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Abstract 

 

The effect of strain path change during cold rolling and subsequent annealing on the evolution 

of microstructure, texture and hardness properties of high purity nickel (~99.7%, average size 

~ 36 µm) has been studied in the present work.  Strain path change is achieved by employing 

two different rolling routes, namely, straight cold rolling (SCR) and cross cold rolling (CCR) in 

the present investigation. The rolling direction is kept constant throughout the deformation 

process in SCR route but during CCR processing the rolling direction (RD) and the transverse 

direction (TD) are mutually interchanged in every consecutive pass by rotating the sample 

around the normal direction (ND). Nickel sheets were deformed up to 90% reduction in 

thickness using the above two processing routes. 

SCR processing route results in a lamellar microstructure and pure metal or copper type 

deformation texture characterized by the strong presence of S ({123}<634>), Cu 

({112}<111>) and Bs ({110}<112>) orientations. The CCR processed microstructure, in 

contrast, is characterized by the presence of microstructural inhomogeneities, such as, 

intersecting shear band and localized intensely sheared regions. The texture of CCR processed 

material is characterized by strong presence of the Bs and BsND components, such as 

                 and           ̅   . 

The CCR processed material was recrystallized at different temperatures ranging between 400° 

to 800°C. Up on annealing at 400°C, ND|| [111] fiber could be observed in the microtexture 

which originated from the twinning of the recrystallized TD-rotated cube ({027}<0 ̅2>) 

grains. The fiber was weakened after annealing at 800°C due to the decreased propensity for 

twin formation and the microtexture was found to be weak and diffuse. EBSD investigation on 

early recrystallization stages indicates absence of preferential nucleation of near cube grains. 

Instead, presence of TD-rotated cube grains and their twins in agreement with a weak cube 

texture formation in annealed CCR processed nickel.  

The development of recrystallization texture in the CCR processed materials was found to be in 

stark contrast to the recrystallization texture of SCR processed materials where strong cube 

texture could be observed and also reported almost universally. The internal structure and local 

misorientation environment of cube regions in CCR processed nickel appear to be important 

factors but should be investigated further in the future works. 
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Nomenclature 

 

SCR- Straight Cold Rolling 

CCR- Cross Cold Rolling 

GO map- Grain Orientation map 

GB map- Grain Boundary map 

ODF- Orientation Distribution Function 

PF- Pole Figure 

FCC- Face Centered Cubic 

RD- Rolling Direction 

TD- Transverse Direction 

ND- Normal Direction 

HAGB- High Angle Grain Boundary 

LAGB- Low Angle Grain Boundary 

EBSD- Electron Back Scattered Diffraction 

VH- Vickers Hardness 

θmis- Misorientation of Grain boundaries 

C- Cube orientation {001} <100> 

CT- Twinned cube orientation {221} <1 ̅2> 

CTD- TD –rotated cube orientation {027} <0 ̅2> 

CTD
T- Twinned TD –rotated cube orientation {445} <13  ̅̅̅̅ 8> 

CRD- RD –rotated cube orientation {011} <100> 

CRD
T- Twinned RD –rotated cube orientation {185} <21 ̅> 

Cu- Copper orientation {121} <1 ̅1> 

S- S orientation {123} <634> 

Bs- Brass orientation {011} <2 ̅1> 

Bs
ND- ND rotated Brass orientation {011} <1 ̅1> 

G- Goss orientation {013} <100> 

GND- ND rotated Goss orientation {101} < ̅01> 

T- Taylor orientation {113} < ̅ ̅2>  
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Chapter 1 

 

Introduction 

 

1.1 Overview 

Deformation processing of materials is usually accompanied by the development of 

characteristic microstructures and crystallographic textures which in turn influences the 

development of recrystallization texture during subsequent annealing. It is well known that 

deformation behaviour of materials is a function of processing parameters such as temperature, 

strain and strain rate but one of the important factor which also effects material behaviour and 

property but much lesser studied is how the deformation or strain is achieved i.e. the effect of 

strain path. For metals and alloys the strain path influences the development of microstructure 

and texture [1] which ultimately controls the properties of materials.  

In case of rolling the effect of strain path change can be studied easily by changing the rolling 

and transverse direction (RD and TD, respectively) as shown in Fig. 1.1. Generally, strain path 

change in rolling is executed by employing two different types of rolling routes named as 

straight cold rolling (SCR) and cross cold rolling (CCR). In straight cold rolling the rolling 

direction (RD) is constant whereas in cross cold rolling sample is rotated by 90° around normal 

direction (ND) so that the transverse direction (TD) of previous rolling pass will become 

rolling direction of current rolling pass. 

 

 

(a) 

 

 

 

 

RD 

ND 

TD 

RD-ND Plane 
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ND 

RD 

TD 

 

 

(b) 

  

 

 

(c) 

Figure 1.1: (a) Rolling process with reference directions as RD- Rolling Direction, ND-Normal 

Direction and TD-Transverse Direction [26] (b) Straight cold rolling (SCR) (c) Cross cold 

rolling (CCR). Black arrow represents the relative orientation of rolling direction of first pass. 

1.2 Objective and Scope 

The present work aims to investigate the effect of change in strain path on the development of 

microstructure and texture during heavy cold rolling and annealing of Nickel (99.7% purity) 

with relatively smaller starting grain size of 36 µm. For this purpose two different rolling routes, 

namely, SCR and CCR would be investigated followed by detailed characterization at different 

length scales using X-ray and electron back scatter diffraction techniques (XRD and EBSD, 

respectively). Finally, the results obtained are also proposed to be compared with coarse grain 

sized starting material (average grain size 800µm which has been undertaken in a parallel study) 

to clarify the effect of starting grain size.  
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Chapter 2 

 

Literature Review 

 

Considerable amount of work has been carried out on microstructural and textural evolution of 

face centered cubic (FCC) materials during rolling [2-6]. The common observation of rolling 

microstructure in FCC materials is the development of lamella structure with increasing strain 

and presence of deformation bands at higher strains. The rolling texture in FCC materials is 

usually characterized by the two incomplete fiber textures, α-fiber which extends from Goss 

orientation ({110} <001>) to brass orientation ({110} <112>) and β-fiber which extends from 

copper orientation (Cu component; {112} <111>) to brass orientation through S-orientation 

({123} <634>) [4] as shown in Fig. 2.1. In FCC materials of high to medium stacking fault 

energy (SFE) (e.g. Al, Ni , Cu)  the deformation texture is pure metal type  texture characterized 

by the presence of Cu, S and Brass components whereas in low SFE materials deformation 

texture mainly composed of brass texture. 

