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Abstract

Applications like 3D Telepresence necessitate faithful 3D surface re-
construction of the object and 3D data compression in both spatial and
temporal domains. This makes us feel immersed in virtual environments
there by making 3D Telepresence a powerful tool in many applications.
Hence 3D surface reconstruction and 3D compression are two challenging
problems which are addressed in this thesis.

3D surface reconstruction can be done by stereo based depth estima-
tion and also by using silhouettes of the object from multiple views. The
inherent problem in both these methods is to find the calibration parame-
ters. We considered silhouette based 3D reconstruction with a novel auto
calibration method. Traditional calibration methods are not suitable for
real time applications since they either require external calibration object
or requires a set of feature points which are visible to all the cameras. Our
calibration method overcomes these difficulties there by making full body
3D reconstruction possible. Camera array with single axis motion around
the object is considered and auto calibration is done using images taken
from multiple views. Projection matrices found are used to project the sil-
houettes of the multiple 2D views into the space. Space carving technique
is used to carve the shape of the 3D object required. The succeeding step
after 3D reconstruction is to compress the 3D data in order make real time
communication possible. 3D data will be huge and it has redundancy in
both spatial and temporal domain. Compression in spatial domain is done
by generating mesh of the 3D reconstructed data. Then 3D motion vector
estimation should be done to estimate the deformed mesh points in temporal
domain. But due to unavailability of proper data, motion estimation is done
directly different set of images. This is done in two different ways. One is
3D motion vector estimation of 3D data using voxel matching. Other way
is by using motion estimation of 2D images and motion vector estimation of
their respective depth maps. Again this is done considering three different
cases. First case is to find the motion vectors of 2D images alone and use
them to compensate corresponding depth maps, second case is to find mo-
tion vectors of depth maps and use them to compensate image sequence and
third case is to find motion vectors by using both image sequence and depth
map sequence and compensate them by corresponding motion vectors. 3D
reconstruction and motion estimation is implemented in Matlab and mesh
generation is done using ABAQUS, COMSOL.
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Chapter 1

Introduction

The necessity for life like representation of the scene or person is signifi-
cantly increasing in the field of communication and medical image process-
ing. 3D Telepresence is one such application where we can feel the presence
of person who is present at the other end(generally in a remote location).
Creating life like representation is nothing but reconstructing the whole
3D model of a scene or person with the help 2D images. This problem is
addressed by many people in many ways but it is still an open problem. Ex-
tracting back the 3D information from 2D images is not a straight forward
problem. It is considered as an ill-posed problem. The following section
gives the insight into various basic problems involved in a 3D telepresence
system.

1.1 3D Telepresence System

Basic block diagram of a 3D telepresence system is shown in figure 1.1. A 3D
Telepresence system should be able to reconstruct 3D object data captured
from multiple images taken from different views and compress the data to
transmit over communication channel. At the receiver end it should be
able to decompress and represent the 3D data received maintaining color,
luminous and texture consistency and render it to display.
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Figure 1.1: Block Diagram of the 3D Telepresence

The block by block description of 3D Telepresence system is as follows

1.1.1 Acquisition of Multiple 2D views:

A single camera cannot be able to represent the whole object, it can only
capture single perspective(view) and it cannot give 3D infromation as well.
Hence it is intuitive that a 3D Telepresence system need more than one
cameras to represent whole object. As shown in the figure 1.1 the input to
system is an array of 2D images captured in different views covering whole
360o space around the object(person). It is obvious that how many cameras
are required? and where to place the cameras? are two basic questions that
strikes to our mind. But there is no proper research done in this direction.

1.1.2 3D Reconstruction:

Multiple 2D images, captured by the network, play a central role in
providing the depth related information that is difficult to perceive from
individual 2D images. 3D reconstruction from single views is not a straight
forward problem as we loose one dimension(depth) in the process of captur-
ing image from a camera. This is considered as a ill-posed problem. The
basic pinhole camera model can be seen in Figure 7.10

To lay down the mathematical framework for3D object reconstruction,
the working of a pin-hole camera needs to be completely understand and
the transformation it affects on the 3D object when converting it into a
2D image. The set-up illustrated in Figure 1.3. shows how a 3D world
coordinate is captured on to a 2D image plane.
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Figure 1.2: pinholecamera.

Figure 1.3: Camera and image plane placement in the world coordinate
system.

The drop from three-dimensional space to a two-dimensional image is a
projection in which one dimension is lost. So using a single camera cannot
give this informatiom back. Hence most existing data acquisition systems
for 3D reconstruction use stereo cameras. The idea behind stereo vision is
to mimic human biology by trying to recreate the behavior of human eyes.
The eyes behave like two pin-hole cameras displaced by a certain distance.
Each eye generates a slightly different perspective of the 3D scene and the
brain then extracts position and depth information from these two 2D im-
ages. Stereo cameras with parallel axes model the human eye and are the
ideal choice for 3D data acquisition applications. But stereo camera gives
only depth information from only one perspective i.e., complete represen-
tation of the object is not possible. Multiple camera array is a possible
solution to obtain complete information. This method of estimating the 3D
depth infromation back from multiple cameras is known as ’Image Based 3D
Reconstruction’. Image based 3D reconstruction constitutes both structure
from stereo and structure from motion.

3D shape reconstruction using visual hulls generated based on Silhou-
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ettes of images captured from multiple views is an interesting method which
is suitable for multiple camera systems.This method is reffered to as ’Sil-
houette based 3D reconstruction’. Methods like space carving and shadow
carving are used in silhouette based 3D reconstrution.

1.1.3 3D Compression:

Generally for the best representation of the signal the samples should
be continuous, but with continuous signals we face problem while encoding
i.,e we require infinite number of bits to encode which is not practical. So we
digitize the signal so that we can encode and transmit. But when we digitize
the signal we loose some information, therefore we cannot have best possible
representation of the signal at the decoder or receiver. So, we should look
for some better way of representing the signal so that no or less information
is lost.

When an image is captured with the help of a camera data ob-
tained will be as a set of intensity values representing a particular frame.
3D reconstructed data from multiple 2D views will generally be very large
but there are limitations on bandwidth allocated to transmit, also the pro-
cessing delay should be very low for real time transmission.We can never
have a camera or a senor that will capture points of interest i.e., the num-
ber of points that a camera can capture is nothing but fixed.So, there is
high likelihood that we can have some redundant information in the views
captured(Overlapping cameras is a trivial example).So how to get rid of the
this redundancy. One can pose a very interesting problem here i.e., Can we
put a constraint on the number of views to be taken to have a minimal rep-
resentation of the data?. what type sampling one should prefer to balance
both quality and bandwidth requirements.

There many methods available to compress 2D images and 2D
video, but 3D compression is not well explored. Methods like mesh genera-
tion, 3D motion vectors estimation can be used for 3D video.

In the transmitter(Encoder) 3D reconstruction of the object(person
or scene) is done from 2D images captured in multiple views. The recon-
structed 3D image is compressed and transmitted over the communication
channel.

