of atoms in the unit cell. The

mean sound velocity is defined as:

vm =

[

1

3

(

2

v3t
+

1

v3l

)]−1/3

, (3.8)

where vl and vt are the longitudinal and transverse sound velocities, which may be obtained from

the shear modulus GH and bulk modulus B as:

vl =

√

(B + 4

3
GH)

ρ
(3.9)

and

vt =

√

GH
ρ
. (3.10)
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Table 3.1: Calculated lattice constant, a (in Å) and bulk modulus, B (in GPa) for AX3 (A = La,
Y; X = Sn, Pb, In, Tl). The bulk moduli are evaluated at the theoretical equilibrium volumes.
Experimental values are quoted for comparison. The experimental lattice constants which we have
used in our present calculation for LaSn3, LaPb3, LaIn3, LaTl3, YSn3, YPb3, YIn3, and YTl3 are
4.774Å, 4.903Å, 4.725Å, 4.799Å, 4.667Å, 4.813Å, 4.592Å and 4.678Å respectively.

Compounds Lattice constant B

LaSn3 present work 4.70 68

Expt 4.774a,4.769b 52c

Othersd 4.73

LaPb3 present work 4.838 62

Expt. 4.903a,4.905e

LaIn3 present work 4.66 64

Other Theory 4.70,d 4.925f 59,d 73f

Expt. 4.739e,4.725g,4.735h

LaTl3 present work 4.747 62

Expt. 4.806a, 4.799e

YSn3 present work 4.61 71

Expt. 4.667i

YPb3 present work 4.76 63

Expt. 4.813a,4.823h

YIn3 present work 4.514 70

Expt. 4.592a,4.594h,4.593j

YTl3 present work 4.615 66

Expt. 4.678e,4.68h

a: Ref. [129]; b: Ref. [130]; c: From elastic constants obtained in Ref. [131]
d: LMTO-ASA, Ref. [132]; e: Ref. [82]; f: ASW, Ref. [133];

g: Ref. [134]; h: Ref. [135]; i: Ref. [80]; j: Ref. [136].
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Figure 3.1: Crystal structure of AX3 ( A = La, Y; X = In, Tl, Sn, Pb) compounds.

3.3 Results and discussions

3.3.1 Crystal structure and ground state properties

AX3 (A = La, Y; X = In, Tl, Sn, Pb) intermetallic compounds crystallize with space group Pm3̄m

(no. 221) which is a simple cubic lattice. The A atoms are placed at (0.0, 0.0, 0.0) and X are located

at (0.0, 0.5, 0.5) and the crystal structure is presented in Fig. 3.1.

The calculated equilibrium lattice parameter, a and zero-pressure bulk modulus, B are listed

in Table-3.1. The results are in good agreement with available experimental data and other earlier

calculations. The lattice constants are slightly underestimated with respect to their experimental

values, between 1.1% (for LaTl3) and 1.7% (for YIn3), which is a well-known deficiency of the LDA.

No experimental results are available for the bulk modulus. The calculated bulk modulus for all the

compounds are very similar, between 62 and 70 GPa.

3.3.2 Band structure and density of states

Figures 3.2 and 3.3 shows the band dispersions along the high symmetry directions for AX3 series of

compounds with X = Sn, Pb and X = In, Tl, respectively at experimental volume (V0). The band

structure of LaSn3 with SOC compares well with the earlier work [116, 117] and our calculated band

structure of LaIn3 is quite similar to that of Ref.[132]. Overall, the band structures of LaSn3 and

YSn3 are very similar, as reported in Ref. [118], which also discussed the effect of SOC. The major

difference between the two compounds in the vicinity of the Fermi level, EF , occurs at the X point,
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(a) (b)

(c) (d)

Figure 3.2: Band structure of AX3 ( A = La, Y; X = Sn, Pb) compounds at their experimental
lattice constants. Two bands cross the Fermi level, marked in the plots by a red dashed line and a
blue dotted line, except in YSn3 (an extra band crosses, green solid line).
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(a) (b)

(c) (d)

Figure 3.3: Band structure of AX3 ( A = La, Y; X = In, Tl ) compounds at their experimental
lattice constants. Two bands cross the Fermi level, marked in the plots by a red dashed line and a
blue dotted line.
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where a band crosses the EF for LaSn3, but stays below EF for YSn3. This gives rise to a small

hole pocket around the X point in LaSn3, which does not appear for YSn3 (and which would not be

if SOC is not included) and is evident from the Fig. 3.4 (a, c). A second, less significant feature, is

a very dispersive band along Γ−R, which dips below EF for YSn3, but stays above EF for LaSn3.

This is illustrated from Fig. 3.4 (b, d). This band contributes to the third Fermi surface of YSn3

which in LaSn3 only appears under pressure. Comparing the band structure of all the remaining

investigated AX3 compounds for A = La, Y and X = Pb, In, Tl, it is evident that the bands in the

vicinity of the Fermi level for LaX3 and YX3 look very similar along all the high symmetry lines

at zero pressure. In contrast, the electronic structure of LaSn3 and YSn3 [118] did display some

discrepancies around EF , particularly in the regions close to the X and M points in the Brillouin

zone. On the other hand, when comparing the electronic structures of the AX3 compounds with the

same A but varying X some minor deviations are seen. For X = Sn, Pb, which corresponds to an

average valence electron count (number of valence electrons per atom) of n = 3.75, slight differences

around the X and M points are evident from comparison of the band structures in Figs. 3.2 (a,

b) for the Sn compounds with their Pb counterparts in Figs. 3.2 (c, d). For X= In, Tl, having

valence electron count n = 3, deviations in the band structure along the Λ and S symmetry lines

are observed, in Fig. 3.3 (a, c) for A = La and in Fig. 3.3 (b, d) for A = Y. For AIn3, in Figs.

3.3 (a) and 3.3 (b), the band marked in red crosses EF twice along the S line but not along Λ. In

contrast, for ATl3 the same (red coloured, broken line) band in Figs. 3.3 (c) and 3.3 (d) does not

cross EF along S, but crosses twice along Λ. These minor differences lead to slight differences also

in the FS of the AX3 compounds, which we discuss in succeeding subsection.

The densities of states are included in Fig. 3.5 and 3.6. In all the AX3 compounds, we find strong

hybridization between the X ‘p’ states and the A ‘d’ states in the region around the Fermi level.

The La ‘f ’ bands contribute a large density of states around 2 eV above the Fermi level in the LaX3

compounds, which naturally is absent in the YX3 homologues. These unoccupied La ‘4f ’ bands

overlap with the La ‘5d’ bands, with some influence on the energy band structure in the vicinity of

the Fermi energy. This is illustrated with the density of states, which is shown in Fig. 3.5 (a, c) and

3.6 (a, c) for LaX3 with X = Sn, Pb and In, Tl, respectively. A distinct difference between La and

Y is the proximity of the ‘f ’ levels of La to the Fermi energy, which introduces ‘f ’ hybridization into

the states around the Fermi level in the La compounds. The similarity between the Fermi surfaces

of the La and Y compounds (we discuss in next paragraph) show that this ‘f ’ hybridization into the

bands around the Fermi level is rather insignificant for X = In, Tl, Pb. From the partial densities

38



(a) (b)

(c) (d)

Figure 3.4: Electronic band structures of (a) LaSn3 with and without SOC, (b) zoomed region along
Γ-R direction for LaSn3 with SOC, (c) YSn3 with and without SOC and (d) zoomed region along
Γ-R direction for YSn3 with SOC. The solid lines (red colour) show the electronic levels calculated
with SOC, while the dotted lines (blue colour) show the electronic levels as calculated without SOC.
The energies are given in eV relative to the Fermi level, EF , which is marked with the horizontal
dashed line.
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of states, examplified for LaX3 and YX3 with X = Pb, In, Tl, in Figs. 3.5 (c, d) and 3.6 (a-d), the

La ‘d’ states are seen to have larger weight at EF than the La ‘f ’ states. In contrast, for LaSn3

(Fig. 3.5 (a)) the La ‘f ’ states contribution to the density of states at the Fermi level was found to

be relatively larger as evident from Figs. 3.5 (a) and (b), which in combination with the SOC leads

to the slight differences in the band structures between LaSn3 and YSn3. For the remaining AX3

compounds, X being In, Tl or Pb, the effects of SOC are very similar in the La and Y homologues.

Interestingly, the Sn compounds reveal (see Fig. 3.5 (a, b)) a pseudogap only below EF [118]. In

the Pb compounds distinct pseudogaps appear both above and below EF as shown in Figs. 3.5 (c,

d). In the Tl compounds a pseudogap appears only above EF , while no particular features appear

around EF for the In compounds, which is also evident from Figs. 3.6 (a-d). So we may rationalize

such that the pseudogap above EF is a feature associated with the heavier X elements Tl and Pb,

while the pseudogap below EF is a feature of the n = 3.75 compounds with X=Sn, Pb.

3.3.3 Fermi surface topology at ambient and under pressure

Looking next at the Fermi surfaces of AX3 compounds, (displayed in Fig. 3.7-3.10) in all cases two

FS sheets are observed with the exception of YSn3, for which a small third surface exists as displayed

in Fig. 3.7 (e) (see solid green color band in Fig 3.2 (b)). Among the two surfaces, one surface is the

complicated surface as evident from Fig. 3.7 (b, d) for ASn3, Fig. 3.8 (b, d) for APb3, Fig. 3.9 (a,

c) for AIn3 and Fig. 3.10 (a, c) for ATl3 and the other surface consists of hole pocket centered at Γ

point for X = Sn, Pb as shown in Fig. 3.7 (a, c) for ASn3, Fig. 3.8 (a, c) for APb3 and it is a electron

pocket around the R point in the Brillouin zone for X = In, Tl as shown in Fig. 3.9 (b, d) for AIn3

and Fig. 3.10 (b, d) for ATl3 at zero pressure. For the same element A, we find larger differences

for the complex Fermi sheet depending on the X element. Thus, comparing LaSn3 and LaPb3 (Fig.

3.7 (b), 3.8 (b)), the connectivity on the faces of the cubic Brillouin zone (which include points X

and M) differs. Similar conclusions are reached for LaIn3 and LaTl3 (Fig. 3.9 (a) and 3.10 (a)) as

well as for YIn3 and YTl3 (Fig. 3.9 (c) and Fig. 3.10 (c)). For YSn3 [118] and YPb3, Fig. 3.7 (d),

Fig. 3.8 (d), the connectivity in the vicinity of the M points (i. e. the middle of the cube edges) is

different with a detached electron pocket in the former case. The topology of the Fermi surface of

LaX3 is found to be similar with YX3 for X = Pb, In, Tl at ambient pressure, as shown in Fig. 3.8,

3.9, 3.10 (a, b) for La containing compounds and 3.8, 3.9, 3.10 (c, d) for Y containing compounds,

which is again illustrating the dominating nature of the X ‘p’ like states in the vicinity of the Fermi

level and less importance of ‘f ’ hybridization at the vicinity of the Fermi level as discussed above.
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(a) (b)

(c) (d)

Figure 3.5: Density of states of AX3 ( A = La, Y; X = Sn, Pb ) as calculated at the experimental
lattice constants. (a, c) the total atomic DOS as well as La ‘d’, Sn ‘p’, Pb ‘p’ and La ‘4f ’ partial
contributions are shown, (b, d) the total atomic DOS as well as Y ‘d’, Sn ‘p’ and Pb ‘p’ partial
contributions are shown. The unit is states per eV per formula unit (f.u.).
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(a) (b)

(c) (d)

Figure 3.6: Density of states of AX3 ( A = La, Y; X = In, Tl ) as calculated at the experimental
lattice constants. (a, c) the total atomic DOS as well as La ‘d’, In ‘p’, Tl ‘p’ and La ‘4f ’ partial
contributions are shown, (b, d) the total atomic DOS as well as Y ‘d’, In ‘p’ and Tl ‘p’ partial
contributions are shown. The unit is states per eV per formula unit (f.u.).
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But the topology of YSn3 is slightly different, where (at ambient pressure) it has an extra electron

pocket along the ∆ line, which for LaSn3 only appears under compression. As we discussed earlier,

the difference among Pb and Sn containing compounds is seen particularly at the X and M points

in the BZ, as can be seen from the complicated FS in Fig. 3.7 (b), (d), for Sn containing compounds

and in Fig. 3.8 (b, d) for Pb containing compounds. It is interesting to note that the topologies of

the Fermi surfaces of the Sn, Pb containing compounds are completely different from the topology

of In, Tl containing compounds. Now, when we compare AIn3 with ATl3, we observe the nearly

similar electronic structure in the vicinity of the Fermi level, except for points along the Λ and S

symmetry lines as discussed earlier, resulting in the hollow triangular tubes interconnected along S

line in AIn3 (see Fig. 3.9 (a, c)) and an open gap is not seen along the Λ line in ATl3 (see Fig. 3.10

(a, c)). Our calculated FS of LaIn3 is also quite similar to the earlier study [54]. Apart from this,

we find the FS topology of LaIn3 and YIn3 to be the same at zero pressure, as is also evident from

the band structure plots in Fig. 3.3.

Under compression Fermi surface topology changes are found in all the compounds apart from

YSn3 and YPb3. The most striking change in the FS of LaSn3 under pressure is the appearance

of the third surface, already seen in YSn3 at ambient conditions (Fig. 3.7 (e)). This appears at a

compression of V/V0 = 0.94 (corresponding pressure equivalent to 1 GPa), as shown in Fig. 3.11

(a). A second, less drastic change occurs in the second Fermi surface of LaSn3, where the hole pocket

around the X point, increases and merges with the surrounding triangular hole regions as evident

from Fig. 3.11 (b). In contrast, for V = V0, Fig. 3.7 (b), this pocket is detached from the larger hole

region, facilitating a small closed electron orbit. At the same time, the electron concentration around

the M point (the midpoints of all edges of the BZ) increases under compression, which eventually

leads to the connection of all electron pockets. This happens around V/V0 = 0.90 (see Fig. 3.11 (b)

and the pressure nearly equals to 4 GPa). Altogether, under compression the electron concentration

at M and the hole concentration at X increase simultaneously in LaSn3 and is also evident from

the band structure plots in Fig. 3.12 (a), (b). In the case of YSn3 only the electron concentration

at the M point increases, while there is no hole pocket at X even at ambient volume, and therefore

the Fermi surface topology of YSn3 remains unchanged under (modest) compression. In LaPb3 a

new hole pocket appears at the X point for a compression V/V0=0.90 (corresponding to an applied

pressure around 8 GPa), as shown in Fig. 3.11 (c). This is also seen from the band structure plot

in Fig. 3.12 (c, d). This is mainly due to the upward movement of the band only at the X point

irrespective of the other points in the BZ, where the simultaneous downward shifts of the band is
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(a) (b)

(c) (d) (e)

Figure 3.7: Fermi surface at zero pressure of (a, b) LaSn3 and (c-e) YSn3 at experimental lattice
constants. The second FS of LaSn3 and YSn3 is different. YSn3 has an extra Fermi surface (Fig. (e)).
The two different color is only to distinguish the outer and the inner region of the FS throughout
the thesis.

found under pressure, the same hole pocket is also found in LaSn3 at ambient pressure. But no such

topology change is seen in YPb3 similar to YSn3, although they have the same band structure as

LaPb3 around EF at ambient pressure (see Figs. 3.2 (c) and (d)). This could be due to the band

being more dispersive in YPb3, especially at the X point as can be seen in Fig. 3.2 (d) (red, dashed

line), and of Y ‘d’ character at that particular point. Under pressure, the FS topologies of LaSn3

and LaPb3 are nearly identical, and this indicates that LaPb3 and LaSn3 could behave alike under

compression. As noted by Havinga et al. [82] the variation of Tc is quite regular for La(Pb1−xSnx)3

alloys where the valence electron concentration remains the same, which may also support our result.

The FS topology remains unchanged for the other simple hole pocket (see Fig. 3.7 (a, c) and Fig.

