
Linear and Nonlinear Analysis of DC biased

Coupled Microbeams

Gyanadutta Swain

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

Department of Mechanical Engineering

June 2013



Figure 1: hhh

ii



Figure 2: hhh

iii



Acknowledgements

I am thankful to all the people who have guided and supported me throughout my thesis work.

First of all, I express my immense gratitude to my advisor Dr. Ashok Kumar Pandey, for giving

me a chance to work in such an interesting field and believing in me during the research work. I

also thank him for his excellent guidance and all time valuable support and encouragement.

I would like to extend my gratitude to my committee members who have made interesting

and useful remarks during my thesis work. I also wish to thank Professor V. Eswaran, H.O.D,

Department of Mechanical Engineering, IIT Hyderabad and Professor U.B Desai, Director, IIT

Hyderabad for their support in various ways. I acknowledge all the faculty members of Mechanical

Engg. Dept., IIT Hyderabad, specially Dr. M. Ramji, Dr. B. Venkatesham, Dr. R. Prasanth

Kumar, being a student of who during the course work, I got the opportunity to learn many new

techniques as well as concepts which were directly or indirectly useful in my thesis work. I would

also like to thank all Staff members, Project Associate Staffs, Research scholars and M Tech col-

leagues in CAE as well as Nano Lab, Department of Mechanical Engineering, IIT Hyderabad for

their help and suggestions, whenever needed. I must not ignore the special contributions of the

institute library for providing all the necessary books, articles and access to many useful domains

to enrich my asset list in this research work.

Many, many thanks go to my family for their blessings and support. I wish to express my

special gratitude to my lovable mother Malati Lata for her care and love and to my elder sisters

Smita, Nameeta, Arpita and brother Bibhu for giving me the base support through out this period.

I am also thankful to my IIT Hyderabad friends for the warmth of their friendship and providing

a supportive environment, which has made my stay at IIT Hyderabad wonderful. I sincerely ac-

knowledge some of my close friends Pinaki, Nikhil, Anup, Rakesh, Jaeson, Prashil, Mayank, Anil,

Jabir and others for their role as tension healers and as rich sources of entertainment. And above

all to Asha kiran, my wonderful mate for her love and encouragement and for all her supports on

and off the work.

At the end, I would like to pay special homage to my late father. He could be the most

happiest person in this occasion. I deeply regret for this uncommon happening. But I feel proud

to say, ”Papa, wherever I am today, it is just because of your small right decision about my life,

when I was unable to foresee and predict my future. You are deeply missed.”

iv



Dedication

Dedicated To

My Beloved Parents

(Mr. Binod Kumar Swain and Mrs. Malati Lata Swain)

v



Abstract

Now-a-days, micro electro-mechanical system based sensors and actuators are widely used in

almost every field due to their uncommon advantages over the conventional devices in terms of

stability, accuracy, sensitivity and operating flexibility etc. There are different mechanisms to in-

crease the sensitivity as well as the frequency range of dynamic resonators. Frequency tuning due

to an electrostatic effect, nonlinear mid-plane stretching, a thermo mechanical effect, etc., are some

of the major techniques used to widen the operating frequency range of these devices. However,

the majority of these techniques are applied to a single operation mode in an individual MEMS

structure. But the tuning of different modes in an array of beams is of great interest which could

possibly provide an idea to develop more sensitive as well as stable micro-resonators.

In this study, we describe the combined thermal and electrostatic effects in tuning the frequen-

cies of different modes in a beam. The thermal effects such as cooling or heating are introduced

by the varying tensions in the beams, which affect the frequencies. On the other hand, the electro-

static effects, due to the application of large dc bias, result in the softening of one of the modes and

hardening of other mode. With sufficiently large dc voltage, the modal coupling of the two modes

of the beam is achieved. Understanding the coupling of different modal frequencies and their tun-

ing mechanisms is essential for design of multi-frequency MEMS sensors and actuators. First we

take a clamped-clamped Au-Pd beam separated from two side electrodes and a bottom electrode.

We experimentally find the first two bending modes of the beam and vary their dependence with

respect to an electrostatic DC bias. Subsequently, we develop a theoretical model to predict the

variation of these two coupled modes. It is found that the coupling strength of the modes can be

controlled by effectively changing the differential gaps between the beam and the side electrodes.

Finally, we extend this analysis to an array of three similar fixed-fixed beams and then generalize

it for an array with N beams. It is found that with proper application of thermal and electrostatic

tuning in an array, it is possible to get multi-modal coupling as well as large frequency range. we

analytically determine the coupling of an array of 40 beams and validate the theoretical outcome

experimentally.

After analyzing the frequencies based on linear formulations, the dynamic analysis for the

single coupled micro-beam is performed for linear as well as nonlinear regions. Here, to obtain

the dynamic behavior of the device, we apply method of multiple scales to the original modal

equations. finally using the method of reconstitution, we get first order uniform expansion for the

solution of the system, governing the dynamic response.
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Chapter 1

Introduction

Micro-Electro-Mechanical Systems, or MEMS, is a technology that in its most general form can

be defined as miniaturized mechanical and electro-mechanical elements that are made using the

techniques of microfabrication. With the evolution of such new sophisticated techniques and

stepping in the third generation of Nanotechnology, the MEMS / NEMS (Nano-Electro-Mechanical-

Systems) devices are more often pursued to be used in the risk governance frame. To facilitate

this, in parallel to the manufacturing flexibility, The functional advancements of these devices have

become the present focus of interest. In this work, frequency tuning of MEMS devices due to dc

biasing is presented, which gives the advantage of modal coupling both in linear and nonlinear

region.

1.1 Motivation

At this present scenario, the applications of MEMS devices are not only limited as high sensitive

sensors of mass[1, 2, 3] , force, pressure, temperature[4] or actuators and micro mirrors but also

they have become a major breakthrough in the field of biotechnology, medicine, communications,

avionics, robotics and research etc. MEMS inertial sensors, specifically accelerometers and gyro-

scopes, are quickly gaining market acceptance for high accuracy. The easy combination of MEMS

technology in other fields such as optical-MEMS and bio-MEMS, have led to the production of

some futuristic devices, MEMS encoders, automation airplane, millibot etc. As a boon of sophis-

ticated microfarication processes, these extreme small devices which consume less power can be

fabricated in bulk, considerably reducing the cost of production.

At the same time due to their reduced size or increased aspect ratio, the early onset of non-

linearity limits the useful linear dynamic range and effectively alters the dynamic behavior of the

device[5] . Since non-linearity is the frequent rule of nature, we often encounter several systems

that operate beyond linear range where the output response is suppressed by noise and the nat-

ural frequency is shifted considerably from the original value showing regions of instabilities. So

controlling these devices in the nonlinear region is equally important from the application point of

view as well as performance enhancement of the system.
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Thinking from the control side, the ultra high natural frequency of the MEMS device can be

tuned using different techniques[4],[6]-[12] which adds favors in the dynamic operation of these de-

vices through several coupling mechanisms. Among them, the phenomena of electrostatic coupling

through dc biasing has become an interesting domain of MEMS research in the recent years as it

facilitates visualization of the frequency band of multiple beams in an array . The competitive

behavior of simultaneous softening and hardening may result in mixing of dispersed modes which

are important from the sensitivity point of view. So the collective thermal and electrostatic effects

may be of greater importance to get the dual advantages of increasing the operating range as well

as sensitivity of the devices through multiple modal interactions. The generated noise can also be

suppressed by operating it near the coupling region, hence increasing the efficiency of the device.

Such multiple modal interactions can be described through an array of micro-beams.

1.2 Literature Survey

Microelectromechanical system based devices as mechanical resonators are widely used in many

areas replacing other conventional devices. These are used in almost every electronic device using

digital and communication circuits, where frequency reference for synchronization[13] is essential.

Although quartz crystal oscillators are capable to provide a stable frequency reference over a range

of operating conditions, MEMS devices are successfully replacing them in many fields due to their

miniaturization capabilities, compatibility, low power consumption, reasonable accuracy and eco-

nomic batch fabrication. These superior capabilities are ensured because of high sensitivity and

ultra-high frequency of operation which is possible with the extreme small size of the device. Still

high performance MEMS devices are desired with wide operating range and long term stability to

completely replace the crystal resonators.

From literature, it is revealed that the sensitivity as well as frequency bandwidth of a resonant

sensor or an actuator can be improved using different frequency tuning mechanisms. Among these,

the most commonly used techniques are tuning by electrostatic DC biasing, thermal stressing,

structural hardening, etc., which are generally applied to a particular mode of a single or an array

of resonators. Application of these tuning techniques to two or more modes have recently been

explored to get the coupled region where the performance can be significantly enhanced. Therefore,

it is crucial to understand the coupling mechanism of two or more modes.

Recently, Suzuki et al.[6] have proposed method of electrostatic frequency tuning in a fish

bone shaped MEMS resonator for the first five vibration modes. The resonator consists of one

main beam and several sub beams attached to the main beam. By suitably choosing the location

and numbers of exciting electrodes, they are able to get a wide frequency range. Their frequency

tuning covers a range of 178 Hz to 1746 kHz for the first five modes along with enhanced Q factor

due to selection of tapered anchor.

Similarly Wan-Sul Lee et al.[7] have modeled a 3D micromechanical actuator using FEM and
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BEM to explain the frequency shifting due to electrostatic tuning and compared the numerical

result with experimental data.

In another experiment Quirin et al.[8] have used the concept of dielectric force in frequency

tuning. A doubly clamped high stressed silicon nitride beam when actuated by means of four bot-

tom gold electrodes separated through certain gap experiences dielectric force which is a function

of the gap between beam and electrodes and applied voltages. Using such tuning mechanism they

were able to get a frequency bandwidth of more than 100 kHz.

Eyal Buks and Michael L. Roukes[9] have applied the method of electrostatic tuning to an ar-

ray of 67 fixed-fixed microbeam resonators made of Au and explained the significance of collective

response due to induced inter-device mechanical coupling using optical diffraction method. The

electrostatic interaction between the individual mechanical resonators gives rise to the formation

of a band of normal modes of vibration otherwise called as phonons. Finally they have proposed

the concept of such type of tuning in an array to be used in the field of spectral analysis.

Using temperature dependence of the tension in the beam, Ashok et al.[4] are able to use the

concept of frequency change with temperature for proposing an AuPd temperature sensor. Since

the resonant frequency of a system under the action of large tension is significantly dependent on

the stress developed, and the stress induced is a function of the temperature, hence varying the

temperature results in tuning the frequency. In another experiment, Todd Remtema and Liwei

Lin[10] have adopted the frequency tuning using localized thermal stressing effect on comb shaped

micro resonator to get a frequency tuning of 6.5 percent at around the central frequency of 31 kHz

experimentally.

By suitably tuning different modes of vibration so that they come close to each other, it is

possible to get another interesting phenomena where modes interact with each other. The exis-

tence of such mode mixing region in InAs nanowire resonator has been shown experimentally by

Solanki et al.[11]. They have explained the nonmonotonic dispersion of resonant frequency and

the presence of mixed mode region with respect to applied gate voltage. They have also shown

this modal interaction in nonlinear region by increasing the amplitude of driving force.

Kozinsky et al.[12, 14] have used the electrostatic frequency tuning mechanism to tune the

nonlinearity of NEMS resonators both upward and downward. They have applied this tuning pro-

cedure to a doubly clamped SiC resonator to increase its dynamic range. By tuning two orthogonal

modes closer to each other they are able to observe the anti-crossing region in two different devices

namely SiC and gold beam, using two different detection techniques.

Further as the dimensions of the devices shrink to smaller scale, they exhibit nonlinearities

which considerably alter the dynamics of the device. It becomes highly sensitive to excitation

showing regions of instability under certain operating conditions.
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Most of the systems in nature are nonlinear as a rule, hence they can be modeled effectively

using nonlinear governing equations or considering nonlinear boundary conditions[15]. There are

many sources of nonlinearities that can exist in a system[15, 16] such as material nonlinearity,

geometric nonlinearity, inertial nonlinearity, forcing nonlinearity and dissipative nonlinearity. The

material or constitutive nonlinearity arises due to the nonlinear stress-strain relation for the ma-

terial of the system whereas the geometric nonlinearity is due to the nonlinear strain-displacement

relationship. Inertial nonlinearity arises because of unbalanced concentrated or distributed masses.

The remaining two are due to nonlinearity in the applied or dissipating forcing terms.

However, the nonlinearity is easily reachable in case of MEMS devices, where its influence is

important even at small amplitude of response. Hence a proper analysis of the dynamics including

nonlinearities should be carried out so as to understand the system and its controlling parameters

thoroughly before implementing any idea.

In recent years many researchers based on their studies on nonlinearities have proposed numer-

ous techniques to get highly stable MEMS / NEMS devices with more sensitivity and applicability.

Lee et al.[18] proposed a concept of frequency tuning of resonating device in nonlinear range by

stiffness adjustment by which two vibrational modes can be coupled with each other through in-

ternal resonance that can be used for frequency stabilization.

Antonio et al.[19] have investigated the nonlinear response and internal resonance conditions

in clamped-clamped microbeam array for fixed DC bias and variable AC excitation over criti-

cal amplitude of vibration. They have shown the state of 3:1 internal resonance where the first

in-plane flexural mode couples with the principal torsional mode and transfer of energy between

the two occurs. Finally they have proposed a method of amplitude and frequency stabilization

using internal resonance mechanism and verified it experimentally using a closed loop configuration.

The nonlinear vibration of a suspended cable with 1:1 internal resonance has been investigated

by Akira Abe[20] using two different numerical approaches. He has considered both quadratic and

cubic nonlinearities in his formulation and adopted the method of multiple scales and shooting

method for the analysis. The effect of second and third in-plane and out-of-plane modal interac-

tions has been shown in his work. Using the same approach of MMS (method of multiple scales),

Yan et al.[21] have studied the nonlinear vibration in double-walled carbon nanotubes, where there

exists 1:3 internal resonance condition between coupled coaxial and non-coaxial vibration modes.

In another study by S. Murat et al.[22] nonlinear transverse vibration of an Euler-Bernoulli

beam with multiple supports is investigated. They have considered the beam with initial tension

subjected to 3:1 internal resonance. The stretching of the neutral axis due to fixed boundary

conditions is considered in the nonlinear governing equation. The internal resonance condition is

achieved corresponding to particular positions of supports and initial tension values. Frequency

and force response curves are plotted for 3:1 internal resonance corresponding to 3, 4 and 5 sup-

ports cases.
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Usama H. Hegazy[23] studied the dynamic behavior and chaotic motion of a string-beam cou-

pled system subjected to parametric excitation. The beam and string are coupled through 3:1

internal resonance with cubic nonlinearity. He has applied the method of multiple scales for the

analysis of system and influence of different parameters on the system dynamics. Finally the pres-

ence of multi-valued region, jumps, instabilities etc. are illustrated. Similar 3:1 internal resonance

in the nonlinear oscillation of a shallow arch has been reported by El-Bassiouny [24].

Ashwin Vyas et al.[25] have considered a T-shaped microresonator to study the nonlinear 1:2

internal resonance in flexural structural modes. The analytical model includes pre-stress with geo-

metric, inertial and forcing nonlinearities. Using a reduced order two mode expansion and asymp-

totic analysis, the dynamics of the T-beam is studied and the coupled responses are obtained. As

a concluding remark, after comparing the analytical results qualitatively with experimental data,

they have mentioned the high sensitiveness of the device to mass perturbations and thus, holds

great potential as a radio frequency filter–mixer or mass sensor.

Another important analysis on 2:1 internal resonance has been performed by M. F. Daqaq

et al.[26] in microscanners. They have electrostatically tuned the frequencies of the device to get

two to one internal resonance condition between torsional and bending vibration modes. Apply-

ing MMS to the governing equations including nonlinearities in forcing, they are able to get the

coupled nonlinear responses corresponding to primary excitation of the first and second modes re-

spectively. Subsequently they have introduced the concept of energy transfer mechanism through

internal resonance.

Many works so far has been done on the nonlinear analysis of clamped-clamped Nanoelec-

tromechanical resonators due to their simplicity in fabrication and extensive practical use because

of their higher resonant frequencies than other structures with similar dimensions.

Candler et al.[27] have reported nonlinear characterization and mechanism of clamped-clamped

resonator under electrostatic excitation. Another similar doubly clamped AuPd resonator has been

studied by Zaitsev et al.[28]. They have shown that nonlinear dissipation plays an important role

along with nonlinear elastic effects on the dynamics of the device. Hyung et al.[29] have demon-

strated the possibility of stable operation of MEMS oscillators beyond critical vibration amplitude

using closed-loop control system. Kozinsky et al.[14] have also investigated the nonlinear behavior

of fixed-fixed beams and confirmed the presence of mixed mode region between two orthogonal

modes from their experimental results.

Few works have also been reported on array of coupled resonators considering the nonlinearity

in the system. In these cases, it is possible to get multiple coupling between different modes giving

rise to modified dynamic behavior of the system and more complicated energy transfer process.