1.1.4 3D decompression and Rendering:

The decompression algorithm is run at the receiver based upon the compres-
sion algorithm used in the transmitter. 3D rendering is one of very important
aspects of the 3D-Telepresence system. The 3D display should be able to
provide viewer dependent view(motion parallax) and also it should be able
to maintain color consistency, luminous consistency.
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The most common solutions are stereoscopic displays with tracking.
Stereoscopic displays [39] can emit only two distinguishable light beams
from each pixel, this is the reason for the compromises: the viewer depen-
dent view (that is, the 3D scene is correct only from a single point of view),
thus the necessity of tracking [40] to create motion parallax, but still, this
will provide a correct view only for the driver (who leads the session and
wears the object that is tracked). Perspective for all other participants
who are not looking at the same direction will be incorrect. Tracking sys-
tems also introduce a small amount of latency, which can be reduced, but
still disturbing. All these limitations are responsible for the seasickness and
headache after using these systems for longer sessions. There are many more
3D display technologies but failed to give elegant solution.
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Chapter 2

Problem Statement

2.1 3D Reconstruction:

3D surface reconstruction of the object is one of the vital steps in achiev-
ing 3D Telepresence. So perfect 3D surface reconstruction of the object is
considered as a major problem.

Solution: Multiple view camera array arranged on a circular frame
around the object is considered(single axis motion). Silhouettes of the im-
ages captured from different views are generated. All the silhouettes are
projected back to space and common intersection is obtained by using space
carving approach. This common intersected volume gives the required 3D
object representation.

Novelty: A new auto calibration method is proposed for finding the
projection matrices of all the cameras which is suitable for real time ap-
plications. Silhouettes are projected into the space using these projection
matrices.

2.2 3D Compression:

3D compression is also another vital process in achieving 3D Telepresence.
Hence compressing the 3D reconstructed data for real time transmission is
another major problem.

Solution: 3D Compression is considered in both spatial and tempo-
ral domain. In spatial domain mesh generation approach is used and in
temporal domain 3D motion vectors are estimated and compensated.

Novelty: Estimation of 3D motion vectors.
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Chapter 3

Literature Survey

The visual reconstruction problem addressed in this thesis can be bro-
ken down into two broad steps: modeling from images and rendering from
models. To achieve maximum flexibility, both steps will rely on physically
models. Then computer graphics rendering techniques will synthesize new
views using these physically based dynamic scene models, even allowing ar-
bitrary changes in any of the modeling parameters.

During the past decades many methods have been proposed to
reconstruct the 3D shape of objects from images. Correspondence-based
methods use pixel-wise correspondences among images as esti-mates of scene
structure, which then allow new view synthesis by mapping this geometry
into the new viewpoint [6]. The logical extension of correspondence-based
methods is to extract full 3D structure from the scene. This approach re-
works the correspondence problem in a global frame-work, allowing the si-
multaneous use of more information to resolve ambiguity and to increase
precision. Another approach is apparent contours to compute the visual
hull[2]. Space carving was proposed in[2][1] where photo-consistency is used
to carve voxels. It has been shown, however, that these methods can only
extract the line hull of the scene. For example, even perfect silhouettes of a
coffee cup would lead to a model with a closed top, since no silhouette could
distinguish the inside of the cup. So, space curving have the disadvantage
that we cannot capture the concavity of the object.

The shadow curving is the refinement to the space curving[3].The
shadow curving is the more time consuming problem because of the number
of iterations needed for capture concavity.Even though we come across this
process, there is no guarantee for capture the concavity in a better fashion.
The problem of curve evolution driven by a PDE has been recently studied
both from the theoretical standpoint and from the viewpoint of implemen-
tation with the development of level set methods that can efficiently and
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robustly solve those PDE’s. A nice recent exposition of the level set meth-
ods and of many of their applications can be found in [27]. By using the
level set method we can obtian Euler-Lagrange equations of the geometry
function, thereby obtaining a set of necessary conditions. In effect a set of
partial differential equations,which we will solve as a time evolution prob-
lem by a level set method.And use the mesh mechanism [7] for represent
the surface with minimum data.For compression we approach the motion
estimation criteria.

The Baker and group in HP Labs designed a interactive telepresence
system called HP[23] Coliseum see Fig. 3.1. In this framework they used
five cameras fixed on a frame covering the field of view of the person of
interest.

Figure 3.1: HP Coliseum in HP Labs

Coliseum builds 3D represenation of object or person of interest Based
on Image based Visual Hull(IBVH) technology of MIT[15]. For calibrating
this set up they used a cube whose face have squares with different colors
as a calibration object.

In Teleimmersion Lab, University of California, Berkeley Bajcsy and
group have proposed interesting framework[22],[16],[17],[19],[18] see for 3D
object reconstruction and 3D telepresence.

12



Figure 3.2: 3D Telepresence Framework in Teleimmersion Lab, UC Berkeley

They used 48 dragon fly cameras to capture the 3D object. These 48
cameras are divided into 12 clusters each containing 3 gray scale and one
color camera which is shown Fig. 3.3. The Arrangement is shown in the
Fig. 3.4.Three gray scale cameras in each cluster are used to find the depth
maps and one color camera is used for rendering texture of the object.

Figure 3.3: Camera Cluster in Teleimmersion Lab, UC Berkeley

They proposed different methods for multiple camera array calibration
one using virtual mesh(printed pattern on a blue infrared camera which is
shown in Fig. ?? ) as a calibration object and other using two led bar as
a virtual calibration object. Also, they used concept of vision graphs to
localize all the cameras in the network with respect to a reference camera.

Camera calibration is a very important step in the process of 3D object
reconstruction.Out of all different camera calibration methods Tsai’s[21] al-
gorithm is the most efficient algorithm for finding camera parameters but
the complexity is high. Zhang[20] improved Tsai’s algorithm in order to
make implementaion very easier. For calibrating single camera these meth-
ods are best suited. But calibration of a Multi camera array especially in
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Figure 3.4: Camera Cluster arrangement in Teleimmersion Lab, UC Berke-
ley

real time or commercial applications these are suited because of using exter-
nal calibration object and human intervention. However [21],[20] techniques
are used in [23],[22],[16],[17],[19],[18] looked very cumbersome and are not
practical as the calibration done in various steps and also there is human
intervention. Hence extracting camera parameters for the scene captured is
considered as very challenging problem which is know as “Auto” or “Self”
calibration. Many researchers [31], [24], [28], [29],[30],[32],[33] tried to solve
the auto calibration problem. Out of them Kanade’s[33] looks more generic.
We observed that there is uniqueness problem in Kanade’s[33] algorithm,
which we will address in chapter3.

For the representation of 3D reconstructed frame take 5-10MB of
data for normal quality. So, the compression can be achieved in two ways
i.e., spatial and temporal. The spatial compression can be achieved by
representing the surface by using the interpolative basis, which is nothing
but FEM [4]. The temporal redundancy can be achieved by using the block
matching algorithm, the different types of block matching algorithms are
discussed in [42]. But due to lack of 3D motion data we done the motion
estimation for stereo sequence. The stereo reconstruction can be considered
as 2.5D where we represent the one side of object by applying its depth map
to its image. For the 3D depth map motion estimation and mechanism for
data compression is discussed in [41].
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Chapter 4

Aquisition of Multiple 2D
views

4.1 Basic Camera Model

It is important to understand the mathematics behind how an image is
formed by using a camera. Camera projects a 3D point on to the 2D image
plane from the first principles of optics. This is known as projective trans-
formation that defines how real-world objects are projected on the image
plane. Figure 4.1 describes basic camera model that projects a 3D point in
world coordinate system to a 2D point in camera coordinate system.

