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Abstract

Cardiovascular diseases (CVD) are a leading cause of unnecessary hospital admis-
sions as well as fatalities placing an immense burden on the healthcare industry. A
process to provide timely intervention can reduce the morbidity rate as well as con-
trol rising costs. Patients with cardiovascular diseases require quick intervention.
Towards that end, automated detection of abnormal heartbeats captured by electron-
ic cardiogram (ECG) signals is vital. While cardiologists can identify different
heartbeat morphologies quite accurately among different patients, the manual evalu-
ation is tedious and time consuming. As the ability to capture and store vast
amounts of data in the cloud is becoming affordable and commonplace, automated
pattern recognition tools can be applied to detect occurrence of complex events in
human bio-signals. Bio-signals such as the heart rhythms exhibit complex dynamics
and therefore extracting pertinent features is critical to downstream pattern recogni-
tion. Prior researches placed a significant emphasis on feature extraction and selec-
tion. In this thesis, we addressed several aspects of automatic detection, most nota-
bly, feature extraction, and a careful assessment of two types of arrhythmia, ventric-
ular ectopic beats (VEB), and supraventricular ectopic beats (SVEB). We utilized a
feature selection methodology which selects the most significant features from a
feature set based on time, and frequency domains. Furthermore, we evaluated the
performance of several classifiers; Linear Discriminant Analysis (LDA), Quadratic
Discriminant Analysis (QDA), and Artificial Neural Networks (ANN). The meth-
odology and framework we proposed is fairly automated and does not require the
intervention of the domain expert (cardiologist) in the extraction of the features and
labeling of the segments of the ECG signals. Our results bear testimony to the im-
provements as seen in the commonly used metrics such as classifier sensitivity,
specificity, F-measure, and positive predictive value in the evaluation of classifier

performance for detecting arrhythmias.
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Chapter 1

Introduction

Cardiovascular diseases (CVD) are a leading cause of fatality representing 30% of all global
deaths [19]. In 2008, an estimated 17.3 million individuals died of cardiovascular diseases.
Third world countries account for 80% of CVD related deaths. In 2010, CVD related ill-
nesses cost the United States healthcare industry $316.4 billion. A large number of admis-
sions to hospitals are unnecessary and avoidable. Due to inadequate preventive measures,
CVD related fatalities continue to rise. It is imperative that we find a solution that reduces
these fatalities. One way is to identify high risk patients is using simple and inexpensive
tools. An automated system that can identify potential risks of patients can aid optimizing
the usage of medical resources. Such systems must be able to identify patterns in cardiovas-
cular activity that can pose a threat to the patients. Furthermore, in rural areas, where access
to healthcare facilities is poor, early detection systems can be potentially lifesaving and cost
effective. Electrocardiogram (ECQG) is a widely used device to monitor heart function ir-
regularities. At present, an expert cardiologist analyzes ECG plots to detect abnormalities.
However, such an analysis is over short durations of an ECG signal. Since certain kinds of
heartbeat arrhythmias are time consuming to detect, the patient may require long term moni-
toring. In health care, patients with heart problems require quick responsiveness in a clinical
setting or in the operating theatre. Towards that end, automated classification of heartbeats
is vital as some heartbeat irregularities are time consuming to detect. Therefore, analysis of
electro-cardiogram (ECG) signals is an active area of research.

In this thesis, we propose techniques to detect two types of heartbeat arrhythmias —
Ventricular Ectopic Beats (VEB) and Supra Ventricular Ectopic Beats (SVEB). We propose
new features from the time and frequency domains and furthermore, a data normalization
technique to reduce inter-patient and intra-patient variations. Our results are comparable to

those reported in existing literature and in most cases deliver improved performance.



Chapter 2

Related Work

!Classification of ECG signals is a very difficult problem and current research is focused on
careful extraction of heartbeat features. A major problem encountered by machine learning
techniques for classifying ECG signals is due to the large inter-patient and intra-patient var-
iability in the timing profiles and morphology of damaged cardio-vascular processes (see
Figure 2.1). The effect of this behavior is that classifiers trained using traditional methods

fail when applied to new patients.