 

Figure 2.1: Rolling texture in FCC Material showing β-fibre extends from Cu to Brass 

orientation through S orientation and α-fibre extends from Goss to Brass orientation in first 

subspace    (0φ1 90°, 0 Φ 90°, 0 φ 2 90°) of three dimensional Euler space [4]. 
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The deformation texture and microstructure in FCC materials will depend on stable 

orientations and dislocation substructures generated during deformation process [2, 6]. Usually 

with increase in strain the dislocation substructure size (like dislocation cells) reduces and 

texture becomes stronger. The evolution of deformation microstructure and texture depends 

on processing parameters including strain path, it is also found for rolling texture that it is very 

sensitive to strain path change [7]. In straight cold rolling the rolling texture becomes stronger 

with increasing strain whereas in cross cold rolling the substructures are rotated by 900 which 

make stable orientations and substructure of previous pass unstable along new rolling direction 

and weakens the previous pass texture. Limited studies available indicate that CCR processed 

microstructure and texture differ considerably from those of SCR. Fig. 2.2 shows the (111) pole 

figure of SCR and CCR processed nickel and copper which clearly shows the characteristics 

differences in the textures developed in the two different processing routes. It has been 

generally observed that brass and rotated brass components develop in CCR processed copper 

and nickel [7, 10] but need to be clarified in detail.  

 

Figure 2.2: (111) pole figure of SCR and CCR processed samples with standard rolling texture 

components [7] 

The difference in the deformation texture and microstructure due to CCR processing strongly 

affects the formation of recrystallization texture which has been studied in Aluminium alloys 

and other systems [8-10]. In medium to high stacking fault energy fcc materials a strong cube 

texture formation is observed following heavy cold deformation by SCR route and suitable 

annealing treatments which has been well documented in literature [11-18]. However, the 

usually strong cube recrystallization texture in aluminium alloys is suppressed by CCR [19] and 

it has been exploited to control the deep drawing properties of aluminium alloys. Similarly, the 
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usually strong recrystallization cube texture in copper is replaced by a single component {5 1 9} 

<  ̅ 11 1> [20].  It is thus quite expected that CCR processing would also strongly affect the 

formation of recrystallization texture in nickel but yet to be clarified. The above unresolved 

issues essentially constitute the focus of the present work.    
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Chapter 3 

 

Experimental Methods 

 

3.1 Preparation of Starting Materials 

In this research work high purity Nickel (99.7%) was selected for investigation. The starting 

material was prepared by deforming an as cast Ni slab of dimension  ~ 160 mm L    X  60 mm W 

X 10 mm T  upto 50% reduction in thickness by multi pass cold rolling followed by annealing at 

6000C in a salt bath furnace for 1 hr. The process of preparing the starting materials is shown in 

the flow diagram in Fig. 3.1.  

 

Figure 3.1: Process chart of starting material preparation from as received Nickel slab       
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3.2 Processing 

3.2.1 Deformation Processing 

To achieve different strain path, two different rolling routes namely straight cold rolling (SCR) 

and cross cold rolling (CCR) are employed to the starting material Nickel.  In SCR the rolling 

direction was same in each pass whereas in CCR the rolling direction was rotated by 900 after 

every pass as shown in Fig 3.2. In both rolling routes nickel samples were deformed up to 90% 

reduction at room temperature in thickness using a laboratory scale rolling mill with well 

lubricated roll at room temperature.  

 

Figure 3.2:  (a) Shows straight cold rolling (SCR), in which rolling direction (RD) remain same 

after every rolling pass, (b) shows cross cold rolling (CCR), in which rolling direction (RD) 

rotated by 900 anticlockwise around normal direction (ND) after every rolling pass  and (c) 

shows  relative orientations of rolling directions for each rolling pass in CCR. 

(a) 

(b) 

(c) 
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3.2.2 Annealing  

In order to clarify the effect of strain path change on the evolution of recrystallization 

microstructure and texture formation, small pieces of 90% deformed materials of each 

deformation routes were subjected to isochronal annealing treatment for one hour at 400°, 

600° and 800°C using a salt bath furnace. The samples were immediately quenched in cold 

water following the recrystallization treatments.      

3.3 Characterization 

3.3.1 Sample preparation 

The rolled samples were first cut in to small pieces using precision cutters Secotom-15 (Struers, 

Denmark) and Minitom, (Struers, Denmark). After the cutting operation, these samples were 

mechanically polished in three stages. In the first stage samples were sequentially polished using 

emery papers starting with coarse grit size (500) down to fine grit size (1200). In the second 

stage, these samples were polished by using 3µm (DiaDuoTM, Struers, Denmark) diamond 

solution in a manual polishing machine Labpol -5 (Struers, Denmark) followed by polishing 

using 1µm colloidal silica in an automatic polishing machine Tegramin-25 (Struers, Denmark). 

Only 90% deformed samples were considered for bulk texture measurement by X-ray 

diffraction. The samples for XRD measurements were given a light surface etching on the 

rolling plane which was the plane of measurement following the mechanical polishing. For 

microstructural and textural characterization by electron back scatter diffraction (EBSD) the 

mechanically polished samples were further electropolished using a mixture of 90% methanol 

and 10% Perchloric acid as electrolyte. All polishing operations were carried out from the TD 

normal or RD-ND plane of rolled samples which was the plane under observation. For 

hardness measurements the specimen were mounted on a hot mounting press CitoPress -10 

(Struers, Denmark) before the series of polishing operations described above. The hardness 

samples were mounted using a thermosetting resin (MultiFastTM, Struers, Denmark) such that 

the RD-ND planed in exposed out from the mounted specimen as shown in Fig. 3.3.1.  