Internal resonance and bifurcations in an array of nonlinearly coupled microbeams has been stud-

ied by S. Gutschmidt and O. Gottlieb [30, 31]. Using a nonlinear continuum model they have

5



investigated the dynamics of the system below its first pull-in instability. Applying asymptotic

multiple scale approach, the response of two elements and three elements system near 3:1 internal

resonance subjected to parametric excitation are analyzed.

In a similar way, the parametric resonance in electrostatically coupled array of carbon nan-

otubes has been studied by A. Isacsson and J. M. Kinaret [32]. They have analyzed a model of

one-dimensional array of carbon nanotube resonators in two different configurations. They have

shown that both transverse and longitudinal parametric resonances can be excited along with pri-

mary resonances. The electrostatic interactions between adjacent tubes affect the dynamics and

mode stability.

In another study, Chotorlishvili et al.[33] have analytically modeled two NEMS resonators

with arbitrary coupling strength between them. They have analyzed the nonlinear dynamics of

the system using perturbation technique considering cubic nonlinearity in restoring forces. Finally

they have proposed how to control the energy transfer between coupled modes by tuning the driv-

ing field frequency.

1.3 Outline of the thesis

This thesis altogether consists of four chapters. In the first chapter, we have described the motiva-

tion behind the selection of this work related to linear and nonlinear analysis of coupled microbeams

along with a brief introduction to different terms like MEMS, NEMS, modal coupling, frequency

tuning etc. Various causes of nonlinearities that influence a system are explained with the impor-

tance of study of nonlinearity. Towards the end, a review of different works performed by various

researchers in this area and their contributions are presented in short.

The second chapter wraps entire studies including modeling, analysis, results and discussions

for a single microbeam. This chapter is further divided into various subsections; Initially, we have

derived the static and dynamic governing equations for a single fixed-fixed beam based on avail-

able literature. Subsequently the frequency analysis is done based on linear governing equations.

Then the nonlinear formulation is carried out so as to facilitate numerical studies using method of

multiple scales and stability analysis is done based on different criteria. In the last subsection, the

results for the case of single beam are discussed.

In the third chapter, we have modeled for an array of three microbeams, which are actuated

by two side electrodes and one bottom electrode. Considering different types of forcing acting on

individual components, we have completed the static analysis as well as dynamic analysis of the

system. Here the case of multiple modal coupling is illustrated while discussing the results.

The fourth chapter is basically an extension of third chapter, where we have extended all

the formulations and analysis steps for the case of three beams to an array of N beams. After
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generalization of all the procedures for N beams, we have specifically solved for a 40 beams ar-

ray (N = 40). To the later stage, both linear and nonlinear results for the beam array are discussed.

In the fifth or last chapter, we have summarized our results corresponding to linear and

nonlinear responses for single beam as well as array of beams. Finally, the conclusion is drawn

based on the usefulness of this work along with its future perspectives.
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Chapter 2

Mathematical modeling and

solution of a single fixed-fixed

beam

This chapter presents the theoretical foundation and modeling of a single microbeam subjected to

electric excitation. We derive the governing equations using elastic beam theory considering large

deformations in the structure. Different electrostatic forces acting on the beam are considered

while modeling the beam. Based on the mathematical model, we analyze the frequencies in two

orthogonal directions. Subsequently, we apply method of multiple scales to solve the nonlinear

governing equations and perform dynamic analysis.

2.1 Full static and dynamic governing equation

In this section, we theoretically model a doubly clamped microbeam with rectangular cross section

surrounded by two semi-infinite side electrodes and one bottom electrode. we take a fixed-fixed

beam of length L, width B and thickness H, which is separated from the two side electrodes E1

and E2 by the air-gaps of g0 and g1, respectively (Fig. 2.1). It is also separated from the bottom

electrode Eg by a gap of d. Taking the deflection of the beam along in-plane and out-of-plane as

y(x, t) and z(x, t), respectively, as shown in Fig. 2.2(a) the governing equations after neglecting

damping and considering residual tension and mid-plane stretching can be written as

EIzyxxxx + ρAytt − [N0 + TN ]yxx = Qy (2.1)

EIyzxxxx + ρAztt − [N0 + TN ]zxx = Qz (2.2)

where, TN = ExA
2L

∫ L
0

(y2x+z2x)dx is the tension induced by mid-plan stretching [34], N0 is the initial

tension induced by fabrication processes [35], heating, etc., We take αcorr. = E
Ex

as the correction

factor, to take care of the transverse isotropic property of the beam. EI is the bending rigidity

8



Figure 2.1: (a) Side view of a single beam separated from the the side electrodes, E1 and E2, and
the ground electrode Eg; (b) Top view of single beam shown with the two side electrodes on either
side of the beam.

Figure 2.2: (a) Displacement of the beam in two different directions are represented by y and z; (b)
The corresponding forces are represented by Qz and Qy. (Note that the fringing effect is neglected
in Qz and Qy).

and ρ is the material density. The boundary conditions for the fixed-fixed beam are taken as:

y(0, t) = y(L, t) = 0, z(0, t) = z(L, t) = 0,

yx(0, t) = yx(L, t) = 0, zx(0, t) = zx(L, t) = 0. (2.3)

Qy and Qz are the effective electrostatic forcing per unit length along y and z directions as

shown in Fig. 2.2(b). The expression of the forcing can obtained under two important assump-

tions. First, the parallel plate capacitors with neglected fringing effects are assumed. Secondly,

we consider the contribution of inhomogeneous electric field due to the deflection of the beam in

z-direction [8]. Such forcing can have significant effect in z-direction. Thus, the final expression of

the forcing can be assumed as,

Qy =
1

2
ε0(1− k1|z|)H

[
(V10 + v(t))2

(g − y)2
− (V21 + v(t))2

(g1 + y)2

]
(2.4)

Qz =
1

2
ε0B

[
(V1g + v(t))2

(d− z)2

]
− k2z

[
(V21 + v(t))2 + (V10 + v(t))2

]
(2.5)

Where ε0 = 8.85× 10−12 F/m is the free space permittivity. Vij and v(t) are the DC and AC

components of applied voltage. In the above expressions, k1 represents the contribution of the net

effective change in area due to z-deflection. However, it is assumed to be negligible in the present

study. k2 represents the strength of forcing due to inhomogeneous electric field generated because

of z-deflection, which is found to be very effective in the present test case. Vij = Vi − Vj is the
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difference in the DC voltage applied between the beam and electrodes.

Figure 2.3: COMSOL results showing variation of electric field due to different positions of beam.
(a) homogeneous electric field when beam is undeflected, (b) Inhomogeneous electric field when
the beam is deflected downward, (c) Inhomogeneous electric field strength shown by arrow length.

For convenience, we introduce new non-dimensional variables as denoted by hat in the gov-

erning equations,

x̂ =
x

L
, ŷn =

yn
g
, ẑn =

zn
d
, t̂ =

t

T
(2.6)

where, T is the time scale used to non-dimensionalize time t and is equal to
√

ρBHL4

EIz
. Subsequently

dropping hats for convenience, we get nondimensionalized form of equations,

yxxxx + ytt − [N + α1Γ(y, y) + α2Γ(z, z)]yxx = α3 ×
[

(V10 + v(t))2

(1− y)2
− (V21 + v(t))2

r21(1 + y
r1

)2

]
(2.7)

zxxxx + α4ztt − α4[N + α1Γ(y, y) + α2Γ(z, z)]zxx = α5
(V1g + v(t))2

(1− z)2
− α6[(V10 + v(t))2

+(V21 + v(t))2]z (2.8)
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subjected to the following modified boundary conditions,

y(0, t) = y(1, t) = 0, z(0, t) = z(1, t) = 0,

yx(0, t) = yx(1, t) = 0, zx(0, t) = zx(1, t) = 0. (2.9)

We Take the ratio of the beam and side electrode gaps as r1 = (g1/g0), and other terms

appearing in Eqn (2.7),(2.8) are written as below,

α1 =
6Exg

2
0

EB2
, α2 =

6Exd
2

EB2
, α3 =

6ε0L
4

EB3g30
,

α4 =
Iz
Iy
, α5 =

6ε0L
4

EH3d3
, α6 =

k2L
4

EIy
, N =

N0L
2

EIz
, (2.10)

and the function Γ is defined as,

Γ(m(x, t), n(x, t)) =

∫ 1

0

∂m

∂x

∂n

∂x
dx. (2.11)

We assume the displacements in both the orthogonal directions consisting of two parts; static

part which depends on position x from the fixed support and the dynamic component which

depends on position as well as time.

y(x, t) = us(x) + u(x, t), z(x, t) = ws(x) + w(x, t). (2.12)

where us(x) and ws(x) are static deflections. The static deflections are obtained by substituting

Eqn.(2.12) into Eqn.(2.7) and (2.8) and subsequently setting the time derivatives and dynamic

terms equal to zero and solving the resulting equations. Now, the static equations are written as,

usxxxx − [N + α1Γ(us, us) + α2Γ(ws, ws)]usxx = α3 ×
[

(V10)2

(1− us)2
− (V21)2

r21(1 + us

r1
)2

]
(2.13)

wsxxxx − α4[N + α1Γ(us, us) + α2Γ(ws, ws)]wsxx = α5 ×
(V1g)

2

(1− ws)2
− α6

[
(V 2

10 + V 2
21)ws

]
(2.14)

subjected to the following static boundary conditions,

us(0) = us(1) = ws(0) = ws(1) = 0 (2.15)

For the governing dynamic equations, we again substitute Eqn.(2.12) into Eqn.(2.7) and (2.8).

Using the static equations Eqn.(2.13) and (2.14) and then expanding the forcing terms about the
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equilibrium using Taylor series method, the dynamic equations are obtained as follows,

uxxxx + utt − [α1Γ(u, u) + 2α1Γ(us, u) + α2Γ(w,w) + 2α2Γ(ws, w)]usxx

−[N + α1Γ(us, us) + α1Γ(u, u) + 2α1Γ(us, u) + α2Γ(w,w) + α2Γ(ws, ws)

+2α2Γ(ws, w)]uxx = 2α3

[
(V10 + v(t))2 × u

(1− us)3
+ (V21 + v(t))2 × u

r31(1 + us

r1
)3

]
+α3

[
(2V10v(t) + v(t)2)× 1

(1− us)2
− (2V21v(t) + v(t)2)× 1

r21(1 + us

r1
)2

]
(2.16)

wxxxx + α4wtt − α4[α1Γ(u, u) + 2α1Γ(us, u) + α2Γ(w,w) + 2α2Γ(ws, w)]wsxx

−α4[N + α1Γ(us, us) + α1Γ(u, u) + 2α1Γ(us, u) + α2Γ(w,w) + α2Γ(ws, ws)

+2α2Γ(ws, w)]wxx = 2α5

V 2
1g

(1− ws)3
w + α5

2V1gv(t) + v(t)2

(1− ws)2

(
1 +

2w

(1− ws)

)
−α6

[
(V10 + v(t))2 + (V21 + v(t))2)

]
w − 2α6

[
V10v(t) + V21v(t) + v(t)2

]
ws (2.17)

To perform frequency analysis, we find the linear equations from Eqn.(2.16) and (2.17) by

neglecting nonlinear and forcing terms. Finally, the linear dynamic equations in terms of us, u, ws

and w are obtained as,

uxxxx + utt − [2α1Γ(us, u) + 2α2Γ(ws, w)]usxx − [N + α1Γ(us, us) + α2Γ(ws, ws)]uxx

= 2α3

[
V 2
10 ×

u

(1− us)3
+ V 2

21 ×
u

r31(1 + us

r1
)3

]
(2.18)

wxxxx + α4wtt − α4[2α1Γ(us, u) + 2α2Γ(ws, w)]wsxx − α4[N + α1Γ(us, us)

+α2Γ(ws, ws)]wxx = 2α5

V 2
1g

(1− ws)3
w − α6

[
(V 2

10 + V 2
21)w

]
(2.19)

subjected to the following boundary conditions,

u(0, t) = u(1, t) = w(0, t) = w(1, t) = 0

ux(0, t) = ux(1, t) = wx(0, t) = wx(1, t) = 0 (2.20)

In the next section, we have considered these two linear dynamic equations for performing

frequency analysis. The variations of frequencies in both the directions are obtained from the

reduced order model of the single beam system using Rayleigh-Ritz-Galerkin (RRG) procedure.

2.2 Frequency analysis based on linear equations

In order to find the modal equations and the corresponding natural frequencies of the system

subjected to DC biasing, we reduce the linear equations Eqn.(2.17) and (2.18) using Rayleigh-Ritz-

Galerkin procedure which is based on modal superposition concept and using the orthogonality

12



conditions, we obtain the final reduced form.

Considering only one mode in the analysis, the static and dynamic deflections of the beam

along both the planes are assumed as,

us(x) = A1(y, z)φ(x) , ws(x) = A2(y, z)φ(x),

u(x, t) = P1(t)φ(x) , w(x, t) = P2(t)φ(x). (2.21)

Here, φ(x) is the first normalized linear undamped mode shape for the fixed-fixed beam and

P1(t), P2(t) are the non-dimensional modal coordinates. A1, A2 are the static deflections of the

beam in two orthogonal directions due to DC biasing. We assume the mode shape φ(x) which

satisfies the orthogonality condition given as
∫ 1

0
(φ1(x))2dx = 1 and the mode shape also satisfies

the geometric boundary conditions.

φ(x) =

√
2

3

(
1− cos (2πx)

)
(2.22)

Using Eqn.(2.21), (2.22) in Eqn.(2.13) and (2.14), the static equations in terms of A1, A2 are

written as:

16

9
π4α1A

3
1 +

(
16

3
π4 +

16

9
π4α2A

2
2 +

4

3
π2N

)
A1 − α3

[
V 2
10

√√√√ 2/3

(1− 2
√

2
3A1)3

−V
2
21

r21

√√√√ 2/3

(1 + 2
√

2
3
A1

r1
)3

]
= 0 (2.23)

16

9
π4α2A

3
2 +

(
16

3

π4

α4
+

16

9
π4α1A

2
1 +

4

3
π2N

)
A2 −

α5

α4
V 2
1g

√√√√ 2/3

(1− 2
√

2
3A2)3

+
α6

α4
(V 2

21 + V 2
10)A2 = 0 (2.24)

These above two equations show the coupling of static deflections A1 and A2 through the

elongation of the beam in two directions by quantities α1 and α2. They are also functions of

induced tension N and vary with respect to applied DC. Solving these equations simultaneously,

we get static deflections of the beam corresponding to a fixed applied voltage. As the applied

DC voltage increases, the magnitude of static deflection in both the directions increases. At a

particular value of DC voltage, the electrostatic attraction exceeds elastic restoring force which

results in collapse of the structure. This particular value of DC is known as pull-in voltage. Here the

slope of amplitude-VDC curve becomes infinity. The pull-in voltages can be found by differentiating

Eqn.(2.23) and (2.24) with respect to A1, A2.

The modal equations are similarly obtained by substituting Eqn.(2.21), (2.22) in Eqn.(2.18)

and (2.19). In matrix form, the modal equations are given by,[
P̈1

P̈2

]
+

[
λ21 c12

c21 λ22

][
P1

P2

]
= 0,

13



where, c12 and c21 are the coupling terms in two modal directions and λ1, λ2 are the uncoupled

natural frequencies of the beam in both the directions given by,

λ21 =

[
16

3
π4 +

16

9
π4α2A

2
2 +

16

3
π4α1A

2
1 +

4

3
π2N − 2α3

(
V 2
10(1− 2

√
2

3
A1)−

5
2

+
V 2
21

r31
(1 + 2

√
2

3

A1

r1
)−

5
2

)]

λ22 =

[
16

3

π4

α4
+

16

9
π4α1A

2
1 +

16

3
π4α2A

2
2 +

4

3
π2N − 2

α5

α4
V 2
1g(1− 2

√
2

3
A2)−

5
2

+
α6

α4
(V 2

10 + V 2
21)

]

c12 =
32

9
α2A1A2π

4, c21 =
32

9
α1A1A2π

4 (2.25)

Hence, the modal equations are written as,

P1tt(t) + λ21P1(t) + c12P2(t) = 0 (2.26)

P2tt(t) + λ22P2(t) + c21P1(t) = 0 (2.27)

To obtain the perturbed natural frequencies, we assume the solution of Eqn.(2.26), (2.27)

considering the system oscillating in one of its normal modes frequency ω and starts from the rest.

P1(t) = βeiωt, P2(t) = γeiωt (2.28)

Substituting these assumed solutions in the modal equations, we get

(λ21 − ω2)β + c12γ = 0 (2.29)

(λ22 − ω2)γ + c21β = 0 (2.30)

For non-trivial solution, the determinant of these system of equations should be zero. After solving

the resulting equations, we get two values of ω corresponding to two directions.