Patient 119 Patient 106

Normal Beat

Premature
Ventricular
Contraction

Figure 2.1: Example of heartbeat shapes from the MIT-BIH data set. Each column repre-
sents a patient and each row the beats for that specific class. Note the variations in the beat

morphology across patients as well as within a patient (Source Alvarado et al [9])

Several approaches have been proposed. Hu et al [2] used a mixture of experts approach
which combines global and local classifiers. The global classifier uses heartbeat signatures
from a vast collection of labeled data. The local classifier trains on patient-specific ECG
recordings. A gating function weights the classification results of the global and local ex-
perts and combines them to make a decision. Chazal et al [4] proposed an approach based
on heartbeat morphology features, heartbeat interval features, and RR interval features and
utilizes the linear discriminant classifier (LDA) for classification. Ince et al [5] proposed a

patient-specific classification methodology for accurate classification' of heartbeat patterns.

1Source Alvarado et al [9]



Wiens et al [11] proposed active learning which reduces the amount of patient-specific (an-
notated) data needed for classification. It is therefore evident that heartbeat classification

researches have focused exclusively on patient-specific ECG signatures and features.



Chapter 3

Classifiers

3.1 Linear Discriminant Analysis

Several classifiers have been used in existing literature, such as Linear Discriminant classi-
fier [4], Neural Networks [16], Support Vector Machine (SVM) [11] etc. We implemented
Linear Discriminant classifier described in Chazal et al [4]. A Linear Discriminant classifier
assumes that the underlying probability density function of the data or feature vector is
Gaussian. By calculating the posterior probability of class membership of a new example,
Linear Discriminant classifier classifies the example into one of the k& classes,
k € {1,2....c}.The classifier choses the class with highest posterior probability. The poste-
rior probability of an example x belonging to class k is given by

p(x|k)p(x)

P(k|x) = ===

where P(k) is the prior distribution for class %, calculated as the proportion of heartbeats of
class k, P(x|k) is the class conditional distribution of feature vector x. Under the assump-
tion that the data is Gaussian (i.e. Feature vector x follow Gaussian distribution), P{x|k) is
given by
1 1 -
Plxli) = —g—— exp(—5 O — )8 (r — i)
|X12(2m)2

where py, is the mean of class k and ¥, is the pooled covariance matrix given by

(ny—1E+n2—1DEz0mt(n—1)Fc

iy g toae—e

Ep=

where 1y, is the number of heartbeats of class k, k € {1,2 ....c} in the training set. Covari-

ance of each class was weighted as per the procedure described in Chazal et al [4]. The

weights for classes N, SVEB, VEB, F and Q was set to Zﬂ , where 1, is the number of
nj



heartbeats of class k in the training set. The classes are weighted in order to reduce the con-
tribution of dominant classes (e.g. Class N) to the likelihood function. If the number of beats
is less than 400, no weighting is applied to that class (e.g. Class Q). The weights for classes
N, SVEB, VEB, F and Q are 400/45868, 400/942, 400/3787, 400/415 and 1 respectively.
The final classification decision is based on the highest posterior probability P{k|x). The

decision function d;(x) is given by:

argmaxd;(x) where
i

1 1
d;(x) = —3log(2m) — Slog]5,| =5 (x — TS (x — 1) + log(P)

and Py is the prior probability for class k. uy and ¥, are calculated from the training data. A

new testing example x is classified to the class with highest d;(x). Py for classes N, SVEB,
VEB and F were set to 10/41. Prior probability for class Q was set to 1/41 due to its rare

occurrence.

For description and details of Quadratic Discriminant Analysis (QDA), refer [12].
Quadratic Discriminant Analysis (QDA) differs from Linear Discriminant Analysis (LDA)

in that the pooled covariance matrix is replaced by within class covariance matrices.