 

 



17 

 

Figure 3.3.1: The mounted specimen with RD-ND plane at top for hardness test, Mounted 

specimens: SCR 20%, SCR 40%, SCR 65%, and SCR 90% (from left to right). 

3.3.2 Microstructural and Textural Characterization 

The analysis of bulk texture is done by X-ray diffraction technique on a PANalytical MRD 

system using a Cu-Kα radiation (1.54 Å). For microtexture and macrotexture analysis the 

sample symmetry was assumed to be orthotropic since the imposed strain per rolling pass was 

relatively large (ε≥0.15).  

The deformed samples were subjected to microstructural and microtexture characterization by 

electron backscatter diffraction (EBSD). The EBSD measurements were carried out in FEG 

SEM (FEI, Quanta, 3D FEG). The EBSD scan data acquired from RD-ND plane of rolled 

samples was analyzed by TSL-OIMTM software. A flow diagram summarizing the complete 

experimental work is shown in Fig. 3.3.2. 

  

ND 

RD 
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Figure 3.3.2 : Process chart of complete experimental work 
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3.3.3 Hardness Test 

Microhardness test was carried out on the RD-ND plane of the deformed samples to 

characterize and compare their hardness properties. The hardness test was done using a load of 

500 g and dwell time of 10 sec. per indentation. Five indentations were taken per sample with a 

gap of 250 μm and the average hardness value was determined. These tests were carried out on 

microhardness testing equipment, DuraScan (EMCOTESTTM, Austria). A microindentation 

image of rolled sample is shown in Fig 3.3.3. 

 

Figure 3.3.3: (a) Microindentation and (b) five microindentations at a gap of 250 μm in a CCR 

20% sample taken during microhardness test.  

 

(a) 

(b) 
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Chapter 4 

 

Experimental Results 

 

4.1 Starting Material 

 

Figure 4.1.1: (a) GB and (b) GO maps of starting material                

The Grain boundary (GB) map obtained from the EBSD scan of the RD-ND section of the 

Starting Material is shown by Fig. 4.1.1 (a). The Low Angle Grain Boundaries (LAGBs with 

misorientation angle (θmis); 15°≥ θmis ≥ 2°) is shown by grey lines while the High Angle Grain 

Boundaries (HAGBs with θmis>15°) are represented in black lines. The annealing twin 

(a) (b) 
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boundaries (Σ3 defined by 60°<111> relationship) are highlighted by red lines (The above 

conventions regarding grain boundaries are followed in all subsequent maps furnished in this 

section). The GB map reveals that the microstructure of starting material is fully recrystallized 

with the average grain size of ~36 µm (calculated by the intercept method). The high fraction 

of Σ3 boundaries indicates the large presence of annealing twins in the recrystallized 

microstructure. In the starting microstructure majority of the grains appear more or less 

uniform size but few relative large grains are also observed. 

The corresponding GO map (Fig.4.1.1 (b)) shows the spatial distributions of standard 

orientations of rolling texture with their respective volume fractions. The color codes and 

notations of standard rolling texture components considered are summarized in Table 4.1. 

Evidently the starting material possesses weak texture probably due to the low deformation 

(~50% reduction in thickness) imparted before annealing. This is also clearly evidenced from 

the absence of intensities from the ideal location of standard rolling texture components in Fig. 

4.1.2 (a) and 4.1.2(b) which shows the (111) pole figure (PF) and φ2=0°, 45° and 65° sections of 

the orientation distribution function (ODF), respectively. 

Table 4.1: Standard texture components considered during rolling of sheet materials.  

 

 

Orientation { h k l }< u v w > (φ1, φ, φ2) Notations Highlighting colour 

Cube {   } <   > (0°,0°,0°) C Blue 
   

Copper {   } <  ̅ > (90°,35°,45°) Cu Red 
  

S {   } <   > (59°, 36.7°, 63.4°) S Yellow 
  

Brass {   } <  ̅ > (35.3°, 45°, 0°) Bs Green 
  

Goss {   } <   > (45°,45°,0°) G Orange 
  

RD-Rotated 
Cube 

{   } <   > (0°,19°,0°) CRD Purple 
  

ND-Rotated 
Brass 

{   } <  ̅ > (54.7°,45°,0°) BsND Dark green 
  

ND-Rotated 
Goss 

{   } < ̅  > (90°,45°,90°) GND Light pink   

Taylor {   } < ̅ ̅ > (90°,27°,45°) T Pink  
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Figure 4.1.2: (a) Experimental (111) PF and (b) φ2=0°, 45° and 65°  sections of the ODF  

starting material. The ideal locations of standard rolling texture components have also been 

shown along with the PF and ODF sections.   

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 
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4.2 Deformation by Straight cold rolling (SCR) 

 

Figure 4.2.1: (a) GB and (b) GO maps of SCR processed 20% deformed Nickel sample 

The GB map of 20% deformed SCR processed nickel is shown in Fig.4.2.1 (a). At this 

deformation level fraction of LAGBs in the microstructure is increased drastically to ~73%. 

The development of LAGB network at the interior of starting recrystallized grains indicates the 

development of a typical cell structure. The microstructure somewhat resembles the starting 

recrystallized microstructure but few grains appear slightly elongated along the rolling direction 

(a) (b) 
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(RD).The annealing twins are decreased with increasing deformation which is indicated by the 

reduced fraction of Σ3 CSL boundaries. 

The corresponding Grain orientation (GO) map (Fig.4.2.1 (b)) reveals the presence of S, Bs and 

BsND orientations possibly due to the presence of these orientations in the starting material. 

Figure 4.2.2(a) shows (111) PF which has detectable intensities at the ideal location of S and Bs 

which can be seen more clearly in the ODF sections of φ2=0° and 65° (Fig. 4.2.2 (b)) at the 

locations (59°, 36.7°, 63.4°) and (35.3°, 45°, 0°) corresponding to these two orientations. 