3.8 (a, c), blue colour, dotted line band in Figs. 3.2 (a-d) under compression. Comparing AIn3 and

ATl3 under compression near V/V0 = 0.98 (pressure around 1.5 GPa ) a FS topology change is

observed in AIn3 due to a downward shift of the band along the Σ line which is mainly of In ‘p’
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(a) (b)

(c) (d)

Figure 3.8: Fermi surface at zero pressure of (a, b) LaPb3 (c, d) YPb3 at experimental lattice
constants. The topology of the Fermi surface of LaX3 is similar to that of YX3 for X = Pb. The
topology of the first sheet for ASn3 is similar to that of APb3.

character, resulting in the interconnected triangular open tubes becoming disconnected along the

same Σ line, as is evident from Fig. 3.11 (d). In the case of ATl3 a FS topology change is found

near V/V0 = 0.80 (corresponding to a pressure in excess of 18 GPa) and is illustrated from Fig.

3.11 (e). Under compression, the downward shift of the band is seen along the Σ line, as in AIn3,

with a simultaneous upward movement of the band along the S line. Owing to this, the triangular

open regions open up along S, with simultaneous partial detachment of the same open tube along

Σ, and the band character is mainly Tl ‘p’-like. The same simultaneous upward shift of the band is

also observed in AIn3 along S, but it does not alter the vicinity of EF in that particular direction.

Under compression, the FS topology of ATl3 is quite similar to AIn3. The topology of the second

surface remains the same for all In and Tl containing compounds at ambient as well as at higher

compressions (see Fig. 3.9 (b, d) and 3.10 (b, d), blue colour dotted line band in Fig. 3.3 (a-d)).

Under compression, the topology of LaPb3 looks like LaSn3, and similarly the topology of AIn3
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(a) (b)

(c) (d)

Figure 3.9: Fermi surface at zero pressure of (a, b) LaIn3 and (c, d) YIn3 at experimental lattice
constants. The topology of the Fermi surface of LaX3 is similar to that of YX3 for X = In.

looks like ATl3.

The evolution of the total density of states at the Fermi level for the AX3 compounds under

compression is shown in Fig. 3.13. The behaviour is largely monotonically decreasing, with minor

irregularities, which maybe related to Fermi surface topology changes under compression. The

occurrence of a third Fermi surface sheet for LaSn3 under pressure leads to an increase of the density

of states at the Fermi level, as illustrated in Fig. 3.13. Similarly for the rest of the compounds we have

also seen the non-monotonic variation of the density of states under pressure, where we have seen the

Fermi surface topology change, except for YSn3 and YPb3 where it is seen to decrease monotonously

under pressure and for both these compounds, we have also not found any Fermi surface topology

change. These results for LaSn3 are in accordance with the zero-pressure measurements of the

superconducting transition temperature in the (La,Th)Sn3 alloy system as investigated by Havinga

et. al [137]. These authors also speculated that their observed oscillatory behaviour of Tc versus
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(a) (b)

(c) (d)

Figure 3.10: Fermi surface at zero pressure of (a, b) LaTl3, (c, d) YTl3 at experimental lattice
constants. The topology of the Fermi surface of LaX3 is similar to that of YX3 for X = Tl. The
topology of the second sheet for AIn3 is similar to that of ATl3.

alloy composition might be due to a singular behaviour of the electronic density of states in the

vicinity of the Fermi level of LaSn3. Within the BCS framework of superconductivity, the change

in Tc observed could reflect a change in the density of states at the Fermi level. Hence the non-

monotonic behaviour of density of states observed in AX3 compounds except for YX3 (X = Sn, Pb)

could be further reflected in the Tc variation which is taken up elaborately in chapter-5.

3.3.4 Elastic constants and mechanical properties

The elastic constants have been calculated within the total-energy method, see Table-3.2. A cubic

crystal has only three independent elastic constants [123, 124] C11, C12 and C44. To the best

of our knowledge, no experimental values on the elastic constants of these compounds have been

reported to date, except in LaSn3. The elastic constants extracted from the experimental phonon

dispersion curves [131] for LaSn3 are listed for comparison. All the investigated compounds are
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(a) (b)

(c) (d) (e)

Figure 3.11: Fermi surface of LaSn3 (a) at V/V0=0.94 (an extra new pocket appeared), (b) at
V/V0=0.90, (c) Fermi surface of LaPb3 at V/V0 = 0.90, (d) LaIn3 at V/V0 = 0.98, (e) LaTl3 at
V/V0 = 0.80. V0 denotes the experimental equilibrium volume.

mechanically stable and satisfy the stability criteria for the cubic system, i.e. C11 > C12, C44 > 0,

and C11 + 2C12 > 0. From these, one may obtain the Hill’s [126] shear modulus GH by using the

equation (3.1-3.3). Apart from this there is no structural phase transition known in the pressure

range studied for all our investigated compounds, which is further confirmed from the phonon

spectrum and is discussed in chapter-5. All the compounds are found to be ductile in nature

according to Pugh’s criterion [138] GH/B < 0.57 as seen from the values of GH/B in Table-3.2.

Cauchy’s pressure ( Cp = C12 − C44 ) is another index to determine the ductile/brittle nature of

metallic compounds, where positive (negative) values correspond to ductile (brittle) materials. The

calculated Cauchy pressures for the compounds considered here are all positive, i.e. also indicating

a ductile nature. Poisson’s ratio σ (see Table-3.2) is another important parameter for describing

the ductile nature of solids. σ is typically around 0.33 [139] for the ductile materials. Thus from

the calculated values of σ, the ductility of these compounds is again confirmed. Another important
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(a) (b)

(c) (d)

Figure 3.12: Band structure of LaSn3 under compression (a) at V/V0 = 1.0 and (b) at V/V0 = 0.9
(zoom-in on the vicinity of the Fermi level). The electron pocket at M and the hole pocket at X
increases under compression. Band structure of LaPb3 (c) at V/V0 = 1.0 and (d) at V/V0 = 0.90,
a new hole pocket is emerging at the X point.
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(a)

(b)

Figure 3.13: Variation of the density of states at the Fermi level, N(EF ), under compression, (a)
for AX3 (A = La, Y; X = Sn, Pb) and (b) for (A = La, Y; X = In, Tl). The unit of the density of
states is states per eV per formula unit (f.u.).
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(a)

(b)

Figure 3.14: Variation of the C44 elastic constant with compression in AX3 compounds (a) for A =
La, Y with X = Sn, Pb, (b) for A = La, Y with X = In, Tl.
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parameter is the elastic anisotropy factor, A, which gives a measure of the anisotropy in the crystal.

For isotropic crystals A = 1, while values smaller or greater than unity measure the degree of elastic

anisotropy. All our investigated compounds are elastically anisotropic in nature, with YPb3 being

most anisotropic among all the compounds as seen from the Table-3.2. Having calculated Young’s

modulus E, the bulk modulus B, and the shear modulus GH , one may derive the Debye temperature

using the equation (3.7) as explained above and our calculated values of Debye temperature along

with the transverse and longitudinal velocities are also reported in Table-3.2. Apart from this we

also calculated the elastic constants for the AX3 compounds under compression, as shown in Fig.

3.14. An elastic softening is found in C44 for LaPb3 near V/V0 = 0.9 (pressure around 8 GPa). This

might be related to the new hole pocket appearing at the X point at this compression of LaPb3.
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Table 3.2: Elastic constants and derived quantities for AX3 (A = La, Y; X = Sn, Pb, In, Tl), at
theoretical equilibrium volume. A is the anisotropy factor, A = 2C44/(C11 − C12), B is the bulk
modulus and Cp = C12 − C44 is the Cauchy pressure.

Parameters LaSn3 LaPb3 LaIn3 LaTl3 YSn3 YPb3 YIn3 YTl3

C11 (GPa) 97.3 83.5 103.9 90.6 82.3 70.0 106.2 93.0

70.5a

C12 (GPa) 53.6 50.5 44.5 46.4 64. 6 59.5 48.7 53.6

42.0a

C44 (GPa) 44.2 35.8 37.7 31.6 34.2 28.0 33.6 30.4

33.5a

A 2.02 2.17 1.27 1.43 3.85 5.3 1.17 1.54

GH (GPa) 33.3 26.2 34.3 27.4 20.0 14.6 31.6 25.6

B 68 62 64 62 71 63 70 66

E (GPa) 85.9,64b 68.9 87.3 71.5 54.9 40.7 81.9 68.0

σ 0.29 0.31 0.27 0.30 0.37 0.39 0.30 0.33

GH/B 0.49 0.43 0.53 0.45 0.28 0.23 0.46 0.38

Cp (GPa) 9.4 14.7 6.8 14.7 30.3 31.5 15.1 23.2

vl (km/s) 3.77 2.94 3.72 2.89 3.59 2.75 3.75 2.92

vt (km/s) 2.05 1.53 2.08 1.53 1.63 1.16 2.0 1.47

ΘD (K) 230 167.6 234.80 170.5 129.8 188.4 234.9 168.7

205c 147d 170,d 194.4e 210f

a: From phonon measurements, Ref. [131]; b: Ref. [140]; c: Ref. [141]
d: Ref. [142]; e: Ref. [143] (Expt.: From specific-heat measurements). f: Ref. [80].
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3.4 Conclusion

An ab initio study of the intermetallic compounds LaX3 and YX3 was performed within the local

density approximation. The Fermi surface topology change under compression is observed for all

the investigated isostructural compounds AX3 (A = La, Y; X = Sn, Pb, In, Tl) except in YSn3

and YPb3. The calculated elastic constants and the related mechanical properties confirmed the

ductility of all the AX3 compounds. A Fermi surface topology change is observed in LaSn3 at a

compression of around V/V0 ∼ 0.94, where a third Fermi sheet occurs and around V/V0 ∼ 0.90, the

X point gets connected to the remaining surface, and this might be due to the SOC together with

the ‘f ’ hybridizing effect. In addition we found an elastic softening of C44 under pressure only in

LaPb3, which might be related to the appearance of a new hole pocket at the X point. The density

of states near to the Fermi level are mainly X ‘p’-like states in all compounds with admixture of the

A ‘d’ states and La ‘f ’ like states.
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Chapter 4

Comparative study of La3X and

LaX3 compounds

The effect of compression on the electronic structure and Fermi surface (FS) topology of La rich

La3X (X =In, Tl, Sn) compounds is studied and compared with X rich LaX3 compounds based on

density functional theory calculations. All the La rich compounds are found to have high density

of states at the Fermi level, dominated by the La ‘d’ orbital contributions with small contributions

from X ‘p’ and La ‘f ’ states. This leads to almost identical Fermi surfaces for the La3X compounds.

In contrast, the isostructural LaX3 compounds have lower densities of states at the Fermi level,

dominated by the X ‘p’ states and their FS topologies vary with X. A strong interaction exists

between the atoms in La3X compounds, more pronounced than in the LaX3 type compounds. This

can be attributed to the local tetragonal and octahedral site symmetry of La in La3X and LaX3,

respectively, causing a difference in the crystal field splitting of the ‘d’ orbitals in the two cases,

although the crystal structure is cubic in both the cases. Fermi surface topology changes under

compression are found in all the investigated compounds in all the FS sheets for La3X compounds,

while for LaX3 changes are seen only in the complicated FS sheet. The elastic constants and related

mechanical properties of the La3X compounds were calculated. From the calculated values of elastic

constants, all the investigated compounds are found to be of ductile nature with elastic anisotropy.

The mechanical properties of all La3X and LaX3 compounds are found to be similar, although their

electronic structures and Fermi surface topologies are different.
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4.1 Introduction

La3X compounds with X = Sn, In and Tl crystallize in the cubic Cu3Au-type structure with

space group Pm3̄m (no. 221). These compounds are well known superconductors with higher

[63, 144, 65, 64] superconducting transition temperatures (Tc) than found in the isostructural LaX3

family [82, 49, 129]. Superconductivity, magnetic and thermodynamic properties of La3Tl were

determined experimentally by Bucher et. al [145]. The compounds La3In and La3Tl have been

identified as strong-coupling superconductors [63]. Theoretically, the electronic structure and cohe-

sive properties of La3In have been reported [133], while Ravindran et. al [69] studied the structural

stability, electronic properties and superconductivity of La3X as well as La3XC (X= Al, Ga, In, Tl)

compounds. In this present chapter the elastic and mechanical properties for the La3X compounds

(X = Sn, In, Tl) are presented and their Fermi surfaces are calculated and pressure-induced topol-

ogy changes identified. The results will be compared to those of the isostructural LaX3 compounds,

which have been studied extensively [113, 133, 54, 132, 118]. The remainder of this chapter is or-

ganized as follows: in section-4.2, details of the computations are presented, results and discussions

presented, in section-4.3, while section-4.4 concludes the chapter.

4.2 Method of calculation

The electronic structure calculations were performed using the full-potential linearized augmented

plane wave (FP-LAPW) method as implemented in the WIEN2k code [101] based on the generalized

gradient approximation of Perdew, Burke and Ernzerhof [98]. For the total energy convergence RMT

Kmax= 8.5 was used, where RMT is the smallest muffin-tin radius, and Kmax is the plane wave cut-

off. The charge density was Fourier expanded up to Gmax = 9 a.u.−1 and the muffin-tin radii

were chosen as 2.75 a.u for La and 2.5 a.u for the X atoms. We carried out convergence tests for

the charge-density Fourier expansion using higher Gmax values and found no significant changes

in the calculated properties. A (32 × 32 × 32) k-point mesh in the Monkhorst-Pack [120] scheme

was used during the self consistent cycle. The total energy was converged up to 10−6 Ry. A (

44 × 44 × 44 ) mesh corresponding to 2300 k-points in the irreducible part of Brillouin zone was

used for the Fermi surface calculations to ensure accurate determination of the Fermi level. The

three dimensional (3D) Fermi surface plots were generated with the help of the XCrySDen ((X-

Window) CRYstalline Structures and DENsities) molecular structure visualization program [122].

Spin-orbit coupling (SOC) is included for all the electronic structure calculations. We have used the
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experimental lattice constant of 5.07 Å, 5.06 Å, and 5.10 Å, for La3In (Ref. [63]), La3Tl (Ref. [63])

and La3Sn (Ref. [64]), respectively, and the corresponding experimental volumes are denoted by V0

in the following.

For the calculation of the elastic constant and the related mechanical properties we have used

the formulas as given in the previous chapter (chapter-3). In addition, we have also calculated the

Debye temperature from the mean sound velocity, which is the arithmetic mean of the longitudinal

and the transverse sound velocities and the corresponding relations are reported again in chapter-3

and the related references are found therein.

4.3 Results and discussions

4.3.1 Structural properties

La3X and LaX3 compounds crystallize in the simple cubic structure with space group Pm3̄m (no.

221). In La3X, the La atom occupies the crystallographic position (0.0, 0.5, 0.5) with tetragonal

point group symmetry D4h, while the X atom occupies the crystallographic position (0.0, 0.0, 0.0)

with octahedral point group symmetry Oh. For the LaX3 compounds, the La and X positions are

interchanged, i.e. La is having Oh point group symmetry with position (0.0, 0.0, 0.0) and X is having

D4h point group symmetry with position parameter (0.0, 0.5, 0.5). The local La symmetry in La3X

and LaX3 compounds is illustrated in Fig. 4.1. The difference in symmetry of the La sites in La3X

and LaX3 induces a different splitting of the La ‘d’ orbitals as discussed in the next sub-section.

4.3.2 Band structure and density of states

The calculated band structures of La3X (X = In, Tl, Sn) with (solid black line) and without (dotted

red) spin orbit coupling are presented in Fig. 4.2. The effect of SOC is negligible near the Fermi

level (EF ) for La3In, whereas effects are seen in particular at the R and Γ points for La3Tl (Fig.