Figure 4.1: Basic camera model that defines projective trasformation

Projective transformation is defined by camera intrinsic and extrinsic
parameters. The following equation gives the basic structure projective ge-
ometry and the calibration parameters are useful in finding the 3D world
coordinates.

s

 x
y
1

 =

 fx γ u0
0 fy v0
0 0 1

 r11 r12 r13 | t1
r21 r22 r23 | t2
r31 r32 r33 | t3




X
Y
Z
1

 (4.1)
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s

 x
y
1

 = K
[
R | t

]
X
Y
Z
1

 (4.2)

sm̃ = K
[
R | t

]
M̃ (4.3)

where the 3× 3 matrix K is dictated by the intrinsic parameters of the
camera, and the 3× 4 matrix [R|t] by external parameters.

where (u0, v0) denotes the image coordinate of the point where the prin-
cipal axis meets the image plane, fx and fy are focal lengths along image
coordinate axes, and γ is a skewness index. If an image from camera is scaled
by some factor, all of these parameters should be scaled (multiplied/divided,
respectively) by the same factor.

Further, [R| t], where the 3 × 3 matrix R is unitary, and indicates 3D
rotation operation, where 3× 1 vector t collects three translation prameters
along the three world coordinate axes.

4.2 Multi view Camera Model

We have seen that single camera is not sufficient for extracting 3D informa-
tion more over it can give information from single perspective. Hence we
need multiple cameras to capture the object from different views so the full
3D reconstruction is achieved. Figure 4.2 shows the model of the multiple
view camera array to capture the object from different views so full body
3D reconstruction is possible.

Mathematical modelling of multiple view camera array is not so straight
as single camera. Han and Kanade[33](called Factorization Algorithm) pro-
posed a simple model based on the assumption that all object points are
visible from all the cameras which is practically not possible. Mathematical
model for multicamera model based on factorization algorithm is given by

Ws =


s11

[
x11
y11

]
. . . s1N

[
x1N
y1N

]
...

. . .
...

sM1

[
xM1

yM1

]
. . . sMN

[
xMN

yMN

]
 =


P1

P2
...
PM

 [ X1 . . . XN

]

=⇒ Ws =


P1

P2
...
PM

 [ X1 . . . XN

]
(4.4)
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Figure 4.2: Multi veiw camera arrangement

This modeling is based on the assumption that M cameras sees N object
points. P ′is {i = 1 . . .M} gives the projective transformation of each camera.

4.3 Single Axis Motion

Single axis motion is a special case of multiple view camera array arrange-
ment. The cameras are placed on a circular frame around the 3D object
such that principal acxis of the cameras intersects the axis of the object
cooridnate system. This arrangement can be viewed as having a single cam-
era on the circular frame and rotating the object about a single axis or vice
versa. This arrangement can be seen in the figure 4.3

Before specializing to single axis rotation, consider first the general case
of reconstruction from multiple pinhole cameras viewing a 3D scene. 3D
points X in the scene are represented as homogeneous 4-vector[X, Y, Z,
1]T , while their 2D projections x are represented as homogeneous 3-vectors
[x, y, 1]T . The action of each camera is represented by a 3 x 4 projection
matrix P which is given by

sijxij = PiXj (4.5)

The M camera matrices are indicated by Pi, {i = 1, . . . ,M} while the N
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Figure 4.3: Single axis motion camera arrangement

3D points are Xj , {j = 1, . . . , N} . In this case M different cameras view a
scene, there is no relationship between the Pi. Therefore 11M parameters
are required to specify all the cameras. If we have identical internal param-
eters number of parameters required is reduced from 11M to 6M + 5. If
we have the camera in the single axis the number of parameters required is
reduced from 6M + 5 to M + 8.

If first camera centre is at position t on the X axis.Thus the first camera
may be written

P0 = H[I|t] (4.6)

A rotation of the camera by θ yielding the camera Pθ = H[RX(θ)|t]. In
detail, with hi the columns of H:

Pθ =
(
h1 h2 h3

)
.

 1 0 0 | 0
0 cos θ sin θ | 0
0 − sin θ cos θ | t

 .

4.4 Auto Calibration

For 3D reconstruction using images from multiple views, simultaneous cam-
era calibration and localization of multiple camera array is the most rudi-
mentary and most signification step in order to extract the 3D attributes
from the 2D images. As mentioned in the literature survey calibration us-
ing external calibration object is not preferred for multiple camera array,
instead calibration of camera array from the scene itself is preferred. This is
known as Auto calibration or self calibration. For single axis motion fixing
the angle of rotation of principal axis with respect to objects axis provides
more constraints in finding the camera parameters uniquely from the scene.
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For single axis motion obtaining camera parameters with fixed angle of
rotation can be made easy if we can get atleast the parameters of the refer-
ence camera which can be done by Zhang’s[20] algorithm. But this has lim-
itations for using this for real time and for unkown angle of rotation. Hence
auto calibration is preferred. Here we use the factorization algorithm[33] as
the reference and extend this by overcoming its limitations(all points should
be visible to all cameras). The detailed explaination of the algorithm is
given as follows

Let x be the measurement matrix of M cameras stacked that captures
3D points X which are visible from more than one cameras.

If we assume that the distance between the object center and the cam-
era is large, then the scaling factor is independent of the position of the 3D
object point and the camera projection can be modeled as:

sixij = PiXj

4.4.1 Case1: All points are visible to all cameras

Now, if all the N tracked feature points are visible from all the M cameras
in the network, the global camera projection can be modeled as:



x11 . . . x1N
y11 . . . y1N

1 . . . 1
...

...
xM1 . . . xMN

yM1 . . . yMN

1 . . . 1


=


1
s1
K1[R1|t1]

1
s2
K2[R2|t2]

...
1
sM
KM [RM |tM ]



X1 . . . XN

Y1 . . . YN
Z1 . . . ZN

1 . . . 1

(4.7)

x = PX (4.8)

Problem statement: To choose {P,X} such that ‖x−PX‖F is mini-
mized subject to the constraint that rank(P)≤ 4.

Solution: Choose P, X such that ‖x − P̂ X̂‖F is minimized subject to
the constraint that rank(P)≤ 4.

where P̂ , X̂ are found by singular value decomposition of x and sub-
sequently picks the best rank-4 estimate to obtain the solution.In this pre-
liminary case, Han and Kanade’s algorithm can be implemented and the
global projection matrix can be obtained by rank-4 decomposition. The
brief description of algorithm is as follows

From SVD, x3M×N = U3M×3MΣ3M×3MV
T
3M×N
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where the singular values in Σ are arranged in descending order. To
obtain the rank-4 decomposition estimate, we write

Σ̂ =


Σ11 0 0 0

0 Σ22 0 0
0 0 Σ33 0
0 0 0 Σ44



where, Σ =


Σ11

Σ22

. . .