 

Figure 4.2.2: (a) Experimental (111) PF and (b) φ2=0°, 45° and 65°  sections of the ODF  of 

20% deformed SCR processed material. The ideal locations of standard rolling texture 

components have also been shown along with the PF and ODF sections.   

 

(a) 

(b) 
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Figure 4.2.3: (a) GB and (b) GO maps of SCR processed 40% deformed Nickel sample 

The GB map of 40% deformed SCR processed material is shown in Fig.4.2.3(a). There is slight 

decrease in LAGBs fraction (~64%) and corresponding increase in the HAGB fraction as 

compared to the 20% deformed material. The grains shape becomes more elongated along the 

RD.  

After 40% reduction the rolling texture is enhanced as evidenced by the increase in the volume 

fractions of the S and BsND components (Fig.4.2.3(b)). In the GO map it can be clearly 

observed that the spatial distribution of S and Bs is adjacent to each other. For Cu and T 

(a) (b) 
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orientations similar spatial distribution can be observed. Figure 4.2.4 (a) shows (111) PF which 

has relatively high intensity at ideal locations of S and Bs which is also corroborated from the 

φ2=0° and 65° ODF sections (Fig.4.2.4(b)). 

 

Figure 4.2.4: (a) Experimental (111) PF and (b) φ2=0°, 45° and 65°  sections of the ODF  of 

40% deformed SCR processed material. The ideal locations of standard rolling texture 

components have also been shown along with the PF and ODF sections.   

 

 

 

 

 

 

 

(a) 

(b) 
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Figure 4.2.5: (a) GB and (b) GO maps of SCR processed 65% deformed Nickel sample 

The GB map (Fig.4.2.5(a)) of SCR processed Nickel sample after 65% deformation reveals the 

presence of banded lamellar microstructure. At 65% deformation grains are clearly elongated 

along the RD. This is a characteristic rolling microstructure generally for straight cold rolling 

route. There are no significant variations in fraction of LAGBs (~66%) and HAGBs (~34%) as 

compared to the 40% deformed material. But there is formation of microbands inside most of 

the grain presumably due to the generation and local rearrangement of dislocation structures. 

(a) 

(b) 
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These microbands are almost aligned at ~ 38°-45° with RD and these alignments are 

highlighted by black arrows in Fig.4.2.5 (a). 

The corresponding GO map (Fig.4.2.5(b)) shows increased volume fraction of S (~24%), Bs 

(~9%), and BsND (4%) components.  At this strain level there is presence of significant amount 

of G orientation (~17%). In the microtexture it can be observed that in some locations the S & 

Bs and Cu & T orientation are adjacent to each other and sometimes present in the same band. 

The (111) PF (Fig.4.2.6(a)) shows the development of a typical pure metal or copper type 

texture. The (111) PF shows high intensities at ideal location of S and Bs. These ideal locations 

of S and Bs also overlap to some extent with the ideal Cu location in PF. Therefore, the 

intensities at these locations are combined intensities of all these orientations. In ODF sections 

(Fig.4.2.6(b)) intensity of these orientations can be viewed much clearly which shows increased 

intensities at the S, Bs and G locations. 

 

Figure 4.2.6: : (a) Experimental (111) PF and (b) φ2=0°, 45° and 65°  sections of the ODF  of 

65% deformed SCR processed material. The ideal locations of standard rolling texture 

components have also been shown along with the PF and ODF sections.   

(a) 

(b) 
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Figure 4.2.7: (a) GB and (b) GO maps of SCR processed 90% deformed Nickel sample 

The GB map (Fig.4.2.7(a)) of SCR processed Nickel sample after 90% deformation shows very 

well developed lamellar microstructure typical of heavily deformed metals. The HAGB fraction 

increases further to 48% in this deformed condition.  

The corresponding GO map (Fig.4.2.7 (b)) shows the microtexture after 90% deformation. It 

shows the dominant orientations in microtexture are S and Bs with ~17% and 9% respectively. 

The G orientation which was dominant at 65% deformation is significantly reduced (~3% 

(a) 

(b) 
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only). The S and Bs oriented bands are found to be adjacent to each other in the deformed 

microstructure. Interestingly, the (111) PF (Fig.4.2.8(a)) shows strong intensities around the S 

and Bs locations. The ODF sections (Fig.4.2.8(b)) also amply corroborate this observation.  

 

Figure 4.2.8: : (a) Experimental (111) PF and (b) φ2=0°, 45° and 65°  sections of the ODF  of 

90% deformed SCR processed material. The ideal locations of standard rolling texture 

components have also been shown along with the PF and ODF sections.   

Figure 4.2.9 represents the macrotexture of the SCR processed 90% deformed Nickel sample. 

These figures are obtained by the bulk texture measurement by X-ray diffraction.       The (111) 

PF (Fig.4.2.9(a)) shows the development of a typical rolling texture of  heavily cold rolled 

medium to high SFE materials which is known as pure metal or copper type texture as already 

been introduced before.  

The PF consists of all standard orientations except G. This is also substantiated from the ODF 

sections at φ2=0°, 45° and 65° (Fig.4.2.9 (a)) which clearly display  the presence of S, Bs, and Cu 

components in the deformation texture. The macrotexture also shows the intensities at Cu 

orientations which were not present in the microtexture (Fig. 4.2.8). 

(a) 

(b) 
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Figure 4.2.9: (a) Experimental (111) PF and (b) φ2=0°, 45° and 65°  sections of the ODF  of 

90% deformed SCR processed material. The ideal locations of standard rolling texture 

components have also been shown along with the PF and ODF sections.  These figures are 

obtained by the bulk texture measurement from X-Ray diffraction. 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 
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4.3 Deformation by Cross cold rolling (CCR) 

The EBSD scan results of 20% deformed CCR processed Nickel sample is quite similar to the 

20% SCR processed material. The similarity in the results is attributed to the identical rolling 

pass imparted in both the rolling routes. Therefore, the microstructure and microtexture of this 

deformed state are not given separately. 