4.3 (a)) and La3Sn (Fig. 4.3 (b)), respectively. The lowest single band in the energy range -8 to

-5 eV is mainly derived from the X ‘s’ states, while the bunch of narrow unoccupied bands in the

1.5 to 3 eV above the Fermi level are La ‘f ’ states. The states just below the Fermi level, between

-3 eV and 0 eV , are strongly hybridized admixtures of X ‘p’ and La ‘d’ states. The bands crossing

the Fermi level represent non-bonding states, mainly of La ‘d’ (dxz,dyz) character. The density

of states (DOS) and their contributions from different atoms and orbital characters of La3X and
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(a) (b)

(c) (d)

Figure 4.1: Unit cell for (a) La3X and (b) LaX3. The local environment of La in (c) La3X and (d)
LaX3 is of D4h and Oh symmetry, respectively. A 2×2×2 supercell is shown.
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(a) (b)

(c)

Figure 4.2: Band structure of La3X (X = In, Tl, Sn ) at the experimental lattice constants with and
without spin-orbit coupling (SOC). The solid black (dotted red) lines show the bands with (without)
SOC. In the vicinity of the Fermi level, the SOC effect is negligible for La3In.
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(a) (b)

Figure 4.3: Zoomed band structure of (a) La3Tl and (b) La3Sn at the experimental lattice constants
with and without spin-orbit coupling (SOC). The solid black (dotted red) lines show the bands with
(without) SOC. In the vicinity of the Fermi level, the SOC effect is significant especially at the R
and Γ points for La3Tl and La3Sn, respectively.

LaX3 compounds are shown in Figs. 4.4-4.7. The total DOS functions for the three compounds are

rather similar, although the X atoms are different and from different groups in the periodic table.

A detailed analysis of La3X compounds show that the highest peak in the antibonding region is

dominated by the La ‘f ’ and ‘d’ states, whereas the states in the bonding region just below EF are

hybridized La ‘d’ and X ‘p’ states (Fig. 4.4 (a-c)). At the Fermi level, the La ‘d’ (dxz,dyz) orbitals

dominate (see Fig. 4.6 (a-c)) with some admixture of X ‘p’ orbitals, and the La ‘d’ states spread

out over the bonding and antibonding regions. For LaX3 compounds, on the other hand, the DOS

at EF is dominated by X ‘p’ orbital with minor contribution from La ‘d’ (mainly dt2g (see Fig. 4.7

(a-c)) states, and the admixture of La ‘d’ in the antibonding region is comparatively less, as shown

in Fig. 4.5 (a-c).

All the La3X compounds possess a pseudogap in the DOS on both sides of the Fermi level.

This is an effect of the strong hybridization between La ‘d’ and X ‘p’ states, which causes the

separation of the bonding and antibonding states through nonbonding states and formed pseudogap

[146, 147, 148]. In the present case the strong ‘p’-‘d’ hybridization gives rise to the pseudogap and

separates the bonding and antibonding states through nonbonding states. The states in the lower

energy region, which are mainly derived from the X ‘s’ states (as shown in Fig. 4.4), do not take

part in the bonding, and they are well separated from the bonding X ‘p’ and La ‘d’ hybridized
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states. In contrast to La3X compounds, in LaX3 compounds the bonding and antibonding states

are separated only by a single pseudogap, and the nonbonding states are less distinct, which can be

seen from Fig. 4.5 (a-c). This difference is mainly due to the splitting of the La ‘d’ orbital which is

different in La3X and LaX3 compounds. As discussed in Fig. 4.1, the nearest neighbours of the La

and X atoms in La3X and LaX3 are quite different although the co-ordination number is the same,

resulting in different crystal field splitting of La ‘d’ states. In La3X compounds doubly degenerate

La ‘d’ (dxz,dyz) together with triply degenerate X ‘p’ states dominate at EF , whereas for LaX3

compounds triply degenerate La ‘d’ (t2g) and doubly degenerate X ‘px’, ‘py’ states dominate at EF ,

as shown in Fig. 4.7 for the ‘d’ states.

Table 4.1: Calculated density of states at the Fermi level, N(EF ) (in states per eV per formula unit,
evaluated at the experimental equilibrium volumes), together with derived Sommerfeld coefficient
of specific heat, γ, for La3X ( X= In, Tl, Sn).

Compounds N(EF ) γ (mJ/mole K2)

La3In This work 7.80 18.40

Expt. 6.0a 56.0(2.4)a

Other theoryb 4.41

La3Tl This work 6.87 16.2

Expt. 5.35a 49.6(4.0)a

Other theoryb 4.75

La3Sn This work 6.29 14.83

Expt.

a: Ref. [63]; b: Ref. [69]

Comparing La3X with LaX3 for X= Tl and Sn, the pseudogap is found only on one side of EF ,

and it is located above EF in LaTl3 (Fig. 4.5 (b)) and below EF in LaSn3 (Fig. 4.5 (c)), which is

due to the band filling by one extra electron per Sn compared to Tl. A similar feature is somewhat

weaker in the case of LaIn3 as shown in Fig. 4.5 (a). In addition, the gap in the lower energy regime

mainly reflecting the separation of X ‘s’ and ‘p’ states is found only in LaSn3 and LaTl3, while these
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(a) (b)

(c)

Figure 4.4: Total and partial density of states of La3X compounds (X = In, Tl, Sn ) at experimental
lattice constants and including spin-orbit coupling (SOC).
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(a) (b)

(c)

Figure 4.5: Total and partial density of states of LaX3 compounds (X = In, Tl, Sn ) at experimental
lattice constants and including spin-orbit coupling (SOC).
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(a) (b)

(c)

Figure 4.6: m-projected DOS of La ‘d’ states for La3X with X = In, Tl, Sn, at the experimental
lattice constants and including spin-orbit coupling (SOC). The contribution at EF is mainly due to
the La ‘dxz,yz’ orbital character.
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(a) (b)

(c)

Figure 4.7: m-projected DOS of La ‘d’ states for LaX3 with X = In, Tl, Sn, at the experimental
lattice constants and including spin-orbit coupling (SOC). The contribution at EF is mainly due to
the La ‘dt2g ’ orbital character.
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splittings are larger in their “partner materials” La3Sn and La3Tl, wheras in LaIn3, the X ‘s’ and

‘p’ states merge. The occurrence of the pseudogap in binary alloys may be either of ionic origin or

due to hybridization [146]. The electronegativity difference between La and X is not large, so the

La3X and LaX3 compounds cannot be termed as ionic. Rather, the appearance of the pseudogap

reflects the covalent bonding between the La and X atoms, as the valence state energies of La and X

atom are nearly the same. Only one pseudogap is found in the LaX3 type compounds, while La3X

compounds exhibit two pseudogaps, which indicates a stronger ‘p’-‘d’ hybridization in the La3X

compounds.

An interesting feature of the investigated La3X compounds is their high values of the total DOS

at the Fermi level, N(EF ). This feature was already concluded on the basis of measured specific

heat and susceptibility [63]. A large value of N(EF ) may indicate instability of the compounds with

respect to symmetry lowering distortions, but from the calculated elastic constants, to be discussed

in the next section, all these compounds are found to be mechanically stable. The calculated total

density of states at EF are 7.8, 6.9 and 6.3 states/eV /f.u., for La3In, La3Tl and La3Sn, respectively,

i.e. slightly decreasing from La3In to La3Tl and La3Sn. The Sommerfeld coefficient of specific heat

may be obtained as

γ =

(

π2

3

)

N(EF )k
2
B ,

where kB is Boltzmann’s constant, leading to γ = 18.4, 16.2 and 14.8 mJ/mole K2, for La3In,

La3Tl and La3Sn, respectively. These values are compared with other available theoretical and

experimental results in Table-4.1. The total DOS at the Fermi level calculated in Ref. [69] is

in excellent agreement with the present values, while the measured Sommerfeld coefficients are

significantly higher than the calculated, suggesting that a considerable phonon-induced enhancement

is present in these compounds [63]. In next chapter a quantitative analysis of electron-phonon

interaction and superconductivity in the La3X and LaX3 families of compounds will be presented.

4.3.3 Fermi surface at ambient condition

The Fermi surface (FS) of the La3X compounds as calculated at their experimental equilibrium

volumes including SOC are shown in Fig. 4.8 and 4.9. The similarity of the FS topology for La3In,

La3Tl and La3Sn is evident, which confirms the dominance of the La ‘d’ orbitals at EF , discussed

in connection with the DOS plots in Fig. 4.4 and 4.5. In La3In, there are three bands crossing

the Fermi level and the corresponding FS is shown in Fig. 4.8 (a-c). For La3Tl (Fig. 4.8 (d, e))
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(a) (b) (c)

(d) (e)

Figure 4.8: Fermi surface topology of (a-c) La3In, (d-e) La3Tl including spin-orbit coupling (SOC)
at their experimental lattice constants.

and La3Sn (Fig. 4.9 (a-d)) the number of FS sheets are two and four, respectively. Comparing the

topology of La3In and La3Tl, an extra hole pocket around the R point appears in La3In (Fig. 4.8

(a)), but not in La3Tl. This originates from the red colored band in Figs. 4.10 (a) and (c)), which

remains below EF in La3Tl. Furthermore, in the second sheet of La3In (Fig. 4.8 (b)) there is an

opening along the Γ-R direction, which becomes closed in the corresponding first sheet of La3Tl

(Fig. 4.8 (d)). This is due to the band (broken blue line in Fig. 4.10 (a) and 4.10 (c)) crossing EF

three times along the Γ-R direction in La3Tl but only once in La3In, leading to the formation of an

isolated closed hole pocket around the R point in La3Tl (Fig. 4.8 (d)). Finally, in the third sheet

of La3In (Fig. 4.8 (c)) an electron pocket appears along the X-R direction, which is absent in the

corresponding second sheet of La3Tl (Fig. 4.8 (e)). This is due to the band (dotted magenta band

in Fig. 4.10 (a) and (c)) crossing EF twice along X-R in La3In, but remaining above EF in La3Tl.

In the case of La3Sn there is one more electron, and compared to La3Tl two extra electron

pockets around Γ are formed, as shown in Fig. 4.9 (c ,d). The first sheet (Fig. 4.9 (a)) is a thin
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(a) (b) (c)

(d)

Figure 4.9: Fermi surface topology of (a-d) La3Sn, including spin-orbit coupling (SOC) at their
experimental lattice constants.

filamental hole-structure corresponding to the first sheet of La3Tl and second sheet of La3In. The

second sheet of La3Sn (Fig. 4.9 (b)) is similar to the second sheet of La3Tl (Fig. 4.8 (e)) and third

sheet of La3In (Fig. 4.8 (c)), however open along the Γ-R direction, leading to one singly connected

sheet, as opposed to the fragmented sheets in La3In and La3Tl. This is also revealed from the band

structure plots in Fig. 4.11, where a band (dotted magenta) is seen to cross EF along the Γ-R

direction once for La3In (Fig. 4.10 (a)) and La3Tl (Fig. 4.10 (c)) but remaining below EF in the

case of La3Sn (Fig. 4.11 (a)).

In previous chapter, we have discussed the Fermi surfaces of LaX3 compounds. The bands around

EF in La3X and LaX3 share the property that they are strongly hybridized between La ‘d’ and X

‘p’, however the dominance of La ‘d’ states in the La3X compounds versus the dominance of X ‘p’

states in the LaX3 compounds leads to different sets of bands, even when X is a trivalent atom and

the total electron count would be the same. The LaX3 compounds all have two Fermi sheets, one

sheet of complex structure together with one simple electron pocket around the R point (LaIn3 and
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LaTl3) or hole pocket around Γ (LaSn3).

4.3.4 Effects under compression

The effects of compression on La3X materials are analyzed by comparing the bands and Fermi

surfaces calculated for the experimental equilibrium volumes, V0, to those found when the volumes

are reduced to V/V0 = 0.8, i.e. a 20% compression. Generally, application of compression causes the

band widths to increase, see Fig. 4.10 and 4.11, and leads to the FS topology changes, illustrated

in Fig. 4.12 and 4.13. By comparing the left-hand and right-hand panels of Fig. 4.10 and 4.11,

several details of these changes can be understood. In the case of La3In the electron pocket along

the X-R line seen in the third Fermi sheet at V0 vanishes at 0.8×V0 and it is evident from the Fig.

4.12 (a), due to the upward movement of the band shown in Fig. 4.10 (a, b) as the dotted, magenta

line. In addition, there is a major change in the second surface where the interconnected two sheets

around the Γ-R direction become separated as shown in Fig. 4.12 (b). In the complicated second

FS sheet the connectivity of the upper and lower sheet breaks around Γ-R, the region is indicated

by the arrow in Fig. 4.12 (b). Looking at the FS topology of La3Tl under pressure, the similarity

to La3In is evident by the Fig. 4.12 (d-f). Under compression the valence band (red, solid line Fig.

4.10 (c,d)) moves upwards at the R point leading to the formation of a new hole pocket around the

R point (Fig. 4.12 (d)), similar to the first Fermi sheet seen in La3In already at V0 (Fig. 4.8 (a)).

In the second surface the closed hole sheet at the R point opens up along the Γ-R direction similar

to what happens in La3In as shown in Fig. 4.12 (e) and is indicated by the arrow. A FS topology

change is also observed in La3Sn under compression, as the fourth electron sheet disappears (Fig.

4.9 (e)). In addition a major change is found in the first sheet, where the completely interconnected

sheet transforms into a large number of small pieces of Fermi surface pockets (Fig. 4.13 (a)). In

addition, the opening along the Γ-R direction in the second surface is closing at V/V0 = 0.8 (Fig.

4.13 (b)). The shape of the electron pocket around the Γ point in the third sheet is changing, but

the topology is unaltered (Fig. 4.13 (c)).

4.3.5 Elastic constants and mechanical properties

The elastic constants C11, C12 and C44 [123, 124] and the related mechanical properties of La3In,

La3Tl and La3Sn are calculated at the experimental equilibrium volumes and listed in Table-4.2.

There are no other experimental or theoretical results available for comparison. All the compounds

are found to be stable by satisfying the stability criteria C11 > C12, C44 > 0, and C11 + 2C12 > 0.

69



(a) (b)

(c) (d)

Figure 4.10: Band structure of La3In, La3Tl with spin-orbit coupling (SOC), left panels (a, c) are
at the experimental lattice constants, while the right panels (b, d) are under compression at V/V0

= 0.80, where V0 denotes the experimental volume. The color code used for the plots is similar
at ambient and compressed volume and is introduced to ease the identification of pressure induced
changes to the band structure.
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(a) (b)

Figure 4.11: Band structure of La3Sn with spin-orbit coupling (SOC), left panels (a) is at the
experimental lattice constants, while the right panels (b) is under compression at V/V0 = 0.80,
where V0 denotes the experimental volume. The color code used for the plots is similar at ambient
and compressed volume and is introduced to ease the identification of pressure induced changes to
the band structure.

The calculated bulk modulus, B of the La3X compounds are reported in Table-4.2. The La3X

compounds are found to be softer than their “partner compound” LaX3 for a specific X atom: For

LaIn3 B = 51 GPa, as opposed to B = 39.3 GPa for La3In; for LaTl3 = B = 48 GPa, as opposed

to B = 40.3 GPa for La3Tl; for LaSn3 B = 56 GPa, as opposed to B = 37.8 GPa for La3Sn.

From the values of C11, C12 and C44 one may calculate Hill’s [126] shear modulus GH (which

is the arithmetic mean of the Reuss [127] and Voigt [128] approximations), Young’s modulus E,

the Poisson ratio σ and several related elastic properties, which are included in Table-4.2 (the

formulas are given in chapter-3 in equation-(3.1-3.5)). According to Pugh [138], the ratio between

the shear modulus and the bulk modulus GH/B relates to the ductile versus brittle nature of a

given compound. If GH/B < 0.57, the material behaves in a ductile manner, otherwise the material

is brittle. Sometimes, a positive value of the Cauchy pressure ( Cp = C12 − C44 > 0 ) is used for

the same classification. From Table-4.2, LaIn3 and La3Tl obey these inequalities and thus may be

classified as ductile materials, while La3Sn is on the borderline between brittle and ductile. Poisson’s

ratio σ (see Table-4.2) is calculated using the formula from equation-3.4 given in chapter-3.

