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Abstract 

 

Wimax and 4G-LTE are the two Promising Technologies proposed to provide high 

data rates around 100 Mbps. So as to satisfy the multimedia services demands from 

increasing mobile users. Both these Technologies employs OFDM modulation and 

Multiple Antenna Technology to achieve high data rates. Data in general will be coded 

before transmitted through wireless channel. So as to reduce the reception errors i.e. 

signal is channel coded to minimize the BER. This thesis evaluates the performance 

of coded OFDM scheme and studies how coded OFDM performs better with respect 

to BER than non-coded OFDM. In this thesis Convolution coding scheme was 

employed at the transmitter side and Viterbi decoder at Receiver end. over a slow 

varying Rayleigh channel. BPSK is used to modulate the incoming data symbols and 

results are validates via simulator.    

 

  



vii 

 

Nomenclature 

 

AMPS   Advanced Mobile Phone Services 

AWGN  Additive White Gaussian Noise 

BER   Bit Error Rate 

BPSK   Binary Phase Shift Keying 

CP  Cyclic prefix 

DFT   Discrete Fourier Transform. 

FDMA   Frequency Division Multiple Access 

GSM   Global System for Mobile Communication 

IDFT   Inverse Discrete Fourier Transform 

FFT  Fast Fourier Transform 

IFFT  Inverse Fast Fourier Transform  

ICI  Inter Carrier Interference 

ISI   Inter Symbol Interference 

LS   Least Square 

MCM   Multicarrier Modulation 

MMSE  Minimum Mean Square Estimation 

OFDM  Orthogonal Frequency Division Multiplexing 

PSK   Phase Shift Keying 

PSMA   Pilot Symbol Assisted Modulation 

QAM   Quadrature Amplitude Modulation 

QPSK   Quadrature Phase Shift Keying 

RECT   Rectangular 

SCM   Single Carrier Modulation 

SNR   Signal to Noise Ratio 
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Chapter 1 

 

Introduction 

 

Wireless communication is been promising means of communication over last two 

decades. Today almost all of the world population are using mobile phones as a means 

of communication. Where itself results how rapidly is wireless industry scaling over 

a period of time. Wireless communication has enabled many references required to 

meet the needs of increasing traffic many technologies and methodologies are evolved 

over a period of time now we are in era where single electronic device is going to be 

hub of many application. To address this need, communications engineer have 

combined technologies suitable for high rate transmission with forward error 

correction (FEC) techniques. This is particularly important as wireless 

communications channels are far more hostile as opposed to wired alternatives, and 

the need for mobility proves especially challenging for reliable communications. 

The fading phenomenon occurs in radio transmission channels. It is due to the 

presence of multipaths that varies during the transmission [1].There are many 

techniques used to compensate for fading channel impairments [2], [3]. Use of error 

control coding is one of the important techniques. It is used to enhance the efficiency 

and accuracy of information transmitted. In a communication system, data is 

transferred from a transmitter to a receiver across a physical medium of transmission 

or channel. The channel is generally affected by noise or fading which introduces 

errors in the data being transferred. Channel coding is a technique used for correcting 

errors introduced in the channel. It is done by encoding the data to be transmitted and 

introducing redundancy in it such that the decoder can later reconstruct the data 

transmitted using the redundant information. If the error control coding is doing its 

job properly, the bit error rate at the output should be less than the bit error probability 

at the decoder input [5]. In my thesis convolution code is used as an error control code. 

The Viterbi algorithm was proposed in 1967 as a method of decoding convolution 

codes [6]. Viterbi decoding is considered and the bit error rate performance is 
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evaluated for convolution code and it is compared with the bit error rate for uncoded 

signal under AWGN channel and slow Rayleigh fading channel. 

 

1.1 Organization of Thesis: 

 

Chapter 1: Introduction 

 

Chapter 2: The basic principle of OFDM system is discussed in Chapter-2. OFDM 

Communication system including its generation and reception, advantages, and 

Attenuations, and implementation of the system. Orthogonal Frequency Division 

Multiplexing (OFDM) as a transmission technique is known to possess a lot of 

strength, compared to any other transmission technique, such as high spectral 

efficiency, robustness to the channel fading and immune to impulse interference.  

 

Chapter 3: which give the introduction to wireless environmental. Fading channels 

discretion like Frequency selective fading, Rayleigh fading than Generating fading 

model by using jakes model and AWGN fading. System model description. 

 

Chapter 4: Convolutional coding and Decoding, How the convolutional encoder will 

generates code words and it’s functioning along with State diagram-tree diagram- 

trellis diagram-Viterbi decoding 

 

Chapter 5: Results and conclusions  

 

References  
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Chapter 2 

 

Orthogonal Frequency Division Multiplexing 

 

2.1 Introduction 

This thesis discusses about the evaluation of channel coding in OFDM systems. In 

order to establish the context and need for the work undertaken, it is necessary to 

discuss the fundamental concepts behind the work. This chapter elaborates the basics 

and implementation of OFDM in real time systems. The chapter also discusses the 

propagation characteristics of a mobile communication channel. 