 

Figure 4.3.1: (a) GB and (b) GO maps of CCR processed 40% deformed Nickel sample 

(a) (b) 
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The GB map of 40% deformed CCR processed Nickel sample is shown in Fig.4.3.1(a). It 

shows some elongated grains toward Normal direction (ND) conceivably due to the variation 

in the grains shape of few in deformed structure due to the change in rolling directions in 

consecutive passes. There are microbands introduced in the microstructure which are aligned at 

~40°.  

Interestingly, the corresponding GO map (Fig.4.3.1(b)) shows that grains have no typical rolling 

texture orientations. Each standard orientation have volume fraction less than 3%. Some 

microbands possess C and CRD orientations .It is also confirmed by the (111) PF & ODF 

sections (Fig.4.3.2 (a) & (b)) in which all intensities are skipped from ideal positions of standard 

orientations. Consequently, the 40% CCR processed Nickel shows very weak rolling texture. 

 

Figure 4.3.2: : (a) Experimental (111) PF and (b) φ2=0°, 45° and 65°  sections of the ODF  of 

40% deformed CCR processed material. The ideal locations of standard rolling texture 

components have also been shown along with the PF and ODF sections.   

 

(a) 

(b) 
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Figure 4.3.3: (a) GB and (b) GO maps of CCR processed 65% deformed Nickel sample 

The GB map (Fig.4.3.3(a)) of 65% CCR processed Nickel sample shows fragmented 

microstructure with no apparent microbands. This microstructure is possibly formed due to the 

rotations of sub-structure caused by the change in rolling direction by 90°. 

The GO map (Fig.4.3.3 (b)) shows S, C, and CRD as dominant texture components. In the 

microtexture the S, Bs. C and CRD oriented regions appear to be fragmented and isolated by 

randomly oriented regions highlighted by white color. (111) PF (Fig.4.3.4(a)) shows weak 

(a) (b) 
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intensities at the ideal location of S and Bs, which is also evidenced in the relevant ODF 

sections (Fig.4.3.4(b). 

 

Figure 4.3.4: (a) Experimental (111) PF and (b) φ2=0°, 45° and 65°  sections of the ODF  of 

65% deformed CCR processed material. The ideal locations of standard rolling texture 

components have also been shown along with the PF and ODF sections.   

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 
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Figure 4.3.5: (a) GB (b) GO maps of CCR processed 90% deformed Nickel sample 

The GB Map (Fig.4.3.5(a)) shows ultrafine structure sub-divided by HAGBs. Remarkably, the 

deformed structure consists of intense locally sheared regions indicated by block arrow. Inside 

this locally sheared region a long cube band indicated by thin white arrows could be clearly 

observed. The orientation inside the band changes continuously from CRD from one end of the 

band to CTD orientation at the other end. Very clear intersecting shear bands indicated by grey 

arrows could be easily observed in the microstructure. Interestingly, few of the shear bands 

(a) (b) 
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indicated by red arrows have C or CRD orientations. Overall the dominant orientations observed 

are the S, Bs and BsND components including {011}<21   ̅̅̅̅     . The (111) PF (Fig.4.3.6(a)) 

and the relevant ODF sections (Fig.4.3.6(b)) amply show the development of strong BS and 

BS
ND components. This is consistently observed for EBSD maps taken from other regions of 

the CCR processed material (Fig. 4.3.7).  

 

Figure 4.3.6: (a) Experimental (111) PF and (b) φ2=0°, 45° and 65°  sections of the ODF  of 

90% deformed CCR processed material. The ideal locations of standard rolling texture 

components have also been shown along with the PF and ODF sections.   

 

 

 

 

 

 

 

 

(a) 

(b) 
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Figure 4.3.7: GO maps of CCR processed 90% deformed Nickel sample taken from EBSD 

Scan of another region. 
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The deformation of CCR processed 90% deformed Nickel sample was further studied by X-ray 

diffraction methods. The (111) PF (Fig.4.3.8(a)) and the relevant ODF sections (Fig.4.3.7(b)) 

shows the maximum intensity at the S and Bs locations. The intensity maximum associated with 

the BS orientation is actually found to be at the location (φ1,φ,φ2) = (41.3°,45°,0°) corresponding 

to the orientation {011}<21   ̅̅̅̅    . For this reason this orientation has already been included 

in the orientation maps of 90% deformed CCR processed material shown previously (Figures 

4.3.6 and 4.3.7).  

It may be noted that both microtexture and macrotexture results of heavily deformed CCR 

processed material indicate the development of strong  BS and BS
ND components and are thus 

found to be in excellent agreement with each other. 

 

Figure 4.3.8: (a) Experimental (111) PF and (b) φ2=0°, 45° and 65°  sections of the ODF  of 

90% deformed CCR processed material. The ideal locations of standard rolling texture 

components have also been shown along with the PF and ODF sections.  These figures are 

obtained by the bulk texture measurement from X-Ray diffraction. 

(a) 

(b) 

TD 

RD 
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4.4 Evolution of Mechanical properties with deformation 

(Hardness) 

The evolution of mechanical properties with deformation and rolling route is determined by 

hardness testing. The change in hardness with deformation for both rolling route is shown in 

Fig.4.4.1. It can be observed that hardness value (on HV scale) increases with increasing 

deformation in both cases. SCR and CCR processed materials show very similar hardness 

values at all deformation level. The hardness of CCR processed material is found to be slightly 

more than its SCR processed counterpart after 90% deformation.  

 

Figure 4.4.1: Change in hardness with %deformation (strain) in nickel processed by SCR and 

CCR routes  

4.5 Recrystallization texture  

Evolution of recrystallization texture in SCR processed high purity Nickel has been studied 

extensively [12,13]. It has been widely reported that the recrystallization texture is 

predominantly a cube texture (Fig 4.5.1). On the basis of these previous research results, in the 

present study further analysis of the recrystallization texture of 90% SCR processed material is 

not carried out. 
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Figure 4.5.1: Experimental (111) PF (by EBSD scan) with ideal location of Cube orientation 

(shown by blue box) of SCR processed and subsequent annealed pure Nickel sample at 500°C 

[13] 

Table 4.5: Standard orientations considered in the recrystallization texture of annealed nickel 
samples in addition to standard orientations of deformation texture. 