Another important parameter of a material is the elastic anisotropy A = 2C44/(C11 − C12) (see

Ref. [149]). A value of A smaller or greater than unity measures the degree of elastic anisotropy

of the material. The calculated values of A indicate that the La3X compounds are elastically
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: Fermi surface topology of (a, b, c) La3In, (d, e, f) La3Tl, including spin-orbit coupling
(SOC) under compression at V/V0 = 0.80. The arrow in (b, e) points to the region where the FS
connectivity changes compared to V = V0 (Fig. 4.8 (b, d)).
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(a) (b) (c)

Figure 4.13: Fermi surface topology of (a, b, c) La3Sn, including spin-orbit coupling (SOC) under
compression at V/V0 = 0.80.

anisotropic. To compare the relative magnitude of the elastic anisotropy, A∗, calculated in percent

are tabulated in Table-4.2. It emerges that the anisotropy of the crystal is decreasing from In →

Tl → Sn. The calculated Debye temperatures of La3In and La3Tl are in good agreement with the

available experimental values. Unfortunately, there are no values available for comparison in the

case of La3Sn. Comparing the elastic properties of La3X with LaX3 both the La rich and the X rich

compounds are found to be ductile in nature with considerable elastic anisotropy.
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Table 4.2: Elastic constants and derived quantities for La3X ( X= In, Tl, Sn), as calculated with
the experimental equilibrium volume. A is the anisotropy factor, A = 2C44/(C11 −C12), the degree
of the elastic anisotropy, A∗ = 3(A− 1)2/[3(A− 1)2+25A)] (Ref. [149]), B is the bulk modulus and
Cp = C12 − C44 is the Cauchy pressure.

Parameters La3In La3Tl La3Sn

C11 (GPa) 54.2 54.3 59.1

C12 (GPa) 31.8 33.2 27.2

C44 (GPa) 21.9 20.5 26.9

A 1.96 1.95 1.69

A∗(%) 5.3 5.3 2.4

GH (GPa) 16.7 15.7 21.8

B 39.3 40.3 37.8

E (GPa) 43.9 41.7 54.9

σ 0.31 0.33 0.26

GH/B 0.42 0.39 0.576

Cp (GPa) 9.9 12.7 0.3

vl (km/s) 3.01 2.77 3.16

vt (km/s) 1.57 1.41 1.80

ΘD (K) 163.9 147.2 185.8

170(10)a 163(8)a

a: Ref. [63]
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4.4 Conclusion

The electronic structure, density of states and Fermi surfaces of La3X ( X= In, Tl, Sn ) are calculated

using the density functional theory at ambient volume as well as under compression. The states

at the Fermi level are dominated by the La ‘d’ orbitals in all La3X compounds with a significant

admixture of X ‘p’ states. In contrast, in the LaX3 compounds the X ‘p’ orbitals dominate at

EF . In addition, a strong ‘p’-‘d’ hybridization is found in La3X type compounds, leading to high

densities of states at EF , which is comparatively weaker in LaX3 compounds. This is attributed to

the different nearest-neighbor surroundings of the atoms in La3X and LaX3 with local tetragonal

symmetry around La in La3X but octahedral symmetry around La in LaX3. Compression induced FS

topology changes are predicted for all the compounds. The elastic and related mechanical properties

have been calculated for all the compounds. The La3X compounds are found to be ductile, as are

the LaX3 compounds. Despite having different electronic structure and Fermi surface topology, all

La3X and LaX3 compounds are found to have quite similar mechanical properties in the La rich and

X rich compounds.
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Chapter 5

Superconducting properties of

binary Cu3Au-type compounds:

Effect of compression

The effects of applying external pressure to the superconducting materials A3X (A= La; X= In, Sn)

and AX3 (A= La, Y; X = In, Sn, Pb) are simulated by ab initio quantum mechanical calculations

using the density functional theory. At zero pressure, the highest value of the superconducting

transition temperature (Tc) is found in La3In, 6.36 K and the lowest, 0.27 K in LaIn3 and the

electron-phonon coupling constants, λep are 0.98 and 0.36, respectively. Among the AX3 compounds,

the superconducting transition temperature of Y containing compounds are found to be higher than

in those with A = La although for a particular X atom the density of states at the Fermi level is higher

in LaX3 than in YX3. It is found that the two types of compounds AX3 and A3X respond differently

to application of pressure. Tc of A3X-type compounds increases with pressure, probably due to a

softening of the lower phonon frequecy mode especially A2g and Eu mode. On the other hand

Tc is found to decrease with increasing pressure for AX3-type compounds due to a simultaneous

hardening of all the phonon modes. The calculated trend of Tc under pressure agrees well with

the available experimental results for La3In and LaSn3. In the case of La3In a pressure-induced

dynamical instability is predicted with appearance of imaginary frequencies, in particular at the M

and R points in the Brillouin zone due to continuous softening of A2g and Eu modes irrespective of

the hardening of the higher frequency modes.
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5.1 Introduction

The intermetallic isostructural AX3 [82, 49] (A= La, Y; X = In, Sn, Pb) and A3X [63, 144, 65]

(A= La; X= In, Sn) type compounds, having cubic Cu3Au-type structure often exhibit unusual

behaviours in superconductivity, resistivity, thermopower etc. as a function of composition. Many

studies on LaX3 ( X= Sn, In, Tl, Pb) compounds show an oscillatory behaviour in superconducting

transition temperature (Tc), thermopower and magnetic susceptibility as functions of the average

valence-electron number [82, 78, 109, 137, 49]. Garde et. al [65] have observed a strong negative

curvature in the resistivity versus temperature curves of La3X compounds with X = Al, Sn, Ru,

Ir, Co, Ge, Ga, at intermediate temperatures and a stabilization at higher temperature. Further

they [65] found two extrema in thermopower curve for La3Sn, La3Ru and La3Co, whereas only

one extremum was seen for La3In, La3Al, La3Ga compounds. Superconductivity, magnetic and

thermodynamic properties of La3Tl were examined experimentally by Bucher et. al [145]. Heiniger

et. al [63] found La3In and La3Tl to be strong-coupling superconductors and later the presence of

high electronic density of states near the Fermi level (EF ) was reported for the same compounds

[66]. The effects of heat treatment and stoichiometry variation on the Tc of La3In were explained by

Gschneidner et. al [150]. Recent experimental investigations of superconductivity of YSn3 [80] and

YIn3 [114] have shown that Tc of YSn3 is 7 K whereas Tc of YIn3 is 0.7 K. An earlier experimental

study on La3In by Smith et. al [84] showed that Tc increases with pressure. The superconductivity of

LaSn3 under pressure was reported by Huang et. al [81], who found an initial increase of Tc in a small

pressure range about 0.8 kbar and then a decrease for higher values of pressure. The main motivation

to study the lanthanum based intermetallic compounds La3X and LaX3 is to investigate the effect

of X atom substitution on the superconducting properties at ambient as well as under pressure. The

main interesting point is that, among all the investigated systems, La3In has highest superconducting

transition temperature (10.4 K) [63], whereas LaIn3 has the lowest transition temperature, 0.7 K

[82, 83] at ambient pressure. Our aim is to understand the origin of the superconductivity for all

the investigated systems and to study the behaviour of the Tc under pressure for the A rich A3X

(A = La) compounds and X rich (A = La, Y) AX3 compounds. Till now, there are no theoretical

studies available regarding the superconducting behaviour of these compounds at ambient as well

as under pressure, apart from the theoretical studies on superconductivity in YSn3 by Dugdale

[118] and YIn3 by Billington et. al [151] both at ambient pressure. The present chapter contains

a detailed study of the phonon dispersion and Tc for all the mentioned compounds under pressure.

The remaining part of this chapter is organized as follows. In section-5.2 the computational method
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is described, section-5.3 contains the results obtained concerning superconductivity of the AX3 and

A3X compounds at ambient as well as elevated pressure, and section-5.4 concludes the chapter.

5.2 Method of calculation

The Quantum Espresso package [104] has been used for the electron-phonon coupling constant

and the phonon dispersion. To treat the exchange-correlation function we have used generalized

gradient approximation of Perdew, Burke and Ernzerhof [98]. In order to deal with the possible

convergence problem for metals, a smearing technique is employed using the Methfessel-Paxton (MP)

scheme, with the smearing parameter set to 0.04 Ry for La3X type compounds and 0.02 Ry for the

AX3 type compounds. For the description of the electron-ion interaction the Vanderbilt ultrasoft

pseudopotentials were used [152]. For the energy convergence we have used the wave function and

charged-density cutoffs of 30 Ry and 360 Ry, respectively. We used density functional linear-response

theory [104, 153] to calculate phonon spectra and electron-phonon coupling constants. Within the

linear response approach this allows the treatment of arbitrary phonon wave vectors in the Brillouin

zone, while avoiding the large supercells. The electrons are approximated in a dense k-mesh of 32 ×

32 × 32 in the Monkhorst-pack [120] scheme for self-consistent cycles. In order to obtain the phonon

dispersion curves, we have calculated the phonon frequencies on a 4 × 4 × 4 q-point grid and phonon

dispersions were then obtained by Fourier interpolation of the dynamical matrices. These dynamical

matrices were Fourier transformed to obtain the full phonon spectrum and density of states.

5.3 Results and discussions

5.3.1 Superconductivity of the AX3 and A3X type compounds

In order to obtain the superconducting transition temperatures (Tc) and to analyze the electron-

phonon coupling mechanism of all the AX3 (A= La, Y; X = In, Sn, Pb) and A3X (A= La; X = In,

Sn) compounds, we have studied the phonon-dispersion, electron phonon coupling constant λep and

the Eliashberg [154] function (α2F(ω)) for all the compounds. The total phonon density of states

(PDOS), the Eliashberg function and phonon dispersion at experimental equilibrium volume (V0)

for all the compounds are given in Figs. 5.1-5.7. From the Eliashberg function, we have calculated

the electron-phonon coupling constant λep for all the compounds. Having calculated the λep we

estimate Tc for all by using Allen-Dynes formula [43] as in equation-5.1 and the values are reported
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in Table-5.1 along with the calculated electronic density of states at Fermi level (N(EF )).

Tc =
ωln
1.2

exp

(

− 1.04(1 + λep)

λep − µ∗(1 + 0.62λep)

)

(5.1)

Here ωln is the logarithmically averaged phonon frequency and the dimensionless µ∗ is the Morel-

Anderson [155] Coulomb pseudo-potential. The value µ∗ = 0.1 was chosen in all Tc calculations

reported here [118].

Again λep can be calculated from the following relation,

λep = 2

∫

dωα2(ω)F (ω)

ω
=
N(EF )〈I2〉
M〈ω2〉 (5.2)

Where α(ω) and F(ω) are the strength of an average electron-phonon interaction and the phonon

density of states, respectively. 〈I2〉 is the mean of the square of the electron-ion interaction, M is

the atomic mass and 〈ω2〉 is the average of the square of the phonon frequency. The calculated

Tc and λep values obtained here are in good agreement with the available experimental and other

theoretical values.

AX3-type compounds (A = La, Y; X = Sn, Pb, In)

When we compare the superconducting transition temperature of LaX3 and YX3 compounds for

a particular X atom with X = Sn, Pb, In, we find Tc as well as electron-phonon coupling constant

to be higher in YX3 compounds than the LaX3 compounds and is reported in Table-5.1, although

the density of states at the Fermi level (N(EF )) of YX3 is smaller than that of LaX3. The observed

trend of Tc for La and Y containing AX3 type compounds agree well with the experimental result

[80], where the authors substantiate the result by showing Tc to be small for the compound with

large lattice parameter and large for those where the lattice parameter is small. From the analysis

of the phonon density of states and the Eliashberg function as shown in Fig. 5.1 (a-c), 5.2 (a-c) and

5.3 (a-c), we find the width of the phonon density of states and the Eliashberg function to be wider

in YX3 for X = Sn, Pb, In, compounds than in LaX3. Again in Fig. 5.3 (a-c) it can be seen that the

peak of the Eliashberg function is higher in the Y containing compounds than those with La, which

indicates the electron-phonon coupling constant to be higher for YX3 in comparison with the LaX3

and is well supporting our calculated values of Tc for the investigated LaX3 and YX3 compounds.

Comparing AX3 compounds for different X atoms, the highest peak in the Eliashberg function is

found for X = Sn, and then followed by APb3 and AIn3, in accordance with the trend in the

calculated values of Tc. The calculated phonon dispersion relations (Fig. 5.4 (a-c), 5.5 (a-c) for AX3

79



Table 5.1: Calculated electronic density of states at the Fermi level, N(EF ) (evaluated at the
experimental equilibrium volumes (V0)), together with derived Sommerfeld coefficient of specific
heat, γ, electron phonon coupling constant, λep and superconducting transition temperature, Tc for
AX3 ( A = La, Y; X = In, Sn, Pb) and A3X ( A = La; X= In, Sn) compounds.

Compounds N(EF ) γ (mJ/mol K2) λep Tc (K)

LaIn3 Present work 2.58∗ 6.06 0.36 0.27

Expt. 2.19a 0.7b,0.71c

Othersd 1.89 5.09

LaSn3 Present work 2.67∗ 6.28 0.81 5.23

Expt. 2.6, 2.8 11.66e, 10.96f 0.8 6.45h, 6.02b

11.0g

Othersd 2.15 6.03 0.82

LaPb3 Present work 3.41∗ 8.02 0.72 3.28

Expt. 4.05h,4.1b,4.18c

YIn3 Present work 2.34∗ 5.49 0.37 0.34

Expt. 0.78b, 1.08i

Othersj 1.81 4.26 0.42 0.77

YSn3 Present work 2.41∗ 5.67 0.83 5.42

Expt. 7.57k 7.0k

Othersl 1.92 4.53 0.99 5.93

YPb3 Present work 3.12∗ 7.33 0.86 4.58

Expt. 4.72b, 4.6m

La3In Present work 7.8∗ 18.40 0.97 6.36

Expt. 6.00n 14.00n 9.54n, 10.4o

Others 4.41 13.11p

La3Sn Present work 6.29∗ 14.83 0.76 4.26

Expt. 6.2q

∗ from our previous study Ref. [156], [157] and [158]
a: Ref. [49]; b: Ref. [82]; c: Ref. [83]; d: Ref. [132]; e: Ref. [159]; f: Ref. [81]

g: Ref. [131]; h: Ref. [129]; i: Ref. [114]; j: Ref. [151]; k: Ref. [80]
l: Ref. [118]; m: Ref. [78]; n: Ref. [63]; o: Ref. [144]; p: Ref. [69]

q: Ref. [64]
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(a) (b)

(c)

Figure 5.1: Total and partial phonon density of states for LaX3 with X = Sn, Pb, In compounds at
V/V0 = 1.0.
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(a) (b)

(c)

Figure 5.2: Total and partial phonon density of states for YX3 with X = Sn, Pb, In compounds at
V/V0 = 1.0.
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compounds and 5.6 (a, b) for La3X compounds) have shown that no mode softening (”imaginary”

frequencies), leading to dynamical instability was found in the compression range considered here.

For AX3 type compounds a drop in Tc was found in LaIn3 and YIn3 which could be due to a

weak interaction of the atoms, resulting in opening of a gap in the phonon dispersion as shown in

Fig. 5.4 (c), 5.5 (c). For all the AX3 compounds, there is nearly equal contribution from A and X

atom, but slightly dominating nature of X atom is seen in the lower frequency regions which is well

evident from the partial density of states in Fig. 5.1, 5.2 and the central region is dominated by the

X-type atoms, where the Eliashberg function is high as illustrated in Fig. 5.3 (a-c) and this might

be the dominating character to determine the superconductivity of these AX3 compounds.

A3X-type compounds (A = La; X = Sn, In)

For the La3X (X = In, Sn) type compounds, it is found that N(EF ) is quite high in comparison

with those of LaX3 (X = In, Sn) compounds, which may be related to the structural instability

of the La3X compounds. To examine the dynamical stability of these La3X compounds we have

calculated the phonon-dispersion along high symmetry direction for all the compounds and found

no imaginary phonon modes at ambient for both La3In and La3Sn as shown in Figs. 5.6 (a, b)

at zero pressure and this gives the conformation about the stability of these compounds. In the

previous chapter (chapter-4) we have also studied the mechanical stability of these compounds and

found La3In and La3Sn [158] to be mechanically stable. When we try to analyse the PDOS for La3X

compounds, we find the highest peak of PDOS at around 100 cm−1 as shown in Figs. 5.7 (a) and

(b), is dominated by the X (In, Sn) atom and the lower frequency ranges are of La type. From the

Eliashberg function as shown in Fig. 5.7 (c, d) it is seen that the peak of La3In is slightly higher

than in La3Sn suggesting the electron-phonon coupling constant to be higher for former compound,

and this agrees with our λep values as reported in Table-5.1. The calculated values of the Tc are

also found to be higher in La3In than in La3Sn, which supports our discussion.