ω1,2 =

√
1

2

[
(λ21 + λ22)±

√
(λ21 − λ22)2 + 4c12c21

]
(2.31)

The corresponding eigen-vectors (mode shapes) for ω1 and ω2 are given as,(
β

γ

)
1,2

= − 2c12

(λ21 − λ22)∓
√

(λ21 − λ22)2 + 4c12c21
(2.32)

14



2.3 Nonlinear response of dynamic equation

After analyzing the modal frequencies based on linear dynamic equations, we consider the nonlinear

and forcing terms to obtain the nonlinear response of the dynamic system consisting of single beam.

In this section, we consider linear damping in both the directions and obtain the non-dimensional

equations as discussed earlier. Subsequently, we reduce the non-dimensional equations using single

mode RRG procedure to get static as well as reduced nonlinear modal equations. First, we solve

the nonlinear modal equations directly using numerical techniques such as Runge-kutta method

and after that we apply perturbation technique to get the dynamic response of the beam.

2.3.1 Numerical solution (based on rk5 or ode45)

After including linear damping terms c1 and c3 in both the directions, the non-dimensional gov-

erning equations for the beam using Eqn.(2.6) are written as,

yxxxx + ytt + C1yt − [N + α1Γ(y, y) + α2Γ(z, z)]yxx = α3

[
(V10 + v(t))2

(1− y)2
− (V21 + v(t))2

r21(1 + y
r1

)2

]
(2.33)

zxxxx + α4ztt + C3zt − α4[N + α1Γ(y, y) + α2Γ(z, z)]zxx = α5
(V1g + v(t))2

(1− z)2

−α6[(V10 + v(t))2 + (V21 + v(t))2]z (2.34)

subjected to the following modified boundary conditions,

y(0, t) = y(1, t) = 0, z(0, t) = z(1, t) = 0,

yx(0, t) = yx(1, t) = 0, zx(0, t) = zx(1, t) = 0. (2.35)

Here, C1 = c1L
4

EIzT
and C3 = c3L

4

α4EIyT
are the non-dimensional parameters including damping co-

efficients. All other terms are defined as earlier and given in Eqn.(2.10) and (2.11). Applying

Rayleigh-Ritz-Galerkin procedure with single mode shape, the reduced order static equations are

obtained as shown in Eqn.(2.23) and (2.24). Proceeding as discussed in the previous section and

using Eqn.(2.21) and (2.22) we obtain the nonlinear modal equations in both the directions from

Eqn.(2.33) and (2.34), which are given as

P1tt(t) + λ21P1(t) +
16

9
α1π

4P1(t)3 +
16

3
α1A1π

4P1(t)2 +

[
16

9
α2π

4P2(t)2 +
32

9
α2A2π

4P2(t)

−2α3
(2V10v(t) + v(t)2)

(1− 2
√

2
3A1)

5
2

− 2α3
(2V21v(t) + v(t)2)

r31(1 + 2
√

2
3
A1

r1
)

5
2

]
P1(t) + C1P1t(t) +

16

9
α2A1π

4P2(t)2

+
32

9
α2A1A2π

4P2(t) =

√
2

3
α3

(2V10v(t) + v(t)2)

(1− 2
√

2
3A1)

3
2

+

√
2

3
α3

(2V21v(t) + v(t)2)

r21(1 + 2
√

2
3
A1

r1
)

3
2

(2.36)
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P2tt(t) + λ22P2(t) +
16

9
α2π

4P2(t)3 +
16

3
α2A2π

4P2(t)2 +

[
16

9
α1π

4P1(t)2 +
32

9
α1A1π

4P1(t)

−2
α5

α4

(2V1gv(t) + v(t)2)

(1− 2
√

2
3A2)

5
2

+
α6

α4
(2V10v(t) + 2V21v(t) + 2v(t)2)

]
P2(t) + C3P2t(t) +

16

9
α1A2π

4P1(t)2

+
32

9
α1A1A2π

4P1(t) =

√
2

3

α5

α4

(2V1gv(t) + v(t)2)

(1− 2
√

2
3A2)

3
2

− α6

α4
[2(V10 + V21 + v(t))v(t)]A2

(2.37)

Where λ1 and λ2 are the unperturbed natural frequencies of the system and are given as:

λ1 =

√√√√16

3
π4 +

4

3
Nπ2 +

16

3
α1A2

1π
4 +

16

9
α2A2

2π
4 − 2α3

(
V 2
10

(1− 2
√

2
3A1)

5
2

+
V 2
21

r31(1 + 2
√

2
3
A1

r1
)

5
2

)

λ2 =

√√√√16

3

π4

α4
+

4

3
Nπ2 +

16

3
α2A2

2π
4 +

16

9
α1A2

1π
4 − 2

α5

α4

V 2
1g

(1− 2
√

2
3A2)

5
2

+
α6

α4
(V 2

10 + V 2
21)

(2.38)

These two equations are coupled through several terms and govern the dynamic behavior of the

beam subjected to different AC excitation along with DC biasing. Now, for convenience we define

new terms and rewrite Eqn.(2.37) and (2.38) as below,

P1tt(t) + λ21P1(t) + t1P1(t)3 + t2P1(t)2 +

[
t3P2(t)2 + t4P2(t)− t5(2V10v(t) + v(t)2)

−t6(2V21v(t) + v(t)2)

]
P1(t) + C1P1t(t) + t7P2(t)2 + t8P2(t)

= t9(2V10v(t) + v(t)2)− t10(2V21v(t) + v(t)2) (2.39)

P2tt(t) + λ22P2(t) + s1P2(t)3 + s2P2(t)2 +

[
s3P2(t)2 + s4P2(t)− s5(2V1gv(t) + v(t)2)

+s6(2V10v(t) + 2V 21v(t) + 2v(t)2)

]
P2(t) + C3P2t(t) + s7P1(t)2 + s8P1(t)

= s9(2V1gv(t) + v(t)2)− s10(2(V10 + V21 + v(t))v(t)) (2.40)

Where, different coefficients ti’s and si’s are defined in the appendix. Equations (2.39) and (2.40)

are second order nonlinear and coupled equations in P1(t) and P2(t). To find the modal displace-

ments, we solve them numerically using Runge-kutta method. For this, we convert these above

two second order nonlinear equations into four first order equations as follows,

P1t(t) = P3(t) (2.41)
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P3t(t) = −λ21P1(t)− t1P1(t)3 − t2P1(t)2 −
[
t3P2(t)2 + t4P2(t)− t5(2V10v(t) + v(t)2)

−t6(2V21v(t) + v(t)2)

]
P1(t)− C1P3(t)− t7P2(t)2 − t8P2(t)

+t9(2V10v(t) + v(t)2)− t10(2V21v(t) + v(t)2) (2.42)

P2t(t) = P4(t) (2.43)

P4t(t) = −λ22P2(t)− s1P2(t)3 − s2P2(t)2 −
[
s3P2(t)2 + s4P2(t)− s5(2V1gv(t) + v(t)2)

+s6(2V10v(t) + 2V 21v(t) + 2v(t)2)

]
P2(t)− C3P4(t)− s7P1(t)2 − s8P1(t)

+s9(2V1gv(t) + v(t)2)− s10(2(V10 + V21 + v(t))v(t)) (2.44)

We solve above four first order equations in MATLAB to obtain the dynamic response of the

beam by finding the modal co-ordinates P1(t) and P2(t).

2.3.2 Solution based on Method of Multiple Scales

Solving the nonlinear modal equations directly in MATLAB by converting the system of equations

into first order forms has the limitation of separating the stable and unstable regions. It gives only

the stable part of the solution. In this section, we use perturbation technique for the nonlinear

modal equations and solve them to obtain the dynamic response of the beam and subsequently do

the stability analysis.

we apply the method of multiple scales (MMS) to equations (2.39) and (2.40) to obtain a

first-order uniform expansion for the solution of the system. For this the modal displacements

are assumed to be functions of two time scales; the fast time scale T0 = t which characterizes

motions occurring at different frequencies and the slow time scale T1 = εt and T2 = ε2t which

characterize the time variations of the amplitudes and phases of the modes of oscillation. Here

ε is a dimensionless small positive number used as booking keeping parameter. We assume the

displacements as the summation of terms with coefficients of different powers of ε.

P1(t) = x1 = εx11(T0, T1, T2) + ε2x12(T0, T1, T2) + ε3x13(T0, T1, T2) +O(ε4)

P2(t) = x2 = εx21(T0, T1, T2) + ε2x22(T0, T1, T2) + ε3x23(T0, T1, T2) +O(ε4) (2.45)

The derivative terms with respect to t are now defined in terms of new time scales as

d

dt
=

∂

∂T0

dT0
dt

+
∂

∂T1

dT1
dt

+
∂

∂T2

dT2
dt

= (D0 + εD1 + ε2D2)
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d2

dt2
=

(
d

dt

)2

= (D0 + εD1 + ε2D2)2 = (D2
0 + 2εD0D1 + ε2D2

1 + 2ε2D0D2) +H.O.T (2.46)

Terms like damping and forcing are re-scaled by multiplying with different powers of ε so that

they will be balanced as the same order terms in the equation.

C1 = εC1 , C3 = εC3 , v(t) = ε2Vac cos(ωact) (2.47)

By multiplying different terms with different powers of ε we scale them as strong, weak or more

weak terms. Hence they are treated separately while solving the system of equations.

Substituting equations (2.45)-(2.47) in equations (2.39)and (2.40), subsequently separating

different powers of ε upto third order, we get the following three sets of equations.

O(ε1)→ D2
0x11 + λ21x11 + t8x21 = 0

D2
0x21 + λ22x21 + s8x11 = 0 (2.48)

O(ε2)→ D2
0x12 + λ21x12 + t8x22 = −2D0D1x11 − C1D0x11 − t2x211 − t4x11x21

−t7x221 + t9η11 cos(ωact)− t10η12 cos(ωact)

D2
0x22 + λ22x22 + s8x12 = −2D0D1x21 − C3D0x21 − s2x221 − s4x11x21

−s7x211 + s9η21 cos(ωact)− s10(η11 + η12) cos(ωact) (2.49)

O(ε3)→ D2
0x13 + λ21x13 + t8x23 = −C1(D0x12 +D1x11)− (2D0D1x12 +D2

1x11 + 2D0D2x11)

−t1x311 − 2t2x11x12 − t3x11x221 − t4(x11x22 + x12x21)

+t5η11 cos(ωact)x11 − t6η12 cos(ωact)x11 − 2t7x21x22

D2
0x23 + λ22x23 + s8x13 = −C3(D0x22 +D1x21)− (2D0D1x22 +D2

1x21 + 2D0D2x21)

−s1x321 − 2s2x21x22 − s3x21x211 − s4(x11x22 + x12x21)

+s5η21 cos(ωact)x21 − s6(η11 + η12) cos(ωact)x21 − 2s7x11x12

(2.50)

These three sets of coupled homogeneous / non-homogeneous equations are solved separately

and the final solutions for modal displacements are obtained using Eqn.(2.45). Now the two

homogeneous second order coupled equations given by (2.48) are solved to find the values of x11

and x21. We assume the solution of these two equations as

x11 = A1(T1, T2)eiω1T0 +A2(T1, T2)eiω2T0 + Ā1(T1, T2)e−iω1T0 + Ā2(T1, T2)e−iω2T0

x21 = k1A1(T1, T2)eiω1T0 + k2A2(T1, T2)eiω2T0 + k1Ā1(T1, T2)e−iω1T0 + k2Ā2(T1, T2)e−iω2T0

(2.51)
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where, ω1 and ω2 are the coupled natural frequencies of the system in two orthogonal directions

obtained from linear analysis and are given in Eqn.(2.31). A1(T1, T2) and A2(T1, T2) represents

the displacement as well as phase of oscillation and are expressed in polar form later. With this

assumed solution for the first set of equations, we solve for Eqn.(2.49). Substituting back Eqn.(2.51)

into (2.48) we get,

[(λ21 − ω2
1) + t8k1]A1e

iω1T0 + [(λ21 − ω2
2) + t8k2]A2e

iω2T0 = 0

[(λ22 − ω2
1)k1 + s8]A1e

iω1T0 + [(λ22 − ω2
2)k2 + s8]A2e

iω2T0 = 0 (2.52)

In Eqn.(2.52) equating coefficients of different terms on both sides, we get

(λ21 − ω2
1) + t8k1 = 0; (λ21 − ω2

2) + t8k2 = 0; (2.53)

(λ22 − ω2
1)k1 + s8 = 0; (λ22 − ω2

2)k2 + s8 = 0; (2.54)

Solving Eqn.(2.53) and (2.54) for k1, k2 we get,

kn =

(
ω2
n − λ21
t8

)
=

(
s8

ω2
n − λ22

)
(2.55)

for n =1,2. To obtain the solution for (2.49), we substitute (2.51) into it and eliminate the secular

terms arising on the right hand side of the equations by considering the solvability conditions.

Here to describe the nearness of ω2 to ω1 and ωac to ω1 quantitatively, we have taken two detuning

parameters σ1 and σ2 defined by,

ωac = ω1 + εσ1; ω2 = ω1 + εσ2 (2.56)

After substituting for x11 and x21 in eq(2.49), it can be written as,

D2
0x12 + λ21x12 + t8x22 = −2i(ω1D1A1e

iω1T0 + ω2D1A2e
iω2T0)− iC1(A1ω1e

iω1T0 +A2ω2e
iω2T0)

−t2(A2
1e

2iω1T0 +A1Ā1 +A2
2e

2iω2T0 +A2Ā2 + 2A1Ā2e
i(ω1−ω2)T0 + 2A1A2e

i(ω1+ω2)T0)

−t4(A2
1k1e

2iω1T0 +A1Ā1k1 +A2
2k2e

2iω2T0 +A2Ā2k2 +A1Ā2(k1 + k2)ei(ω1−ω2)T0

+A1A2(k1 + k2)ei(ω1+ω2)T0)− t7(k21A
2
1e

2iω1T0 + k21A1Ā1 + k22A
2
2e

2iω2T0 + k22A2Ā2

+2k1k2A1Ā2e
i(ω1−ω2)T0 + 2k1k2A1A2e

i(ω1+ω2)T0) +
t9
2
η11e

iωacT0 − t10
2
η12e

iωacT0 + cc

(2.57)

D2
0x22 + λ22x22 + s8x12 = −2i(ω1k1D1A1e

iω1T0 + k2ω2D1A2e
iω2T0)− iC3(k1A1ω1e

iω1T0

+k2A2ω2e
iω2T0)− s2(k21A

2
1e

2iω1T0 + k21A1Ā1 + k22A
2
2e

2iω2T0 + k22A2Ā2 + 2k1k2A1Ā2e
i(ω1−ω2)T0

+2k1k2A1A2e
i(ω1+ω2)T0)− s4(A2

1k1e
2iω1T0 +A1Ā1k1 +A2

2k2e
2iω2T0 +A2Ā2k2

+A1Ā2(k1 + k2)ei(ω1−ω2)T0 +A1A2(k1 + k2)ei(ω1+ω2)T0)− s7(A2
1e

2iω1T0 +A1Ā1 +A2
2e

2iω2T0

+A2Ā2 + 2A1Ā2e
i(ω1−ω2)T0 + 2A1A2e

i(ω1+ω2)T0) +
s9
2
η21e

iωacT0 − s10
2

(η11 + η12)eiωacT0 + cc

(2.58)
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We assume the homogeneous solution for O(ε2) as:

x12 = P11e
iω1T0 + P12e

iω2T0 + cc,

x22 = P21e
iω1T0 + P22e

iω2T0 + cc (2.59)

Using eq(2.59); eq(2.57) and eq(2.58) can be written as,

(λ21 − ω2
1)P11e

iω1T0 + (λ21 − ω2
2)P12e

iω2T0 + t8(P21e
iω1T0 + P22e

iω2T0) = R11e
iω1T0 +R12e

iω2T0

(2.60)

(λ22 − ω2
1)P21e

iω1T0 + (λ22 − ω2
2)P22e

iω2T0 + s8(P11e
iω1T0 + P12e

iω2T0) = R21e
iω1T0 +R22e

iω2T0

(2.61)

In general form for n =1,2 eq (2.60),(2.61) can be written in matrix form as below[
(λ21 − ω2

n) t8

s8 (λ22 − ω2
n)

][
P1n

P2n

]
=

[
R1n

R2n

]

where, R1n , R2n are the coefficients of eiω1T0 and eiω2T0 respectively appearing in the equations

(2.57)and (2.58) and are given below,

R11 = −2iω1D1A1 − 2iω2D1A2e
iσ2T1 − iC1A1ω1 − iC1A2ω2e

iσ2T1

+

(
t9η11 − t10η12

2

)
eiσ1T1

R12 = −2iω1D1A1e
−iσ2T1 − 2iω2D1A2 − iC1A1ω1e

−iσ2T1 − iC1A2ω2

+

(
t9η11 − t10η12

2

)
ei(σ1−σ2)T1

R21 = −2iω1k1D1A1 − 2ik2ω2D1A2e
iσ2T1 − iC3k1A1ω1 − iC3k2A2ω2e

iσ2T1

+

(
s9η21 − s10(η11 + η12)

2

)
eiσ1T1

R22 = −2iω1k1D1A1e
−iσ2T1 − 2iω2k2D1A2 − iC3k1A1ω1e

−iσ2T1 − iC3k2A2ω2

+

(
s9η21 − s10(η11 + η12)

2

)
ei(σ1−σ2)T1 (2.62)

Solving for eq (2.60) and (2.61) simultaneously, using the homogeneous equation (2.52), we get the

solvability conditions in terms of R1n and R2n.