Σ3M,3M


If U = [u1, u2, . . . , u3M ], then Û = [u1, u2, u3, u4]. Similarly, if V = [v1, v2, . . . , v3M ],
then V̂ = [v1, v2, v3, v4] . Now, solving for x = UΣV T = PX,

we write, P̂ = Û Σ̂H and X̂ = H−1V̂ T for every invertible H

We now have x̂ = P̂ X̂, thus for every choice of (P,X) = (P̂ , X̂), we evaluate
the frobenius norm to determine how much error the rank-4 decomposition
would entail,

‖x− P̂ X̂‖F = ‖UΣV T − Û Σ̂V̂ T ‖F
= ‖Û cΣ̂cV̂ cT ‖F

=
3M∑
k=5

Σkk

where, U = [Û |Û c] and V = [V̂ |V̂ c]. Thus,the task is now to choose P, X
such that ‖x−P̂ X̂‖F is minimized subject to the constraint that rank(P)≤ 4.

4.4.2 Case 2: All Points are visible to more than one cameras

In this case all points may not be visible to all cameras. Let Θ be the
visibility matrix which defines what features points are visible to what cam-
era.Now the observation matrix cannot be modeled as equation (4.1), this
is because x will be having holes if any particular camera cannot see any
point in X
Problem Statement: To choose {P,X} such that ‖Θ � (x − PX)‖F is
minimized subject to the constraint that rank(P)≤ 4.
Solution: Choose P, X such that ‖Θ � (x − P̂ X̂)‖F is minimized subject
to the constraint that rank(P)≤ 4.
where P̂ , X̂ are estimated by singular value decomposition(rank 4 decom-
position) of x The detailed algorithm to compute P̂ , X̂ is as follows
Initialization step: we break the M cameras into q clusters, such that
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every camera in the jth cluster can see Nj tracked feature points. We now
apply Han and Kanade’s method to cluster j to obtain the initial estimates
of P̂j and X̂j .

From SVD, x3Mj×Nj = U3Mj×3MjΣ3Mj×3MjV
T
3Mj×Nj

where the singular values in Σ are arranged in descending order. For
want of simplicity, we shall drop the index j referring to the jth cluster,
keeping in mind that this same procedure is adapted for every cluster. To
obtain the rank-4 decomposition estimate, we write

Σ̂ =


Σ11 0 0 0

0 Σ22 0 0
0 0 Σ33 0
0 0 0 Σ44



where, Σ =


Σ11

Σ22

. . .

Σ3M,3M


If U = [u1, u2, . . . , u3M ], then Û = [u1, u2, u3, u4]. Similarly, if V = [v1, v2, . . . , v3M ],
then V̂ = [v1, v2, v3, v4] . Now, solving for x = UΣV T = PX,

we write, P̂ = Û Σ̂H and X̂ = H−1V̂ T for every invertible H

We now have x̂ = P̂ X̂, thus for every choice of (P,X) = (P̂ , X̂), we evaluate
the frobenius norm to determine how much error the rank-4 decomposition
would entail,

‖x− P̂ X̂‖F = ‖UΣV T − Û Σ̂V̂ T ‖F
= ‖Û cΣ̂cV̂ cT ‖F

=

3M∑
k=5

Σkk

where, U = [Û |Û c] and V = [V̂ |V̂ c]. Thus,the task is now to choose P, X such
that ‖x− P̂ X̂‖F is minimized subject to the constraint that rank(P)≤ 4. At
the end of the first step, we have P̂j and X̂j , for every cluster j = 1, 2, . . . , q.
Our goal is to populate the global image point matrix x3M×N by using the
directly observed image coordinates of the points that are visible and by
estimating the coordinates of those points which are otherwise invisible to
a given camera. In the second step, estimating invisible points is done by
calculating point correspondences using fundamental matrices, trifocal ten-
sors or multifocal tensors as per the situation. Since the first step gives
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us P̂ from which the corresponding camera matrix P can be obtained and
the knowledge of the camera matrices is used to generate the fundamental
matrix or the trifocal or multifocal tensors required to generate the point
correspondences.
Visibility Matrix Θ: While the point correspondences are being com-
puted, a mask Θ3M×N is generated whose entries in the ith column is 1 if
the tracked feature point is visible to the ith camera, else it is set to 0. This
mask Θ is important as it helps us calculate the error metrics that will be
used to verify whether or not the iterative procedure is indeed converging
and also to help decide when to stop the iteration.
In the third step, the global image point matrix x3M×N is created using
both the directly observable points and the global camera projection matrix
is created by stacking individual camera matrices in the order corresponding
to that of the estimated invisible points. global image matrix. Once this
global image point matrx is obtained, in step 4, step 1 is again computed
using the new global image point matrix.
Error CriteriaThe error criterion is computed by applying a mask to the
regular error minimization constraints that were used to determine P̂ and
X̂. Thus, we evaluate the Frobenius norm to determine how much error the
invisible point estimation carries,

‖Θ � (x− P̂ X̂)‖F = ‖Θ � (UΣV T − Û Σ̂V̂ T )‖F
= ‖Θ � (Û cΣ̂cV̂ cT )‖F

Once the Frobenius norm is calculated, the error metric for successive
iterations is compared and if it converging, after suitable number of itera-
tions, the process is halted. If the error metric is not within bounds, the
next iteration goes back to step 2 and estimates the invisible points by using
the camera matrices obtained from the fresh P̂ and X̂ evaluated in step 4
of the previous iteration. With these new estimates, the global image co-
ordinate matrix and the global camera matrix are evaluated and step-1 is
evaluated to obtain the fresh set of P̂ and X̂ that will be used in the next
iteration. The error metric is calculated and is within bounds or converging,
the process is halted, else the iteration goes back to step-2 and runs all over
again.
At the end of the last iteration when the error metric is finally found to be
converging and well within a certain threshold, the freshly updated P̂ and X̂
matrices represent the camera matrices and the world coordinates of the N
tracked feature points. Thus, employing this iterative procedure will enable
us to not only perform slef-calibration and obtain the camera parameters of
all the M cameras in the network but also obtain the shape information of
the 3D object as the N tracked feature points will help determine the shape
of the object.
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Chapter 5

Silhouette based 3D
Reconstruction

5.1 Object Reconstruction

There has been a rich research on the methods of 3D reconstruction
from multiple images in the past few years.Research in 3D shape reconstruc-
tion from multiple view images has conventionally been applied in robot
vision and machine vision systems, in which the reconstructed 3D shape is
used for recognizing the real scene structure and object shape. For those
kinds of applications, the 3D shape itself is the target of the reconstruction.
The literature relates methods from 2D images to our approach most of 3D
reconstruction . Our method begins with these same fundamentals, but the
implementation is real time. Our survey has a particular focus on real-time
and free-space based methods. In addition, we review works on the Shape
from Points problem, where one would like to infer dense 3D geometry only
from a sparse 3D point-wise reconstruction without occlusion information
or color and texture from images. Much of the Shape from Points litera-
ture explicitly or implicitly makes use of the same discretization of space,
and therefore some theoretical results from this literature are notably of
interest. A potential application for real-time reconstruction that we have
experimented with is improving visualization for remote-controlled or tele
presence.