2.2 Why OFDM 

OFDM is simply defined as a form of multi-carrier modulation where the carrier 

spacing is carefully selected so that each sub carrier is orthogonal to the other sub 

carriers. Two signals are orthogonal if their dot product is zero. That is, if you take 

two signals multiply them together and if their integral over an interval is zero, then 

two signals are orthogonal in that interval. Orthogonality can be achieved by carefully 

selecting carrier spacing, such as letting the carrier spacing be equal to the reciprocal 

of the useful symbol period. As the sub carriers are orthogonal, the spectrum of each 

carrier has a null at the center frequency of each of the other carriers in the system.  

Two periodic signals are orthogonal when the integral of their product over one 

period is equal to zero. For the case of continuous time:  

∫ cos(2𝛱𝑛𝑓𝑜𝑡) cos(2Π𝑚𝑓𝑜𝑡) 𝑑𝑡 = 0,

𝑇

0

 

For the case of discrete time:  

∑ cos (
2𝜋𝑘𝑛

𝑁
) cos (

2𝜋𝑘𝑚

𝑁
) 𝑑𝑡 = 0,

𝑁−1

𝑘=0

 

Where m≠n in both cases. 
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OFDM transmits a large number of narrowband subchannels. The frequency range 

between carriers is carefully chosen in order to make them orthogonal one another. In 

fact, the carriers are separated by an interval of 1/T, where T represents the duration 

of an OFDM symbol. The frequency spectrum of an OFDM transmission is illustrated 

in figure 2.1. 

 

 

 

Fig 2.1 Spectra of OFDM signal a and sub-channel 

Each sub – carrier in an OFDM system is a sinusoid with a frequency that is an integer 

multiple of a fundamental frequency. Each sub – carrier is like a Fourier series 

component of the composite signal, an OFDM symbol. 

The sub – carriers’ waveform can be expressed as  

 

s(t) = cos(2𝜋𝑓𝑐𝑡 + 𝜃𝑘) 

= 𝑎𝑛 cos(2𝜋𝑛𝑓𝑜𝑡) + 𝑏𝑛 sin(2𝜋𝑛𝑓𝑜𝑡)                                                                

= √𝑎𝑛
2 + 𝑏2𝑛cos (2𝜋𝑛𝑓𝑜𝑡 + 𝜑), 

Where 𝜑 = tan−1(
𝑏𝑛

𝑎𝑛
) 

The sum of sub carrier is the baseband OFDM signal 
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𝑠(𝑡) = ∑{𝑎𝑛𝑐𝑜𝑠(2𝜋𝑛𝑓𝑜𝑡)−𝑏𝑛sin (2𝜋𝑛𝑓𝑜𝑡)}

𝑁−1

𝑛=0

 

 

Each sinc of the frequency spectrum in the Fig 2.1 corresponds to a sinusoidal carrier 

modulated by a rectangular waveform representing the information symbol. One 

could easily notice that the frequency spectrum of one carrier exhibits zero-crossing 

at central frequencies corresponding to all other carriers. At these frequencies, the 

intercarrier interference is eliminated, although the individual spectra of subcarriers 

overlap. It is well known, orthogonal signals can be separated at the receiver by 

correlation techniques. The receiver acts as a bank of demodulators, translating each 

carrier down to baseband, the resulting signal then being integrated over a symbol 

period to recover the data. If the other carriers all beat down to frequencies which, in 

the time domain means an integer number of cycles per symbol period (T), then the 

integration process results in a zero contribution from all these carriers. 

 

2.3 Channel Impairments 

The transmitted signal faces various obstacles and surfaces of reflection, as a result of 

which the received signals from the same source reach at different times. This gives 

rise to the formation of echoes which affect the other incoming signals. Inter – symbol 

interference (ISI) is a form of distortion of a signal in which one symbol interferes with 

subsequent symbols. This is an unwanted phenomenon as the previous symbols have 

similar effect as noise, thus making the communication less reliable. ISI is usually caused 

by multipath propagation or the inherent non – linear frequency response of a channel 

causing successive symbols to “blur” together. The presence of ISI in the system 

introduces error in the decision device at the receiver output. Therefore, in the design of 

the transmitting and receiving filters, the objective is to minimize the effects of ISI and 

thereby deliver the digital data to its destination with the smallest error rate possible. 

 



6 

 

2.3.1 Attenuation 

Attenuation is the drop in the signal power when transmitting signal from one point 

to another. It can be caused by the transmission path length, obstructions in the signal 

path, and multipath effects. Any objects, which obstruct the line of sight signal from 

the transmitter to the receiver, can cause attenuation. Shadowing of the signal can 

occur whenever there is an obstruction between the transmitter and receiver. It is 

generally caused by buildings and hills, and is the most important environmental 

attenuation factor. Shadowing is most severe in heavily built up areas, due to the 

shadowing from buildings. However, hills can cause a large problem due to the large 

shadow they produce. Radio signals diffract off the boundaries of obstructions, thus 

preventing total shadowing of the signals behind hills and buildings. However, the 

amount of diffraction is dependent on the radio frequency used, with low frequencies 

diffracting more than high frequency signals. Thus high frequency signals, especially, 

Ultra High Frequencies (UHF), and  

microwave signals require line of sight for adequate signal strength. To overcome the 

problem of shadowing, transmitters are usually elevated as high as possible to 

minimize the number of obstructions. 