R1n =
t8

(λ22 − ω2
n)
R2n = −

(
t8
s8

)
knR2n = −k̄nR2n (2.63)
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Corresponding to n =1, the solvability condition R11 + k̄1R21 = 0, for k̄1 = ( t8s8 )k1 gives

−2iω1(1 + k1k̄1)D1A1 − 2iω2(1 + k2k̄1)D1A2e
iσ2T1 = iω1A1(C1 + C3k1k̄1)

+iω2A2(C1 + C3k2k̄1)eiσ2T1 −
(
t9η11 − t10η12 + k̄1s9η21 − k̄1s10(η11 + η12)

2

)
eiσ1T1 (2.64)

For n =2, the solvability condition R12 + k̄2R22 = 0, for k̄2 = ( t8s8 )k2 is written as,

−2iω1(1 + k1k̄2)D1A1e
−iσ2T1 − 2iω2(1 + k2k̄2)D1A2 = iω2A2(C1 + C3k2k̄1)

+iω1A1(C1 + C3k1k̄2)e−iσ2T1 −
(
t9η11 − t10η12 + k̄2s9η21 − k̄2s10(η11 + η12)

2

)
ei(σ1−σ2)T1 (2.65)

Solving Eqn.(2.64) and (2.65) simultaneously we find the expressions for D1A1 and D1A2.

D1A1 =
(B3G2 −B2G4)A1 + (B4G2 −B2G3)A2e

iσ2T1 − i(B2G5 −B5G2)eiσ1T1

(B2G1 −B1G2)

D1A2 =
(B4G1 −B1G3)A2 + (B3G1 −B1G4)A1e

−iσ2T1 − i(B1G5 −B5G1)ei(σ1−σ2)T1

(B1G2 −B2G1)
(2.66)

Now we substitute for D1A1 and D1A2 back from Eqn.(2.66) into the second order modified

equations Eqn.(2.57) and (2.58) and the complete solution for second order equations (2.49) is

written as,

x12 = A3(T1, T2)eiω1T0 +A4(T1, T2)eiω2T0 + c11A
2
1e

2iω1T0 + c12A1Ā1 + c13A
2
2e

2iω2T0

+c14A2Ā2 + c15A1Ā2e
i(ω1−ω2)T0 + c16A1A2e

i(ω1+ω2)T0 + cc

x22 = k1A3(T1, T2)eiω1T0 + k2A4(T1, T2)eiω2T0 + c21A
2
1e

2iω1T0 + c22A1Ā1 + c23A
2
2e

2iω2T0

+c24A2Ā2 + c25A1Ā2e
i(ω1−ω2)T0 + c26A1A2e

i(ω1+ω2)T0 + cc (2.67)

The coefficients cij are determined by comparing similar terms on both sides of Eqn. (2.57),(2.58)

after substituting Eqn.(2.67) into them (given in the appendix). Substituting Eqn.(2.51) and (2.67)

into Eqn.(2.50), subsequently separating secular terms and following Eqn.(2.63), we get the fol-

lowing two solvability conditions.

−2iω1B11(D1A3 +D2A1)−B11D
2
1A1 −B13D1A1 − [2iω2B12(D1A4 +D2A2) +B12D

2
1A2

+B14D1A2]eiσ2T1 = iω1B13A3 + iω2B14A4e
iσ2T1 + ḡ1Ā2A

2
1e
−iσ2T1 + ḡ2Ā2A

2
2e
iσ2T1

+ḡ3A1A2Ā1e
iσ2T1 + ḡ4A

2
2Ā1e

2iσ2T1 + ḡ5A
2
1Ā1 + ḡ6A1Ā2A2 (2.68)

−2iω2G12(D1A4 +D2A2)−G12D
2
1A2 −G13D1A2 − [2iω1G11(D1A3 +D2A1) +G11D

2
1A1

+G14D1A1]e−iσ2T1 = iω2G13A4 + iω1G14A3e
−iσ2T1 + f̄1Ā1A

2
2e
iσ2T1 + f̄2Ā1A

2
1e
−iσ2T1

+f̄3A1A2Ā2e
−iσ2T1 + f̄4A

2
1Ā2e

−2iσ2T1 + f̄5A
2
2Ā2 + f̄6A1Ā1A2 (2.69)
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We define ḡn = g1n + k̄1g2n and f̄n = f1n + k̄2f2n, where f1n and g1n are given in the appendix.

Following Nayfeh[36] we choose A3, A4 so as to eliminate D2
1A1 and D2

1A2 from Eqn.(2.68) and

(2.69). That leads to,

D1[2iω1A3 +D1A1] = 0 ⇒ [2iω1A3 +D1A1] = h11(T2),

D1[2iω2A4 +D1A2] = 0 ⇒ [2iω2A4 +D1A2] = h12(T2); (2.70)

But from Eqn.(2.66), it is quiet clear that D1A1 and D1A2 are implicit functions of slow time scale

T2. Hence we make h11(T2) = h12(T2) =0. Now from Eqn.(2.66) and (2.70), expressions for A3,

A4 can be written as,

A3 = i

[
(B3G2 −B2G4)A1 + (B4G2 −B2G3)A2e

iσ2T1 − i(B2G5 −B5G2)eiσ1T1

2ω1(B2G1 −B1G2)

]

A4 = i

[
(B4G1 −B1G3)A2 + (B3G1 −B1G4)A1e

−iσ2T1 − i(B1G5 −B5G1)ei(σ1−σ2)T1

2ω2(B1G2 −B2G1)

]
(2.71)

Using Eqn.(2.70) in Eqn.(2.68) and (2.69), we can find the values for D2A1 and D2A2 by simulta-

neously solving these following equations,

−2iω1B11D2A1 − 2iω2B12D2A2e
iσ2T1 = B13D1A1 +B14D1A2e

iσ2T1 + iω1B13A3

+iω2B14A4e
iσ2T1 + ḡ1Ā2A

2
1e
−iσ2T1 + ḡ2Ā2A

2
2e
iσ2T1 + ḡ3A1A2Ā1e

iσ2T1

+ḡ4A
2
2Ā1e

2iσ2T1 + ḡ5A
2
1Ā1 + ḡ6A1Ā2A2; (2.72)

−2iω1G11D2A1e
−iσ2T1 − 2iω2G12D2A2 = G13D1A2 +G14D1A1e

−iσ2T1 + iω2G13A4

+iω1G14A3e
−iσ2T1 + f̄1Ā1A

2
2e
iσ2T1 + f̄2Ā1A

2
1e
−iσ2T1 + f̄3A1A2Ā2e

−iσ2T1

+f̄4A
2
1Ā2e

−2iσ2T1 + f̄5A
2
2Ā2 + f̄6A1Ā1A2; (2.73)

After solving, we get the expressions for D2A1 and D2A2 as,

D2A1 =
i

2ω1(B11G12 −B12G11)

[
(B14G12 −B12G13)D1A2e

iσ2T1 + (B13G12 −B12G14)D1A1

+iω1(B13G12 −B12G14)A3 + iω2(B14G12 −B12G13)A4e
iσ2T1 +G12Ḡ−B12F̄ e

iσ2T1

]

D2A2 =
i

2ω2(B12G11 −B11G12)

[
(B14G11 −B11G13)D1A2 + (B13G11 −B11G14)D1A1e

−iσ2T1

+iω2(B14G11 −B11G13)A4 + iω1(B13G11 −B11G14)A3e
−iσ2T1 +G11Ḡe

−iσ2T1 −B11F̄

]
(2.74)
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To get the final solution, we apply method of reconstitution[36] using the equations,

dA1

dt
= εD1A1 + ε2D2A1 + ...

dA2

dt
= εD1A2 + ε2D2A2 + ... (2.75)

Putting the values for differential terms from Eqn.(2.74) into Eqn.(2.75) and using eq (2.71),

subsequently setting ε = 1, so that T0 = T1 = T2 = t, we get the reconstituted modulation

equations.

Ȧ1 =

[
1 + i

(B13G12 −G14B12)

4ω1(B11G12 −G11B12)

]
D1A1 + i

[
(B14G12 −G13B12)

4ω1(B11G12 −G11B12)

]
D1A2e

iσ2t

+i

[
(G12Ḡ−B12F̄ e

iσ2t)

2ω1(B11G12 −G11B12)

]
(2.76)

Ȧ2 = i

[
(B13G11 −G14B11)

4ω2(B12G11 −G12B11)

]
D1A1e

−iσ2t +

[
1 + i

(B14G11 −G13B11)

4ω2(B12G11 −G12B11)

]
D1A2

+i

[
(G11Ḡe

−iσ2t −B11F̄ )

2ω2(B12G11 −G12B11)

]
(2.77)

To express the modulation equations in polar form, we transform A1, A2 by assuming,

An =
1

2
ane

iβn , n = 1, 2. (2.78)

Here an and βn are real functions of time t, hence,

A1 =
1

2
a1e

iβ1 ⇒ Ȧ1 =
1

2
(ȧ1e

iβ1 + ia1β̇1e
iβ1)

A2 =
1

2
a2e

iβ2 ⇒ Ȧ2 =
1

2
(ȧ2e

iβ2 + ia2β̇2e
iβ2) (2.79)

Inserting Eqn.(2.79) into Eqn.(2.76) and (2.77) and using Eqn.(2.66) we get,

1

2
(ȧ1e

iβ1 + ia1β̇1e
iβ1) =

(
1 + i

B13G12 −G14B12

4ω1(B11G12 −G11B12)

)[
1

2

(
B3G2 −B2G4

B2G1 −B1G2

)
a1e

iβ1

+
1

2

(
B4G2 −B2G3

B2G1 −B1G2

)
a2e

i(σ2t+β2) − i
(
B2G5 −B5G2

B2G1 −B1G2

)
eiσ1t

]
+i

(
B14G12 −B12G13

4ω1(B11G12 −B12G11)

)
eiσ2t

[
1

2

(
B4G1 −B1G3

B1G2 −B2G1

)
a2e

iβ2

+
1

2

(
B3G1 −B1G4

B1G2 −B2G1

)
a1e

i(β1−σ2t) − i
(
B1G5 −B5G1

B1G2 −B2G1

)
ei(σ1−σ2)t

]
+i

G12

16ω1(B11G12 −B12G11)

[
ḡ1a

2
1a2e

i(2β1−β2−σ2t) + ḡ2a
3
2e
i(β2+σ2t) + ḡ3a

2
1a2e

i(β2+σ2t)

+ḡ4a1a
2
2e
i(2β2−β1+2σ2t) + ḡ5a

3
1e
iβ1 + ḡ6a1a

2
2e
iβ1

]
− i B12e

iσ2t

16ω1(B11G12 −B12G11)

[
f̄1a1a

2
2e
i(σ2t−β1+2β2)

+f̄2a
3
1e
i(β1−σ2t) + f̄3a1a

2
2e
i(β1−σ2t) + f̄4a

2
1a2e

i(2β1−β2−2σ2t) + f̄5a
3
2e
iβ2 + f̄6a

2
1a2e

iβ2

]
(2.80)
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1

2
(ȧ2e

iβ2 + ia2β̇2e
iβ2) =

(
1 + i

B14G11 −G13B11

4ω2(B12G11 −G12B11)

)[
1

2

(
B4G1 −B1G4

B1G2 −B2G1

)
a2e

iβ2

+
1

2

(
B3G1 −B1G4

B1G2 −B2G1

)
a1e

i(β1−σ2t) − i
(
B1G5 −B5G1

B1G2 −B2G1

)
ei(σ1−σ2)t

]
+i

(
B13G11 −B11G14

4ω2(B12G11 −B11G12)

)
e−iσ2t

[
1

2

(
B3G2 −B2G4

B2G1 −B1G2

)
a1e

iβ1

+
1

2

(
B4G2 −B2G3

B2G1 −B1G2

)
a2e

i(σ2t+β2) − i
(
B2G5 −B5G2

B2G1 −B1G2

)
eiσ1t

]
+i

G11e
−iσ2t

16ω2(B12G11 −B11G12)

[
ḡ1a

2
1a2e

i(2β1−β2−σ2t) + ḡ2a
3
2e
i(β2+σ2t) + ḡ3a

2
1a2e

i(β2+σ2t)

+ḡ4a1a
2
2e
i(2β2−β1+2σ2t) + ḡ5a

3
1e
iβ1 + ḡ6a1a

2
2e
iβ1

]
− i B11

16ω2(B12G11 −B11G12)

[
f̄1a1a

2
2e
i(σ2t−β1+2β2)

+f̄2a
3
1e
i(β1−σ2t) + f̄3a1a

2
2e
i(β1−σ2t) + f̄4a

2
1a2e

i(2β1−β2−2σ2t) + f̄5a
3
2e
iβ2 + f̄6a

2
1a2e

iβ2

]
(2.81)

Finally, we convert these above non-autonomous equations into autonomous forms by defining

another two new variables,

θ1 = (σ1t− β1), θ2 = (σ1 − σ2)t− β2
⇒ θ̇1 = (σ1 − β̇1), θ̇2 = (σ1 − σ2)− β̇2 (2.82)

Using Eqn.(2.82), we separate the real and imaginary parts from Eqn.(2.80) and (2.81) to get four

first order ordinary differential equations, known as enveloping or modulation equations.

ȧ1 = h1a1 + h2a2 cos(θ1 − θ2) + 2h3 sin θ1 −
[

B13G12 −B12G14

4ω1(B11G12 −B12G11)

](
h2a2 sin(θ1 − θ2)

−2h3 cos θ1

)
−
[

B14G12 −B12G13

4ω1(B11G12 −B12G11)

](
h4a2 sin(θ1 − θ2)− 2h6 cos θ1

)
+

[
2G12

16ω1(B11G12 −B12G11)

](
ḡ1a

2
1a2 sin(θ1 − θ2)− ḡ2a32 sin(θ1 − θ2)− ḡ3a21a2 sin(θ1 − θ2)

−ḡ4a1a22 sin 2(θ1 − θ2)

)
+

[
2B12

16ω1(B11G12 −B12G11)

](
f̄1a1a

2
2 sin 2(θ1 − θ2)

−f̄4a21a2 sin(θ1 − θ2) + f̄5a
3
2 sin(θ1 − θ2) + f̄6a

2
1a2 sin(θ1 − θ2)

)
(2.83)
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a1θ̇1 = σ1a1 − h2a2 sin(θ1 − θ2) + 2h3 cos θ1 −
[

B13G12 −B12G14

4ω1(B11G12 −B12G11)

](
h2a2 cos(θ1 − θ2)

+h1a1 − 2h3 sin θ1

)
−
[

B14G12 −B12G13

4ω1(B11G12 −B12G11)

](
h4a2 cos(θ1 − θ2) + h5a1 + 2h6 sin θ1

)
−
[

2G12

16ω1(B11G12 −B12G11)

](
ḡ1a

2
1a2 cos(θ1 − θ2) + ḡ2a

3
2 cos(θ1 − θ2) + ḡ3a

2
1a2 cos(θ1 − θ2)

+ḡ4a1a
2
2 cos 2(θ1 − θ2) + ḡ5a

3
1 + ḡ6a1a

2
2

)
+

[
2B12

16ω1(B11G12 −B12G11)

](
f̄1a1a

2
2 cos 2(θ1 − θ2)

+f̄2a
3
1 + f̄3a1a

2
2 + f̄4a

2
1a2 cos(θ1 − θ2) + f̄5a

3
2 cos(θ1 − θ2) + f̄6a

2
1a2 cos(θ1 − θ2)

)
(2.84)

ȧ2 = h4a2 + h5a1 cos(θ1 − θ2) + 2h6 sin θ2 +

[
B14G11 −B11G13

4ω2(B12G11 −B11G12)

](
h5a1 sin(θ1 − θ2)

+2h6 cos θ2

)
+

[
B13G11 −B11G14

4ω2(B12G11 −B11G12)

](
h1a1 sin(θ1 − θ2) + 2h3 cos θ2

)
+

[
2G11

16ω2(B12G11 −B11G12)

](
ḡ1a

2
1a2 sin 2(θ1 − θ2)− ḡ4a1a22 sin(θ1 − θ2) + ḡ5a

3
1 sin(θ1 − θ2)

+ḡ6a1a
2
2 sin(θ1 − θ2)

)
+

[
2B11

16ω2(B12G11 −B11G12)

](
f̄1a1a

2
2 sin(θ1 − θ2)

−f̄2a31 sin(θ1 − θ2)− f̄3a1a22 sin(θ1 − θ2)− f̄4a21a2 sin 2(θ1 − θ2)