5.2 Manifold Creation

A different class of 3D model-building methods is shape from mo-
tion (SFM). In these methods, usually a single camera is moved through
a static environment to create a model of the scene. Because the camera
is moving relatively slowly, the inter-frame motion is usually quite small,
so feature-tracking algorithms can be used to track features through long
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camera motions. These features can then be used to estimate shape, for
example using the Factorization method or non-linear optimization. These
approaches usually work only with sparse features, and therefore face the
challenge of finding surfaces to connect the feature points.

SFM approaches use feature tracking through video sequences cap-
tured by camera motion through a fixed scene. To apply these approaches to
dynamic scenes, a collection of cameras could be treated as positions of the
moving camera through the fixed scene of a single image from all cameras.
The feature tracking algorithms usually require very small feature motion
from frame to frame, however, so the real camera spacing would have to
be small enough to simulate inter-frame camera motion which could easily
amount to (tens of) thousands of images.This approach combines strengths
both of explicit 3D modeling and of image-based rendering. Multi-camera
video sequences of dynamic events are used to automatically estimate global
scene structure corresponding to each frame of video, resulting in a 3D tri-
angle mesh. The real images can be mapped back to this structure using
texture mapping to add realistic visual appearance. The technique is re-
peated over time to capture complex dynamic events.

This shape and appearance digitization algorithm can be decom-
posed into two steps: first, recover 3D shape, and then estimate scene ap-
pearance. Shape digitization itself is estimation of visible surfaces in each
video image and the merging of these estimates via volumetric integration
into a single global 3D model. Decomposing shape and appearance helps
avoid problems found in voxel coloring, in which mistakes early in the pro-
cess hinder both shape and appearance modeling. Decomposing shape dig-
itization allows local information to propagate to the global structure in a
hierarchical framework, increasing the scope of the modeling process and
decreasing noise as the hierarchy is traversed.

5.2.1 Silhouette Generation

In this section we discuss how we can get the silhouette of the sub-
ject from each of the images. This is also called foreground object extrac-
tion. Since we assume that the background images are available, a straight
forward technique would be to subtract the background image from the
background image and threshold to get the silhouette. This might work
under ideal conditions. However, in the presence of noise, lighting changes
and shadows, lacking of background information we need more sophisticated
methods. The subtraction leaves only non-stationary or new objects, which
include the objects entire silhouette region. The technique has been used
for years in many vision systems as a preprocessing step for object detection
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and tracking. The results of the simple background subtraction algorithms
are fairly good; in addition, many of them run in real-time. However, many
of these algorithms are susceptible to both global and local illumination
changes such as shadows and highlights. These cause the consequent pro-
cesses, e.g. tracking, recognition, etc., to fail. The accuracy and efficiency
of the detection are clearly very crucial to those tasks.One of the fundamen-
tal abilities of human vision is color constancy. Humans tend to assign a
constant color to an object even under changing illumination over time or
space. The perceived color of a point in a scene depends on many factors
including physical properties of the point on the surface of the object. Im-
portant physical properties of the surface in color vision are surface spectral
reflectance properties, which are invariant to changes of illumination, scene
composition or geometry. On Lambertian surfaces, the perceived color is the
product of illumination and surface spectral reflectance. The object can be
model in colour space as Ei= Ri, Gi, Bi. The foreground object will extract
by using the difference in the R,G,B value of the back ground and the object
surface. In other words we select the background which has different R,G,B
values compared to the object.

Figure 5.1: Object image and its respective Silhouette image

5.2.2 Multiple Cameras for Motion Capture

Human motion capture is the activity of acquisition, processing the data
and expressing motion in mathematical terms. The motion capture task
can be classified into a number of systematically different groups, initial-
ization, tracking, pose estimation and gesture recognition. Motion capture
can be obtained by one of three technologies: optical, magnetic and electro-
mechanical all of which involve markers or devices attached to the subject.
A method for markerless motion capture that does not use such markers but
uses multiple images which is obtained by cameras placed around object to
estimate the pose of the subject. There exist a number of algorithms to
estimate the pose from images captured from a one camera, a task that is
extremely difficult and ambiguous. Segmentation of the image into differ-
ent, possibly self-occluding, body parts and tracking them is an inherently
difficult problem.
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The basic steps involved in any markerless motion capture algorithm are:

1. Extract the model of object from multiple images

2. Initial pose estimation of object

3. Track the pose in subsequent frames

5.2.3 A Model of Object

Since we know object form, the use of object models can greatly sim-
plify the object motion estimation problem. It also makes the estimation
more accurate and robust. Representation of object can be done using dif-
ferent models based on the application requirements for which we intend
to use our model. There can be voxel models or other articulated models.
The most common representation of objects is using segments and joints,
where we assume that the body parts are rigid. The rigid parts can be re-
lated in a tree structure, where the nodes are taking as joints. Estimating
the each segment position with respect to its neighbor gives us the required
posture. We can have various models based on the level of articulation and
representation of segments.The segments can be represented using quadrics,
line segments, ellipsoids, etc. The total number of joints and segments are
decided by the actions we would like our model to preform.

5.2.4 Visual Hull Representation

For multiple view 3D reconstruction, we need to find the volume which
corresponds to the silhouettes in all the images. This volume is called the
visual hull of the object with respect to the views. Visual hull is not an exact
reconstruction but the closest we can get to with the available information
from the images. It is used extensively in virtual reality applications and ob-
ject body pose estimation. For pose estimation, a 3D object model is usually
fit to the visual hull to estimate pose parameters. One approach to visual
hull construction is calculating a polygonal surface by intersecting silhou-
ette cones, computed easily by back projection polygonal approximations
of silhouette contours of the object.Volumetric reconstruction represents an
alternative approach to visual hull construction. In this case, the 3D space is
divided into elementary cubic elements(i.e., voxels) and tests are performed
to label each voxel as being inside, outside or on the boundary of the visu-
alhull.

Focus of our work is on multiple videos of a single subject taken in a
controlled environment. The experiment set up is as follows: The placement
of cameras is all around the subject and pointing towards the center of the
capture space. This configuration is essential for estimation in the bounding
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Figure 5.2: Silhouette Re-projection from views

volume space. We also assume that the background is static,which we can
differentiate the subject and background easily. The cameras are assumed
to be calibrated. The problem of estimating the voxel data for each time
instant given the multiple view images. This is done using some existing
algorithms. Correlation between successive frames can also be used here.
Our reconstruction is aimed at applications of activity recognition and pose
reconstruction for animation. So we are not interested in the features of our
subject.