Comparison between AX3 and A3X-type compounds

Now, comparing the superconductivity of the La3X and LaX3 compounds, it is seen that the

superconducting transition temperature (Tc) decreases by replacing In with Sn for La rich La3X type

compounds (La3In = 6.36 K, La3Sn = 4.26 K), whereas for X rich LaX3 compounds Tc is found to

increase when In is substituted for Sn (LaIn3 = 0.27 K, LaSn3 = 5.23 K). The Tc is higher in La3In

and LaSn3 in comparison to that of LaIn3 and La3Sn respectively, and this might be due to the high

electron-phonon coupling constant in the former compounds. This is also reflected in the calculated

values of λep as reported in the Table-5.1. On the other hand the higher Tc for La3In in comparison

to LaIn3 is also mainly due to the electron-phonon coupling constant of La3In (λep = 0.98, Tc =
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(a) (b)

(c)

Figure 5.3: Eliashberg function for AX3 with A = La, Y; X = Sn, Pb, In compounds at V/V0 =
1.0.

84



(a) (b)

(c)

Figure 5.4: Phonon dispersion along high symmetry direction for LaX3 (X = Sn, Pb, In) at ambient
as well as under compression at V/V0 = 0.9 (solid black lines for V/V0 = 1.0 and red dotted lines
for V/V0 = 0.9). The hardening of all frequency mode is seen in LaX3 compounds.
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(a) (b)

(c)

Figure 5.5: Phonon dispersion along high symmetry direction for YX3 (X = Sn, Pb, In) at ambient
as well as under compression at V/V0 = 0.9 (solid black lines for V/V0 = 1.0 and red dotted lines
for V/V0 = 0.9). The hardening of all frequency mode is seen in YX3 compounds.
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(a) (b)

Figure 5.6: Phonon dispersion along high symmetry direction for La3X (X = In, Sn) at ambient
as well as under compression at V/V0 = 0.9 (solid black lines for V/V0 = 1.0 and red dotted lines
for V/V0 = 0.9). The softening of lower frequency mode particularly at M and R points is seen in
La3X irrespective to the hardening of higher frequency mode.

6.34 K) being larger than that in LaIn3 (λep = 0.36, Tc = 0.27 K), whereas Tc is found to be less

in La3Sn (Tc = 4.26 K) than in LaSn3 (Tc = 5.23 K) which again is due to λep for La3Sn (λep =

0.76) being smaller than that of LaSn3 (λep = 0.81). Finally, from the calculated λep, Tc, PDOS

and Eliashberg functions of all the investigated compounds, it emerges that the superconductivity

is dominated by the A atom for A3X (A = La; X = In, Sn) type compounds and for AX3 type

compounds it is dominated by the X atom, and there is a large variation of the coupling constant

when X is varied in the AX3 compounds in comparison to the A3X compounds.

5.3.2 Pressure effect on superconducting properties

The main interesting feature in all the investigated compounds under pressure is the observed positive

dependence of the Tc for A3X (A = La; X = In, Sn) with increase of the coupling constant and the

negative dependence for AX3 (A = La, Y; X = In, Sn, Pb) type compounds with decrease of the

coupling constant and is shown in Figs. 5.8 (a) and (b). Experimentally Huang et. al [81] have

reported the pressure effect on Tc for LaSn3 and found initial increase of the Tc for a small range

of pressure of about 8 kbar and then decreases. In our calculation we have not found the initial

increase of Tc for LaSn3, but at nearly V/V0 = 0.94 (pressure around 1 GPa) we find slight increase

of Tc, then decrease. A similar situation is found in Nb [160], where the authors were not able to
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(a) (b)

(c) (d)

Figure 5.7: (a, b) Total and partial phonon density of states, (c, d) Eliashberg function, for La3X
with X = Sn, In compounds at V/V0 = 1.0.
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(a) (b)

(c)

Figure 5.8: Variation of superconducting transition temperature, Tc under compression for (a) AX3

(A = La, Y; X = Sn, Pb, In) and (b) La3X (X = In, Sn), (c) gives the information about the
comparison between the experiment and our present calculation of Tc for La3In under pressure.
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Figure 5.9: Phonon dispersion along high symmetry direction for La3In at ambient as well as under
compression. The phonon instability is seen along Γ-R-M direction at V/V0 = 0.8.

show the initial increase of Tc with pressure as found in experiment and suspected that might be

due to the non-hydrostatic pressure or due to the polycrystalline nature of the sample. The pressure

dependence of Tc for La and Y containing compounds are found to be similar where we have seen

Tc to decrease under compression and is evident from Fig. 5.8 (a). In our previous study [157, 156]

we have observed Fermi surface topology to be nearly similar under pressure for LaSn3 and LaPb3

(chapter-3) and suspected the superconducting nature of these compounds to be the same. From

the calculated Tc under compression as shown in Fig. 5.8 (a), a similar decreasing non-monotonic

behaviour of these two compounds is confirmed. In addition to this, it can be seen that among all

compounds the monotonic variation of the Tc under compression is only present for YPb3 and YSn3,

where we did not find any Fermi surface topology change under compression [156, 157] (chapter-3).

The observed Fermi surface topology change for the compounds under study [157, 158] could be

related to the non-monotonic variation of the superconducting transition temperature and is well

supporting the finding of the Huang et. al [81], where the authors concluded the observed change

in Tc for LaSn3 was due to the Fermi surface topology change. The same non-monotonic behaviour

in Tc under compression is seen (see Fig. 5.8 (b)) for La3X compounds, where we again find a

Fermi surface topology change [158] (chapter-4). Again for La3X compounds, an increase of Tc with

pressure is found as shown in Fig. 5.8 (b). The calculated behaviour of the Tc under pressure for

La3In agrees well with the experimental finding by Smith et. al [84], where it was also shown that Tc

increases with pressure for La3In and an initially linear increase which at higher pressures changes
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into a constant is shown in Fig. 5.8 (c). Apart from this, we have also found a hardening of the

higher frequency modes under compression for all the investigated AX3 and La3X compounds as

can be seen from Fig. 5.4, 5.5 and 5.6 (dotted lines), whereas the lower frequency modes soften

in La3X in particular at the M and R points irrespective of the hardening of the modes in the

other points (Fig. 5.6). There is no softening in the case of AX3 compounds and we have seen the

continuous hardening of all the modes at all the symmetry points (Fig. 5.4, 5.5). The observed

increase of Tc in La3X compounds with pressure may be due to this observed softening of the lower

frequency mode under compression, especially A2g and Eu mode at M and R points respectively,

irrespective of simultaneous hardening of the higher frequency modes as shown in Fig. 5.6 (a, b).

Similar softening of the A2g and Eu mode is not found for the LaX3 compounds, as can clearly be

seen from Fig. 5.4, 5.5 (a-c). This might be the reason for the decreasing Tc with compression for

AX3 compounds. A phonon instability is predicted for La3In under high compression (V/V0 = 0.8),

due to the continuous softening of the A2g and Eu modes at the M and R points as shown in Fig.

5.9. The similar lattice instability under pressure as found here for La3In is reported in the case of

MgB2 [161], in that case due to softening of the B1g mode.

5.4 Conclusion

The phonon dispersion, electron-phonon coupling constant and superconducting transition temper-

ature (Tc) of A3X (A= La; X= In, Sn) and AX3 (A= La, Y; X= In, Sn, Pb) compounds under

compression are studied using density functional theory. The superconducting transition tempera-

ture is found to be high in Y containing compounds in comparison with the La containing compounds

among AX3 series despite the density of states being higher in LaX3 compounds, which is due to the

electron-phonon coupling constant being higher in YX3 than the LaX3 compounds. An increase of

Tc with pressure is found for La3X, whereas Tc is found to decrease for AX3 compounds. In addition

a continuous hardening of all the modes is found for AX3 compounds. A softening of the lower

frequency mode, in particular at the M and R points is observed for La3X compounds. This might

be the reason for the observed decreasing and increasing behaviour of the superconducting transition

temperature with pressure in AX3 and La3X compounds, respectively. Opposite to LaIn3, a lattice

instability is found in the case of La3In under high compression due the continuous softening of the

A2g and Eu mode at the M and R points.
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Chapter 6

Lattice dynamics and

superconducting properties of

La3InZ (Z = N, O)

Electronic and superconducting properties of La3InZ (Z = N, O) compounds are studied and are

compared with La3In. From the density of states of La3InZ it is quite clear that the hybridization

between La ‘d’ and In ‘p’ states get reduced with the inclusion of the Z atom in comparison with

La3In. A Fermi surface topology change is observed only in La3InO under compression, which is

attributed to the non-monotonic variation of the density of states and ultimately induce a non-linear

variation of Tc. The mechanical and the dynamical stability of these compounds is confirmed from

the elastic constant and the phonon dispersion calculation respectively. Cauchy’s pressure, Pugh’s

ratio and Poission’s ratio values indicate La3InN(O) to be brittle(ductile) in nature and agree well

with the experiment. The calculated superconducting transition temperature (Tc) is less than 2 K

for N containing compound, and is found to be above 2 K for O containing compound and the trend

agree well with the experimental findings. The reason for the suppression of Tc due to the inclusion

of the Z atom is also discussed from the band structure and phonon dispersion plots, where we find

the phonon modes to harden in La3InZ.

92



6.1 Introduction

Over the past few decades the binary intermetallic alloys of AX3 and A3X, (A = La, X = Sn, In,

Tl) type have been widely investigated which are found to be superconductors and the reported

superconducting transition temperature (Tc) is found to be highest around 10 K in La3In [63]. It is

quite interesting to study the superconducting properties of La3InZ compounds formed by addition

of Z (N, O) atom to La3In yet retaining in the same space group of La3In. Earlier studies report

an enhancement of the Tc by addition of carbon in YNi4B [162], whereas the decrease in Tc was

reported by addition of carbon in La3X (X = Al, Ga, In, Tl) compounds [69]. The presence of

superconductivity in La-Ca-Cu-O compound was reported under high oxygen pressure, whereas

the superconductivity was found to vanish under low oxygen pressure [163]. Apart from this the

reduction of Tc was also reported in MgB2 by carbon doping [164]. Again from experimental study

on the superconducting behavior of La3InZ (Z = N, O) [68], it is to be noted that La3In and La3InO

have Tc of the same range around 10 K, which further motivate us to study the role of Z in La3InZ

compounds. In this present chapter, we calculate the superconducting transition temperature of

these compounds and show the presence of superconductivity below 2 K for La3InN and above 2 K

in the case of La3InO at ambient. In addition, we also bring out the role of Z on the superconducting

properties of La3InZ compounds. Experimentally Jing-Tai Zhao et. al [68] have synthesized these

compounds and reported the superconducting behavior at nearly 10 K for La3InO, whereas the

authors have not found any superconducting nature in La3InN above 2 K. In addition Kirchner et.

al [70] have studied experimentally as well as theoretically a series of (R3N)In (R = La-Nd, Lu,

Sm-Tm) compounds and compared the bonding nature of La3InN with La3In theoretically. Apart

from this no theoretical studies are available regarding the band structure, density of states, Fermi

surface at ambient as well as under compression. The rest of the chapter is organized as follows:

in section-6.2, we briefly discuss the computational details, results and discussions are presented in

section-6.3, which contains electronic, Fermi surface, superconducting properties of these compounds

and finally we summarize and conclude this chapter in section-6.4.

6.2 Method of calculation

The electronic structure calculations were performed using the full-potential linearized augmented

plane wave (FP-LAPW) method as implemented in the WIEN2k [101] based on the generalized

gradient approximation of Perdew, Burke and Ernzerhof (GGA-PBE) [98]. For the total energy
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convergence RMTKmax= 8 was used, where RMT is the smallest muffin-tin radius, and Kmax is the

plane wave cut-off. The charge density was Fourier expanded up to Gmax = 12 a.u.−1 The muffin-tin

radii were chosen as 2.5 a.u for La, 2.3 a.u for In and 1.7 a.u for Z (N, O) atoms. A (44 × 44 ×

44) k-point mesh in the Monkhorst-Pack [120] scheme was used during the self-consistent cycle to

ensure accurate determination of the Fermi level. The three dimensional (3D) Fermi surface plots

were generated with the help of the XCrySDen ((X-Window) CRYstalline Structures and DENsities)

molecular structure visualization program [122]. Spin-orbit coupling (SOC) is not included for all

the electronic structure calculations as we find the vicinity of the Fermi level to remain unaltered

with the inclusion of the SOC. We have used the experimental lattice constant of 5.11 Å, and 5.19

Å, for La3InN and La3InO (Ref. [68]), respectively, and the corresponding experimental volumes

are denoted by V0 in the following.

For the electron-phonon coupling constant and the phonon dispersion plots, we have used the

Quantum Espresso package [103, 104]. A smearing technique within Methfessel-Paxton (MP) scheme

is used and the smearing parameter is set to 0.02 Ry for La3InZ (Z = N, O) compounds. We have

carried out convergence tests for different values of smearing parameters. For the energy convergence

we have used the wave function and charged-density cutoffs of 30 Ry and 320 Ry, respectively for

La3InN and 56 Ry and 560 Ry, respectively for La3InO. Phonon calculations were carried out for 4

× 4 × 4 Monkhorst-Pack q-point grid with Brillouin zone integrations on a 32 × 32 × 32 k-mesh.

In Fig. 6.1 (a, b) we have plotted the crystal structure of La3In and La3InO.

6.3 Results and discussions

6.3.1 Band structure, density of states and Fermi surface

The calculated band structures of La3InZ (Z = N, O) without spin orbit coupling at experimental

volume (V0) are presented in Fig. 6.1 (c, d). The band structure plots reveal the overall profile of

both the compounds to be similar except band filling in the case of La3InO due to an extra electron

in O, which is also clearly seen in the corresponding Fermi surface (FS) and the density of states

(DOS) as shown in Fig. 6.2, 6.3 and Fig. 6.4, respectively. From the FS plots we can see the three

extra hole pockets centered at R point in the case of the La3InN, which is absent in La3InO due

to the positioning of the band below the Fermi level (EF ) (see Fig. 6.2 (a-c) and see solid black,

broken red and dotted blue color band in Fig. 6.1 (d)). In addition we have an extra electron sheet

along Γ-R direction in the case of La3InO as shown in Fig. 6.3 (c) (broken indigo color band in Fig.
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(a) (b)

(c) (d)

Figure 6.1: Crystal structure of (a) La3In and (b) La3InO and Band structure of (c) La3InN and
(d) La3InO at V/V0 = 1.0. The bands crossing the Fermi level are shown in different color.
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(a) (b) (c)

(d) (e)

Figure 6.2: Fermi surface of La3InN at V/V0 = 1.0.

6.1 (d)). Apart from this the topology of the fourth FS of N containing compound (Fig. 6.2 (d))

and the first FS of O (Fig. 6.3 (a)) containing compound (see solid line with sphere magenta color

band) are found to be similar except the increase in the width of the tube along Γ-X direction and

are having both electron as well as hole character. This is again evident from the band structure

plots in Fig. 6.1 (d) as we could see the same band to dip more below the EF at X point in the case

of La3InO, resulting in wider opening along Γ-X. The fifth FS of N containing compound (Fig. 6.2

(e)) and the second FS of O containing compound (Fig. 6.3 (b)) are electron pocket centered at Γ,

with size being larger in La3InO than in La3InN. If we compare the FS of the La3In with La3InZ (Z

= N, O), we could find the FS topology of these compounds to be quite different as shown in Fig.