 

Recrystallization texture of nickel following 90% deformation by CCR route and subsequently 

annealed at 400°C for 1 hr  is shown in Fig.4.5.2. Remarkably, the (111) PF shows the 

development of  ND||<111> fiber texture which is quite unusual as far as recrystallization 

texture of conventionally deformed medium to high stacking fault energy materials are 

concerned. Since such an ND fiber texture will be clearly visible in the corresponding φ2= 45° 

section of the ODF, this particular section is shown separately (Fig.4.5.2(b)). The φ2= 45° 

section shows that intensities along the fiber is not homogenously distributed with local 

intensity maximum at the location (0°, 55°, 45°) (shown by star) for {   }<  ̅ > and (23°, 

49°, 45°) (shown by inverted triangle) for   {   } <    ̅̅̅̅  > orientations. 

Orientation { h k l }< u v w > (φ1, φ, φ2) Notations Highlighting colour 

TD -Rotated 
Cube 

{   } <  ̅ > (90°, 15.95°, 0°) CTD Aqua  

Cube (Twinned) {   } <  ̅ > (45°, 70.53°, 45°) CT Light Grey  

RD-Rotated Cube 
(Twinned) 

{   } <   ̅> (42.1°, 83.9°, 58°) CRD
T  Dark Red  

TD-Rotated Cube 
(Twinned) 

{   } <    ̅̅̅̅  > (22.8°, 48.52°, 45°) CTD
T Light Blue  

ND fiber 
orientation 

{   }<  ̅ > (0°, 55°, 45°) - Olive Green   

Orientations   Indices 
Cube                 {001} <100>              
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The corresponding GO map shows the spatial distribution of orientations along with the above 

two recrystallization texture components (Fig 4.5.3(b)). The map shows the ND||<111> fiber 

texture component {   }<  ̅ >  shown by olive green and {   } <    ̅̅̅̅  > highlighted by 

light blue have volume fraction of ~10% and 12% respectively. The volume fraction of the C 

component is quite small but the presence of the CTD component is noticed having volume 

fraction of ~6.2%.  Interestingly, in the GO map the orientations (aqua) is found mostly 

adjacent to fiber orientation {   } <    ̅̅̅̅  > separated by Σ3 annealing twin boundaries 

(highlighted by red line) indicating that this fiber orientation is twin related orientation of CTD 

and designated by CTD
T. The dominant orientation of deformation texture Bs and BsND has 

been reduced drastically to below 3.5% after annealing. 

 

Figure 4.5.2: (a) Experimental (111) PF and (b) φ2=0°, 45° and 65°  sections of the ODF  of 

90% deformed CCR processed and subsequently annealed (at 400°C for 1 hr.) Nickel sample. 

The ideal locations of orientations considered have also been shown along with the PF and 

ODF sections.   

(a) 

(b) 

CUBE(TD)            {027}<0-72> 
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Figure 4.5.3: (a) GB (b) GO maps of Nickel sample which is CCR processed 90% deformed 

and subsequently annealed at 400°C 

Recrystallization texture of following annealing at 800°C for 1 hr. is shown in Fig.4.5.5. The 

GO map (Fig 4.5.4(b)) shows few large CTD oriented grains. The volume fraction of CTD 

orientation although increases in comparison to the 400°C but still is rather low (~14%) as 

compared to the 400°C material. The presence of the CTD orientation is corroborated from the 

corresponding (111) PF (Fig.4.5.5(a)) and φ2=0° section of the ODF (Fig.4.5.5(b)). The fiber 

observed in the 400°C annealed specimen becomes weaker which may be clearly understood by 

comparing the intensities of the contours of around the central location of  (111) PF of the 

800°C (Fig.4.5.5(a)) and the φ2=45° section (Fig.4.5.5(b)) with those of the 400°C (Fig.4.5.2) 

(a) 

(b) 
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specimen. The two fiber orientations observed in the 400°C annealed specimen i.e. 

(        ̅   and           ̅̅̅̅    are decreased after annealing at 800°C and their volume 

fractions are  ~1.6% and 8%, respectively. Significant presence of the S orientation (~16%) 

could also be observed.  

Figure 4.5.4: (a) GB (b) GO maps of Nickel sample which is CCR processed 90% deformed 

and subsequently annealed at 800°C 

(a) 

(b) 
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Figure 4.5.5: (a) Experimental (111) PF and (b) φ2=0°, 45° and 65°  sections of the ODF  of 

90% deformed CCR processed and subsequently annealed (at 800°C for 1 hr.) Nickel sample. 

The ideal locations of orientations considered have also been shown along with the PF and 

ODF 

Figure 4.5.6(a) and (b) show the GB and coincidence site lattice (CSL) character distribution, 

respectively, in the two annealed conditions. The 400°C annealed specimen show much higher 

CSL fraction (~0.54) as compared to the 600°C (~0.44) annealed specimen (Fig.4.5.6(a)). The 

CSL distribution (Fig.4.5.6(b)) in both the annealed conditions clearly indicates that most of the 

CSL boundaries have Σ3 character. The fraction of Σ3 boundaries is decidedly larger in the 

400°C (~0.41) annealed specimen as compared to the 600°C (~0.35) annealed specimen.  

  

(a) 

(b) 

CUBE(TD)            {027}<0-72> 
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Figure 4.5.6: (a) GBCD and (b) CSL distribution of 90% deformed CCR processed nickel 

annealed at 400° and 800°C, respectively. 
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Chapter 5 

 

Discussion 

 

In the present work the effect of strain path change on the evolution of deformation and 

recrystallization texture has been critically investigated at different length scales using different 

characterization techniques. For the sake of clarity the deformation and recrystallization states 

will be analyzed separately in the following sections.    