 

2.4 Principle of OFDM 

In a conventional serial data system, the symbols are transmitted sequentially, one by 

one, with the frequency spectrum of each data symbol allowed to occupy the entire 

available bandwidth. A high rate data transmission supposes very short symbol 

duration, conducing at a large spectrum of the modulation symbol. There are good 

chances that the frequency selective channel response affects in a very distinctive 

manner the different spectral components of the data symbol, hence introducing the 

ISI. The same phenomenon, regarded in the time domain consists in smearing and 

spreading of information symbols such, the energy from one symbol interfering with 

the energy of the next ones, in such a way that the received signal has a high 

probability of being incorrectly interpreted. Intuitively, one can assume that the 

frequency selectivity of the channel can be mitigated if, instead of transmitting a 

single high rate data stream, we transmit the data. Simultaneously, on several narrow-
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band subchannels (with a different carrier corresponding to each subchannel), on 

which the frequency response of the channel looks “flat”. Hence, for a given overall 

data rate, increasing the number of carriers reduces the data rate that each individual 

carrier must convey, therefore lengthening the symbol duration on each subcarrier. 

Slow data rate (and long symbol duration) on each subchannel merely means that the 

effects of ISI are severely reduced. This is in fact the basic idea that lies behind 

OFDM. Transmitting the data among a large number of closely spaced subcarriers 

accounts for the “frequency division multiplexing” part of the name. Unlike the 

classical frequency division multiplexing technique, OFDM will provide much higher 

bandwidth efficiency. This is due to the fact that in OFDM the  

Spectra of individual subcarriers are allowed to overlap. In fact, the carriers are 

carefully chosen to be orthogonal one another. As it is well known, the orthogonal 

signals do not interfere, and they can be separated at the receiver by correlation 

techniques. 

The input data sequence is baseband modulated, using a digital modulation scheme. 

Various modulation schemes could be employed such as BPSK, QPSK (also with 

their differential form) and QAM with several different signal constellations. There 

are also forms of OFDM where a distinct modulation on each subchannel is 

performed. The modulation is performed on each parallel substream that is on the 

symbols belonging to adjacent DFT frames. The data symbols are parallelized in N 

different substreams. Each substream will modulate a separate carrier through the 

IFFT modulation block. 

 

 

2.4.1 Cyclic Prefix  

The Cyclic Prefix or Guard Interval is a periodic extension of the last part of an OFDM 

symbol that is added to the front of the symbol in the transmitter, and is removed at 

the receiver before demodulation.  

The cyclic prefix has to two important benefits –  
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 The cyclic prefix acts as a guard interval. It eliminates the inter – symbol 

interference from the previous symbol.  

 It acts as a repetition of the end of the symbol thus allowing the linear 

convolution of a frequency – selective multipath channel to be modeled as 

circular convolution which in turn maybe transformed to the frequency 

domain using a discrete Fourier transform. This approach allows for simple 

frequency – domain processing such as channel estimation and equalization. 

.  

 

 

             Fig 2.2 Cyclic prefix  

 

 

 

                Fig 2.3 Cyclic prefix of the two OFDM symbol 
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2.5 Implementation of OFDM 

An OFDM system was modeled using Matlab to allow various parameters of the 

system to be varied and tested. The aim of doing the simulations was to measure the 

performance of OFDM under different channel conditions, and to allow for different 

OFDM configurations to be tested. The OFDM system modeled using Matlab is 

shown in Figure 2.4. 

 

Fig 2.4 Modulation and Demodulation in OFDM system 
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The input serial data stream is formatted into the word size required for transmission, 

e.g. 2 bits/word for QPSK, and shifted into a parallel format. The data is then 

transmitted in parallel by assigning each data word to one carrier in the transmission. 

The data is now mapped on to the subcarriers accordingly. After the required spectrum 

is worked out, an inverse Fourier transform is used to find the corresponding time 

waveform. The guard period is then added to the start of each symbol. 

                           

A channel model is then applied to the transmitted signal. The model allows for the 

signal to noise ratio, multipath, and peak power clipping to be controlled. The signal 

to noise ratio is set by adding a known amount of white noise to the transmitted signal. 

Multipath delay spread then added by simulating the delay spread using an FIR filter. 

The receiver basically does the reverse operation to the transmitter. The guard period 

is removed. The FFT of each symbol is then taken to find the original transmitted 

spectrum. The phase angle of each transmission carrier is then evaluated and 

converted back to the data word by demodulating the received phase. The data words 

are then combined back to the same word size as the original data. 

 

2.6 QAM Mapper 

Once the signal has been coded, it enters the constellation mapper block. All wireless 

communication systems use a modulation scheme to map coded bits to a form that 

can be effectively transmitted over the communication channel. Thus, the bits are 

mapped to a subcarrier amplitude and phase, which is represented by a complex in-

phase and quadrature-phase (IQ) vector. The IQ plot for a modulation scheme shows 

the transmitted vector for all data word combinations. Types of digital modulation 

include BPSK, QPSK, etc. The constellation maps for BPSK, and QPSK, modulations 

are shown in Figure 2.5. 
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(a)                                     (b) 

Fig: 2.5: Constellation Maps: (a) BPSK, and (b) QPSK  

The constellation mapped data is subsequently modulated onto all allocated data 

carriers in order of increasing frequency offset index. 