6.3 (d-f) (the details of the calculation regarding La3In are presented in the chapter-4 [158]) and it

is interesting to analyze and to compare La3In and La3InO which are claimed experimentally to be

a superconductor with Tc around 10 K, provoking us to study the role of O in this compound. To

analyze in detail, we have plotted the density of states of La3InZ along with La3In as shown in Fig.

6.4. More interestingly we find the EF of both La3InO and La3In to fall very close to the peak.
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(a) (b) (c)

(d) (e) (f)

Figure 6.3: Fermi surface for (a-c) La3InO and (d-f) La3In at V/V0 = 1.0.

But the density of states at the Fermi level (N(EF )) was found to be higher in La3In [165] (N(EF )

= 7.80 states/eV /f.u.) in comparison with La3InO (N(EF ) = 2.86 states/eV /f.u.), which might

eventually give an indication of the suppression of the Tc in La3InO which will be discussed little

later. Further analyzing the partial density of states of La3InO from Fig. 6.4 (b), we find the major

contribution to stem from La ‘d’ along with the hybridization of the In ‘p’ and O ‘p’ states at the

Fermi level. In addition we could also see the Fermi level (EF ) lying close to a peak in the case of La

‘d’ and O ‘p’ orbital, whereas the EF falls on pseudogap of In ‘p’ orbital. In contrast for La3In, the

EF lies close to the peak for both La ‘d’ and In ‘p’ orbital and is well evident from the Fig. 6.4 (c).

So the extent of hybridization of In ‘p’ with La ‘d’ is reduced in the case of La3InO, whereas there

exist a pronounced hybridization between La ‘d’ and O ‘p’, which brings the role of O in La3InO.

Next we turn our discussion towards comparing La3InN and La3InO. As we move from N to O, the

band gets filled and is seen in the band structure and FS, which we have presented so far. Now if

we compare these compounds from the projected density of states, we could see the Fermi level to

fall exactly on the pseudogap in the case of La3InN and it is clearly evident from the La ‘d’ and N
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‘p’ states in Fig. 6.4 (a). The extent of hybridization between La ‘d’ and In ‘p’ is again found to be

lesser similar to La3InO. The N(EF ) for La3InN is found to be 2.55 states/eV /f.u., which is also

lesser than both La3In and La3InO indicating the Tc to be lesser in comparison with both La3In

and La3InO. This decrease in Tc in La3InN when compared with La3InO can further be understood

from the phonon frequency which are discussed in the subsequent section. Our calculated N(EF )

for La3InN agree well with the reported value of 2.6 states/eV /f.u. [70].

More interestingly we have observed a FS topology change under compression in the case of

La3InO, whereas the topology is found to remain unaltered under compression in La3InN. In the

case of La3InO we find three surfaces to appear under compression around V/V0 = 0.8 at R point

similar to La3InN (Fig. 6.5 (a-c)), due to the upward movement of the band and an extra electron

pocket appear along M -Γ direction in the last FS due to the downward shift of the band and the

corresponding Fermi surface is shown in Fig. 6.5 (d). This observed difference between La3InN and

La3InO is mainly due to the non-monotonic variation of N(EF ) only in La3InO as shown in Fig.

6.6, whereas we find the N(EF ) to vary linearly with compression in the case of La3InN. In addition

we can observe the sudden increase in density of states at V/V0=0.8 in La3InO where we have also

found three extra hole pocket (Fig. 6.5 (a-c)) and an additional electron sheet in the last surface to

appear (Fig. 6.5 (d)). The non-monotonic behaviour of density of states in La3InO might also reflect

on the superconducting transition temperature, Tc in accordance with Makarov et. al [19], where

authors have correlated theoretically the variation of N(EF ) with Tc, and we will discuss the same

in detail in next section. Overall we have seen the bands to move up for La3InN under compression

and in the case of La3InO simultaneous upward and downward shifts of the bands are observed.

6.3.2 Superconductivity and vibrational properties

From the N(EF ), we may calculate the Sommerfeld coefficient of specific heat, (γ) and the values

are reported in Table-6.1. From the γ values one may expect Tc to be higher in La3InO in compar-

ison with La3InN. From the Eliashberg function we have calculated the electron-phonon coupling

constant, λep and having calculated the λep we estimate the Tc of both the compounds by using

Allen-Dynes formula [43] and the values are reported in Table-6.1 along with the calculated N(EF ).

The dimensionless µ∗, the Coulomb pseudopotential used in our calculation for all the compounds

is 0.1. The calculated averaged phonon frequency ωln for both the compounds along with La3In is

also reported in Table-6.1.
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(a) (b)

(c)

Figure 6.4: Total and partial density of states for (a) La3InN, (b) La3InO and (c) La3In, at
V/V0=1.0.
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(a) (b) (c)

(d)

Figure 6.5: Fermi surface of La3InO at V/V0=0.8. The first three surface (a-c) topology is similar
to the FS topology of La3InN at ambient (Fig. 6.2(a-c)). (d) An extra electron sheet appears along
M -Γ direction.

Figure 6.6: Variation of density of states at Fermi level, N(EF ) under compression for La3InZ (Z =
N, O).
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Table 6.1: Calculated density of states at the Fermi level, N(EF ) (in states per eV per formula unit,
evaluated at the experimental equilibrium volumes), together with derived Sommerfeld coefficient
of specific heat, γ, averaged phonon frequency, ωln, electron phonon coupling constant, λep and
superconducting transition temperature, Tc for La3InZ (Z = N, O) and La3In.

Compounds N(EF ) γ (mJ/mole K2) ωln(cm
−1) λep Tc (K)

La3InN This work 2.55 6.02 107.97 0.37 0.44

Othersa 2.6 -

La3InO This work 2.86 6.74 98.29 0.62 3.77

Expt. 10b

La3In This work 7.8 18.40 62.7 0.97 6.36

a: Ref. [70] b: Ref. [68].

From our calculated values we find Tc of La3InO to be higher than La3InN with higher electron-

phonon coupling constant, λep and find this trend to agree well with the calculated N(EF ). Our

calculated value of Tc is comparatively lesser when compared to the experimental value [68] in the

case of La3InO and this might be due to the polycrystalline or non-stoichiometric nature of the

sample [160, 166]. Unfortunately there are no other theoretical values available for comparing the

results of these studied compounds, whereas the trend of our calculated Tc is same as in Ref. [68],

where the authors have reported Tc to below 2 K for La3InN and above 2 K in the case of La3InO.

Again when we compare La3In with the presently studied compounds we find the calculated Tc

value of La3In (Tc = 6.36 K) to be higher in comparison with La3InZ (Z = N, O), with higher

electron-phonon coupling constant (λep = 0.97), as evident from the reported values in Table-6.1

and it contradicts the experimental finding where the authors have reported the Tc of La3In and

La3InO to be same [63, 68] and we try to justify the same from the calculated phonon dispersion

relations as discussed below.

We have plotted the phonon-dispersion in Fig. 6.7 at ambient for both the studied compounds

La3InN and La3InO along with La3In. From the figure we can see all the phonon modes to have

positive frequency in all high symmetry directions, which ultimately provides the confirmation to-

wards the dynamical stability of these compounds. Again we find the phonon frequency to be higher

in La3InN than in La3InO. The lower mass in the case of the La3InN may be the reason for the

phonon mode to be higher in frequency when compared with La3InO.
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(a) (b)

(c)

Figure 6.7: Phonon dispersion plots for (a) La3InN, (b) La3InO and (c) La3In at V/V0=1.0.

Table 6.2: Zone center phonon modes for La3InZ (Z = N, O) and La3In, as calculated with the
experimental volume. All the modes are triply degenerate. The frequency are in cm−1.

Parameters T1u T1u T2u T1u T1u

La3InN 0 87.2 87.4 140.4 298.2

La3InO 0 66.0 97.0 125.3 274.2

Parameters T1u T2u T1u T1u -

La3In 0 57.8 94.8 112.0
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(a) (b)

(c)

Figure 6.8: Phonon density of states, (F(ω)) for (a) La3InN, (b) La3InO and (c) La3In at V/V0=1.0.
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If we compare La3In and La3InO, we find the phonon modes to soften in the case of La3In in

comparison with La3InO. The hardening of the phonon modes in La3InO might be reducing the

electron-phonon coupling constant in the case of La3InO in comparison with La3In leading to the

reduction in superconducting transition temperature of La3InO. The hardening of the phonon modes

are mainly due to the presence of the O atom and is well evident from the phonon density of states,

(F(ω)) (PDOS) in Fig. 6.8, where we can see the contribution at higher frequency regions to arise

mainly from the O(N) atom. In addition we have calculated the zone center phonon frequency for

both La3InN and La3InO along with La3In and the values are reported in Table-6.2. For a crystalline

solid there are 3N number of modes, where N is the number of atoms in primitive cell and out of

3N modes, three are acoustic modes and 3N -3 are optical modes. In our studied compounds La3InZ

(Z = N, O) and La3In we have total 15 and 12 numbers of modes, respectively and all are triply

degenerate at zone center. When we compare La3InN with La3InO, we could see all the phonon

modes except the T2u mode to soften at zone center in the case of La3InO and is well evident from

the Table-6.2. Altogether the hardening of the phonon modes in the presence of the Z (Z = N,

O) atom in the body centered position of the cube play a role in decreasing the electron-phonon

coupling constant eventually leading to a lower Tc in La3InZ as compared to La3In.

Apart from this we have also calculated the Tc under compression for La3InO and find Tc to

decrease initially and then increase as shown in Fig. 6.9 and agree well with the observed trend of

our calculated N(EF ) as shown in Fig. 6.6. More interestingly we can see N(EF ) as well as Tc to

vary non-monotonically and well support the FS topology change. Previously Huang et. al [81] have

also found the same anomaly in Tc in the case of LaSn3 and suspected a FS topology change. In

our previous chapters-3, 4, 5 we have shown the same for a series of compounds AX3 (A = La. Y;

X = In, Tl, Pb, Sn), La3X (X = In, Sn). Recently the correlation between FS topology change and

variation of Tc was shown by Chia-Hui Lin et. al [167]. Overall in the case of La3InO, we find all

phonon modes to harden under compression in all high symmetry direction. In contrast to La3InO

we have seen Tc to increase in the case of La3In under compression and also find the lower frequency

modes in particular at R and M point to soften leading to the increase of Tc and it is well explained

in chapter-5. The observed sudden increase in Tc under compression in La3InO can be attributed to

the appearance of new hole pocket as well as electron pocket at V/V0 = 0.8 (Fig. 6.5, the pressure

equivalent to this compression is 15 GPa.), leading to an increase in N(EF ), as shown in Fig. 6.6.
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Figure 6.9: Superconducting transition temperature, Tc under compression for La3InO.

6.3.3 Elastic constants and mechanical properties

For the cubic system there are three elastic constants C11, C12 and C44 [123, 124]. These elastic

constants give the information about the mechanical behaviour, stability and stiffness of the crystal.

We have calculated these elastic constants and the related mechanical properties for all the studied

compounds at the experimental equilibrium volumes and are listed in Table-6.3. There are no other

experimental or theoretical results available for comparison. Both the studied compounds are found

to be mechanically stable by satisfying the Born’s [168] stability criteria C11 > C12, C44 > 0, and

C11 + 2C12 > 0.The calculated bulk modulus, B of La3InZ compounds are reported in Table-6.3.

Hill’s [126] shear modulus GH (which is the arithmetic mean of the Reuss [127] and Voigt [128]

approximations), Young’s modulus E, the Poisson ratio σ and several related elastic properties can

be calculated from these elastic constants C11, C12 and C44 and the formulas are given in chapter-3

in equation-(3.1-3.5). Ductile and brittle nature of the compound can be estimated from the Pugh

ratio [138], ratio between the shear modulus and the bulk modulus GH/B. According to Pugh, the

value less than 0.57 indicates the ductile nature and the value greater than 0.57 is the indication

of the brittle nature of the compound. From our calculated values as reported in the Table-6.3, we

can identify La3InN to be brittle and La3InO is in the border line of ductile and brittle nature. The

brittle and ductile nature of these compounds are also reported in Ref. [68] and agree well with

our calculation. The positive/negative Cauchy pressure values ( Cp = C12 − C44 > 0 ) is also used

to clarify the ductile/brittle nature of the compounds and our calculated values again support our

discussion. From the Table-6.3 we can see that the addition of N in La3In makes the compound
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Table 6.3: Elastic constants and derived quantities for La3InZ (Z = N, O) and La3In, as calculated
with the experimental equilibrium volume. A is the anisotropy factor, A = 2C44/(C11 − C12), the
degree of the elastic anisotropy, A∗ = 3(A − 1)2/[3(A − 1)2 + 25A)] (Ref. [149]), B is the Bulk
modulus and Cp = C12 − C44 is the Cauchy pressure.

Parameters La3InN La3InO La3In

C11 (GPa) 134.63 117.68 54.2

C12 (GPa) 38.14 38.50 31.8

C44 (GPa) 42.56 35.89 21.9

A 0.88 0.91 1.96

A∗(%) 0.5 0.3 5.3

GH (GPa) 44.75 37.33 16.7

B 70.30 51.96 39.3

E (GPa) 110.75 93.96 43.9

σ 0.24 0.26 0.31

GH/B 0.64 0.58 0.42

Cp (GPa) -4.41 2.61 9.9

vm (km/s) 2.85 2.59 1.77

ΘD (K) 283.64 258.94 163.9

brittle in nature, whereas the ductile nature of La3In remains almost the same with the addition

of O. This again well supports our phonon dispersion plots, where we find phonon frequencies of

La3InN to be higher in comparison with La3InO and La3In. Another important parameter of a

material is the elastic anisotropy A = 2C44/(C11 − C12) (Ref. [149]). The value of A smaller or

greater than unity measures the degree of elastic anisotropy of the material. The calculated values

of A indicate both the La3InZ (Z = N, O) compounds to be elastically anisotropic. To compare,

the relative magnitude of the elastic anisotropy, A∗ calculated in percent are tabulated in Table-6.3.

It shows that anisotropy is more in O containing compound in comparison with the N containing

compound.

In addition to this we have also calculated the Debye temperature of all La3InZ (Z = N, O)

compounds and are tabulated in Table-6.3. Debye temperature is a fundamental physical parameter

which is closely related to many physical properties such as elastic constants, specific heat and
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melting temperature. Unfortunately, there are no other values available for comparison. Comparing

the elastic properties of both La3InN and La3InO compounds, we find the elastic and the related

mechanical behavior of the N, O containing compound to be different and our results agree well

the experimental finding [68], where the authors also reported La3InN to be brittle in nature and

La3InO as ductile.

6.4 Conclusion

In summary, our ab initio study of electronic structure calculations of La3InZ (Z= N, O) conclude

that, when Z atom is added to the body center of La3In, the hybridizing effect between La ‘d’ and In

‘p’ orbital gets reduced in La3InZ in comparison with La3In. The Fermi surface topology change is

observed under compression for La3InO but not in La3InN, which is attributed to the non-monotonic

variation of the density of states in La3InO and also gives rise to a non-linear variation of Tc. From

the phonon dispersion plots we have shown both the compounds to be dynamically stable. From

the calculated superconducting transition temperature we find a suppression of Tc in La3InZ due to

the addition of Z (N, O) atom in La3In, which is mainly due to the hardening of the phonon modes.