3.2 Artificial Neural Networks

By definition a neural network is a massively distributed parallel processor that acquires
knowledge by optimizing the inter-neuron synaptic strengths by a learning process. The
learning process consists of an algorithm that systematically modifies the synaptic strengths
to achieve the desired objective. The architecture of a neural network is a simplified ana-
logue of the network of neurons within a human brain responsible for memory, pattern

recognition and a host of other activities. The computational elements that comprise a neural

Xp Wp

Figure 3.1: Single layered feedforward network



network, akin to the neuron are known as nodes, units, or processing elements. A neural
network is an arrangement of neurons organized in layers. The simplest neural network is a
single layer network consisting of neurons in the input layer feeding into an output layer. A
schematic of a single layer feedforward network is given in Figure 3.1. The cumulative ef-
fect of the input layer nodes at the output node is a sum of the product of input values and

their corresponding weights (synaptic strengths) plus a bias term.

It is feedforward in that the connections between inputs and outputs are in one (for-
ward) direction only. A natural extension is a multi-layered feedforward network which
consists of an input layer of neurons, a hidden layer of neurons feeding into an output layer
of neurons. The number of hidden layers can be greater than one. A schematic of a fully
connected, multi-layered feedforward neural network with one hidden layer is illustrated in

Figure 3.2.

3.2.1 The back propagation algorithm

The goal of a neural network algorithm is to establish a relationship between the inputs and
their corresponding responses. Neural networks are chosen often when it is difficult to
mathematically express a relationship between the inputs (signatures) and the outputs (clas-
ses). We will, in the following, formally define the constituents and the mechanics of the
back propagation network that is usually effective in establishing a relationship or a map-
ping between the input signatures and the output classes. Suppose we have a set of data of p
input-output pairs (the input-output pairs correspond to a vector of electrical parameter

measurements and the probable cause of failure), (x;, yi), (X2 y2),.... (Xp, Vp). The input-
output pairs are such that x € 9%, and y € 9. Back propagation algorithm is used to train

the neural networks to develop an approximate relationship y = f{x). Training the neural
network corresponds to finding the appropriate set of weights also known as synaptic
strengths. The back propagation method usually achieves this objective given a sufficient
number of training samples and correctly chosen input-output pairs. A detailed discussion

of back propagation algorithm is given in [15]. Back propagation algorithm is a method to

2
)
minimize the objective function £, = é > (dpi—op/) , where E, is the error due to the
J=1

p" signature vector, d,; is the desired value for the /™ output neuron, and oy is the actual

output of the /" output neuron. We observe that each term in the sum is the contribution to



the total error from a single output neuron. The minimization of E, is achieved by finding

its derivative with respect to the weights wji and computing the changes in weights in the

direction of its negative gradient, in other words: Apwjicx —

, where wj; is the weight

ji

connecting the /" node in layer / and the i node in layer -1.

X1

Ep

Input Layer Hidden Layer Output Layer

Figure 3.2: Architecture of a multi-layer feed forward neural network

3.2.2 Training with back propagation

The back propagation algorithm uses an iterative optimization technique to determine the

best set of hidden-layer and output layer weights. Given an initial set of hidden-layer

weights (Wﬁ'-l-,(j=l,,...., Nh)), and an initial set of output-layer weights

(Wiy» (k =1,,....N 0)), generated from the Gaussian or the uniform distribution, the method

updates the weights by minimizing the sums of square of error. At each iteration,
o A multi layered feed-forward neural network with one hidden layer is preferable

o The elements of the input vector are chosen after a careful review of important input fea-

tures.

e The data is scaled such that the domain of any given input variable is the unit interval

(0,1).

e Sufficient training data in each labeled class is available prior to training.



e The number of hidden layer units is typically a third or half of the sum of input and output

layer units.

e The hidden layer and output layer weights (synaptic strengths) are generated from a

Gaussian (0,1)/Uniform(0,1) distribution. It is recommended a small value for the variance

is chosen. The leaning rate M is usually chosen between (0.1-0.3).

o All the bias units may be set to zero in the entire network.

o The training data is split into two sets, namely the training set, and validation set.

o The k-fold cross-validation may be applied for training and validation.

o The training set is used to train several preliminary network architectures

o The validation set is used to identify the network with the least sums of squares of error.

e The network is trained using the pattern by pattern approach. The patterns are selected

randomly from each class to eliminate any biases during learning.