 

2.7 Discrete Fourier Transform 

The Fast Fourier Transform (FFT) is an effective algorithm for the implementation of 

the DFT. Forward FFT takes a random signal, multiplies it successively by complex 

exponentials over the range of frequencies, sums each product and plots the results as 

a coefficient of that frequency. The coefficients are called a spectrum and represent 

―how much‖ of that frequency is present in the input signal. 

 FFT can be written in sinusoids as: 

 

1 1

0 0

2 2
( ) ( )sin( ) ( )cos( )

N N

n n

kn kn
x k X n j X n

N N

  

 

    

Here ( )X n , are coefficients of the sines and cosines of frequency 2 k
N

  , where k is 

the index of the frequencies over the N  frequencies and n  is the time index. ( )x k  is 

the value of the spectrum for the thk frequency and ( )X n  is the value of the signal at 

time n . The IFFT takes a frequency spectrum and converts it to a time domain signal 

by again successively multiplying it by a range of sinusoids. The equation for an IFFT 

is: 
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1 1

0 0

2 2
( ) ( )sin( ) ( )cos( )

N N

n n

kn kn
X n x k j x k

N N

  

 

    

The IFFT is used to produce a time domain signal, as the symbols obtained after 

modulation can be considered the amplitudes of a certain range of sinusoids. This 

means that each of the discrete samples before applying the IFFT algorithm 

corresponds to an individual subcarrier. Besides ensuring the orthogonality of the 

OFDM subcarriers, the IFFT represents also a rapid way for modulating these 

subcarriers in parallel, and thus, the use of multiple modulators and demodulators, 

which spend a lot of time and resources to perform this operation, is avoided. 

 

 

 

 

2.8 ADVANTAGES & DISADVANTAGES OF AN OFDM SYSTEM 

Advantages 

 Due to increase in symbol duration, there is a reduction in delay spread. 

Addition of guard band almost removes the ISI and ICI in the system.  

 Conversion of the channel into many narrowly spaced orthogonal sub – 

carriers render it immune to frequency selective fading.  

 As it is evident from the spectral pattern of an OFDM system, orthogonally 

placing the sub – carriers lead to high spectral efficiency.  

 Can be efficiently implemented using IFFT. 

Disadvantages 

 These systems are highly sensitive to Doppler shifts which affect the carrier 

frequency offsets, resulting in ICI.  

 Presence of a large number of sub – carriers with varying amplitude results in 

a high Peak – to – Average Power Ratio (PAPR) of the system, which in turn 

hampers the efficiency of the RF amplifier. 
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Chapter 3 

Wireless channel and System Model 

3.1 Introduction: 

The rapid fluctuation of the amplitude of a signal over a relatively small distance is 

referred to as fading. Interference between two or more versions of the transmitted 

signal can result in different propagation delays at the receiver and this is known as 

multipath. Some of the causes of multipath as pointed out in [28] are: atmospheric 

ducting, ionospheric reflection and refraction, and reflection from water bodies and 

terrestrial objects such as mountains and buildings. Due to the relative motion between 

the mobile and the base station, each multipath wave experiences an apparent shift in 

frequency. The shift in received signal frequency due to motion is called the Doppler 

shift, and is directly proportional to the velocity and direction of motion of the mobile 

with respect to the direction of arrival of the received multipath wave [36]. 

The factors influencing small scale fading are: 

1. Multipath propagation 

2. Speed of the mobile 

3. Speed of surrounding objects 

4. The transmission bandwidth of the signal 

 

The classification of fading is based on the relationship between the signal parameters 

and the channel parameters. The channel is typically characterized by its impulse 

response which contains all the necessary information required to analyse or simulate 

any type of radio transmission through the channel [36]. 
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Figure 3.1 Multipath Scattering and Shadowing  

3.2 Fading Channel  

The measure of how quickly the channel response de-correlates is called the 

coherence time. When the coherence time is large compared to the symbol duration 

of the signal, then the channel is referred to as slow fading. Fast fading is the opposite 

of slow fading and occurs when the coherence time is small or comparable to the 

symbol duration. Another classification of the fading process depends on the 

relationship between the delay spread of the channel which is a measure of its time 

depressiveness and the symbol duration. When the delay spread is much smaller than 

the symbol duration the fading is classified as flat and when it is not it is termed as 

frequency selective fading [35].   

Doppler shift is caused by the relative motion between the receiver and the transmitter. 

Doppler spread DB  is a measure of the spectral broadening caused by the time rate 

of change of the mobile radio channel and is defined as the range of frequencies over 

which the received Doppler spectrum is essentially non-zero. When a pure sinusoidal 

tone of frequency cf  is transmitted, the received signal spectrum, called the Doppler 

spectrum, will have components in the range ( )c df f  to ( )c df f where df  is the 
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Doppler shift. The amount of spectral broadening depends on df  which is a function 

of the relative velocity of the mobile and the angle   between the direction of motion 

of the mobile and the direction of arrival of the scattered waves [8]. 