Again Tc is found to be less than 2 K for La3InN and above 2 K in the case of La3InO, which also

agree well with the experimental trend. From the mechanical properties we find La3InN(O) to be

brittle(ductile) in nature in agreement with the experimental reports.
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Chapter 7

Skutterudites LaRu4X12 (X = P,

As, Sb) under pressure

Ab initio results on the band structure, density of states and Fermi surface (FS) properties of

LaRu4X12 (X = P, As, Sb) are presented at ambient pressure as well as under compression. The

analysis of density of states reveals the major contribution at the Fermi level to be mainly from the

Ru ‘d’ and X ‘p’ states. We have a complicated Fermi surface with both electron and hole character

for all the three compounds which is derived mainly from the Ru ‘d’ and X ‘p’ states. There is also

a simpler FS with hole character derived from the P ‘pz’ orbital for LaRu4P12 and Ru ‘dz2 ’ orbital

in the case of As and Sb containing compounds. More interestingly, Fermi surface nesting feature

is observed only in the case of the LaRu4P12. Under compression, we observe the topology of the

complicated FS sheet of LaRu4As12 to change around V/V0 = 0.85, leading to a behaviour similar to

that of a multiband superconductor and in addition we have two more hole pockets centered around

Γ at V/V0 = 0.8 for the same compound. Apart from this we find the hole pocket to vanish at V/V0

= 0.8 in the case of LaRu4Sb12 and the opening of the complicated FS sheet gets reduced. The de

Haas van Alphen (dHvA) calculation shows the number of extremal orbits in the complicated sheet

to change in As and Sb containing compounds under compression, where we also observe the FS

topology to change.
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7.1 Introduction

Rare-earth filled skutterudites with the general formula RT4X12, have attracted much attention due

to their various unique physical properties such as occurrence of a pressure-induced superconducting

phase in PrRu4P12 [169], multiple ordered state in SmRu4P12 [170], magnetic field independent heavy

fermion state in SmOs4P12 [171], metal-insulator transition in PrFe4P12 [172] and in SmRu4P12

[170], heavy-fermion superconductivity in PrOs4Sb12 [173, 174, 175] and highly promising thermo-

electric properties in some others [176, 177, 178]. The interesting point is that most of the above

properties of these compounds are certainly linked with the Fermi surface (FS) topology. It is to be

noticed that the metal-insulator transition occurring in PrRu4P12 [72] is associated with FS nesting

with 2π/a(1,0,0) as the nesting vector q. Numerous studies have been performed to explain Fermi

surface topology of isostructural LaRu4P12 [72] and the authors have found FS nesting with −→q

= 2π/a(1, 0, 0). From the above discussion, one can expect a similar metal-insulator transition

in LaRu4P12. However, resistivity and specific-heat measurements show no such transition above

the superconducting transition temperature (Tc) [77]. Our present calculations on LaRu4P12 also

exclude such type of transition which is consistent with the available reports. Apart from this,

recently, the experimental as well as theoretical calculation on superconductivity and the vibration

properties of some As and P containing compouds of the form LaT4X12 (T = Fe, Ru, Os; X = As,

Sb) and LaT4P12 (T = Fe, Ru) are reported [179, 85]. From these experimental study it was found

that the Tc decreases under pressure in the case of LaRu4P12 and in our present calculation we try

to correlate and predict this decreasing behaviour of Tc under pressure from the electronic structure

calculation [85].

Fermi surface studies are also available for LaOs4Sb12 [180] and LaOs4P12 [181], but the authors

have not found any nesting feature in LaOs4Sb12. Experimentally de Haas van Alphen (dHvA)

studies are available for LaFe4P12 [74], LaRu4P12 [75] and CeRu4Sb12 [76], where the authors have

found the FS topology of CeRu4Sb12 and LaRu4Sb12 to be different due to the presence of strong

electron correlation in the former compound. One of the characteristic features of some of the filled

skutterudites is multi-band superconductivity. Recently, Bochenek et. al [73] have reported multiple-

gap superconducting behaviour in LaRu4As12 from the observed nonlinear magnetic-field dependence

of the specific heat in the zero-temperature limit, a positive curvature of the upper critical field in

the vicinity of Tc and a deviation of the electronic specific heat from the one-gap model. The origin

of multiband effect was reported in PrRu4As12 [182, 183] by comparing it with the iso-structural
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compound LaRu4As12. Apart from these the position parameters u and v of the X atom also play

a role in determining the electronic and various physical properties [184]. Recently Uchiumi et. al

[77] have reported the superconducting transition temperature of LaRu4X12 with X = P, As, Sb

to be 7.2, 10.3 and 2.8 K respectively. Among all the rare earth filled skutterudite compounds

LaRu4As12 is having the highest superconducting transition temperature of 10.3 K [185, 77]. From

the available literature on these skutterudites, it is quite evident that the FS topology studies on

these compounds are mandatory and highly essential to have a complete understanding of the various

physical properties of these compounds. So in the present study, we have analysed the FS topology

of the LaRu4X12 with X = P, As, Sb at ambient as well as under compression. Though there

are a few reports available for LaRu4P12 [186], at ambient, high pressure studies are lacking for

all the compounds which are presented quite elaborately in this work. The rest of the chapter is

organized as follows. The computational details regarding our calculations are presented in section-

7.2, section-7.3 includes the results and discussion of results pertaining to ambient pressure and

under compression. Finally, section-7.4 concludes the chapter.

7.2 Method of calculation

First-principles calculations were performed using the full-potential linearized augmented plane wave

(FP-LAPW) method as implemented in the WIEN2k [101] code. For the exchange and correla-

tion terms in the electron-electron interaction we have used the generalized gradient approximation

(GGA) of Perdew-Burke-Ernzerhof (PBE) [98]. Muffin-tin radii are taken to be 2.5, 2.0, 1.75, 1.85

and 2.2 a.u for La, Ru, P, As and Sb atom respectively. A 30× 30× 30 Monkhorst-Pack grid [120]

of k-points has been used for the self-consistent field and density of states calculations. To ensure

accurate determination of the Fermi level, we have used a 44× 44 × 44 k-point grid for Fermi surface

calculation. The three-dimensional Fermi surface plots were generated with the help of the XCryS-

Den molecular structure visualisation program [122]. In order to achieve convergence of energy eigen

values, the wave functions in the interstitial region were expanded using plane waves with RMTKmax

= 10 for X = As, Sb and RMTKmax = 9 for X = P, where RMT is the Muffin tin radius and the Kmax

gives the magnitude of the largest K vector in the plane-wave expansion. In the interstitial region

the charge density and the potential were expanded as a Fourier series with wave vectors up to Gmax

= 9, 12, 10 a.u−1 for X = P, As, Sb, respectively. The self-consistent calculations are considered to

be converged when the total energy of the system is stable within 10−6 Ry. The calculations are

carried out for the experimental lattice parameters. In the present study, the experimental volume of
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Table 7.1: Calculated atomic position parameter u and v for LaRu4X12 with X = P, As, Sb

Compounds u v

LaRu4P12 present study 0.3577 0.1444

Expta 0.3591 0.1428

LaRu4As12 present study 0.3501 0.1503

Expta 0.3500 0.1470

LaRu4Sb12 present study 0.3418 0.1582

Expta 0.3400 0.1600

a: Ref. [187]

the system is represented by V0. Experimental lattice parameters which we have used in our present

calculation for LaRu4P12, LaRu4As12 and LaRu4Sb12 are 15.2333 a.u, 16.0812 a.u, and 17.5337 a.u

respectively. Calculations were performed with and without spin-orbit coupling (SOC) effect and we

have not noticed any pronounced SOC effect in the vicinity of the Fermi level and hence proceeded

with our subsequent studies excluding the SOC effect. The de Haas van Alphen effect is calculated

from the SKEAF programme [106].

7.3 Results and discussions

7.3.1 Ground-state properties

The filled skutterudites of the form RT4X12 have body centred cubic structure with space group

Im3̄ (no. 204), where R is a rare-earth element, T is a transition element and X is a pnictogen. The

crystal structure of the skutterudite is given in Fig. 7.1 (a). The atomic position for R (R = La) is

(0.0, 0.0, 0.0), T (T = Ru) occupies the position (0.25, 0.25, 0.25) and X (X = P, As, Sb) is present

at (0.0, u, v). We have relaxed the system to get the optimized value of (u, v) for all the investigated

LaRu4X12 compounds. The experimental and calculated theoretical u and v positional parameters

for X = P, As, Sb are tabulated in Table-7.1. Our calculated values agree well with the experiment.

The rest of the calculations are performed with the experimental lattice parameter along with the

theoretical optimized atomic positions.
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(a)

(b) (c)

(d) (e)

Figure 7.1: Crystal structure of LaRu4As12. Band structure of (b) LaRu4P12 with spin-orbit cou-
pling (SOC) and (c, d, e) for LaRu4X12 with X = P, As, Sb at V/V0= 1.0 without spin-orbit coupling
(SOC). SOC effect in not seen in the vicinity of the Fermi level. The color code used for the plots
is for the identification of bands crossing at the Fermi level.
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7.3.2 Band structure, density of states and Fermi surface

The band structure calculations were performed with and without spin-orbit coupling for all the

three studied compounds LaRu4X12 (X = P, As, Sb) and found the vicinity of the Fermi level

to be unaltered and rest of the calculations were carried out without spin-orbit coupling and the

corresponding band structure is plotted in Fig. 7.1 along the high symmetry directions. Our

calculated band structures agree well with the other available studies [188, 72]. From the band

structure plots it is evident that, for LaRu4P12, three bands cross the EF , whereas in other two

compounds only two bands cross the EF at ambient pressure. For all the three compounds there is

a relatively more dispersive conduction band (the band shown in black color in Fig. 7.1) which is

of mixed orbital character at various points in the Brillouin zone. To further elucidate the nature

of the bands we have plotted fat bands for all the compounds in Figs. 7.2-7.4. It can be seen from

the figure, that the states in this conduction band are mainly of X ‘pz’ character near the Γ point,

hybridized X ‘pz’, ‘py’ and Ru ‘dx2−y2 ’, ‘dxy’ character mainly dominates near the N point and X

‘py’, ‘pz’ with admixture of the Ru ‘dz2 ’ near P point, whereas the occupied states in this band near

the H point have an admixture of the Ru ‘dx2−y2 ’, ‘dxy’ and Ru ‘dxz’, ‘dyz’ states. Apart from this

we have two more sets of bands for these compounds, one is the non-degenerate band (red color

band as in Fig. 7.1) mainly derived from the Ru ‘dz2 ’ at Γ point and crossing the EF in the case

of As and Sb containing compounds and possessing hole character, whereas it is below the EF and

completely filled in the case of LaRu4P12. The other set of doubly degenerate bands (blue and green

color band in Fig. 7.1) is of X ‘pz’ (X = P, As, Sb) character and is again evident from the Figs.

7.2-7.4 and it crosses the EF only in the case of LaRu4P12 with hole character at the same Γ point,

but in the case of As and Sb containing compounds it is below the EF and completely filled. In

addition, to support our discussion we have also calculated the l and m projected density of states

as shown in Fig. 7.5.

We have also analysed the contribution at the Fermi level from the different atoms through the

partial density of states for these compounds as shown in Fig. 7.5. The density of states at the Fermi

level is dominated by the Ru ‘d’ with admixture of the X ‘p’ (mainly ‘py, pz’) orbitals. From the cal-

culated total density of states we find the highest peak at EF in the case of LaRu4As12, followed by

LaRu4Sb12 and LaRu4P12, with density of states at the Fermi level (N(EF )) being 13.56, 11.16, 7.92

states/eV /f.u, respectively which alternatively give rise to the specific heat coefficient, γ, to be 31.96,

26.30, 18.67 mJ/mol K2, respectively. Our calculated density of states for LaRu4P12 is in excel-

lent agreement with the experimentally reported value of 7.14 states/eV /f.u (0.42 states/eV /atom)
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(a) (b) (c)

(d) (e) (f)

Figure 7.2: Fat band of LaRu4P12 at V/V0= 1.0. The color code used for the plots is for the
identification of bands crossing at the Fermi level. The width of the band indicates the weight of
each orbital contribution.

[77]. We observe the computed total density of states as well as γ to be higher in LaRu4Sb12 as

compared to LaRu4P12 which is suggestive of a larger electron-phonon coupling constant and hence

a higher superconducting transition temperature Tc in the case of LaRu4Sb12 in comparison with

LaRu4P12. However the trend is reverse for the reported superconducting transition temperature.

The experimentally reported values of Tc of LaRu4Sb12 is around 2.8 K [77] which is significantly

lower in comparison with 7.2 K of LaRu4P12 [189].

To analyze in more detail the origin of the superconductivity we have calculated the density of

states at the Fermi level due to each band that crosses the EF for all the compounds. From this anal-

ysis we observe an unmistakable correlation between the calculated values of N(EF ) corresponding

to the more dispersive band (the black color band in Fig. 7.1) and the trend in the values of Tc of all

the three compounds investigated here. The calculated value of N(EF )blackcolorband is found to be

5.56, 8.91 and 7.26 states/eV /f.u for P, As and Sb containing compounds respectively and seems to

contribute nearly 65-70 % of the total N(EF ). In the case of As and Sb containing compounds the
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(a) (b) (c)

(d) (e) (f)

Figure 7.3: Fat band of LaRu4As12 at V/V0= 1.0. The color code used for the plots is for the
identification of bands crossing at the Fermi level. The width of the band indicates the weight of
each orbital contribution.

contribution due to the non-degenerate (red color) band (Fig. 7.1) may also play a role in the occur-

rence of superconductivity as we find the N(EF ) due to this band to be 0.4 and 0.66 states/eV /f.u,

respectively and these two compounds might behave like a two band superconductor. On the other

hand, the contribution from the doubly degenerate bands ( blue and green band) is found to be 0.08

and 0.03 states/eV /f.u, respectively only in the case of LaRu4P12 which is negligible in comparison

with the black color band in this compound, and hence this compound might behave as a single

band superconductor. At the same time we also find the N(EF ) for the black color band in the case

of LaRu4As12 to be highest, and the experimentally reported values of Tc of this compound to be

the highest [77]. This is in agreement with the conjecture that superconductivity arises primarily

from this band, of hybridized X ‘p’ and Ru ‘d’ orbital character, in all these compounds.

Apart from this, we have studied the Fermi surface for all the compounds and find two hole

pockets at Γ point in the case of LaRu4P12, as presented in Fig. 7.6 (a,b) and are mainly of P ‘pz’

orbital character whereas only one hole pocket is visualised at Γ point for LaRu4As12 (Fig. 7.7 (a))
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(a) (b) (c)

(d) (e) (f)

Figure 7.4: Fat band of LaRu4Sb12 at V/V0= 1.0. The color code used for the plots is for the
identification of bands crossing at the Fermi level. The width of the band indicates the weight of
each orbital contribution.

and LaRu4Sb12 (Fig. 7.7 (c)) and is mainly of Ru ‘dz2 ’ orbital character as discussed above. When

we compare the hole pockets of all the three compounds, we can see a completely spherical surface

in the case of As and Sb containing compounds, which mainly derive from Ru ‘dz2 ’ and the hole

surface of P containing compound is slightly elongated and is derived from the P ‘pz’ orbital. Our

calculated Fermi surfaces compare well with the previous study [72]. In addition to this, we have a

complicated FS sheet due to the other band (see solid black color band in Fig. 7.1) which is more

dispersive and cross the EF at several high symmetry points for all the compounds, but the topology

of this complicated surface is not the same for all the compounds due to the hybridisation of X (X =

P, As, Sb) with Ru ‘d’ orbital and is confirmed from the fat bands presented earlier (Fig. 7.2-7.4). In

the case of the LaRu4P12, the complicated FS (Fig. 7.6 (c)) consists of a open hole pocket around P

point in the FS and it connects to the remaining surface, resulting in the nesting property along PN

direction with nesting vector q to be (1, 0, 0), whereas the same nesting property is not expected in

the case of the LaRu4As12 and LaRu4Sb12, as we have not seen the same open hole sheet around
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(a) (b)

(c)

Figure 7.5: Density of states for (a) LaRu4P12, (b) LaRu4As12 and (c) LaRu4Sb12 at V/V0= 1.0.
The orbital contribution from different atoms are represented by various colors and symbols.
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(a) (b) (c)

Figure 7.6: Fermi surface of LaRu4P12 at V/V0= 1.0. (a, b) are the hole surfaces centered at Γ,
arising from the doubly degenerate band (blue and green color) as shown in Fig. 7.1, (c) is the
complicated surface arising from the black color band as shown in Fig, 7.1.

P point in the FS. Again the presence of the nearly flat band along PN direction in the case of

LaRu4P12 support the observed nesting feature in P containing compounds. One more interesting

feature in the complicated FS of these investigated compounds is the open orbit (especially at P

and N points) FS in the case of LaRu4P12, which is completely different from the other compounds,

where we find the FS sheet to be connected around P and N point just below the surface of the

Brillouin zone, resulting in multiple opening in the sheet and is evident from the Fig. 7.6 (c) and

Fig. 7.7 (b, d).