5.2.5 Offline Reconstruction

While Structure from Motion addresses the problem of reconstruct-
ing sparse 3D scene information from 2D images, two-view and multi-view
stereo addresses how to obtain dense 3D from images. In stereo, the pose
and calibration of each images camera is usually assumed known and given
as input. Two-view stereo considers reconstruction from just two calibrated
views, one of which is designated as the reference view. The 3D represen-
tation used is a discrete per pixel mapping from image space to camera
relative scene depth w.r.t. the reference image. This representation is called
a depth map. The two-view problem boils down to finding the optimal depth
map via dense image matching and triangulation. In this way, it is simi-
lar to feature based Structure from Motion but with a match generated for
every pixel rather than at sparsely detected feature points. Depth maps
are often referred to as a 2.5D representation because they do not encode
connectivity between depth estimates. For example, if simply assuming 8
connectivity between neighboring depth pixels to generate a back projected
surface, foreground objects will incorrectly join with the background of the
scene. There are several algorithms and formulations, varying primarily in
terms of the texture-based matching cost, spatial regularization, and depth
map optimization scheme. This section instead concentrates on multi-view
reconstruction from > 2images. The multi view stereo literature is vast.

While an exhaustive review would be excessively lengthy and pe-
ripheral to this thesis, it is important to situate our work in relation to this
body of research. Both our work and stereo have a similar goal: to recon-
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struct a 3D model from a set of input images. While a multitude of methods
with differing properties exist, a common trend is that they compete to find
a reconstruction that is as accurate and complete as possible. This emphasis
can be seen in the very popular multi-view benchmark dataset and survey,
which collects impressive results from the state of the art. As a result of
this focus on quality, most multi-view methods are designed to operate on
small sets of images (on the order of ten or a hundred), and they can take
up to hours to process such datasets. Real-time reconstruction from video
is rare. In contrast to the norm, this thesis work attempts to reconstruct
more approximate models, but in real time. Commonly, stereo methods are
cast as an optimization problem where a representation of the 3D scene or
object to reconstruct is fit to the image data.

Figure 5.3: (a)Consist voxel Figure 5.4: Non-consist voxel

The approaches vary and are distinct from each other broadly in
terms of the optimization framework, 3D parametrization, and cost func-
tion or functional to optimize. The objective function invariably contains
some form of a texture-based photo-consistency matching cost. This mea-
sures how well the recovered 3D surface projections match between the input
images based on scores derived from color or intensity differences, such as
Normalized Cross Correlation (NCC) scores used in, or the Sum of Squared
Differences (SSD). Photo-consistency is the primary reconstruction cue in
stereo. Other common terms in the objective function relate to secondary
reconstruction cues such as silhouette constraints (in the case of reconstruc-
tion of a single object segmented in image space), visibility (enforcing cor-
rectness when optimizing the photo-consistency with respect to occlusions
in the images), and spatial regularization or smoothness priors. Optimiza-
tion of the chosen objective can be performed using a number of standard
techniques, which include iterative derivative-driven numerical optimization
(e.g. gradient descent for surface deformation or level-set evolution or con-
jugate gradient for surface-patch refinement). The choice of optimization
procedure influences properties of the method such as convergence, recon-
struction quality, initialization, and speed. The applicability of a given opti-
mization procedure also depends on both the form of the objective and the
parametrization or representation of the reconstruction. to local minima.
In the case of object reconstruction via surface evolution, Shape from Sil-
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houettes(SFS) can provide an approximate initial surface by back-projecting
the (segmented) objects silhouettes to form generalized cones in 3D space
and then computing the volumetric intersection of all such cones. For scene
reconstruction where silhouettes cannot directly apply, initialization is a
limitation.
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Chapter 6

3D compression

6.1 Mesh generation

This chapter introduces a complete framework for automatic adap-
tation of a 3D face model to a human face for visual communication ap-
plications like video conferencing or video telephony. First, facial features
in a facial image are estimated. Then, the 3D face model is adapted us-
ing the estimated facial features. This framework is scalable with respect
to complexity. Two complexity modes, a low complexity and a high com-
plexity mode, are introduced. For the low complexity mode, only eye and
mouth features are estimated and the low complexity face model Candide
is adapted.For the high complexity mode, a more detailed face model is
adapted, using eye and mouth features, eyebrow and nose features, and
chin and cheek contours. Experimental results with natural videophone se-
quences show that with this framework automatic 3D face model adaptation
with high accuracy is possible.

In the last few years, virtual humans and especially animated vir-
tual faces (also called talking heads) have achieved more and more attention
and are used in various applications. In modern computer games, virtual
humans act as football players or Kung Fu fighters. In movies, highly real-
istic animated virtual humans are replacing real actors (e.g., in the science
fiction movie Final Fantasy). On the Internet, animated virtual faces are
acting as news announcers or sales agents. In visual communication ap-
plications, like video telephony or video conferencing, the real faces of the
participants are represented by virtual face clones of themselves. If we take
a closer look at the technology behind these animated faces, the underlying
shape of a virtual face is often built from a 3D wireframe consisting of ver-
tices and triangles. This wireframe is textured using textures from a real
persons facial image. Synthetic facial expressions are generated by animat-
ing the 3D wireframe. Usually, the face is animated by movement of the
wireframes vertices. In order to produce natural looking facial movements,
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Figure 6.1: Meshing of Dinosar Hand

an underlying animation structure (providing rules for animation) is needed,
simulating the behavior of a real human face.

The creation of such an animated face requires generating a well-
shaped and textured 3D wire-frame of a human face, as well as providing
rules for animation of this specific 3D wireframe. There are different ways
to create an animated face. One possibility is that an animated face is
created manually by an experienced 3D modeler or animator. However,
an automatic approach is less time consuming and is required for some
applications. Dependent on the specific application and its requirements,
different ways for the automatic creation of an animated face exist. For
3D modeling of the shape of the head or face, i.e., for generation of the
3D wire-frame, techniques that are common for the 3D modeling of objects
in general could be used. With a 3D scanner, a laser beam is sent out and
reflected by the objects surface. Range data from the object can be obtained
and used for 3D modeling. Other approaches use range data from multi-
view images (Niem, 1994) obtained by multiple cameras for 3D modeling.
All these techniques allow a very accurate 3D modeling of an object, i.e., a
human head or face.

6.2 Motion Vectors

In video editing motion vectors are used to compress video by storing
the changes to an image from one frame to the next. In a video sequences
exhibit very close similarity, except for the fact that the objects or the parts
of a frame in general may get somewhat displaced in position. This as-
sumption is mostly valid except for the frames having significant change of
contents.
The motion estimation block in a video codec computes the displacement
between the current frame and a stored past frame that is used as the ref-
erence. We consider a pixel belonging to the current frame, in association
with its neighborhood as the candidates block. The difference in position
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between the candidates and its match in the reference frame is defined as the
motion vector.The motion vector is stored in the place of candidate block
with better prediction. The difference betweeen predicted block and the
candidate block called prediction error.While we are coding we will code the
only prediction error instead of total candidate block.At reconstruction we
will get back the candidate block from the reference frame(Intraframe) and
the prediction error[8].