 

Figure 3.2: Doppler power spectral density of Rayleigh fading with a maximum 

Doppler shift of 10Hz. 

3.3 Frequency Selective Fading  

Fading is considered to be flat when the symbol duration of the signal is much larger 

than the delay spread of the channel. This is desirable for communication, 

unfortunately, for high data rate applications the signal bandwidth increases and the 

symbol period is on the order of a few microseconds. The frequency selective fading 

channel can be modelled as an L  tap filter depicted in Figure 3.3. is the number of L  

resolvable paths provided by the channel and is a measure of the diversity available 

in the channel. 
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Figure 3.3: L Taps Channel Model 

1d

s

T
L

T
        (3.1) 

Where dT  is the delay spread of the channel and sT  is the symbol duration. The 

impulse response of the channel can be then expressed as: 

1

( , ) ( ) ( )
L

k s

k

h t h t kT  


      (3.2) 

The usual model assumed for frequency selective fading is Wide Sense Stationary 

with Uncorrelated Scattering (WSSUS). This implies that the tap gains are 

uncorrelated [7]. 

3.4 Rayleigh Fading Channel 

The equivalent complex baseband received signal ( )r t  in a multipath channel can be 

Expressed as: 

( )

1

( ) ( ) ( ) ( )k

N
j t

k k

k

r t a t e s t n t
 



       (3.3) 
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Where, ,k ka   and k are the multiplicative gain, phase shift and the delay of the thk  

path, N denotes the number of paths ( )s t  is the transmitted signal and ( )n t  is the 

Additive White Gaussian Noise term. 

When the path delays are small compared to the symbol duration  ( ) ( )kt s t   and 

the received signal can be expressed as: 

( )

1

( ) ( ) ( ) ( )k

N
j t

k k

k

r t a t e s t n t
 



      (3.4) 

( ) ( ) ( ) ( )r t g t s t n t    (3.5) 

Where 

( ) ( ) ( )g t x t jy t      (3.6) 

1

( ) ( )cos ( )
N

k k

k

x t a t t


    (3.7) 

1

( ) ( )sin ( )
N

k k

k

y t a t t


    (3.8) 

From the above equation we can see that the original transmitted signal is modulated 

by a random time varying scale factor ( ). ( )g t x t  is the in-phase component and ( )y t

is the quadrature component of the gain. When the number of paths is large we can 

use the Central Limit Theorem to show that ( )x t and ( )y t are independent Gaussian 

random processes. This type of fading is known as Rayleigh fading as the envelope 

of the scale factor ( ( ))g t  follows a Rayleigh distribution 

  

2

22
2

( ) , 0

r

R

r
f r e r





      (3.9) 
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Figure 3.4: PDF of Rayleigh Fading Envelope 

The phases k are uniformly distributed in the interval[0,2 ] , and independent for 

each path. This type of fading is the most commonly dealt with type of fading in the 

literature and is a good model for urban areas where there is no dominant or line-of-

sight path available between the transmitter and the receiver. 

3.5 Additive White Gaussian Noise Channel 

This is a channel model in which the only impairment to communication is a linear 

addition of wideband or white noise with a constant spectral density and a Gaussian 

distribution of amplitude. The model does not account for fading, frequency 

selectivity, interference, nonlinearity or dispersion. However, it produces simple and 

tractable mathematical models which are useful for gaining insight into the underlying 

behavior of a system before these other phenomena are considered [4]. 
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Wideband Gaussian noise comes from many natural sources, such as the thermal 

vibrations of atoms in conductors, shot noise, black body radiation from the earth and 

other warm objects, and from celestial sources such as the Sun. 

 

3.6 Generating Fading (Jakes’ Model) 

From the definition of Rayleigh fading given above, it is possible for one to generate 

this model by generating two independent Gaussian random variables namely: ( )x t

and ( )y t . However, sometimes only the amplitude fluctuations are of interest. Note 

that this is for link level simulations of wireless communication only. The aim of 

generating Rayleigh fading is to produce a signal that has the same Doppler spectrum 

Jakes’ model is based on summing sinusoids as defined by the following equations: 

  ( ) ( ) ( )g t x t jy t 

1 1

( ) 2 2 cos cos 2 2 cos cos 2 2 cos cos 2 2 cos cos 2
M M

n n m n n m

n n

g t f t a f t j f t a f t     
 

    
       

    
 

          

 (3.10) 

Where 

  
ˆ ˆ

n n na         (3.11) 

ˆ ˆ
n n n      `   (3.12) 

̂    is the random phase given by 

  
ˆ 2 ( )c m nf f      

Where  



20 

 

m
c

vf


   is the maximum Doppler frequency    

cf    is the carrier frequency  

There are M  low frequency oscillators with frequency cos(2 / )n mf f n N ,  

1,2,3.....,n M  where 
1

( 1)
2 2

N
M    and where N is the number of sinusoids. The 

amplitudes of the oscillators are all unity except for the oscillator at frequency mf

which has amplitude 1
2

. It is desirable that the phase of ( ) ( ) ( )g t x t jy t   be 

uniformly distributed. This can be accomplished using time averaging described in 

[9]. 