)
(2.85)

a2θ̇2 = (σ1 − σ2)a2 + h5a1 sin(θ1 − θ2) + 2h6 cos θ2 −
[

B14G11 −B11G13

4ω2(B12G11 −B11G12)

](
h5a1 cos(θ1 − θ2)

+h4a2 + 2h6 sin θ2

)
−
[

B13G11 −B11G14

4ω2(B12G11 −B11G12)

](
h1a1 cos(θ1 − θ2) + h2a2 + 2h3 sin θ2

)
−
[

2G11

16ω2(B12G11 −B11G12)

](
ḡ1a

2
1a2 cos 2(θ1 − θ2) + ḡ2a

3
2 + ḡ3a

2
1a2 + ḡ4a1a

2
2 cos(θ1 − θ2)

+ḡ5a
3
1 cos(θ1 − θ2) + ḡ6a1a

2
2 cos(θ1 − θ2)

)
+

[
2B11

16ω2(B12G11 −B11G12)

](
f̄1a1a

2
2 cos(θ1 − θ2)

+f̄2a
3
1 cos(θ1 − θ2) + f̄3a1a

2
2 cos(θ1 − θ2) + f̄4a

2
1a2 cos 2(θ1 − θ2) + f̄5a

3
2 + f̄6a

2
1a2

)
(2.86)

To determine the periodic response of the beam, we solve Eqn.(2.83)-(2.86) for equilibrium

solution by setting time derivatives equals to zero. As the control parameter σ1 is varied, we find

the roots of these equation a1, θ1, a2 and θ2 using Newton-Raphson numerical technique. Now, the

response of the beam upto second order for ε = 1 is expressed as,

P1(t) = x1(t) = x11 + x12 =

(
1 + i

Λ11

2

)
a1 cos(ω1t+ β1) +

(
1 + i

Λ12

2

)
a2 cos(ω2t+ β2)

+Λ13 cos[(ω1 + σ1)t] +
1

2
c11a

2
1 cos 2(ω1t+ β1) +

1

2
c12a

2
1 +

1

2
c13a

2
2 cos 2(ω2t+ β2)

+
1

2
c14a

2
2 +

1

2
c15a1a2 cos 2[(ω1 − ω2)t+ β1 − β2] +

1

2
c16a1a2 cos 2[(ω1 + ω2)t+ β1 + β2] (2.87)
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P2(t) = x2(t) = x21 + x22 = k1

(
1 + i

Λ11

2

)
a1 cos(ω1t+ β1) + k2

(
1 + i

Λ12

2

)
a2 cos(ω2t+ β2)

+Λ14 cos[(ω1 + σ1)t] +
1

2
c21a

2
1 cos 2(ω1t+ β1) +

1

2
c22a

2
1 +

1

2
c23a

2
2 cos 2(ω2t+ β2)

+
1

2
c24a

2
2 +

1

2
c25a1a2 cos 2[(ω1 − ω2)t+ β1 − β2] +

1

2
c26a1a2 cos 2[(ω1 + ω2)t+ β1 + β2]

(2.88)

Where, different terms Λ11,Λ12,Λ13 and Λ14 are defined as follows,

Λ11 =

[
(B2G4 −B3G2)

ω1(B1G2 −B2G1)
+

(B1G4 −B3G1)

ω2(B1G2 −B2G1)

]
,

Λ12 =

[
(B2G3 −B4G2)

ω1(B1G2 −B2G1)
+

(B4G1 −B1G3)

ω2(B1G2 −B2G1)

]
,

Λ13 =

[
(B5G2 −B2G5)

ω1(B1G2 −B2G1)
+

(B1G5 −B5G1)

ω2(B1G2 −B2G1)

]
,

Λ14 =

[
k1

(B5G2 −B2G5)

ω1(B1G2 −B2G1)
+ k2

(B1G5 −B5G1)

ω2(B1G2 −B2G1)

]
. (2.89)

2.3.3 Stability Analysis

In this section, we discuss about the criteria based on the modulation equations, for which the

solution will be stable. The stability of each equilibrium solution is determined using Routh-

Hurwitz criterion by calculating the eigenvalues of the Jacobian matrix of the modulation equations

evaluated at the equilibrium point.

Solutions where all eigenvalues have negative real parts are stable, otherwise unstable. If J

be the Jacobian matrix of the modulation equations evaluated at equilibrium point, according to

this criteria,

[J ]− λ[I] = 0

⇒ λ4 +R1λ
3 +R2λ

2 +R3λ+R4 = 0 (2.90)

Where, Ri’s represent the coefficients of different powers of λ in Eqn.(2.90). Then the necessary

and sufficient conditions [15] to be satisfied for stability of fixed points so that none of the roots

of Eqn.(2.90) has a positive real part are,

R1R2 −R3 > 0 (2.91)

R3(R1R2 −R3)−R2
1R4 > 0 (2.92)

R4 > 0 (2.93)
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The jacobian matrix of the modulation equations used to determine the coefficients Ri is given in

the appendix.

2.4 Results and discussion

This section represents the outcomes of the analytical model for the system of single beam ex-

cited through one bottom electrode and two side electrodes. First, we present the results of linear

frequency analysis after neglecting the nonlinear and forcing terms. The analytical results are com-

pared with the experimental outcomes and are validated. Subsequently, we consider the nonlinear

modal equations and explain the results from numerical analysis using MATLAB and the concept

of modal coupling is explained.

Before proceeding to the results and analysis, the geometric parameters as well as material

properties of the Au-Pd beam under consideration are mentioned in the following Table 2.1 and

Table 2.2 respectively.

Table 2.1: Geom. Parameters
Parameters Value(µm)
L 500
B 4
H 0.2
g 4.5
g1 5.6
d 50

Table 2.2: Matl. Properties
Properties Value
E 2.696E+10 N/m2

ρ 3500 kg/m3

N0 3.7E-5 N
αcorr. 0.00674
ε0 8.85E-12 F/m
c1 3E-6 N.s/m
c3 1E-6 N.s/m

Considering the above parameters, we do numerical analysis and compare the results with

experiments.

2.4.1 Linear frequency analysis

To describe the importance of frequency tuning, we analyze a single clamped-clamped beam made

up of Au-Pd alloy on silicon substrate. The experiment is performed at low temperature of 77 k.

Corresponding to the electrical excitation the dynamic response is measured using laser interfer-

ometry based technique.

Figure.(2.4) shows the variation of two modes under different parametric conditions of a single

clamped-clamped beam. Figure. (2.4)(a)-(d) show the influence of gap ratio, r1 when d0 = 50µm
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Figure 2.4: (a)-(d) Variation of coupling strength with different gap ratio r1; (e) Comparison of
experimental and analytical results for a single beam with geometric parameters L = 500 µm, H
= 4µm, B = 200 nm and r1 = 1.24.

and g0 = 4.5µm. It is found that the strength of modal coupling of the two modes is negligible

when r1 = 1, however, its strength increases as r1 increases to 1.3. Similarly, as r1 increases, the

DC bias at which the coupling occurs also increases. But if one gap is made sufficiently large than

the other, then only one side electrode influences the beam similar to Kozinsky experiment([12]).

Hence we can control this region by suitably varying side electrode gaps. The Figure.(2.4)(e)

presents the experimental evidence of such kind of coupling along with the analytical results for

r1 = 1.24, when the beam and bottom electrode are supplied with voltage V and the two side

electrodes are grounded. From the Figure.(2.4)(e), it is clear that the coupling between two modes

occur at nearly 76 V for r1 = 1.24.

2.4.2 Numerical solution (based on rk5 or ode45)

To obtain the numerical solutions of nonlinear modal equations, we solve Eqn.(2.41)-(2.44) using

Runge-kutta method in MATLAB. First we perform dynamic analysis of the system away from

the coupling region at 50 V. The results obtained show no influence of one mode on the other as

expected earlier. Then as the DC bias is increased further, fixing the AC excitation amplitude,

both the modes come close to each other and start influencing which becomes maximum near the

coupling voltage 76 V as shown in Figure.(2.4).

Now, we fix the DC voltage near the coupling region (76 V) and vary the AC amplitude. At

low AC excitation, the amplitude-frequency curve of the beam shows only linear region. But as

the magnitude of AC increases beyond critical value, nonlinearity in the response arises. Only the

stable regions of the solutions are plotted and the unstable or multivalued regions are shown by

jumps. By conducting forward and backward sweeps of forcing frequency we can predict the region

of instability.
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Figure 2.5: (a),(b) Linear frequency response of single beam near coupling region. VDC =76V,
VAC =0.05 V. P1, P2 represent the in-plane and out of plane modal displacements. (c),(d) Nonlinear
frequency response of single beam near coupling region showing jumps. VDC =76V, VAC =0.08.
Forward frequency sweep (red and blue), Reverse frequency sweep (black and green).

2.4.3 Solution based on Method of Multiple Scales

To qualitatively analyze the nonlinear responses of the beam, we apply method of multiple scales

to obtain the enveloping equations Eqn.(2.83)-(2.86). For steady state response, the time deriva-

tives of different terms on the left hand side of these equations are equated to zero. Consequently

we solve four algebraic equations using Newton-Raphson technique in MATLAB. Finally using

Eqn.(2.87) and (2.88) the modal displacements in both the directions are calculated. Using Routh-

Herwitz criteria, the stable and unstable regions of solution can be separated.

Figure.(2.6) shows the numerical results using Newton-Raphson technique from modulation

equations. Here the stable solutions are shown where the unstable region remains un-plotted. We

use both forward and reverse sweeps for two different AC voltages to get the points where instability

starts. In Figure.(2.7), we have shown the complete nonlinear response using MATCONT for 0.06

V AC. The responses are calculated near the coupling region.
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Figure 2.6: P1, P2 represent the in-plane and out of plane modal displacements for single beam.
(a),(b) Linear frequency response of single beam using method of multiple scales for VDC =76V,
VAC =0.03 V and (c),(d) presents nonlinear frequency response near coupling region using MMS
showing stable and unstable regions at VDC =76V, VAC =0.06 V. Forward frequency sweep (red
and blue), Reverse frequency sweep (black and green).

Figure 2.7: Complete amplitude-frequency response obtained by method of multiple scales using
MATCONT for VDC =76V, VAC =0.06 V. LP shows the limit points. Fig.(2.7)(a) corresponds to
the in-plane and (b) corresponds to the out-of-plane movement.
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Chapter 3

Mathematical modeling and

solution of an array of three

fixed-fixed beams

In this section, we extend the analysis of single beam system to an array of three beams. All the

beams are geometrically similar and fixed at both the ends. The beams are excited by two side

electrodes and one bottom electrode as before. We analytically model the system by considering

each beam separately which is influenced by the neighboring beams and electrodes. Finally using

Rayleigh-Ritz-Galerkin modal superposition concept, we reduce the system using single mode

shape. The frequency analysis is carried out based on linear modal matrix and the analytical

results are validated by comparing with experimental results.

3.1 Full static and dynamic governing equations

For the analysis of the system of 3 beam array, we consider all beams having length L, width

B, thickness H and are fixed at both the ends. Beams are separated from each other and side

electrodes by side gaps of gn and all beams are separated from the bottom electrode by gap d as

shown in Fig.(3.1). For simplicity, we normalize the gap between each beam and its neighbors

w.r.t the first beam-electrode separation g0, which gives rn = gn
g0

for n = 0, 1, 2, 3. We consider

different residual tensions in the beams due to uneven heating effects.

The motion of each beam is considered to be in two orthogonal directions in the three beam

array as in the case of single beam. Hence, we have altogether 6 governing equations to model the

system. The forcing on the first and third beams are similar due to symmetry of the system, while

that on the middle beam is different. Now,neglecting fringing effects and considering forces due to

in-homogeneous electric field, the governing equations of motion for the system are written as,
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Figure 3.1: Side view of an array of 3 beams separated from each other, the side electrodes E1 and
E2, and the ground electrode Eg. Bottom separation for all beams are d

EIzy1xxxx + ρAy1tt − [N1 +
ExA

2L

∫ L

0

(y21x + z21x)dx]y1xx = Q1y (3.1)

EIyz1xxxx + ρAz1tt − [N1 +
ExA

2L

∫ L

0

(z21x + y21x)dx]z1xx = Q1z (3.2)

EIzy2xxxx + ρAy2tt − [N2 +
ExA

2L

∫ L

0

(y22x + z22x)dx]y2xx = Q2y (3.3)

EIyz2xxxx + ρAz2tt − [N2 +
ExA

2L

∫ L

0

(z22x + y22x)dx]z2xx = Q2z (3.4)

EIzy3xxxx + ρAy3tt − [N3 +
ExA

2L

∫ L

0

(y23x + z23x)dx]y3xx = Q3y (3.5)

EIyz3xxxx + ρAz3tt − [N3 +
ExA

2L

∫ L

0

(z23x + y23x)dx]z3xx = Q3z (3.6)

Subjected to the following boundary conditions for n =1,2,3.

yn(0, t) = yn(L, t) = 0, zn(0, t) = zn(L, t) = 0,

ynx(0, t) = ynx(L, t) = 0, znx(0, t) = znx(L, t) = 0 (3.7)

For n =1,2,3 for three beams. N1, N2 and N3 are the axial tensions in the beams respectively.

They may be different because of different initial residual tension or due to thermal gradient

induced by LASER heating effect. The actual tension N can be expressed as N = N0 +N ′, where

N0 is the pretension in the fabricated device corresponding to the reference temperature and N ′ is

the additional tension induced in the beam due to the differential thermal contraction of the beam

and the substrate [4].

N ′ = −EA(α− αs)(T − T0)

where E is the Young’s modulus of the beam material, and α, αs are the linear coefficients of
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thermal expansion of the beam an substrate respectively. Subscripts x and t denote the derivatives

with respect to x and t respectively. E and Ex are the Young’s modulus of elasticity for all the

beams in two orthogonal directions respectively. ρ is the density of the beam material. A is the

cross section area of each beam. We take the displacements of the beam in two directions as

y1 = y1(x), z1 = z1(x), y2 = y2(x), z2 = z2(x), y3 = y3(x) and z3 = z3(x). Iz and Iy are the

moment of inertia of the cross section for y and z deflections respectively. These two quantities

are same for all the three beams due to their similar geometric dimensions.

Following the expressions of forcing for single beam, the forcing terms Qy and Qz for all the

3 beams can be written as follows,

Q1y =
1

2
ε0(1− k1|z1|)H

[
(V10 + v(t))2

(g0 − y1)2
− (V21 + v(t))2

(g1 + y1 − y2)2

]
(3.8)

Q1z =
1

2
ε0B

[
(V1g + kv(t))2

(d− z1)2

]
+ k2

[
(V10 + v(t))2(−z1) + (V21 + v(t))2(z2 − z1)

]
(3.9)

Q2y =
1

2
ε0(1− k1|z2|)H

[
(V21 + v(t))2

(g1 + y1 − y2)2
− (V32 + v(t))2

(g2 + y2 − y3)2

]
(3.10)

Q2z =
1

2
ε0B

[
(V2g + kv(t))2

(d− z2)2

]
+ k2

[
(V21 + v(t))2(z1 − z2) + (V32 + v(t))2(z3 − z2)

]
(3.11)

Q3y =
1

2
ε0(1− k1|z3|)H

[
(V32 + v(t))2

(g2 + y2 − y3)2
− (V43 + v(t))2

(g3 + y3 − y4)2

]
(3.12)

Q3z =
1

2
ε0B

[
(V3g + kv(t))2

(d− z3)2

]
+ k2

[
(V32 + v(t))2(z2 − z3) + (V43 + v(t))2(z4 − z3)

]
(3.13)

Where ε0 = 8.85 × 10−12 F/m is the free space permittivity. V and v(t) are the DC and AC

components of applied voltage. Since we are applying AC to alternate beams, k = 0 for beams

with even numbering, otherwise it is equal to 1.