5.1 Evolution of Deformation Texture 

The rolling texture SCR processed nickel is pure metal type which can be adequately described 

by the gradual evolution of a strong β fiber texture which is characterized by usually strong Cu, 

S and Bs components [4]. In contrast, in CCR processed nickel sample the deformation texture 

is characterized by the strong Bs and BsND orientations in heavily deformed condition. It might 

be noted that such strong Bs and rotated brass texture due to CCR processing has also been 

reported previously in copper and copper alloys [10]. 

 

Figure 5.1.1:  Experimental (111) PF of 90% deformed SCR and CCR processed and Nickel 

sample. The ideal locations of standard orientations considered have also been shown along 

with the PF.  
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Figure 5.1.1 shows the experimental (111) pole figure which indicated the difference in bulk 

texture of nickel for both procession route. The origin of deformation texture during 

deformation processing has been discussed from the view point of stability of different 

orientations in terms of the rotation field  ̇   ̇   ̇   ̇   and the divergence of the rotation 

field (   ̇  
   ̇

   
 

  

  
 

   ̇

   
) [24, 25]. The stability conditions are then given by  ̇    and 

(   ̇   ). The theoretical calculations of Hong et al [10] predict that amongst different 

texture components BsND   would be stable under cross-rolling due to its higher inverse 

rotation rate and large negative divergence. The grains with orientations along the α-fiber will 

rotate to the Bs orientation (stable orientation during unidirectional rolling) and then will 

further rotate away to the BsND  orientation when the direction of rolling is changed by 90° 

around the ND, thus, oscillating between the Bs and rotated brass orientation BsND which 

would be the two stable end orientations in CCR. This theoretical calculations agree well with 

their experimental results which show strong            orientation as the main 

component of deformation texture and spread around this orientations due to the oscillation 

between the two predicted stable end orientations. In the present case the strongest texture 

components as observed both from microtexture and bulk texture measurements are the Bs 

and Bs ND orientation              ̅̅̅̅      which is in fact very close to the orientation       

    . The present experimental results thus agree quite well to the theoretical and 

experimental observations of Hong et al.  

Previous investigations on CCR processed materials have shown the development of cube 

orientation as a minor texture component alongside the major component [8, 10, 20]. 

Although, development of cube texture is ruled out in the present case from the microtexture 

and bulk texture results, isolated cube oriented regions in form of thin band is clearly observed 

in the vicinity of locally sheared region in the EBSD map (Fig. 5.1.2) with characteristic spread 

around RD and TD denoted as CRD and CTD orientations in these band. Evidently, the volume 

fraction of cube component is rather small and as a result it is not immediately apparent in the 

PFs and ODFs. 
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Figure 5.1.2: IQ map with orientation showing the near cube orientations around shear region 

It must be noted that while the CCR processing certainly affects the formation of deformation 

texture to a great extent, the present results indicate that the effect on microstructural 

refinement and consequently on the hardness properties are comparatively limited. This may be 

clearly understood from the gradual evaluation of key structural parameters such as HAGB 

spacing and average misorientation angle as shown in Fig. 5.1.3(a) and 5.1.3(b), respectively. It 

may be clearly seen the values are quite comparable for the SCR and CCR processed material in 

the heavily deformed condition (i.e. after 90% reduction in thickness). Consequently, the 

hardness properties (Fig.4.4.1) of the SCR and CCR processed materials are found to quite 

comparable in the heavily deformed condition. The slightly higher hardness in the 90% 

deformed SCR processed material is also consistent with the finer microstructure of this 

material as established by the values of different structural parameters.      
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Fig. 5.1.3: Variation of (a) HAGB spacing along ND (dND
HAGB) and (b) average misorientation 

angle (θAvg) with imposed strain  

5.2 Evolution of Recrystallization Texture  

The recrystallization texture of heavy cold rolled, SCR processed Ni is widely reported as a 

strong Cube texture, the explanation of such a sharp texture is given by based on two 

contending theories namely, oriented nucleation and oriented growth based on a relative 

importance of nucleation and growth stages in development of recrystallization textures. In 

contrast the recrystallization texture of heavily rolled CCR processed Ni is composed of ND || 

<111> fiber texture after low temperature annealing (at 400°C for 1 hr.) which weakens at high 

temperature annealing (at 800°C for 1 hr.). 

From the microtexture map shown in Fig. 5.2.1 (a) it can be observed that the spatial 

distribution of            ̅̅̅̅    (light blue colour) orientation is always adjacent to the TD 

oriented cube grains         ̅   (aqua colour) which is separated Σ3 annealing twin 

boundaries (red lines). This indicates that the origin of this orientation is the twinning of the 

parent TD oriented cube grains (CTD), hence it is denoted as CTD
T . 
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Figure 5.2.1:  (a) GO maps (b) Experimental (111) PF and ODF section φ2= 45° of Nickel 

sample which is CCR processed 90% deformed and subsequently annealed at 400°C for  1 hr. 
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In ODF section φ2= 45° (Fig. 5.2.1(b)) is can be seen that CTD
T  is prominent orientation of 

ND || <111> fiber  tube along with          ̅  . The propensity for annealing twin 

formation during recrystallization may be related to the growth stagnation. The growth 

stagnation may occur when the growing recrystallized grains are isolated from the deformed 

matrix by low misorientation boundaries which have been demonstrated by in-situ experiments 

[21]. Occurrence of twinning becomes favourable due to the fact that twinning can reorient the 

parent grains to alter the local misorientation so that growth can continue. The situation might 

be understood from the orientation map in Fig.5.2.1. The CTD
T grain shown by block arrow has 

the same orientation as the two small twin grains in the adjacent parent CTD grain. Following 

the in-situ EBSD observations of Field et al [21] it appears that the CTD
T grain might have 

nucleated from the boundary of the parent CTD grain due to growth stagnation and with 

progressing recrystallization has become independent of the parent CTD and thus finally appears 

as an independent grain in the microstructure. To further elucidate this fact the orientations 

map obtained after short time annealing treatment (10 seconds at 350°C) is presented in 

Fig.5.2.2. The recrystallized grains are observed clearly in still deformed matrix (masked black). 