 

3.7 System Model 

An OFDM system was modeled using Matlab to allow various parameters of the 

system to be varied and tested. The aim of doing the simulations was to measure the 

BER performance of coded OFDM and uncoded OFDM under different channel 

conditions. And to compare the performance of the OFDM system in different 

multipath channels. Below shown in Figure 3.5. A brief description of the model is 

provided below. 
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Fig 3.5: System model used for simulation 

 

Channel encoder: 

Channel encoder add some redundant bits to incoming data stream according to some 

predefined algorithm which facilitates reception with minimal errors. 

Modulator  

 Binary Phase Shift Keying was employed to modulate the bits from channel encoder 

where data on each symbol is mapped to corresponding phase angle. 

Serial to parallel conversion 

Serial data stream is formatted into the word size required for transmission, and 

shifted into a parallel format. The data is then transmitted in parallel by assigning each 

data word to one carrier in the transmission. 

Inverse Fourier Transform  

An inverse Fourier transform generates a time domain waveform which is then up-

converted to RF and aired through wireless channel. 
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Cyclic prefix 

In order to account for Inter Symbol Interference which may arise because of 

spreading effect of multipath channel few last samples of ofdm symbol are duplicated 

and prepended to OFDM symbol. 

Channel 

Slow varying Rayleigh fading channel model which capture the effects of wireless 

channel between transmitter and receiver is applied to transmitted signal 

CP Removal: 

The cyclic prefix added at transmitter should be removed before further processing of 

received signal 

 

An inverse operation (DFT) to IDFT at transmitter is performed at receiver to extract 

data samples on each subcarrier 

Demodulation: 

The extracted data samples are serialized and applied to MAP detector to recover the 

transmitted information. 
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Chapter 4 

 

Convolution coding and decoding 

 

4.1 Introduction 

Convolutional codes are widely used as channel codes in practical communication 

systems for error correction. The encoded bits depend on the current k input bits and 

a few past input bits. The main decoding strategy for convolutional codes is based on 

the widely used Viterbi algorithm. As a result of the wide acceptance of convolutional 

codes, there have been several approaches to modify and extend this basic coding 

scheme. Trellis coded modulation (TCM) and turbo codes are two such examples. In 

TCM, redundancy is added by combining coding and modulation into a single 

operation. This is achieved without any reduction in data rate or expansion in 

bandwidth as required by only error correcting coding schemes. 

 

4.2 Convolutional Encoding 

Convolutional codes are a family of error correcting codes which add redundant 

information based on the block of data they are processing. Convolutionally encoding 

data is basically accomplished using shift registers and associated combinatorial logic 

that perform modulo-two addition. A convolutional code is specified by C (n, k, K), 

in which ‘k’ length each information symbol to be encoded is transformed into an ‘n’ 

bit symbol, where ‘k/n’ is the code rate and the transformation is a function of the last 

information symbols, where ‘K’ is the constraint length of the code [21]. 

4.3 Structure of the Convolutional Code 

Convolutional codes are commonly described using two parameters: the code rate and 

the constraint length. The code rate, k/n, is expressed as a ratio of the number of bits 

into the convolutional encoder (k) to the number of channel symbols output by the 

convolutional encoder (n) in a given encoder cycle. The constraint length parameter, 
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K, denotes the "length" of the convolutional encoder, i.e. how many k-bit stages are 

available to feed the combinatorial logic that produces the output symbols. Closely 

related to K is the parameter k, which indicates how many encoder cycles an input bit 

is retained and used for encoding after it first appears at the input to the convolutional 

encoder. The k parameter can be thought of as the memory length of the encoder. 

A simple convolutional encoder is shown in Fig. 4.1. The information bits are fed in 

small groups of k-bits at a time to a shift register. The output encoded bits are obtained 

by modulo-2 addition (EXCLUSIVE-OR operation) of the input information bits and 

the contents of the shift registers which are a few previous information bits. If the 

encoder generates a group of ‘n’ encoded bits per group of ‘k’ information bits, the 

code rate R is commonly defined as R = k/n. in below fig 4.1.it is taken as k = 1 and 

n = 2. The number, K of elements in the shift register which decides for how many 

codewords one information bit will affect the encoder output, is known as the 

constraint length of the code. For the present example,K = 3. 

                   Fig 4.1: A convolutional encoder with k=1, n=2 and r=1/2 

The shift register of the encoder is initialized to all-zero-state before encoding 

operation starts. It is easy to verify that encoded sequence is 00 11 10 00 01 ….for an 

input message sequence of 01011…. 

The operation of a convolutional encoder can be explained in several but equivalent 

ways such as, by 



25 

 

 

 a) State diagram representation, 

 b) Tree diagram representation  

 c) Trellis diagram representation. 

4.4 State Diagram Representation: 

In Figure 4.1, the number of combinations of bits in the registers (D) are called the 

states of the code and are defined by 2K . The C (1,3,2) in our example has 22 4  

states which are  00,01,10,11. Number of states are independent of rate of the code. 