Chapter 4

Feature Extraction and Data Description

4.1 Data Description

This In an ECG signal, heartbeat patterns are identified by a cardiac cycle consisting of P-
QRS-T waveforms. The P-QRS-T waveforms represent 5 successive deflections in ampli-
tude, known as P, Q, R, S and T waves as shown in Figure 4.1. These patterns tend to vary
within a patient recording resulting in intra-patient variations. In addition to intra-patient
variations, these patterns exhibit inter-patient variations. This makes heartbeat classification
a challenging problem. To effectively classify a heartbeat, a classifier must be able to take
into account both inter-patient and intra-patient variations in ECG signal. Figure 2.1 shows
the inter-patient variation of heartbeat pattern for patient 119 and 106 relative to normal

beats, and intra-patient variations relative to premature ventricular contractions.
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Figure 4.1: Cardiac cycle of a typical heartbeat represented by the P-QRS-T waveform

In order to compare our results with the existing literature, we used MIT/Beth Israel
Hospital (BIH) Arrhythmia Database available in PhysioBank archives [1]. The database
includes 48 Electrocardiogram (ECG) recordings sampled at 360 Hz for a duration of half
hour. The 48 ECG recordings were obtained from 47 subjects. Each ECG recording consists



of two ECG lead signals, Lead A and Lead B. Our study was conducted entirely on Lead A.
ECG recording is susceptible to noise such as power line interference and baseline wander.
Before the feature extraction, we preprocessed the ECG signal to reduce the baseline wan-
der and 60 Hz power line interference. To reduce baseline wander, the signal was passed
through median filters of window sizes 200ms and 600ms. The first median filter removes
P-waves and QRS complexes and second median filter removes the T-waves leaving behind
the baseline wander. By subtracting the baseline wander from the original signal, we obtain
the filtered signal. We removed power line interference using a notch filter centered at
60Hz. This type of ECG filtering is conducted in all proposed methods cited in this thesis.
The database has annotations for 20 different types of heartbeats, with each heart-
beat annotated by an expert cardiologist. The annotation provides the location of the R-Peak
and the corresponding heartbeat label. R-Peak represents the peak of QRS complex (See
Figure 4.1) and heartbeat label represents the type of heartbeat. In accordance with the
American Association of Medical Instrumentation (AAMI) protocol [3], heartbeats availa-
ble in MIT-BIH arrhythmia database were grouped into 5 classes (See Table 4.1]). The 5
classes are Normal and bundle branch block beats (N), Supraventricular ectopic beats
(SVEBES), Ventricular ectopic beats (VEBs), Fusion of normal and VEBs (F), and Unknown
beats (Q). Although AAMI protocol [3] define 5 classes, the protocol defines the detection
of SVEB as a binary classification problem. For the detection of SVEB, a heartbeat is classi-
fied as either SVEB or not SVEB (N, VEB, F and Q). Similarly, for the detection of VEB,
the heartbeat is classified as either VEB or not VEB (N, SVEB, F and Q). The data was di-
vided into two disjoint sets of patients DS1 and DS2, containing 22 patients each. As per the
AAMI protocol [3], our study did not consider four patients with paced beats. The training
dataset was derived from dataset DS1 and testing dataset was derived from dataset DS2. In
other words, training set DS1 is used to train the global classifier, which is then tested on
testing set DS2 containing a new set of patients. Note that our approach does not require
apriori knowledge of patient specific labeled beats from the testing set, unlike certain other

techniques [6,9,11] in existing literature. DS1 and DS2 contains the following recordings:

DS1 = {101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207,
208, 209, 215, 220, 223, 230}

DS2 = {100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 214, 219, 221,
222,228,231,232,233,234}

Paced beats = {102, 104, 107, 217}. Note that paced beats are excluded from analysis.