We non-dimensionalize Eqn.(3.1)- (3.6) by substituting the following new variables as denoted

by hat in the governing equations,

x̂ =
x

L
, ŷ1 =

y1
g
, ŷ2 =

y2
g
, ŷ3 =

y3
g
, ẑ1 =

z1
d
, ẑ2 =

z2
d
, ẑ3 =

z3
d
, t̂ =

t

T
(3.14)

T is the time scale to non-dimensionalize time t and is equal to
√

ρBHL4

EIz
. Now, dropping hats, we

get non-dimensionalized form of equations as,
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y1xxxx + y1tt − [N1 + α1Γ(y1, y1) + α2Γ(z1, z1)]y1xx = α3

[
(V10 + v(t))2

r20(1 + −y1)
r0

)2

− (V21 + v(t))2

r21(1 + (y1−y2)
r1

)2

]
(3.15)

z1xxxx + α4z1tt − α4[N1 + α1Γ(y1, y1) + α2Γ(z1, z1)]z1xx = α5
(V1g + kv(t))2

(1− z1)2

+α6

[
[V10 + v(t)]2(−z1) + [V21 + v(t)]2(z2 − z1)

]
(3.16)

y2xxxx + y2tt − [N2 + α1Γ(y2, y2) + α2Γ(z2, z2)]y2xx = α3

[
(V21 + v(t))2

r21(1 + (y1−y2)
r1

)2

− (V21 + v(t))2

r22(1 + (y2−y3)
r2

)2

]
(3.17)

z2xxxx + α4z2tt − α4[N2 + α1Γ(y2, y2) + α2Γ(z2, z2)]z2xx = α5
(V2g + kv(t))2

(1− z2)2

+α6

[
[V21 + v(t)]2(z1 − z2) + [V32 + v(t)]2(z3 − z2)

]
(3.18)

y3xxxx + y3tt − [N3 + α1Γ(y3, y3) + α2Γ(z3, z3)]y3xx = α3

[
(V32) + v(t))2

r22(1 + (y2−y3)
r2

)2

− (V43 + v(t))2

r23(1 + (y3)
r3

)2

]
(3.19)

z3xxxx + α4z3tt − α4[N3 + α1Γ(y3, y3) + α2Γ(z3, z3)]z3xx = α5
(V3g + kv(t))2

(1− z3)2

+α6

[
[V32 + v(t)]2(z2 − z3)− [V43 + v(t)]2(z3)

]
(3.20)

Subjected to new sets of boundary conditions for n =1,2,3,

yn(0, t) = yn(1, t) = 0, zn(0, t) = zn(1, t) = 0,

ynx(0, t) = ynx(1, t) = 0, znx(0, t) = znx(1, t) = 0 (3.21)

All the coefficients appearing in these equations are given in the Eqn.(2.10). Now we consider
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the displacements in the form:

y1(x, t) = us1(x) + u1(x, t), z1(x, t) = ws1(x) + w1(x, t)

y2(x, t) = us2(x) + u2(x, t), z2(x, t) = ws2(x) + w2(x, t)

y3(x, t) = us3(x) + u3(x, t), z3(x, t) = ws3(x) + w3(x, t) (3.22)

To find the static deflections usn(x) and wsn(x) of the beam for n =1,2,3, we have to solve

the resulting equations after substituting eq(3.22) in eq(3.15)-(3.20) and then making all time

derivatives and dynamic terms equal to zero. Finally the static equations are written as follows,

us1xxxx − [N1 + α1Γ(us1, us1) + α2Γ(ws1, ws1)]us1xx = α3

[
(V10)2

r20(1 + (−us1)
r0

)2
−

(V21)2

r21(1 + (us1−us2)
r1

)2

]
(3.23)

ws1xxxx − α4[N1 + α1Γ(us1, us1) + α2Γ(ws1, ws1)]ws1xx = α5
(V1g)

2

(1− ws1)2

+α6

[
V 2
10(−ws1) + V 2

21(ws2 − ws1)

]
(3.24)

us2xxxx − [N2 + α1Γ(us2, us2) + α2Γ(ws2, ws2)]us2xx = α3

[
(V21)2

r21(1 + (us1−us2)
r1

)2
−

(V32)2

r22(1 + (us2−us3)
r2

)2

]
(3.25)

ws2xxxx − α4[N2 + α1Γ(us2, us2) + α2Γ(ws2, ws2)]ws2xx = α5
(V2g)

2

(1− ws2)2

+α6

[
V 2
21(ws1 − ws1) + V 2

32(ws3 − ws2)

]
(3.26)

us3xxxx − [N3 + α1Γ(us3, us3) + α2Γ(ws3, ws3)]us3xx = α3

[
(V32)2

r22(1 +
(us(2)−us3)

r2
)2
−

(V43)2

r23(1 + (us3)
r3

)2

]
(3.27)

ws3xxxx − α4[N3 + α1Γ(us3, us3) + α2Γ(ws3, ws3)]ws3xx = α5
(V3g)

2

(1− ws3)2

+α6

[
V 2
32(ws2 − ws3)− V 2

43(ws3)

]
(3.28)

Again substituting eq(3.22) in eq(3.15)-(3.20), using the static equations (3.23),(3.28) and expand-
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ing the forcing terms about equilibrium by Taylor series expansion method, the dynamic governing

equations are obtained. To perform the linear frequency analysis, we neglect all nonlinear and

forcing terms in these equations. Finally, the linear dynamic equations are given as follows,

u1xxxx + u1tt − [2α1Γ(us1, u1) + 2α2Γ(ws1, w1)]us1xx − [N1 + α1Γ(us1, us1)

+α2Γ(ws1, ws1)]u1xx = 2α3

[
V 2
10

(
u1

r30(1 + (−us1

r0
)3

)
−(V21)2

(
u2 − u1

r31(1 + (us1−us2)
r1

)3

)]
(3.29)

w1xxxx + α4w1tt − α4[2α1Γ(us1, u1) + 2α2Γ(ws1, w1)]ws1xx − α4[N1

+α1Γ(us1, us1) + α2Γ(ws1, ws1)]w1xx = 2α5

V 2
1g

(1− ws1)3
w1

+α6

[
V 2
10(−w1) + V 2

21(w2 − w1)

]
(3.30)

u2xxxx + u2tt − [2α1Γ(us2, u2) + 2α2Γ(ws2, w2)]us2xx − [N2 + α1Γ(us2, us2)

+α2Γ(ws2, ws2)]u2xx = 2α3

[
V 2
21

(
u2 − u1

r31(1 + (us1−us2

r1
)3

)
−(V32)2

(
u3 − u2

r32(1 + (us2−us3)
r2

)3

)]
(3.31)

w2xxxx + α4w2tt − α4[2α1Γ(us2, u2) + 2α2Γ(ws2, w2)]ws2xx − α4[N2

+α1Γ(us2, us2) + α2Γ(ws2, ws2)]w2xx = 2α5

V 2
2g

(1− ws2)3
w2

+α6

[
V 2
21(w1 − w2) + V 2

32(w3 − w2)

]
(3.32)

u3xxxx + u3tt − [2α1Γ(us3, u3) + 2α2Γ(ws3, w3)]us3xx − [N3 + α1Γ(us3, us3)

+α2Γ(ws3, ws3)]u3xx = 2α3

[
V 2
32

(
u3 − u2

r32(1 + (us2−us3

r2
)3

)
+(V43)2

(
u3

r33(1 + (us3)
r3

)3

)]
(3.33)

w3xxxx + α4w3tt − α4[2α1Γ(us3, u3) + 2α2Γ(ws3, w3)]ws3xx − α4[N3

+α1Γ(us3, us3) + α2Γ(ws3, ws3)]w3xx = 2α5

V 2
3g

(1− ws3)3
w3

+α6

[
V 2
32(w2 − w3)− V 2

43(w3)

]
(3.34)
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subjected to the following boundary conditions,

u1(0, t) = u1(1, t) = w1(0, t) = w1(1, t) = 0

u1x(0, t) = u1x(1, t) = w1x(0, t) = w1x(1, t) = 0

u2(0, t) = u2(1, t) = w2(0, t) = w2(1, t) = 0

u2x(0, t) = u2x(1, t) = w2x(0, t) = w2x(1, t) = 0

u3(0, t) = u3(1, t) = w3(0, t) = w3(1, t) = 0

u3x(0, t) = u3x(1, t) = w3x(0, t) = w3x(1, t) = 0 (3.35)

3.2 Frequency analysis for N = 3 beam.

To perform the frequency analysis, we reduce the above static and linear dynamic equations using

single mode Galerkin procedure. We assume the static and dynamic deflections of the beam along

both the planes as:

us1(x) = A11(y, z)φ(x); ws1(x) = A12(y, z)φ(x);

u1(x, t) = P11(t)φ(x); w1(x, t) = P12(t)φ(x);

us2(x) = A21(y, z)φ(x); ws2(x) = A22(y, z)φ(x);

u2(x, t) = P21(t)φ(x); w2(x, t) = P22(t)φ(x);

us3(x) = A31(y, z)φ(x); ws3(x) = A32(y, z)φ(x);

u3(x, t) = P31(t)φ(x); w3(x, t) = P32(t)φ(x); (3.36)

Here, φ(x) =
√

2
3

(
1− cos(2πx)

)
as assumed earlier, so that it satisfies orthogonality conditions.

Finally the reduced order static equations are given as,

16

9
π4α1A

3
11 +

(
16

3
π4 +

16

9
π4α2A

2
12 +

4

3
π2N1

)
A11 − α3

[
V 2
10

r20

√√√√ 2/3

(1 + 2
√

2
3
(−A11)
r0

)3

−V
2
21

r21

√√√√ 2/3

(1 + 2
√

2
3
(A11−A21)

r1
)3

]
= 0

(3.37)

16

9
π4α2A

3
12 +

(
16

3

π4

α4
+

16

9
π4α1A

2
11 +

4

3
π2N1

)
A12 −

α5

α4
V 2
1g

√√√√ 2/3

(1− 2
√

2
3A12)3

+
α6

α4

(
[V 2

10 + V 2
21]A12 + V 2

21A22

)
= 0 (3.38)

37



16

9
π4α1A

3
21 +

(
16

3
π4 +

16

9
π4α2A

2
22 +

4

3
π2N2

)
A21 − α3

[
V 2
21

r21

√√√√ 2/3

(1 + 2
√

2
3
(A11−A21)

r1
)3

−V
2
32

r22

√√√√ 2/3

(1 + 2
√

2
3
(A21−A31)

r2
)3

]
= 0

(3.39)

16

9
π4α2A

3
22 +

(
16

3

π4

α4
+

16

9
π4α1A

2
21 +

4

3
π2N2

)
A22 −

α5

α4
V 2
2g

√√√√ 2/3

(1− 2
√

2
3A22)3

−α6

α4

(
V 2
21A12 − [V 2

21 + V 2
32]A22 + V 2

32A32

)
= 0 (3.40)

16

9
π4α1A

3
31 +

(
16

3
π4 +

16

9
π4α2A

2
32 +

4

3
π2N3

)
A31 − α3

[
V 2
32

r22

√√√√ 2/3

(1 + 2
√

2
3
(A21−A31)

r2
)3

−V
2
43

r23

√√√√ 2/3

(1 + 2
√

2
3
(A31)
r3

)3

]
= 0

(3.41)

16

9
π4α2A

3
32 +

(
16

3

π4

α4
+

16

9
π4α1A

2
31 +

4

3
π2N3

)
A32 −

α5

α4
V 2
3g

√√√√ 2/3

(1− 2
√

2
3A32)3

−α6

α4

(
V 2
32A22 − [V 2

32 + V 2
43]A32

)
= 0 (3.42)

Similarly, reducing the dynamic equations (3.29)-(3.34), we obtain the modal equations in

matrix form as, 

P̈11

P̈12

P̈21

P̈22

P̈31

P̈32


+



λ11 c1 c2 0 0 0

c3 λ12 0 0 0 0

c5 0 λ21 c4 c1 0

0 0 c7 λ22 0 0

0 0 c9 0 λ31 c8

0 0 0 0 c10 λ32





P11

P12

P21

P22

P31

P32


= 0

Where, cj ’s are the coupling terms and λij ’s are the unperturbed natural frequencies of the

array of beams given below.

38



λ11 =

[
16

3
π4 +

16

9
π4α2A

2
12 +

16

3
π4α1A

2
11 +

4

3
π2N1 − 2α3

(
V 2
10

r30(1− 2
√

2
3
(A11)
r0

)
5
2

+
V 2
21

r31(1− 2
√

2
3
(A21−A11

r1
)

5
2

)]
(3.43)

λ12 =

[
16

3

π4

α4
+

16

9
π4α1A

2
11 +

16

3
π4α2A

2
12 +

4

3
π2N1 − 2

α5

α4
V 2
1g(1− 2

√
2

3
A12)−

5
2

+
α6

α4
(V 2

10 + V 2
21)

]
(3.44)

λ21 =

[
16

3
π4 +

16

9
π4α2A

2
22 +

16

3
π4α1A

2
21 +

4

3
π2N2 − 2α3

(
V 2
21

r31(1− 2
√

2
3
(A21−A11)

r1
)

5
2

+
V 2
32

r32(1− 2
√

2
3
(A31−A21

r2
)

5
2

)]
(3.45)

λ22 =

[
16

3

π4

α4
+

16

9
π4α1A

2
21 +

16

3
π4α2A

2
22 +

4

3
π2N2 − 2

α5

α4
V 2
2g(1− 2

√
2

3
A22)−

5
2

+
α6

α4
(V 2

21 + V 2
32)

]
(3.46)

λ31 =

[
16

3
π4 +

16

9
π4α2A

2
32 +

16

3
π4α1A

2
31 +

4

3
π2N3 − 2α3

(
V 2
32

r32(1− 2
√

2
3
(A31−A21)

r2
)

5
2

+
V 2
43

r33(1− 2
√

2
3
−A31

r3
)

5
2

)]
(3.47)

λ32 =

[
16

3

π4

α4
+

16

9
π4α1A

2
31 +

16

3
π4α2A

2
32 +

4

3
π2N3 − 2

α5

α4
V 2
3g(1− 2

√
2

3
A32)−

5
2

+
α6

α4
(V 2

32 + V 2
43)

]
(3.48)
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c1 =
32

9
α2A11A12π

4; c2 = 2α3
V 2
32

r31(1− 2
√

2
3 (A21−A11

r1
)5/2

; c3 =
32

9
α1A11A12π

4; c4 =
32

9
α2A21A22π

4;

c5 = 2α3
V 2
32

r31(1− 2
√

2
3 (A21−A11

r1
)5/2

; c6 = 2α3
V 2
43

r32(1− 2
√

2
3 (A31−A21

r2
)5/2

; c7 =
32

9
α1A21A22π

4;

c8 =
32

9
α2A31A32π

4; c9 = 2α3
V 2
43

r32(1− 2
√

2
3 (A31−A21

r2
)5/2

; c10 =
32

9
α1A31A32π

4

;(3.49)

Solving this eigenvalue problem gives the linear frequencies of the coupled system. By suitably

varying the gaps between beams and applying DC bias, we get multiple modal coupling in the array.

3.3 Results and discussions

We present the results for linear frequency analysis based on the analytical model for three beam

array and compare it with experimental data. The beams used in the experiment are made up

of Au-Pd alloy on a silicon substrate using bulk micro-machining process[9]. All the geometric

parameters as well as material properties of the Au-Pd beam under consideration for the numerical

analysis of three beams are mentioned in the following Table 3.1 and Table 3.2 respectively. We

Table 3.1: Geom. Parameters
Parameters Value(µm)
L 500
B 2
H 0.2
g 4.8
g1 4.9
g2 5
g3 4.6
d 50

solve for the modal frequencies of all the beams using MATLAB and plot them to compare with

experimental results.

Table 3.2: Matl. Properties
Properties Value
E 1.85E+11 N/m2

ρ 4870 kg/m3

N1 3.3E-5 N
N2 3.498E-5 N
N3 3.729E-5 N
αcorr. 0.00462
ε0 8.85E-12 F/m

The experimental arrangement of beams in three beam array are shown in the Figure.(3.2).

All the beams are fixed at their both ends and separated from the side and bottom electrodes.

The experiments are performed at 77 K.
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Figure 3.2: A picture of 3-beams array with two side electrodes and a bottom electrode.

Figure 3.3: Influence of laser heating on frequency across beam width (X -direction is taken along
the width).

Frequency variation in an array of three beams due to temperature change by LASER heating

shows the presence of mixing regions where different modes come closer and interact with each

other. Figure.(3.3) shows the frequency variation due to this effect experimentally. Due to uneven

heating along the width, the variation is not uniform.

Taking the parameters as given in Table 3.1 and Table 3.2, the variation of two modal frequen-

cies for each beam in the array subjected to different dc biasing at a fixed temperature distribution

are calculated and compared both experimentally and analytically in Figure.(3.4). Both the re-

sults agree well with each other. Figure.(3.5) also presents different modal coupling regions which

can be controlled by choosing proper gaps between beams. At about 70 V DC, coupling between

different modes of beam becomes prominent. But each individual beam behaves as that of single

beam discussed in the previous section. Modes of different beams couple at different voltages due

to difference in side electrode gaps and other parameters.
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Figure 3.4: Frequency variation due to dc bias when the laser is positioned near X=3522 µm.
Experimental (red dotted) vs. analytical (blue solid line).

Figure 3.5: Frequency variation in three beam array showing modal couplings (zoomed).
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Chapter 4

Mathematical modeling and

solution of an array of N

fixed-fixed beams

Similar to the case of three doubly clamped beams excited electrostatically along in-plane and out

of plane directions, in this section we consider an array of N fixed-fixed beams and generalize our

formulations for linear frequency analysis. We consider the motion of each beam to be influenced by

the adjacent beams or electrodes in the in-plane direction and by the bottom electrode in the other

direction. At the same time, the influence of other neighboring electrodes are ignored. Finally we

analyze a case of 40 beam array and compare the analytical result with the experimental outcomes.