The transition of an encoder from one state to another, as caused by input bits, is 

depicted in the state diagram Fig. 4.2. A new input bit causes a transition from one 

state to another. The path information between the states, denoted as k/c1c2, 

represents input information bit ‘k’ and the corresponding output bits (c1c2). Again, 

it is not difficult to verify from the state diagram that an input information sequence 

k = (1011) generates an encoded sequence c = (11, 10, 00, 01). 

 

Fig.4.2 State diagram representation for the encoder 
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4.5 Tree Diagram Representation  

The tree diagram representation shows all possible information and encoded 

sequences for the convolutional encoder. Fig. 4.3 shows the tree diagram for the 

encoder in Fig. 4.3. The encoded bits are labeled on the branches of the tree. Given 

an input sequence, the encoded sequence can be directly read from the tree. As an 

example, an input sequence (1011) results in the encoded sequence (11, 10, 00, 01). 

 

Fig. 4.3: A tree diagram for the encoder  
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4.6 Trellis Diagram Representation  

The trellis diagram of a convolutional code is obtained from its state diagram. All 

state transitions at each time step are explicitly shown in the diagram to retain the time 

dimension, as is present in the corresponding tree diagram. Usually, supporting 

descriptions on state transitions, corresponding input and output bits etc. are labeled 

in the trellis diagram. It is interesting to note that the trellis diagram, which describes 

the operation of the encoder, is very convenient for describing the behavior of the 

corresponding decoder, especially when the famous ‘Viterbi Algorithm (VA)’ is 

followed. 

 

 

                                                           Fig 4.4 Trellis Diagram 
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4.7 Viterbi decoding  

This decoder uses Viterbi algorithm for decoding a bit stream that has been encoded 

using a convolutional code. It was developed by Andrew J. Viterbi and was published 

in an IEEE transaction in 1967 [6]. The use of the Viterbi algorithm for decoding 

covolutionally coded data has become very popular since then. According to [1], the 

Viterbi algorithm consists of three major parts: 

 1) Branch metric calculation. 

 2) Path metric calculation. 

 3) Trace back operation. 

 

4.7.1 Branch Metric Calculation: 

• The pair of received bits (for (n=2)), are compared with the corresponding 

branches in the trellis and the distance metrics are calculated. For hard decision 

decoding, Hamming distances are calculated. Suppose if the received pair of 

bits are ’11′ and the hamming distance to {’00′,’01′,’10′,’11′} outputs of the 

trellis are 2,1,1,0 respectively. 

• Branch metric is sum of  path metric of the previous sate and hamming 

distance required for the transition 

4.7.2 Hamming Distance calculation 

• For decoding consider two Received coded bits at a time y𝒾 and compute the 

hamming distance between all possible combinations of two bits. The number 

of differing bits can be  computed by XOR-ing  y𝒾 with 00,01,10,11 and then 

counting the number 1’s  

• ihd ,00   is the number of 1’s in  00 iy  

• ihd ,01   is the number of 1’s in    01 iy  

• ihd ,10   is the number of 1’s in    10 iy  

• ihd ,11   is the number  of 1’s in   11 iy  
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4.7.3 Path Metric Calculation: 

• Path metrics are calculated using a procedure called ACS (Add-Compare-

Select). This procedure is repeated for every encoder state. 

• From the two available branch matrices the one with minimum metric 

value is chosen. This operation is called as add compare and select (ACS) 

unit 

• Add – for a given state, we know two states on the previous step which 

can move to this state, and the output bit pairs that correspond to these 

transitions. To calculate new path metrics, we add the previous path 

metrics with the corresponding branch metrics. 

 

State 00 can be reached from two branches 

• Sate 00 with output 00. The branch metric for this transition is 

𝑏𝑚𝑖,00,00 = 𝑝𝑚𝑖−1,00 + ℎ𝑑𝑖,00 

• State 01 with output 11. The branch metrics for this transition is 

𝑏𝑚𝑖,00,01 = 𝑝𝑚𝑖−1,01 + ℎ𝑑𝑖,11 

The path metric for state 00 is chosen based which is minimum out of two 

𝑝𝑚𝑖,00 = min(𝑏𝑚𝑖,00,00 , 𝑏𝑚𝑖,00,01) 

The survivor path for 00 is stored in survivor path metric 

              𝑠𝑣𝑖,00     = 00, 𝑏𝑚𝑖,00,00 < 𝑏𝑚𝑖,00,01 

                 = 01, 𝑏𝑚𝑖,00,00 > 𝑏𝑚𝑖,00,01 
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State 01 can be reached from two branches: 

State 10 with output 10. The branch metric for this transition is 

𝑏𝑚𝑖,01,10 = 𝑝𝑚𝑖−1,10 + ℎ𝑑𝑖,10 

State 11 with output 01. The branch metric for this transition is 

𝑏𝑚𝑖,01,11 = 𝑝𝑚𝑖−1,11 + ℎ𝑑𝑖,01 

The path metric for state 01 is chosen based which is minimum out of the two      

                      𝑝𝑚𝑖,01 = min(𝑏𝑚𝑖,01,10, 𝑏𝑚𝑖,01,11) 