10



Table 4.1: Heartbeat classes given by the MIT-BIH Database along with the regrouping defined
by the AAMI standard. (Source Alvarado et al [9])

MIT-BIH class MIT-BIH number | Number of Samples AAMI groups Number of |
Normal beat 1 75052 90631
Left bundle branch block beat 3 7259

Right bundle branch block beat 2 8075 N: Beats not found in the class S, V, F and Q.

atrial escape beats 34 16

Nodal (junctional) escape beat 11 229

Atrial premature beat 8 2546 2781
Aberrated atrial premature beat 4 150 S S e

Nodal(junctional) premature beat 7 83 25 PV A SOl G ion:

Supraventricular premature beat 9 2

Prcm:_sturc ventricular contraction 5 7130 V: Ventricular ectopic beat 7236
‘Ventricular escape beat 10 106 : >

Fusion of ventricular and normal beat 6 803 Fusion beat (F) 803
Paced beat 12 7028 8043
Fusion of paced and normal beat 38 982 (Q: Unknown beat.

Unclassified beat. 13 33

4.2 Metrics

A variety of metrics are used in the realm of classification. Adhering to common practice in
heartbeat classification, we used the metrics listed below. The classification results are re-
ported in terms of accuracy (Acc), sensitivity (Se), positive predictive value (PPV), and

false positive rate (FPR). They are defined as follows:

TP+TN U —_Tr
Accuracy (ACC) = —————, Sensitivity(Se) = — ™,
Positive Predictive Value (PPV) = l, and False Positive Rate(FPR) = =
TP4+FP TN+FP

where TP (True Positive) is the number of heartbeats of class i’ that are correctly classified;
FN (False Negative) is the number of heartbeats of class i’ that are incorrectly classified to
class 7’; FP (False Positive) is the number of beats of class j # i’, that are incorrectly classi-
fied to class 'i"; TN (True Negative) is the number of beats of class j' that are correctly clas-
sified. An additional metric, the F score, was used to evaluate the classification perfor-
mance. F-Score is a common metric used in the field of Information Retrieval. Wiens et al

[11] defined F-Score as
2% S5ex PPV

F—Score =— ppv

4.3 A Comparison of Statistical Machine Learning Techniques in Heartbeat

Detection and Classification

4.3.1 Feature Extraction

We used a 13 dimensional feature vector, one for every heartbeat recorded in the 30 minute

recording of each patient. The features consist of RR interval duration, the R-peak ampli-

11



tude, and 5 samples each to the left and right of the R-peak, from the pre-processed ECG
signal recordings down-sampled to 114 Hz. The 114 Hz sampling rate is in the vicinity of
the average sample rate reported by Alvarado et al [9]. The RR interval features include the
Pre-RR Interval and the Post-RR Interval. Pre-RR interval is calculated as the sample count
between the current R-Peak and the preceding R-Peak, while Post-RR interval is calculated
as the sample count between the current R-Peak and the next R-Peak. We settled for the 13
dimensional feature vector after it was found that having more sample values in the feature
vector do not produce significant improvement in performance. It is noted that a lower
sampling rate and smaller feature vector is desirable in real time monitoring applications as

it translates to lower hardware complexity and power consumption.

4.3.2 Classifiers

We used methods such as linear discriminant analysis (LDA), quadratic discriminant analy-
sis (QDA), mixture of experts (ME), artificial neural networks (ANN) and ensemble net-
works. For an overview, refer to Chapter 3. In our implementation, the proposed mixture
consists of two experts, LDA and QDA. The classification for each patient was performed
using LDA and QDA and the winner between the two was chosen for each patient based on
the F-Score, described in section 4.2. The LDA assumes that the covariance within the
VEB and other generic class is the same, as opposed to the QDA which assumes an unequal
covariance between the two classes. The ANN implementation consisted of network en-
sembles as they are known to exhibit superior performance in applications as widely report-

ed in literature.

4.3.3 Results and Discussion

The classification scheme involved two classes consisting of feature vectors belonging to
the VEB class, and the patterns from the remaining classes combined into one set {N, F, Q,
S}. We have reported the results of the classification tasks in Table 4.2 and Table 4.3. Ta-
ble 4.2 reports the gross results for LDA and QDA. Table 4.3 reports the gross results for
ME (Mixture of experts) and ANN ensembles. Columns 2-6 contain the total number of
heartbeats from each class; columns 7-14 report the gross classifier performance in terms of
Acc (Accuracy), Se (Sensitivity), PPV (Positive predictive value) and FPR (False positive
rate). Row 1 reports the gross result (Gross) for the 22 patient testing set DS2. Similarly,
row 2 reports the gross result (Gross*) for the set of 11 patients overlapping with the testing
set from Hu et al [2]. We used the aggregate TP, FN, FP, and TN to calculate the gross re-

sults for each classifier.