4.1 Full static and dynamic governing equations

To analytically model the system of N beams, we consider all beams having length L, width B,

thickness H and are clamped at both the ends. Beams are separated from each other and side

electrodes by side gaps of gn and by the same bottom gap d as shown in Fig.(4.1). For simplicity,

we normalize the gap between each beam and its neighbors w.r.t g0, which gives the ratio rn = gn
g0

for n = 0, 1...N .

Considering motion of each beam in two orthogonal directions in the array, we get total of

2N governing equations. Neglecting poison’s effect, fringing effects and considering forces due to

in-homogeneous electric field, the governing equations of motion for the nth beam are written as,

EIzynxxxx + ρAyntt − [Nn +
ExA

2L

∫ L

0

(y2nx + z2nx)dx]ynxx = Qny (4.1)

EIyznxxxx + ρAzntt − [Nn +
ExA

2L

∫ L

0

(z2nx + y2nx)dx]znxx = Qnz (4.2)
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Figure 4.1: Side view of an array of N beams separated from each other, the side electrodes E1

and E2, and the ground electrode Eg

Subjected to the boundary conditions,

yn(0, t) = yn(L, t) = 0, zn(0, t) = zn(L, t) = 0,

ynx(0, t) = ynx(L, t) = 0, znx(0, t) = znx(L, t) = 0 (4.3)

E and Ex are the Young’s modulus of elasticity for the transversely isotropic beam in x

plane and x-direction respectively. ρ is the density of the beam material. Nn, Iz and Iy are the

residual tensions for the nth beam and moment of inertia of the cross section for y and z motions

respectively. A(= BH) is the cross section area of the beam. Subscripts x and t denote the

derivatives with respect to x and t respectively. yn = yn(x) and zn = zn(x) are the displacements

of the beam in two directions.

As discussed earlier, the forcing terms Qny and Qnz for the nth beam can be written as follows,

Qny =
1

2
ε0(1− k1|zn|)H

[
(V(n)(n−1) + v(t))2

(g(n−1) + y(n−1) − yn)2
−

(V(n)(n+1) + v(t))2

(gn + yn − y(n+1))2

]
(4.4)

Qnz =
1

2
ε0B

[
(V(n)(g) + kv(t))2

(d− zn)2

]
+ k2

[
(V(n)(n−1) + v(t))2(z(n−1) − zn)

+(V(n+1)(n) + v(t))2(z(n+1) − zn)

]
(4.5)

Where ε0 = 8.85 × 10−12 F/m is the free space permittivity. V and v(t) are the DC and AC

components of applied voltage. Since we are applying AC to alternate beams, k = 0 for beams

with even numbering, otherwise it is equal to 1.

We non-dimensionalize Eqn.(4.1) and (4.2) by substituting the following new variables as

denoted by hat in the governing equations,

x̂ =
x

L
, ŷn =

yn
g
, ẑn =

zn
d
, t̂ =

t

T
(4.6)

T is the time scale used to non-dimensionalize time t and is equal to
√

ρBHL4

EIz
. Then dropping

hats for convenience, we get non-dimensionalized form of equations,
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ynxxxx + yntt − [Nn + α1Γ(yn, yn) + α2Γ(zn, zn)]ynxx = α3

[
(V(n)(n−1) + v(t))2

r2(n−1)(1 +
(y(n−1)−yn)

r(n−1)
)2

−
(V(n)(n+1) + v(t))2

r2n(1 +
(yn−y(n+1))

rn
)2

]
(4.7)

znxxxx + α4zntt − α4[Nn + α1Γ(yn, yn) + α2Γ(zn, zn)]znxx = α5

(V(n)(g) + kv(t))2

(1− zn)2

+α6

[
[Vn(n−1) + v(t)]2(zn−1 − zn) + [Vn(n+1) + v(t)]2(zn+1 − zn)

]
(4.8)

Subjected to new sets of boundary conditions,

yn(0, t) = yn(1, t) = 0, zn(0, t) = zn(1, t) = 0,

ynx(0, t) = ynx(1, t) = 0, znx(0, t) = znx(1, t) = 0 (4.9)

All the coefficients appearing in these equations are given in the previous section in Eqn.(2.10).

Now we consider the displacements in the form:

yn(x, t) = usn(x) + un(x, t), zn(x, t) = wsn(x) + wn(x, t) (4.10)

To find the static deflections usn(x) and wsn(x) of the beam, we have to solve the resulting

equations after substituting eq(4.10) in eq(4.8), (4.9) and then neglecting all dynamic terms by

making them zero. Finally the static equations are written as follows,

usnxxxx − [Nn + α1Γ(usn, usn) + α2Γ(wsn, wsn)]usnxx = α3

[
(Vn(n−1))

2

r2n−1(1 +
(us(n−1)−usn)

rn−1
)2
−

(Vn(n+1))
2

r2n(1 +
(usn−us(n+1))

rn
)2

]
(4.11)

wsnxxxx − α4[Nn + α1Γ(usn, usn) + α2Γ(wsn, wsn)]wsnxx = α5

(V(n)(g))
2

(1− wsn)2

+α6

[
V 2
n(n−1)(ws(n−1) − wsn) + V 2

n(n+1)(ws(n+1) − wsn)

]
(4.12)

Using the static equations (4.11),(4.12) and expanding the forcing terms about equilibrium

using Taylor series expansion method, the dynamic equations are obtained. To perform the linear

frequency analysis, we neglect all nonlinear and forcing terms in these equations. Finally, the linear

dynamic equations are given as follows,
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unxxxx + untt − [2α1Γ(usn, un) + 2α2Γ(wsn, wn)]usnxx − [Nn + α1Γ(usn, usn)

+α2Γ(wsn, wsn)]unxx = 2α3

[
V 2
n(n−1)

(
un − un−1

r3n−1(1 +
(us(n−1)−usn

rn−1
)3

)

−(Vn(n+1))
2

(
un+1 − un

r3n(1 +
(usn−us(n+1))

rn
)3

)]
(4.13)

wnxxxx + α4wntt − α4[2α1Γ(usn, un) + 2α2Γ(wsn, wn)]wsnxx − α4[Nn

+α1Γ(usn, usn) + α2Γ(wsn, wsn)]wnxx = 2α5

V 2
(n)(g)

(1− wsn)3
wn

+α6

[
V 2
n(n−1)(wn−1 − wn) + V 2

n(n+1)(wn+1 − wn)

]
(4.14)

subjected to the following boundary conditions,

un(0, t) = un(1, t) = wn(0, t) = wn(1, t) = 0

unx(0, t) = unx(1, t) = wnx(0, t) = wnx(1, t) = 0 (4.15)

4.2 Linear frequency analysis for N beams.

We reduce the static and linear dynamic governing equations considering single mode shape. Hence,

the static and dynamic deflections of the beam along both the planes are assumed as:

usn(x) = An1(y, z)φ(x); wsn(x) = An2(y, z)φ(x);

un(x, t) = Pn1(t)φ(x); wn(x, t) = Pn2(t)φ(x); (4.16)

Here, φ(x) =
√

2
3

(
1 − cos(2πx)

)
such that

∫ 1

0
(φ1(x))2dx = 1 and it satisfies the geometric

boundary conditions. Finally the reduced order static equations are given as,

16

9
π4α1A

3
n1 +

(
16

3
π4 +

16

9
π4α2A

2
n2 +

4

3
π2Nn

)
An1 − α3

[
V 2
(n−1)(n)

r2n−1

√√√√ 2/3

(1 + 2
√

2
3

(A(n−1)1−A(n)1)

rn−1
)3

−
V 2
(n)(n+1)

r2n

√√√√ 2/3

(1 + 2
√

2
3

(An1−A(n+1)1)

rn
)3

]
= 0

(4.17)

16

9
π4α2A

3
n2 +

(
16

3

π4

α4
+

16

9
π4α1A

2
n1 +

4

3
π2Nn

)
An2 −

α5

α4
V 2
(n)(g)

√√√√ 2/3

(1− 2
√

2
3An2)3

−α6

α4

(
V 2
(n)(n−1)A(n−1)2 − [V 2

(n)(n−1) + V 2
(n+1)(n)]An2 + V 2

(n+1)(n)A(n+1)2

)
= 0 (4.18)
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Where, A01 = A(N+1)1 =0 correspond to displacements of two fixed side electrodes E1 and

E2. Applying the same Galerkin Procedure as discussed earlier to the dynamic equations (4.13)

and (4.14), we obtain the modal equations as,

P̈n1(t) +

[
16

3
π4 +

16

9
π4α2A

2
n2 +

16

3
π4α1A

2
n1 +

4

3
π2Nn − 2α3

(
V 2
(n)(n−1)

r3n−1(1− 2
√

2
3

(An1−A(n−1)1)

rn−1
)

5
2

+
V 2
(n)(n+1)

r3n(1− 2
√

2
3

(A(n+1)1−An1

rn
)

5
2

)]
Pn1(t) + 2α3

(
V 2
(n)(n+1)

r3n(1− 2
√

2
3

(A(n+1)1−An1

rn
)

5
2

)
P(n+1)1(t)

+2α3

(
V 2
(n−1)n

r3n−1(1− 2
√

2
3

(An1−A(n−1)1

rn−1
)

5
2

)
P(n−1)1(t) = −32

9
α2An1An2π

4Pn2(t)

(4.19)

P̈n2(t) +

[
16

3

π4

α4
+

16

9
π4α1A

2
n1 +

16

3
π4α2A

2
n2 +

4

3
π2Nn − 2

α5

α4
V 2
(n)(g)(1− 2

√
2

3
An2)−

5
2

+
α6

α4
(V 2

(n)(n−1) + V 2
(n+1)(n))

]
Pn2(t)

−
(
α6

α4
V 2
(n)(n−1)

)
P(n−1)2 −

(
α6

α4
V 2
(n+1)(n)

)
P(n+1)2 = −32

9
α1An1An2π

4Pn1(t) (4.20)

Finally, the modal equations take the matrix form, P̈ + [M ]P = 0.

Here,

[P ] = [P11 P12 . . Pk1 Pk2 . . PN1 PN2]T

[M ] =



λ11 c1io c12i ... . . . . . . . 0 0

c1oi λ12 0 c12o ... . . . . . . 0 0

. . .

. . .

. ... ck(k−1)i 0 λk1 ckio ck(k+1)i ... . .

. ... c(k−1)ko ckoi λk2 0 c(k+1)ko ... .

. . .

. . .

0 . . . . . . . ... cN(N−1)i 0 λN1 cNio

0 . . . . . . . ... 0 c(N−1)No cNoi λN2
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where,

λn1 =

[
16

3
π4 +

16

9
π4α2A

2
n2 +

16

3
π4α1A

2
n1 +

4

3
π2Nn − 2α3

(
V 2
(n)(n−1)

r3n−1(1− 2
√

2
3

(An1−A(n−1)1)

rn−1
)

5
2

+
V 2
(n)(n+1)

r3n(1− 2
√

2
3

(A(n+1)1−An1

rn
)

5
2

)]
(4.23)

λn2 =

[
16

3

π4

α4
+

16

9
π4α1A

2
n1 +

16

3
π4α2A

2
n2 +

4

3
π2Nn − 2

α5

α4
V 2
(n)(g)(1− 2

√
2

3
An2)−

5
2

+
α6

α4
(V 2

(n)(n−1) + V 2
(n+1)(n))

]
(4.24)

cn(n−1)i = 2α3

(
V 2
(n−1)n

r3n−1(1− 2
√

2
3

(An1−A(n−1)1

rn−1
)

5
2

)

cn(n+1)i = 2α3

(
V 2
(n)(n+1)

r3n(1− 2
√

2
3

(A(n+1)1−An1

rn
)

5
2

)
(4.25)

cnio =
32

9
α2An1An2π

4; cn(n−1)o = −α6

α4
V 2
(n)(n−1)

cnoi =
32

9
α1An1An2π

4; cn(n+1)o = −α6

α4
V 2
(n+1)(n) (4.26)

In the above expressions, i and o denote two different modes, say, in-plane and out-of-plane

modes. λn1 and λn2 correspond to the unperturbed natural frequencies of the nth beam along i

and o modes, respectively. cnio denotes modal coupling of i and o modes of nth beam, and cn(n−1)i

and cn(n+1)i denote the i mode interaction of adjacent beams. Similarly, cn(n−1)o and cn(n+1)o

denote the o mode interaction of adjacent beams. Finally, the frequencies corresponding different

modes of each beam can be found from the eigenvalues of matrix [M].

4.3 Results and discussions

In this section, we discuss the outcomes of frequency analysis for an array of 40 beams numerically

using Eqn.(4.17)-(4.20). We also present the experimental results for 40 beam array. The thickness

of all the beams in the array are assumed to vary in between 2-4µm.

The beams are made of AuPd alloy on a silicon substrate using a bulk micro-machining process

as discussed in case of single and three beam array. The fabricated beams are separated from their

adjacent beams by different gaps gi, i = 0, 1, ..,N, which are taken in the range of 4.0 µm to 6.0 µm.

Other physical properties are as discussed in Table.(3.1) and Table.(3.2). The initial tensions Ni

can be found by comparing the analytical and experimental results. In our case we take a maximum

variation of 8 percent in initial tension of beams. Figure.(4.2)(a) shows the variation of the modal
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Figure 4.2: (a) Experimental result for frequency variation in an array of 40 beams showing multiple
modal coupling; (b) The corresponding analytical result for L = 500 µm, H = 2-4µm, B = 200 nm
and alternate beams are applied with voltage VDC .

frequencies for an array of 40 beams. Due to uneven laser heating , the frequencies corresponding

to each beam are different. Such frequency distribution can be obtained by varying initial tension,

N. When the DC bias voltage of alternate beams increases to 70 V, each beam behave similar to

that of a single beam Figure.(2.3)(e). But, unlike the single beam, an array of multiple beams

shows multiple coupling regions. Figure.(4.2)(b) shows the analytical approximation of frequency

variation in 40 beam array. There exist multiple modal coupling between different modes of a

beam as well as modes of different beams.
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Chapter 5

Conclusions and Future work

In this chapter we summarize the entire work and conclude the outcomes based on our analytical

model. We have developed an approximate analytical model for a single fixed-fixed beam as well as

an array of three beams excited simultaneously by two side electrodes and one bottom electrode.

We tune the frequencies of the beams electrostatically, by applying potential differences between

beams and electrodes and excite them in two mutually perpendicular directions, namely in-plane

and out-of-plane. It is found that by suitably controlling the inter beam or beam-electrode gaps,

we can get regions where two or more modes interact with each other and exchange energy between

them. Again by varying the tensions in the beams we get wide operating natural frequencies of

a beam. So by controlling the gaps and induced tensions in the beams, one can attain a desired

frequency. Moreover, the pull-in voltage can also be increased by simultaneously exciting both

modes and maintaining a proper gap.

After conducting the frequency analysis based on linear dynamic equations, we study the

nonlinear dynamic behavior of the single beam system near and away from the coupling region.

We apply method of multiple scales to the modal equations to find the dynamic response of the

single beam. Here, we describe the case of 1:1 internal resonance where the in-plane mode couples

with the out-of-plane mode and vice versa. Subsequently, we extend our formulations and generalize

our model for an array of N beams. As a particular case, we do frequency analysis corresponding

to 40 beam array and explain the concept of multiple modal coupling through the results. Finally

we validate our model by comparing with the experimental results. Hence the frequency tuning

mechanism by selecting differential gaps are important from MEMS design point of view. At the

same time, by controlling the coupling region it is possible to get highly stable MEMS devices

along with more pull-in voltages.

At last, while discussing the scope of works, it should be clear that the model we have developed

is an approximate one. More accurate formulations can be done by considering several other effects

such as fringing effects, effect of forcing due to just next as well as other neighboring members.