The distribution of orientation is rather diverse but presence of the CTD grains are noticed 

along with recrystallized grains of other orientations. The early recrystallized CTD grains are 

already found to be separated from its twin orientation CTD
T by Σ3 boundaries an example of 

which is shown by the yellow arrow mark. It is thus quite reasonable that this twinned grains 

grow independent of parent finally giving rise to the observed ND||[111] fiber microtexture. It 

may be noted that the microtexture results of 400°C annealed CCR processed Ni bear 

resemblance to the recrystallization texture of cross rolled copper which consists of a weak 

cube component and twin of the cube component as has been reported by Ozturk [8]. Of 

course, in the present case rather than cube oriented grains mostly CTD and twin of this 

orientation i.e. CTD
T or            ̅̅̅̅    are observed. 
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Figure 5.2.2:  (a) IQ map (b) GO map of Nickel sample which is CCR processed 90% 

deformed and subsequently annealed at 350°C for 10 seconds. 

The weakening of this microtexture in high temperature annealing appears to be also in 

agreement with decreased propensity for twin formation as also clearly evidenced in the 

comparative GBCD plot (Fig. 4.5.6 (a)) of 400° and 800°C annealed conditions which shows 

drop in the CSL fraction in the 800°C annealed condition due to the drop in the Σ3 annealing 

twin boundary fraction (Fig.4.5.6 (b)). 

 The present results are in good agreement with those of Field et al [21] who observed higher 

twin densities develop at lower annealing temperatures on the formation of annealing twins 

during recrystallization of Cu. It is proposed that at higher annealing temperatures the growth 

(a) (b) 
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of the grains should be less dependent on twinning as the thermal energy should be adequate to 

meet the required driving force. Thus, the newly recrystallized grains can grow free of 

hindrance. Support for this observation is obtained from the presence of large twin-free CTD 

oriented grains in the orientation map of 800°C annealed specimen. 

The failure to observe the formation of strong cube texture in recrystallized cross-rolled Ni 

remains interesting from the mechanistic point of view. Merlini et al [20] have explained the 

absence of cube texture in cross-rolled copper through the oriented growth model and 

discarded the role of oriented nucleation due to the fact that cube regions exist in the deformed 

structure but strong cube texture formation is not observed up on annealing. Strong 

preferential nucleation of near cube oriented grains is not observed in the present study as well. 

However, absence of preferential nucleation of cube grains leading to the absence of a strong 

final cube texture may be interpreted as a support to the oriented nucleation theory but in a 

negative sense. It is to be kept in view that internal structure of the cube bands and local 

misorientation environment are far more important factors than mere presence of large cube 

oriented regions in deformed microstructures as shown recently by Bhattacharjee et al [22]. The 

preferential nucleation of cube grains is aided by the already recovered structure of the cube 

grains due to the special arrangement of gliding dislocations with orthogonal burgers vector 

[23]. The substructure destabilization during cross-rolling can affect the attainment of a 

recovered structure in near cube oriented regions so crucial for early nucleation. Indirect 

evidence for this could be obtained in the IQ distribution map (Fig. 5.2.3(c)) of the region 

surrounding the cube band of Fig.5.2.3 (a), cropped and reproduced in Fig.5.2.3 (b), which 

gives an indirect estimate of the distribution of stored energy. It may be clearly observed that 

the CTD  oriented regions has much higher IQ than adjacent near C oriented regions indicating 

more recovered structure of the former. Incidentally, more CTD oriented grains are actually 

observed in the annealed materials as already discussed. Further, the cube oriented regions are 

also observed at the vicinity of the locally sheared regions which can also plays an important 

role due to their adverse impact on the nucleation and growth of cube grains [15,23]. Further 

investigations are planned to study in detail the internal structure of the cube regions and local 

misorientation environment in cross-rolled nickel to clarify these issues. 
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Figure 5.2.3:  (a) IQ map showing of shear region surrounded by cube oriented bands (b) GO 

map of cube oriented region (c) IQ distribution map of corresponding regions of 90% CCR 

processed Nickel sample.  
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Chapter 6 

 

Summary and Conclusions 

 

In order to understand the effect of strain path change on the evolution of deformation and 

recrystallization texture, high purity nickel with 36 μm starting grain size has been deformed by 

two separate processing routes namely SCR and CCR up to 90% reduction in thickness 

followed by annealing at different temperatures ranging between 400° to 800°C. The 

microstructure and texture of the processed materials have been characterized at different 

length scales using X Ray Diffraction and EBSD. The following conclusions may be drawn 

from the present study: 

1. The microstructure of CCR processed samples were intersecting shear bands 

and shear regions enclosed within banded structures.   

2. The texture of CCR processed nickel is characterized by the strong presence of Bs and 

BsND components and agrees well with the theoretical predictions and experimental 

observations in other medium to high stacking fault energy fcc materials.  

3. The microtexture after low temperature annealing (at 400°C for 1hr.) shows a 

ND||[111] fiber. It is strongest at orientation           ̅̅̅̅    which is thought to 

originate from the twinning of the TD-rotated cube component         ̅  . This is 

also confirmed from early stages of recrystallization.  

4. The twin formation is favoured during low temperature annealing supposedly due to 

the fact the reorientation during twin can assist in eliminate the growth stagnation. 

After high temperature annealing the ND||[111] fiber is weakened. This agrees well 

with decreased twinning activity at higher annealing temperatures. The texture is also 

the annealing texture is weak and rather diffuse.  

5. Preferential nucleation of near cube grains is not observed at early stages of 

recrystallization in cross-rolled nickel leading to the formation of a weak and diffuse 

cube texture up on completion of recrystallization.  

6. The internal structure and local misorientation environment of cube regions in cross-

rolled nickel appear to be important factors for this behavior but needs to be 

investigated further in detail. 
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