12



In the mixture of experts model (ME), the classification for each patient was per-
formed using both LDA and QDA. For each patient, we chose the results for classifier
(LDA or QDA) with higher F-Score, which was later used to calculate the gross results for
the ME model. The gross statistics for the ANN ensemble classifier was calculated by tak-
ing the average of the results reported by the ANN ensemble.

Table 4.2: Gross classification results for LDA and QDA

Number of Heartbeats LDA QDA
N S A% F Q Acc Se PPV | FPR | Acc Se PPV | FPR
Gross 44258 1837 | 3221 388 7 934 | 758 | 619 4.8 83.1 97 35.2 18.4

Gross* 23169 203 3174 388 2 942 | 758 | 75.3 33 83.6 97 41.6 18.2

Gross: Gross Results for the 22 patient testing set

Gross™*: Gross results for the 11 patients coming to the testing set of Hu et al [2]

Table 4.3: Gross classification results for Mixture of Experts (ME) and ANN Ensemble

Number of Heartbeats LDA QDA
N S \% F Q Acc Se PPV | FPR | Acc Se PPV | FPR
Gross 44258 1837 | 3221 388 7 954 | 922 | 634 | 43 969 | 79.7 | 74.6 1.9

Gross* 23169 203 3174 388 2 95.2 93 73.5 4.5 97.1 | 803 | 94.2 0.7

Gross: Gross Results for the 22 patient testing set

Gross™*: Gross results for the 11 patients coming to the testing set of Hu et al [2]

The gross statistics (Gross) reported in Table 4.2 shows that LDA achieved higher
Accuracy (93.4%), PPV (61.9%) and FPR (4.8%) while QDA achieved higher Sensitivity
(97%). However, since QDA achieved a significantly lower PPV (35.2%) due to high false
positives, LDA has clearly outperformed QDA. Comparing the ME model to the ANN en-
semble in Table 4.3, the ANN ensemble clearly outperforms the ME model due to higher
PPV. ME achieved high sensitivity (92.2%) and low PPV (63.4%), whereas ANN ensemble
achieved a modest Sensitivity (79.7%) and PPV (74.6%). Thus after extensive testing, ap-
plying the many classifiers, the ANN stood out with the best performance, followed by mix-
ture of experts model (ME), LDA and QDA. ANN ensemble achieved a gross accuracy
(Acc) of 96.9% while LDA, QDA and mixture of experts (ME) achieved 93.4%, 83.1% and
95.4% respectively. ANN ensemble achieved sensitivity (Se) of 79.7%, while LDA, QDA
and ME achieved sensitivity of 75.8%, 97%, and 92.2% respectively. However, ANN en-
semble achieved the highest PPV among the four classifiers (74.6% for ANN, 61.9% for
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LDA, 35.2% for QDA and 63.4% for Mixture of experts). Therefore, the performance of
the ANN ensemble has been found to be consistently superior to LDA, QDA and the ME.

In Table 4.4, we compare our methods with the state of the art models. The table
shows the results reported by Chazal et al [4], Hu et al [2] and Alvarado et al [9] followed
by the results obtained using our approach. Column 1 identifies the study, columns 2-5 rep-
resents the gross results for the 22 patient testing set. Columns 6-9 represents the gross re-
sults reported by the various studies for the set of 11 patients overlapping with the testing
set from Hu et al [2]. Column 10 represents the sampling rate. The mixture of experts
model (MoE) proposed by Hu et al [2] consists of a global expert and a local expert. The
experts are weighted to make a decision. Hu et al (GE) represents the results obtained using
the global expert, while Hu et al (MoE) represents the results obtained using the mixture of

experts model described previously.