The nonlinear coupling analysis can also be extended to an array of beams where multiple modal

interactions are prominent and this concept can be applied for stabilizing the amplitude and

frequency of oscillation in MEMS devices.
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Appendix

t1 =
16

9
α1π

4, t2 =
16

3
α1A1π

4, t3 =
16

9
α2π

4, t4 =
32

9
α2A2π

4,

t5 =
2α3

(1− 2
√

2
3A1)5/2

, t6 =
2α3

r31(1 + 2
√

2
3
A1

r1
)5/2

, t7 =
16

9
α2A1π

4,

t8 =
32

9
α2A1A2π

4, t9 =

√
2
3α3

(1− 2
√

2
3A1)3/2

, t10 =

√
2
3α3

r21(1 + 2
√

2
3
A1

r1
)3/2

;

s1 =
16

9
α2π

4, s2 =
16

3
α2A2π

4, s3 =
16

9
α1π

4, s4 =
32

9
α1A1π

4,

s5 =
2α5

α4(1− 2
√

2
3A2)5/2

, s6 =
α6

α4
, s7 =

16

9
α1A2π

4,

s8 =
32

9
α1A1A2π

4, s9 =

√
2
3α5

α4(1− 2
√

2
3A2)3/2

, s10 =
α6

α4
A2; (5.1)

η11 = 2V10Vac, η12 = 2V21Vac, η21 = 2V1gVac, η2 =
V 2
ac

2
, (5.2)

B1 = 2ω1(1 + k1k̄1), B2 = 2ω2(1 + k2k̄1),

B3 = ω1(C1 + C3k1k̄1), B4 = ω2(C1 + C3k2k̄1),

B5 =

[
t9η11 − t10η12 + k̄1s9η21 − k̄1s10(η11 + η12)

2

]
;

G1 = 2ω1(1 + k1k̄2), G2 = 2ω2(1 + k2k̄2),

G3 = ω2(C1 + C3k2k̄2), G4 = ω1(C1 + C3k1k̄2),

G5 =

[
t9η11 − t10η12 + k̄2s9η21 − k̄2s10(η11 + η12)

2

]
; (5.3)

B11 = (1 + k1k̄1), B12 = (1 + k2k̄1),

B13 = (C1 + C3k1k̄1), B14 = (C1 + C3k2k̄1);

G11 = (1 + k1k̄2), G12 = (1 + k2k̄2),

G13 = (C1 + C3k2k̄2), G14 = (C1 + C3k1k̄2); (5.4)
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c11 =
(−4ω2

1t4k1 − t8s2k21 − t8s7 − t8s4k1 + λ22t4k1 + λ22t2 + λ22t7k
2
1 − 4ω2

1t7k
2
1 − 4ω2

1t2)

(t8s8 − λ22λ21 + 4λ22ω
2
1 + 4ω2

1λ
2
1 − 16ω4

1)
;

c21 = − (−λ21s7 + 4ω2
1s7 + t2s8 − λ21s2k21 − λ21s4k1 + 4ω2

1s2k
2
1 + 4ω2

1s4k1 + t7s8k
2
1 + t4k1s8)

(t8s8 − λ22λ21 + 4λ22ω
2
1 + 4ω2

1λ
2
1 − 16ω4

1)
;

c12 =
(−t8s2k21 − t8s7 − t8s4k1 + λ22t2 + λ22t7k

2
1 + λ22t4k1)

(t8s8 − λ22λ21)
;

c22 = − (−λ21s2k21 − λ21s7 − λ21s4k1 + t2s8 + t7k
2
1s8 + t4k1s8)

(t8s8 − λ22λ21)
;

c13 =
(−4ω2

2t4k2 − t8s2k22 − t8s7 − t8s4k2 + λ22t4k2 + λ22t2 + λ22t7k
2
2 − 4ω2

2t7k
2
2 − 4ω2

2t2)

(t8s8 − λ22λ21 + 4λ22ω
2
2 + 4ω2

2λ
2
1 − 16ω4

2)
;

c23 = − (−λ21s7 + 4ω2
2s7 + t2s8 − λ21s2k22 − λ21s4k2 + 4ω2

2s2k
2
2 + 4ω2

2s4k2 + t7s8k
2
2 + t4k2s8)

(t8s8 − λ22λ21 + 4λ22ω
2
2 + 4ω2

2λ
2
1 − 16ω4

2)
;

c14 =
(−t8s2k22 − t8s7 − t8s4k2 + λ22t2 + λ22t7k

2
2 + λ22t4k2)

(t8s8 − λ22λ21)
;

c24 = − (−λ21s2k22 − λ21s7 − λ21s4k2 + t2s8 + t7k
2
2s8 + t4k2s8)

(t8s8 − λ22λ21)
;

c15N = − 2t8s2k1k2 − 2ω2
1t2 + 2λ22t7k1k2 − 2ω2

1t7k1k2 − t8s4k2 + 2ω1ω2t4k1 + 2ω1ω2t4k2

− 2ω2
2t7k1k2 + λ22t4k1 − t8s4k1 + 4ω1ω2t7k1k2 − 2t8s7 + 2λ22t2 − ω2

1t4k1 − ω2
1t4k2

− ω2
2t4k2 − 2ω2

2t2 + 4ω1ω2t2 − ω2
2t4k1 + λ22t4k2;

c15D = − 2λ22ω1ω2 − 2λ21ω1ω2 + t8s8 − ω4
1 − ω4

2 − λ21λ22 + λ22ω
2
1 + λ22ω

2
2 + ω2

1λ
2
1 + 4ω3

1ω2

− 6ω2
1ω

2
2 + 4ω1ω

3
2 + ω2

2λ
2
1;

c25N = − 4ω1ω2s2k1k2 − λ21s4k2 − λ21s4k1 + ω2
1s4(k1 + k2)− 4ω1ω2s7 + ω2

2s4(k2 + k1)

+ t4s8(k1 + k2)− 2λ21s7 + 2(ω2
1 + ω2

2)s7 + 2t2s8 − 2λ21s2k1k2 + 2ω2
1s2k1k2

− 2ω1ω2s4(k1 + k2) + 2ω2
2s2k1k2 + 2t7k1k2s8;

c25D = − 2λ22ω1ω2 − 2λ21ω1ω2 + t8s8 − ω4
1 − ω4

2 − λ21λ22 + λ22ω
2
1 + λ22ω

2
2 + ω2

1λ
2
1 + 4ω3

1ω2

− 6ω2
1ω

2
2 + 4ω1ω

3
2 + ω2

2λ
2
1;

c16N = − 2t8s2k1k2 − 2(ω2
1 + ω2

2)t2 + 2λ22t7k1k2 − 2(ω2
1 + ω2

2)t7k1k2 − 2ω1ω2t4(k1 + k2)

+ λ22t4(k1 + k2)− t8s4(k1 + k2)− 4ω1ω2t7k1k2 − 2t8s7 + 2λ22t2

− ω2
1t4(k1 + k2)− ω2

2t4(k1 + k2)− 4ω1ω2t2;

c16D = 2λ22ω1ω2 + 2λ21ω1ω2 + t8s8 − ω4
1 − ω4

2 − λ21λ22 + λ22ω
2
1 + λ22ω

2
2 + ω2

1λ
2
1 − 4ω3

1ω2

− 6ω2
1ω

2
2 − 4ω1ω

3
2 + ω2

2λ
2
1;

c26N = − [4ω1ω2s2k1k2 − λ21s4k1 − λ21s4k2 + ω2
1s4(k1 + k2) + 4ω1ω2s7 + ω2

2s4(k2 + k1)

+ t4s8(k1 + k2)− 2λ21s7 + 2(ω2
1 + ω2

2)s7 + 2t2s8 − 2λ21s2k1k2 + 2ω2
1s2k1k2

+ 2ω1ω2s4(k1 + k2) + 2ω2
2s2k1k2 + 2t7k1k2s8];

c26D = 2λ22ω1ω2 + 2λ21ω1ω2 + t8s8 − ω4
1 − ω4

2 − λ21λ22 + λ22ω
2
1 + λ22ω

2
2 + ω2

1λ
2
1 − 4ω3

1ω2

− 6ω2
1ω

2
2 − 4ω1ω

3
2 + ω2

2λ
2
1;

c15 =
c15N
c15D

, c25 =
c25N
c25D

; c16 =
c16N
c16D

; c26 =
c26N
c26D

; (5.5)
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g11 = t3k
2
1 + t4c25 + t4c21 + t4c11k2 + 2t3k1k2 + t4c15k1 + 2t7k1c25 + 2t7k2c21 + 3t1 + 2t2c15 + 2t2c11;

g12 = 3t1 + 4t7k2c24 + 2t7k2c23 + t4c13k2 + 2t4c14k2 + 4t2c14 + 2t2c13 + 3t3k
2
2 + 2t4c24 + t4c23;

g13 = 2t4c12k2 + 2t7k1c25 + 4t3k1k2 + 2t7k1c26 + t4c15k1 + 6t1 + 2t2c15 + 2t2c16 + 4t2c12 + 2t3k
2
1

+ t4c25 + t4c26 + 2t4c22 + t4c16k1 + 4t7k2c22;

g14 = 3t1 + t4c15k2 + 2t7c25k2 + t4k1c13 + 2t3k1k2 + 2t7k1c23 + t3k
2
2 + t4c25 + t4c23 + 2t2c15 + 2t2c13;

g15 = t4c11k1 + 2t4c12k1 + 4t7k1c22 + 2t7k1c21 + 4t2c12 + 2t2c11 + 3t3k
2
1 + 2t4c22 + t4c21 + 3t1;

g16 = 2t2c15 + 2t2c16 + 4t2c14 + 2t3k
2
2 + t4c26 + t4c25 + 2t4c24 + 6t1 + 4t7k1c24 + 2t7k2c26 + 2t7k2c25

+ 4t3k1k2 + t4c15k2 + 2t4k1c14 + t4c16k2;

g21 = 2s2(c25k1 + c21k2) + 3s1k21k2 + 2s7(c11 + c15) + s3(2k1 + k2) + s4(c21 + c25 + k2c11 + k1c15);

g22 = 2s2(2k2c24 + k2c23) + s1(3k32) + 2s7(c13 + 2c14) + s3(3k2) + s4(c23 + 2c24 + c13k2 + 2c14k2);

g23 = 2s2(2c22k2 + c25k1 + c26k1) + s1(6k21k2) + 2s7(c15 + c16 + 2c12) + s3(4k1 + 2k2)

+ s4(c25 + c26 + 2c22 + 2c12k2 + c15k1 + c16k1);

g24 = 2s2(c23k1 + c25k2) + s1(3k1k
2
2) + 2s7(c13 + c15) + s3(k1 + 2k2) + s4(c23 + c25 + c13k1 + c15k2);

g25 = 2s2(2k1c22 + k1c21) + s1(3k31) + 2s7(2c12 + c11) + s3(3k1) + s4(c21 + 2c22 + c11k1 + 2c12k1);

g26 = 2s2(2c24k1 + c25k2 + c26k2) + s1(6k1k
2
2) + 2s7(c15 + c16 + 2c14) + s3(2k1 + 4k2)

+ s4(c25 + c26 + 2c24 + 2c14k1 + c15k2 + c16k2);

f11 = 2t2(c13 + c15) + 3t1 + 2t7(c23k1 + c25k2) + t3(k22 + 2k1k2) + t4(c23 + c25 + c13k1 + c15k2);

f12 = 2t2(2c12 + c11) + 3t1 + 2t7(2c22k1 + c21k1) + t3(3k21) + t4(2c22 + c21 + c11k1 + 2c12k1);

f13 = 2t2(c15 + c16 + 2c14) + 6t1 + 2t7(2c24k1 + c25k2 + c26) + t3(2k22 + 4k1k2)

+ t4(c25 + c26 + 2c24 + 2c14k1 + c15k2 + c16k2);

f14 = 2t2(c15 + c11) + 3t1 + 2t7(c25k1 + c21k2) + t3(2k1k2 + k21) + t4(c21 + c25 + c11k2 + c15k1);

f15 = 2t2(2c14 + c13) + 3t1 + 2t7(2c24k2 + c23k2) + t3(3k22) + t4(2c24 + c23 + c13k2 + 2c14k2);

f16 = 2t2(c15 + c16 + 2c12) + 6t1 + 2t7(2c22k2 + c26k1) + t3(4k1k2 + 2k21)

+ t4(c25 + c26 + 2c22 + 2c12k2 + c15k1 + c16k1);

53



f21 = 2s2(c23k1 + c25k2) + s1(3k1k
2
2) + 2s7(c13 + c15) + s3(k1 + 2k2) + s4(c23 + c25 + c13k1 + c15k2);

f22 = 2s2(2c24k1 + c25k2 + c26k2) + s1(6k1k
2
2) + 2s7(c15 + c16 + 2c14) + s3(2k1 + 4k2)

+ s4(c25 + c26 + 2c24 + 2c14k1 + c15k2 + c16k2);

f23 = 2s2(2c22k1 + c21k1) + s1(3k31) + 2s7(2c12 + c11) + s3(3k1) + s4(2c22 + c21 + c11k1 + 2c12k1);

f24 = 2s2(c25k1 + c21k2) + s1(3k21k2) + 2s7(c15 + c11) + s3(2k1 + k2) + s4(c21 + c25 + c11k2 + c15k1);

f25 = 2s2(2c22k2 + c25k1 + c26k1) + s1(6k21k2) + 2s7(c15 + c16 + 2c12) + s3(4k1 + 2k2)

+ s4(c25 + c26 + 2c22 + 2c12k2 + c15k1 + c16k1);

f26 = 2s2(2c24k2 + c23k2) + s1(3k32) + 2s7(2c14 + c13) + s3(3k2) + s4(2c24 + c23 + c13k2 + 2c14k2);

(5.6)

Ḡ = ḡ1Ā2A
2
1e
−iσ2T1 + ḡ2Ā2A

2
2e
iσ2T1 + ḡ3A1A2Ā1e

iσ2T1 + ḡ4A
2
2Ā1e

2iσ2T1 + ḡ5A
2
1Ā1 + ḡ6A1Ā2A2;

F̄ = f̄1Ā1A
2
2e
iσ2T1 + f̄2Ā1A

2
1e
−iσ2T1 + f̄3A1A2Ā2e

−iσ2T1 + f̄4A
2
1Ā2e

−2iσ2T1 + f̄5A
2
2Ā2 + f̄6A1Ā1A2;

(5.7)

h1 =

(
B3G2 −B2G4

B2G1 −B1G2

)
, h2 =

(
B4G2 −B2G3

B2G1 −B1G2

)
;

h3 =

(
B2G5 −B5G2

B2G1 −B1G2

)
, h4 =

(
B4G1 −B1G3

B1G2 −B2G1

)
;

h5 =

(
B3G1 −B1G4

B1G2 −B2G1

)
, h6 =

(
B1G5 −B5G1

B1G2 −B2G1

)
; (5.8)

J11 = h1 +

[
2G12

16ω1(B11G12 −B12G11)

](
2ḡ1a1a2 sin(θ1 − θ2)− 2ḡ3a1a2 sin(θ1 − θ2)

−ḡ4a22 sin 2(θ1 − θ2)

)
+

[
2B12

16ω1(B11G12 −B12G11)

](
f̄1a

2
2 sin 2(θ1 − θ2)

−2f̄4a1a2 sin(θ1 − θ2) + 2f̄6a1a2 sin(θ1 − θ2)

)

J12 = −h2a2 sin(θ1 − θ2) + 2h3 cos θ1 −
[

B13G12 −B12G14

4ω1(B11G12 −B12G11)

](
h2a2 cos(θ1 − θ2)

+2h3 sin θ1

)
−
[

B14G12 −B12G13

4ω1(B11G12 −B12G11)

](
h4a2 cos(θ1 − θ2) + 2h6 sin θ1

)
+

[
2G12

16ω1(B11G12 −B12G11)

](
ḡ1a

2
1a2 cos(θ1 − θ2)− ḡ2a32 cos(θ1 − θ2)− ḡ3a21a2 cos(θ1 − θ2)

−2ḡ4a1a
2
2 cos 2(θ1 − θ2)

)
+

[
2B12

16ω1(B11G12 −B12G11)

](
2f̄1a1a

2
2 cos 2(θ1 − θ2)

−f̄4a21a2 cos(θ1 − θ2) + f̄5a
3
2 cos(θ1 − θ2) + f̄6a

2
1a2 cos(θ1 − θ2)

)
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J13 = h2 cos(θ1 − θ2)−
[

B13G12 −B12G14

4ω1(B11G12 −B12G11)

](
h2 sin(θ1 − θ2))

−
[

B14G12 −B12G13

4ω1(B11G12 −B12G11)

](
h4 sin(θ1 − θ2)

)
+

[
2G12

16ω1(B11G12 −B12G11)

](
ḡ1a

2
1 sin(θ1 − θ2)− 3ḡ2a

2
2 sin(θ1 − θ2)− ḡ3a21 sin(θ1 − θ2)

−2ḡ4a1a2 sin 2(θ1 − θ2)

)
+

[
2B12

16ω1(B11G12 −B12G11)

](
2f̄1a1a2 sin 2(θ1 − θ2)

−f̄4a21 sin(θ1 − θ2) + 3f̄5a
2
2 sin(θ1 − θ2) + f̄6a

2
1 sin(θ1 − θ2)

)

J41 = h2a2 sin(θ1 − θ2)−
[

B13G12 −B12G14

4ω1(B11G12 −B12G11)

](
− h2a2 cos(θ1 − θ2)

)
−
[

B14G12 −B12G13

4ω1(B11G12 −B12G11)

](
− h4a2 cos(θ1 − θ2)

)
+

[
2G12

16ω1(B11G12 −B12G11)

](
− ḡ1a21a2 cos(θ1 − θ2) + ḡ2a

3
2 cos(θ1 − θ2) + ḡ3a

2
1a2 cos(θ1 − θ2)

+2ḡ4a1a
2
2 cos 2(θ1 − θ2)

)
+

[
2B12

16ω1(B11G12 −B12G11)

](
− 2f̄1a1a

2
2 cos 2(θ1 − θ2)

+f̄4a
2
1a2 cos(θ1 − θ2)− f̄5a32 cos(θ1 − θ2)− f̄6a21a2 cos(θ1 − θ2)

)
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