The video sequence consists of

• Intraframe coded pictures(I-pictures)

• Interframe predicted pictures(P-pictures)

• Bi-directionally predicted pictures(B-pictures)

P frame formed from ’I’ . ’B’ formed from ’I’ , ’P’

6.2.1 Compression in 3D Video

The compression in 3D video can be done by incorporating motion
estimation for 3D frames.The motion estimation of 3D video is gaining mo-
mentum because of the advancement in 3D technologies.Here we proposed
a idea to find the motion vectors for 3D video. Here we have the 3D mesh
model.Here we want to find the node displacement instead of block displace-
ment.By incorporating this node displacement we make less computation,
more compression.And we have to take care of the occluded points in the
object.

The Encoder uses the 3D frames. The 3D frames are FEM modeled,which
can be reconstruct from the nodes.We will find the motion estimation from
the reference frame to candidate frame by estimating the motion of nodes.
We have the Decoder running internally in Encoder.Because to calculate
the motion vectors from the encoded 3D surface. The 3D surface which is
formed by using the motion vector based on FEM models gives the better
compression.For finding matching we will go for one of existed matching
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Figure 6.2: 3D encoder Figure 6.3: 3D Decoder

methods [8]. The reconstruction of 3D video in decoder is done by adding
the motion vectors to the nodes in reference frame. The time varying mesh
is a new multimedia representation, which is a sequence of 3D models that
are composed of vertices, edges, and some attribute componenets such as
colour. An extended block matching algorithm (EBMA) to reduce the tem-
poral redundancy of the geometry information in the time-varying mesh by
extending the idea of the 2-D block matching algorithm to 3-D space. In
EBMA, a cubic block is used as a matching unit. Motion Compensation in
the 3-D space is achieved efficiently by matching the mean normal vectors
calculated from partial surfaces in cubic blocks. This 3D models are gener-
ated frame by frame. In the sequence of 3D models of time varying mesh,
not only the geometry information but also the number of vertices changes;
therefore, there is large amount of data. For example, each 3D models will
take 5-10MB of memory to represent it in VRML file format[12].

However, there was significant difference between time varying
mesh and 3D animation models, which are having same number of vertices
and connectivity in each model. Therefore in 3D animation there is one-
to-one mapping of vertices exist between successive models. Time-varying
mesh is generated independently regardless of its neighbors. There are two
categories of time-varying meshes on the analogy of 2D video coding tech-
niques, intra and inter-frame coding. Intraframe coding is a compression
method to reduce the spatial redundancy within a frame. From this point
of view, 3D mesh compression technique so far have been intra-frame cod-
ings. On the other hand inter frame coding exploits the temporal correlation
between consecutive frames. Most of the previous inter-frame compression
methods have focused on 3D animation compression. The time varying mesh
has more than 50000 vertices per frame, which is rather time consuming for
vertex correspondences. So, it is better to go for 3D motion estimation by
using surface normal of triangular mesh[12][13].

Due to lacking of 3D motion models now here we are doing the
motion estimation for the data sets of Zhejiang University. The data set
contains image and its respective depth map. We done the motion estima-
tion in two ways. One is do the motion estimation in 3D itself by using the
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block matching algorithm. And one is do the 2D motion estimation using
image and depth map seperately.

6.2.2 Motion Estimation in 3D

We extend the Block matching algorithm of 2D to find the motion vec-
tors in 3D video. A matching criterion quantifies the similarity between the
current block and the candidate blocks. In 2Dvideo, a number of matching
criteria have been used such as SSD,SAD, and MSD, etc [42]. These meth-
ods have an implicit constraint that the sizes of the two blocks are identical.
3D motion estimation uses a cubic block-splitting surface as its basic unit.
Splitting is performed on the current frame that is to be encoded. The
bounding box of the current frame Fm is calculated and then it is divided
into cubic blocks along the and directions. The size of cubic block is sXsXs
(width X height X depth) .

Figure 6.4: block splitting of 3D object [12]

The parameter is set 16 in our experiments.Thereby, a set of s3cubic blocks
is obtained for a total of Nq cubic blocks. Here, we denote the nth block
in the mth frame as Bn

m. Therefore, the frame can be represented as
Fm = Bc

m|0 5 c 5 Nq−1. Each cubic block, , contains a partial surface
of the current frame . Only blocks that contain surface of the 3-D model
are used for MC. We determine the size of the cubic blocks by examining
the energy of the residuals of the MC. Smaller cubic block sizes can produce
better MC results, although smaller blocks increase the number of motion
vectors, degrading the compression efficiency. After splitting process, Bc

m

is compared with the candidate blocks Bl
m−1(for 0 5 l 5 Nn

CB − 1) in the
decoded previous frame F ∗m−1, where Nn

CB denotes the number of the candi-
date blocks for Bc

m [12] . Note that the maximum value of Nn
CB depends on

the search area because the search area become a center for Bl
m−1. Because

the cubic blocks are defined based on the bounding box without considering
the models shape, the partial surface in a cubic block is not necessarily at
its center. It is desirable to have the partial surface at the center of the

35



cubic block to make the distribution of residuals biased toward zero [41].

ε(i, j, k; v) = B(i, j, k)− B̂((i, j, k) + v) (6.1)

v∗(i, j, k) = arg min
v
‖ε(i, j, k; v)‖ (6.2)

= arg min
v
‖B(i, j, k)− B̂((i, j, k) + v)‖ (6.3)

Motion vector of 3D can be found by extending the 2D Block match-
ing algorithm to the z-direction. In order to solve this problem, we adopt
the 3D direction motion to find Z-adjustment motion estimation of the 3D
equivalent of 2D with assigned depth maps. We adopt 3D motion to search
for the depth map in Z-direction motion estimation provides information
for 3D data compression. According to the Z-direction motion vectors, the
system performs the motion compensation. Next, the 3D video sequence
can be compressed easily according to the motion information.

6.2.3 Motion Estimation for image and corresponding depth
map

The underlying supposition behind motion estimation is that the pat-
terns corresponding to objects and background in a frame of video sequence
move within the frame to form corresponding objects on the subsequent
frame. The idea behind block matching is to divide the current frame into
a matrix of macro blocks that are then compared with corresponding block
and its adjacent neighbors in the previous frame to create a vector that
stipulates the movement of a macro block from one location to another in
the previous frame. This movement calculated for all the macro blocks com-
prising a frame, constitutes the motion estimated in the current frame. The
search area for a good macro block match is constrained up to ’p’ pixels on
all fours sides of the corresponding macro block in previous frame. This p is
called as the search parameter. Larger motions require a larger p, and the
larger the search parameter the more computationally expensive the process
of motion estimation becomes.

Here we have used block matching algorithm for finding the motion vectors.
We used the absolute difference as matching criteria for finding motion vec-
tors of current frame. We initially divide the frames as square blocks of size
w. Then you search for the match of each block of current frame in reference
frame. After selecting a block in current frame you search for matching in
reference frame search window. Optimum size of search window is ”2w∗2w”.
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Figure 6.5: Motion estimation

For each block ’B’ in current frame we will find the corresponding matching
block ’B̂’ in reference frame with Minimum Absolute Error criteria

ε(i, j; v) = B(i, j)− B̂((i, j) + v) (6.4)

v∗(i, j) = arg min
v
‖ε(i, j; v)‖ (6.5)

= arg min
v
‖B(i, j)− B̂((i, j) + v)‖ (6.6)

’*’ indicate the optimum. After finding the optimum motion vector we
do the motion compensation by using reference frame and motion vector
. And we obtain the error frame by doing the difference between motion
compensated frame and the current frame.

