Graph Pattern Polynomials

Blaser, Markus and Komarath, Balagopal and Sreenivasaiah, Karteek (2018) Graph Pattern Polynomials. In: 38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS), 11-13 December 2018, Ahmedabad, India.

Full text not available from this repository. (Request a copy)

Abstract

Given a host graph G and a pattern graph H, the induced subgraph isomorphism problem is to decide whether G contains an induced subgraph that is isomorphic to H. We study the time complexity of induced subgraph isomorphism problems when the pattern graph is fixed. Nesetril and Poljak gave an O(n^{k omega}) time algorithm that decides the induced subgraph isomorphism problem for any 3k vertex pattern graph (the universal algorithm), where omega is the matrix multiplication exponent. Improvements are not known for any infinite pattern family. Algorithms faster than the universal algorithm are known only for a finite number of pattern graphs. In this paper, we show that there exists infinitely many pattern graphs for which the induced subgraph isomorphism problem has algorithms faster than the universal algorithm. Our algorithm works by reducing the pattern detection problem into a multilinear term detection problem on special classes of polynomials called graph pattern polynomials. We show that many of the existing algorithms including the universal algorithm can also be described in terms of such a reduction. We formalize this class of algorithms by defining graph pattern polynomial families and defining a notion of reduction between these polynomial families. The reduction also allows us to argue about relative hardness of various graph pattern detection problems within this framework. We show that solving the induced subgraph isomorphism for any pattern graph that contains a k-clique is at least as hard detecting k-cliques. An equivalent theorem is not known in the general case. In the full version of this paper, we obtain new algorithms for P_5 and C_5 that are optimal under reasonable hardness assumptions. We also use this method to derive new combinatorial algorithms - algorithms that do not use fast matrix multiplication - for paths and cycles. We also show why graph homomorphisms play a major role in algorithms for subgraph isomorphism problems. Using this, we show that the arithmetic circuit complexity of the graph homomorphism polynomial for K_k - e (The k-clique with an edge removed) is related to the complexity of many subgraph isomorphism problems. This generalizes and unifies many existing results.

[error in script]
IITH Creators:
IITH CreatorsORCiD
Sreenivasaiah, KarteekUNSPECIFIED
Item Type: Conference or Workshop Item (Paper)
Subjects: Computer science
Divisions: Department of Computer Science & Engineering
Depositing User: Library Staff
Date Deposited: 28 Oct 2019 11:56
Last Modified: 28 Oct 2019 11:56
URI: http://raiith.iith.ac.in/id/eprint/6867
Publisher URL: http://doi.org/ 10.4230/LIPIcs.FSTTCS.2018.18
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 6867 Statistics for this ePrint Item