The survivor path for state 01 is stored in survivor path metric 

𝑠𝑣𝑖,01   = 10, 𝑏𝑚𝑖,01,10 < 𝑏𝑚𝑖,01,11      

             = 11, 𝑏𝑚𝑖,01,10 > 𝑏𝑚𝑖,01,11 
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Each state can be reached from two possible states (show by red and blue lines) 

 

Fig: 4.5.Branch metric and path metric computation Representation  

 

        

 

State 10 can be reached from two branches: 

State 00 with output 11. The branch metric for this transition is 

                                            𝑏𝑚𝑖,10,00 = 𝑝𝑚𝑖−1,00 + ℎ𝑑𝑖,11 

State 01 with output 00. The branch metric for this transition is 

                 𝑏𝑚𝑖,10,11 = 𝑝𝑚𝑖−1,01 + ℎ𝑑𝑖,00 
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The path metric for state 10 is chosen based which is minimum out of the two 

      𝑝𝑚𝑖,10 = min(𝑏𝑚𝑖,10,00, 𝑏𝑚𝑖,10,01) 

The survivor path for state 01 is stored in survivor path metric 

𝑠𝑣𝑖,10 = 00, 𝑏𝑚𝑖,10,00 < 𝑏𝑚𝑖,10,01 

            = 01, 𝑏𝑚𝑖,10,00 > 𝑏𝑚𝑖,10,01 

State 11 can be reached from two branches: 

State 10 with output 01. The branch metric for this transition is 

𝑏𝑚𝑖,11,10 = 𝑝𝑚𝑖−1,10 + ℎ𝑑𝑖,01 

State 11 with output 10. The branch metric for this transition is 

𝑏𝑚𝑖,11,11 = 𝑝𝑚𝑖−1,11 + ℎ𝑑𝑖,10 

The path metric for state 01 is chosen based which is minimum out of the two 

𝑝𝑚𝑖,11 = min(𝑏𝑚𝑖,11,10, 𝑏𝑚𝑖,11,11) 

The survivor path for state 01 is stored in survivor path metric 

𝑠𝑣𝑖,11 = 10, 𝑏𝑚𝑖,11,10 < 𝑏𝑚𝑖,11,11 

            = 11, 𝑏𝑚𝑖,11,10 > 𝑏𝑚𝑖,11,11 

 

4.8 Trace back operation: 

• Once the survivor path is computed (
𝑁

2
+ 𝐾 − 1)  times, the decoding algorithm 

can start trying to estimate the input sequence  

• So start from the last survivor path at index (
𝑁

2
+ 𝐾 − 1) for sate 00. From the 

survivor path find the previous sate corresponding to the current state.  
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• From the knowledge of current state and previous state the input sate can be 

determined .continue tracking back  through the survivor path and estimate the 

input sequence till index=1 

 

Current state 00 01 10 11 

00 0 0 X X 

01 X X 0 0 

10 1 1 X X 

11 X X 1 1 

 

Table: 4.1. Trace back table  

 

 

 

 

 

Fig 4.6 Viterbi decoder data Flow 
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Chapter 5 
 

 

Results and conclusions 
 

 

The simulations are carried out using MATLAB software. The performance is 

simulated and evaluated for BPSK systems. Based on data generated by computer 

simulation of BPSK modulation techniques for BER calculation the following results 

are obtained.  

The downward slope of BER curve of coded signal is sharper than uncoded signal in 

the simulated curve. From the cross-sectional point, the coded signal performance is 

better than uncoded signal. From this simulation it proves that if the data signal is 

transmitted using convolutional code, the system performance is clearly improved. 

 

Results: 

 

 The simulation result of uncoded signal is evaluated on BER vs. SNR 

for AWGN channel  and the BERs are obtained by varying the values of SNR in the 

range of 0 to  10 dB 



35 

 

    Fig 5.1 BER versus SNR for AWGN uncoded. 

 BER versus SNR over AWGN fading channel for BPSK modulation without 

convolutional coding technique and With Convolutional codes. 

 

Fig 5.2 BER versus SNR for AWGN uncoded and coded. 
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 The simulation result of uncoded signal is evaluated on BER vs. SNR for 

Rayleigh fading channel the BERs are obtained by varying the values of 

SNR in the range of 0 to 10 dB 

 

 

                   Fig 5.3 BER versus SNR slow Rayleigh fading. 

Comparison simulated curve with respect to BER versus SNR over Rayleigh 

fading channel between the coded and uncoded signal. With uncoded signal of 

AWGN channel.  
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Conclusion: 

 

In Digital Communication System Convolution codes are commonly employed for 

Detection and Correcting the errors in received signal information bits. Perhaps it is 

widely used coding technique in fading channels in communication systems. In my 

thesis, the BER performance is obtained for BPSK in AWGN and Rayleigh fading 

multipath channels. For simulation I have used Convolutional encoder as channel 

encoder and Viterbi Decoder for decoding the convolutional codes at the receiver. It 

clearly shows that the performance of the coded signal is better than the uncoded 

signal in the presence of multipath fading channels. 
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