ÊB(i, j; v) = B(i, j; v∗(i, j)) (6.7)

ε∗(i, j) = ε(i, j, v∗(i, j)) (6.8)

’EB’ is the motion compensated block. At the receiver side we will
reconstruct the current frame from the current frame, motion vectors and
error frame.

Now we are doing the motion vectors differently for image and
depth map sequence. Our main idea is to send a single motion vector either
image or depth map sequence. At receiver we have to reconstruct the cur-
rent frames of image and depth map by using this single motion vector. For
this we done the different cases of motion estimation

• Find the motion vector by using image sequence
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• Finding the motion vector using depth map sequence

• Find the motion vector using both image and depth map

Motion Vectors using image sequence

We obtain the motion vectors by using the images itself. Here we
do not bother about the depth map images. We apply the same motion
vectors for the image and depth map images. So, we obtain optimum mo-
tion compensation for image sequence only. In this case we require less data
to encode image sequence error frames and more data for depth map error
frames.
B1(i, j)⇔ v∗1(i, j) [ For (i, j), pick v = v∗1(i, j)]

Image Sequence

ÊB1 = EB1((i, j) + v∗1(i, j))
ε1(i, j) = ε∗1(i, j; v

∗
1(i, j))

Depth Map Sequence

ÊB2 = B2((i, j) + v∗1(i, j))
ε2(i, j) = ε2(i, j; v

∗
1(i, j))

Motion Vectors using depth map sequence

This is counter part to the above case.Here we obtain the motion
vectors by using the depth map sequence. And we estimate the current
frames using this motion vectors. In this case we require more data to
encode error frames of image sequence and less data to encode the error
frames of depth map sequence.

B2(i, j)⇔ v∗2(i, j) [ For (i, j), pick v = v∗2(i, j)]

Image Sequence

ÊB1 = EB1((i, j) + v∗2(i, j))
ε1(i, j) = ε1(i, j; v

∗
2(i, j))

Depth Map Sequence

ÊB2 = B2((i, j) + v∗2(i, j))
ε2(i, j) = ε∗2(i, j; v

∗
2(i, j))

Motion Vectors using both image and depth map sequence

This is optimum way to find motion vectors by using the both image
and depth map sequence. And we estimate the current frames using this
motion vectors. In this way we can achieve moderate requirement to encode
error frames of both image and depth map sequences.

v∗(i, j) = arg min
v

(λ‖ε1(i, j; v)‖+ (1− λ)‖ε2(i, j; v)‖) (6.9)

Image Sequence

ÊB1 = EB1((i, j) + v∗(i, j))
ε1(i, j) = ε1(i, j; v

∗(i, j))

Depth Map Sequence

ÊB2 = B2((i, j) + v∗(i, j))
ε2(i, j) = ε2(i, j; v

∗(i, j))
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Here we have to find the λ, such that we can achieve the maximum com-
pression,

λ =
σ2
σ1

=
DynamicrangeofDepthmap

Dynamicrangeofimage
(6.10)
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Chapter 7

Results

7.1 Space Curving

The surface reconstruction for different object by using space curv-
ing technique is shown below. We taken different 2D views of image and
converted them to its silhouette by representing the the object with ’1’ and
background with ’0’. By back projecting the silhouette from the respective
position, it gave the 3D object surface. Below figures shows the image of doll,
its silhouette and the 3D surface formed by using space curving technique .

Figure 7.1: Silhouette of image and its 3D reconstructed views

Figure 7.2: silhouette of teddy and its 3D views
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Figure 7.3: silhouette of doll and its 3D views

7.2 Mesh Generation

The reconstructed surface from space curving technique take nearly
10MB space for single frame with a minimum quality. So, to reduce spa-
cial redundancy we used meshing, where we represent the data in terms of
interpolative basis. For Mesh generation we used the Abaqus,Comsol Multi-
physics packages.

Figure 7.4: Meshing of Dinosar Hand VRML using COMSOL and Hand
model created using Abaqus
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7.3 Motion Estimation

For reducing the temporal redundancy for creating 3D video we are
extended the concept of 2D block matching algorithm to 3D block matching
algorithm. But due to the lack of 3D video sequence we are used the 3D
block matching algorithm for image and its depth map sequence. For motion
estimation purpose we divided the total 3D grid into cubic elements and
search for matching block in reference frame in 3-dimensions. Below figure
shows the 3D block matching algorithm.

Figure 7.5: 2D image and its 3D with Depth map assignment

Figure 7.6: 3D motion estimation using Block Matching Algorithm
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Apart from the 3D motion estimation, we worked on the data rate
reduction for image and its respective depth map sequence. By exploiting
relation between the image and depthmap using the weighting function. Be-
low we can observe that if we estimate the motion estimation by using the
only images the data to transmit error in depth map is increased in fig 7.7.
If we estimate the motion vector based on depth map then data for transmit
error in image increased in fig 7.8. By using the weighting function we ob-
tained the minimum data rates with less distortion fig 7.9. The correlation
functions for different cases shown in fig 7.10.

Figure 7.7: Image frames, error frames of image and depth map using
motion vectors of image. Corresponding autocorrelation values are
Rimage(0) = 54.56 Rdepth(0) = 1892.85

Figure 7.8: Normalized depth map images frames and error frame of
depthmap and image using motion vectors of depth map images. Corre-
sponding autocorrelation values are Rimage(0) = 101.48 Rdepth(0) =
996.13
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Figure 7.9: Error frames of image and depth map for combined motion
vector calculation, Graph of λ vs Standard deviation ratio of depth map
and image.

.
λ is optimum for

Standarddeviationratio =
DynamicRangeofdepthmap

D.Rofimage
=
σdepthmap
σimage

= 5.47

corresponding λ = 0.917234863996076, autocorrelation values are
Rimage(0) = 55.06 Rdepth(0) = 1382.46

Figure 7.10: Correlation function of error for different motion estimate cases

Here by using λ we are exploiting the correlation between the image and
depth map. The error becomes less in both image and depth map compare
to the above two case.
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Chapter 8

Conclusion and Future Road
Map

We briefly explained the methods to reconstruct the 3D surface of
an object from a sequence of calibrated images .i.e., Space curving, Shadow
curving,variational approach. Among these we reconstructed the 3D surface
by using the space curving with 36 2D images. We reconstructed the 3D
surface by reprojecting the silhouette of image to the global 3D model. The
precision is depending on the number of images we are using.

For transmission of the 3D data over the channel with less band-
width we opted Finite Element Method for spatial redundancy reduction.
We created the mesh of the models using Abaqus, Comsol packages. And for
the temporal reduncy reduction purpose we done the motion compensation.
But due to the lack of 3D motion data we done the motion estimation on
2D image and the depth map sequence.

Our future approach is to find the autocalibration for our own
setup of cameras. By using our own setup we are going to create our own 3D
motion models, which will be use for the spatial and temporal compression.
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