7.3.3 Effect under compression

Under compression, we observe an opposite movement of the non-degenerate and doubly degenerate

bands irrespective of their position at the Γ point and the band structure under compression at V/V0

= 0.8 is shown in Fig. 7.8. The non-degenerate band (mainly derived from the Ru ‘dz2 ’ orbital) shifts

down and the degenerate bands (mainly derived from the X ‘pz’ orbital) shift up under compression.

In other words, we can say that the non-degenerate band gets populated and the doubly degenerated

bands get depopulated under compression, resulting in the electron concentration of the Ru ‘dz2 ’

orbital to increase and the same electron concentration in the X ‘pz’ orbital decreases. Due to this,

in LaRu4P12 the size of the two hole pockets increase under compression but the topology remain

the same as evident from the band structure plots in Fig. 7.8 (a) and in other two compounds the

hole pockets get reduced in size and finally at V/V0=0.80 the hole pocket vanishes only in the case

of LaRu4Sb12. In the case of LaRu4As12, under compression we observe two extra hole pockets at Γ

point (Fig. 7.9 (a, b)) due to the upward movement of the doubly degenerate bands, but not in the
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(a) (b)

(c) (d)

Figure 7.7: Fermi surface of (a, b) for LaRu4As12 and (c, d) for LaRu4Sb12 at V/V0= 1.0. (a, c)
are the hole surface centered at Γ, arising from doubly degenerate band (blue and green color) as
shown in Fig. 7.1, (b, d) are the complicated surface arising from the black color band as shown in
Fig, 7.1.

case of LaRu4Sb12 due to the positioning of the band more deeper in energy and is well evident from

the Fig. 7.1 (e) and 7.8 (c). The main interesting feature in LaRu4As12 is the FS topology change

under compression in the complicated surface, where we find the interconnected sheets to separate

and the FS contains multiple sheets centered at H point in the Brillouin zone and is well evident

from arrow mark in the FS figure in Fig. 7.7 (b) and 7.9 (d). So the appearance of new pocket may

apparently project LaRu4As12 to behave like a multiband superconductor under compression. But

the topology of the complex surface of LaRu4P12 remains unchanged under compression.

Apart from this we find the N(EF ) due to the black color band to decrease for all the investigated

compounds under compression, but the rate of decrease is less in P and Sb containing compounds

in comparison to the As containing compound and the values are 3.74, 4.7 and 5.4 states/eV /f.u.

for P, As, Sb containing compounds, respectively. This observed drastic decrease in N(EF ) in the

case of LaRu4As12 may cause reduction in Tc under compression and the superconducting transition
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(a) (b)

(c)

Figure 7.8: Band structure of LaRu4X12 with X = P, As, Sb at V/V0= 0.8. Color code used for the
plots is similar at ambient and compressed volume to identify the changes in band structure easily
under compression.
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temperature might be in the same range as of the P and Sb containing compounds. This observed

change in the case of As containing compound among these investigated compounds may be due to

the observed FS topology change in the complicated sheet, which is mainly derived from the black

color band.

In addition, we have calculated the dHvA frequency for all the compounds at ambient as well as

under compression and the character of the dHvA orbits are tabulated in Table-7.2-7.5. In all, our

study revealed a number of frequency branches for the complicated Fermi surface of the compounds

studied and some of the branches are also having multiple copies of orbits at ambient pressure as well

as under compression. The dHvA frequency is found to be higher in LaRu4As12 than LaRu4Sb12 for

the first band, which is derived from the Ru d2z orbital in both the compounds. More interestingly

we observe the number of dHvA frequency branches to be reduced in the As and Sb containing

compounds under compression, where we have also found the Fermi surface topology to change.

But the number of frequency branches are found to be same for LaRu4P12 under compression and

we also have not found any Fermi surface topology change till higher compression and is clearly

evident from our calculated values as reported in Table-7.2. In the case of LaRu4As12 we have nine

different branches at ambient pressure with different frequency and the values are reported in Table-

7.3. At compression around V/V0 = 0.8 we have seen all the orbits to disappear for this compound

except two orbits positioned at (0.5 0.5 0.5) and (0.51 0.48 0.46) which are having frequency 7.03

and 7.19 kT respectively at ambient. Similarly in the case of LaRu4Sb12 (Table-7.4 and 7.5) we have

seen few branches to disappear and a few new branches to appear under compression at V/V0= 0.8.

We find the branches with frequencies 0.496, 0.596, 1.12, 1.2, 1.397, 1.399, 5.357, 5.4 and 5.69 kT at

ambient pressure to disappear under compression and simultaneously the branches with frequencies

0.0138, 1.40, 3.84 and 5.24 kT are found to appear at V/V0 = 0.8 and well support the FS topology

change. Overall the number of frequency branches is found to be decreased under compression in

the case of As and Sb containing compounds.
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(a) (b) (c)

(d)

Figure 7.9: Fermi surface of LaRu4As12 at V/V0= 0.8. (a, b) are the two new hole pockets which
appear at Γ under compression due to the upward movement of the doubly degenerate band (green
and blue color) as shown in Fig. 7.8. The arrow mark indicates the observed change at V/V0= 0.8
with respect to V/V0= 1.0 (Fig. 7.7b).
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Table 7.2: dHvA orbits for LaRu4P12 at V/V0 = 1.0 and 0.8. The ‘e’ and ‘h’ represents the electron
and hole character of the orbit. Frequency in kilo tesla (kT )

Band number V/V0 F(kT ) m∗(m) Number of orbits Type

1 1.0 0.119 0.229 1 h

0.8 0.61 0.27 1 h

2 1.0 0.2 0.401 1 h

0.8 0.86 0.395 1 h

3 1.0 0.163 1.668 2 e

0.59 1.42 1 h

1.29 5.15 2 h

6.5 4.95 2 h

0.8 0.134 1.288 2 e

0.64 1.12 1 h

0.135 1.29 2 e

1.55 3.67 2 h
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Table 7.3: dHvA orbits for LaRu4As12 at V/V0 = 1.0 and 0.8. The ‘e’ and ‘h’ represents the electron
and hole character of the orbit. Frequency in kilo tesla (kT )

Band number V/V0 F(kT ) m∗(m) Number of orbits Type

1 1.0 1.15 0.756 1 h

0.8 0.145 0.478 1 h

2 1.0 0.0387 1.2 2 e

0.0394 1.18 2 e

0.043 1.31 2 e

0.044 1.27 2 e

0.692 1.41 1 h

0.693 1.43 1 h

6.84 5.06 2 e

7.03 4.32 1 e

7.19 5.26 2 e

0.8 8.16 3.59 1 e

8.17 3.76 1 e

3 0.8 0.078 0.206 1 h

4 0.8 0.117 0.454 1 h
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Table 7.4: dHvA orbits for LaRu4Sb12 at V/V0 = 1.0. The ‘e’ and ‘h’ represents the electron and
hole character of the orbit. Frequency in kilo tesla (kT )

Band number V/V0 F(kT ) m∗(m) Number of orbits Type

1 1.0 0.952 0.993 1 h

2 1.0 0.057 0.55 2 e

0.0825 0.738 1 h

0.0842 0.742 1 h

0.273 0.796 2 e

0.496 0.54 4 h

0.596 1.1 2 e

1.013 1.13 2 h

1.12 2.15 4 h

1.2 1.3 1 e

1.2 1.2 1 e

1.397 2.93 2 h

1.39 2.94 2 h

5.24 4.01 1 h

5.35 4.98 1 e

5.356 5.33 1 e

5.357 4.78 1 e

5.4 5.04 2 e

5.69 3.85 2 e
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Table 7.5: dHvA orbits for LaRu4Sb12 at V/V0 = 0.8. The ‘e’ and ‘h’ represents the electron and
hole character of the orbit. Frequency in kilo tesla (kT )

Band number V/V0 F(kT ) m∗(m) Number of orbits Type

1 0.8 - - - -

0.8 0.0136 0.367 2 e

0.0138 0.368 2 e

0.233 0.696 2 e

0.268 1.02 1 h

0.272 1.03 1 h

0.627 1.44 2 e

1.40 1.51 1 e

1.43 9.16 2 h

3.84 4.85 2 h

5.24 5.6 2 h

6.19 3.69 1 e

6.20 3.62 1 e

6.21 3.88 1 e

6.34 3.79 1 e
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7.4 Conclusion

The band structure, density of states and Fermi surface have been investigated for the filled skut-

terudites compounds LaRu4X12 with X = P, As, Sb. The states at the Fermi level are found to be

dominated by the Ru ‘d’ with the admixture of X ‘p’ orbitals. We find three FS for the P containing

compounds and two FS for the As and Sb containing compounds. Among these surfaces the hole

pocket centered at Γ is mainly derived from the P ‘pz’ orbital in the case of LaRu4P12, and the same

hole surface for LaRu4As12 and LaRu4Sb12 is found to be mainly from the Ru ‘dz2 ’. Among all

these three compounds the nesting feature is expected only in LaRu4P12 and a drastic Fermi surface

topology change is observed in the complicated sheet under compression in LaRu4As12. From the

FS change we predict LaRu4As12 to be a multi band superconductor. In addition, from the dHvA

calculation we find the number of extremal orbits to vary for the complicated FS sheet band in the

case of As and Sb containing compounds under compression, where we have also seen the FS topol-

ogy to change, whereas no such change is observed for P containing compound at ambient pressure

as well as under compression.
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Chapter 8

Conclusions

Studying electronic properties of the material in microscopic scale is paid more attention in condensed

matter physics. Density Functional Theory (DFT) is used to solve quantum many body problem

and is extensively used for calculating different material properties. In this present work we have

used DFT to calculate Fermi surface (FS) properties of Cu3Au-type and some La based skutterudite

compounds and try to relate the FS topology change with other properties such as elastic constants,

density of states at the Fermi level and superconducting transition temperature under pressure.

The introduction chapter explains the importance of the FS topology in different metallic systems,

present a short introduction to superconductors and gives a brief idea about the materials which we

have chosen in our present work. In the second chapter we have given an over view of the DFT along

with a short introduction to the linearized augmented plane wave method, pseudopotential method

which are two different electronic structure calculation method as implemented in the WIEN2k and

Quantum Espresso codes, respectively. In our present thesis we have used WIEN2k code to calculate

the electronic properties, FS topology, mechanical properties and to analyze the superconducting

properties of all the chosen compounds, we have used Quantum Espresso package.

In chapter 3-7, the results and discussions are elaborated for the chosen series of compounds AX3

(A = La, Y; X = In, Tl, Sn, Pb), La3X (X = In, Tl, Sn), La3InZ (Z = N, O) and LaRu4X12 (X = P,

As, Sb). In chapter-3, we have presented a complete study on the electronic structure, Fermi surface

topology, elastic constants of LaX3 and YX3 at ambient as well as under compression. We have

shown the importance of spin-orbit coupling (SOC) in the electronic structure of the isoelectronic

and isostructural LaSn3 and YSn3 compounds, where we find the electronic structure to change at
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the vicinity of the Fermi level in these two compounds leading to the FS topology change, whereas

the same is not seen if SOC is not included. At the same time we have not found any change among

LaX3 and YX3 with the inclusion of SOC for X = In, Tl, Pb. Secondly we find La ‘4f ’ orbital

hybridization to be more pronounced instead of La ‘d’ orbital at the vicinity of the Fermi level in the

case of LaSn3 though no ‘f ’ electron is present in both La and Y, but the A ‘d’ orbital is dominating

in the other AX3 compounds with A = La, Y and X = In, Tl Pb leading to the expectation that

the other properties might be the same for these compounds. Surprisingly the pressure effect on

FS topology show the topology to change under compression for all the compounds except for YSn3

and YPb3. The difference in behaviour between YSn3 and LaSn3 could be mainly due to the SOC

and the dominating nature of La ‘4f ’ hybridization, whereas the different behaviour of LaPb3 and

YPb3 was explained from the presence of C44 elastic softening under pressure only in the case of the

LaPb3, which might be leading to the FS topology change in LaPb3.

In the chapter-4 we have presented a comparative study of LaX3 and La3X compounds with X =

In, Tl, Sn, and have shown a strong interaction to exist in La3X compounds in comparison with the

LaX3 compounds. The different bonding nature among these two series of compounds is attributed

to the different La ‘d’ orbital spliting due to the local tetragonal and octahedral site symmetry of

La in La3X and LaX3, respectively. From the analysis of the density of states we find the density

of the states to be higher in La3X compounds than LaX3 compounds, which ultimately gives the

indication for the superconducting transition temperature, Tc to higher in the former compounds

and it is verified in chapter-5. Apart from this FS topology change is observed in all the La3X

compounds under pressure and might be further reflected on the Tc variation. FS topology change

is observed in all FS sheet for all compounds of La3X (X = In, Tl, Sn) series, whereas FS topology

change is observed only in complicated sheet in LaX3 series, indicating the strong hybridizing effect

between La ‘d’ and X ‘p’ orbital in the former series.

To correlate the FS topology change with the variation of Tc under pressure, in chapter-5 the

superconductivity of all AX3 (A = La, Y; X = In, Tl, Sn) and La3X (X = In, Sn) compounds

are calculated under pressure and Tc is found to vary non-monotonically under pressure for the

compounds where we have observed FS topology change. In addition, we observe a increase of

Tc under pressure for La3X compounds due to the softening of lower frequency modes especially

at R and M points and a decrease of Tc is observed for AX3 compounds due to the continuous

hardening of all the modes in all high symmetry directions. We observed the mechanical properties
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to be the same for both the series of compounds despite the electronic properties being different. A

dynamical instability is found only in La3In under pressure due to the continuous softening of the

lower frequency branches in particular at M and R high symmetry points in the Brillouin zone.

Apart from this in chapter-6 we have calculated the FS topology of La3InZ compounds and

compared the same with La3In. The addition of the Z atom in the body center of the La3In form

La3InZ compounds retaining the crystal structure to be the same. We find the FS topology to change

under compression only in the case of La3InO but not in La3InN and is also reflecting on the density

of states at the Fermi level and Tc. We find a non-linear variation of the density of states (N(EF ))

under compression in La3InO and the variation of N(EF ) is linearly decreasing in the case of La3InN.

A sudden increase of N(EF ) is attributed to the appearance of three new hole pockets at R and an

additional electron sheet along M -Γ direction. In addition the superconductivity calculation show

Tc to be more than 2 K for La3InO and it was found to be less than 2 K for La3InN and it is due to

the hardening of the frequency modes corresponding to the Z atoms contribution and is confirmed

from the phonon density of states. From the comparative study of La3In and La3InZ we found the

strong interaction to exist among La and In in La3In in comparison with La3InZ, leading to a higher

Tc in La3In. More interestingly from the mechanical properties, it was found that La3InO is ductile

in nature whereas La3InN is brittle and is further confirmed from the Cauchy’s pressure and Pugh’s

ratio.

In chapter-7 we have calculated the FS topology of LaRu4X12 (X = P, As, Sb) at ambient as well

as under compression and find the topology to change in the case of the LaRu4As12 and behave

like multiband superconductor. A FS nesting feature is observed in LaRu4P12. In addition the

variation of Tc with different X atom is analyzed from the band structure calculation and we show

a more dispersive band to contribute maximum towards the Tc. From our calculated de Haas van

Affect (dHvA) calculation we find the number of extremal orbits to change under compression for

the compounds where we have observed the FS topology change.

Overall from the present work we predict that FS topology change may induce a non-monotonic

variation of Tc under pressure. Apart from these Cu3Au-type compounds, we have also analyzed the

Fermi surface topology of the La based skutterudite LaRu4X12 (X = P, As, Sb) at ambient as well as

under compression. As mentioned and discussed above, skutterudites are quite interesting and have

promising application. Though it would be computationally quite expensive, it would be worthy to

analyze the complete phonon dispersion of these compounds at ambient and under pressure, which
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might give us a complete insight about the electron-phonon coupling and the Tc of these compounds

under pressure, which would be taken up as a future work.
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