Table 4.4: Comparison of results with the state of the art

VEB Gross VEB Gross* Sampling
Methods

Acc Se PPV FPR Acc Se PPV FPR Rate
Chazal et al[4] 974 777 819 12 9.4 775 906 1.1 360
Hu et al (GE) [2] - - - - 753  69.6 346 168 180
Hu et al (MoE) [2] - - - - 93.6 789 76 32 180
Alvarado et al [9] - 924 948 04 - - - - 117
Proposed LDA 934 758 619 438 942 758 753 33 114
Proposed QDA 83.1 97 352 184 | 83.6 97 416 182 114
Proposed ME 954 922 634 43 95.2 93 735 45 114
Proposed ANN Ensemble 969 79.7 746 19 97.1 80.3 942 0.7 114

We compared our results for the 22 patient testing set (VEB Gross) with the results
reported by Chazal et al [4]. Sensitivity (Se) achieved by LDA, QDA, and ME are compara-
ble to the sensitivity reported by Chazal et al [4]. However, LDA, QDA and ME achieved
lower PPV. The performance of ANN ensemble(Acc equal to 96.9%, Se equal to 79.7%,
PPV equal to 74.6% and FPR equal to 1.9%) is comparable to the results reported by Chazal
et al [4] (Acc equal to 97.4%, Se equal to 77.7%, PPV equal to 81.9% and FPR equal to
1.2%). Note that while our sampling rate was 114 Hz, Chazal et al [4] sampled at 360 Hz.
Also, we compared our results with the results reported by Alvarado et al [9] (Se equal to

92.4%, PPV equal to 94.82%, FPR equal to 0.4%). Note that Alvarado et al [9] reported an
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average sampling rate of 117 Hz, which is in within the range of our sampling rate. Our
models were outperformed by the model proposed by Alvarado et al [9], which achieved
higher sensitivity (Se) and positive predictive value (PPV). The approach by Alvarado et al
[9] comes with many caveats. It may be noted that the proposal by Alvarado et al [9] using
the integral and fire (IF) models derives its advantages if the analog signal is sampled as
opposed to the digital signal. Hardware implementations for the IF are now not commer-
cially available and are still in the incipient laboratory stages.

Columns 6-9 in Table 4.4 reports the gross results (VEB Gross*) achieved for the
11 patients overlapping with the testing set reported by Hu et al [2]. We have observed that
ANN ensemble (Acc equal to 97.1%, Se equal to 80.3%, PPV equal to 94.2% and FPR
equal to 0.7%) and our mixture of experts (ME) model (Acc equal to 95.2%, Se equal to
93%, PPV equal to 73.5% and FPR equal to 4.5%) outperforms Hu et al [2] with MoE (Acc
equal to 93.6%, Se equal to 78.9%, PPV equal to 76% and FPR equal to 3.2%). The perfor-
mance of proposed LDA model (Acc equal to 94.2%, Se equal to 75.8%, PPV equal to
75.3% and FPR equal to 3.3%) is comparable to the Mixture of experts model proposed by
Hu et al [2]. For the same 11 patients, the results for ANN ensemble is comparable to the
results reported by Chazal et al [4] (Acc of 96.4%, Se of 77.5%, PPV of 90.6% and FPR of
1.1%).

The results indicate that artificial neural networks are better suited for the detection
of VEB type arrhythmia. It was observed that varying the learning rate and hidden layer
nodes had minimal impact on the performance. Also, increasing the sampling rate to 180
Hz did not produce significant gain in performance. Hence a sampling rate of 114 Hz was
found to provide enough discriminatory power for the classification task. In short, our ap-
proach emulated the performance of the state of the art models at a lower sampling rate and

a set of simple features.

4.3.4 Summary

The main contribution of this section is to review the state of the art in classification of
heartbeats using ECG recordings. This is a comprehensive study that consisted of a suite of
classifiers and variants there of applied to a binary classification task of detecting VEB type
arrhythmias using the MIT-BIH patient archives. By performing extensive set of experi-
ments over a range of sampling rates and over a range of tuning parameters specific to vari-
ous classifiers, we are able to tabulate and compare the performances of individual classifi-
ers. The practitioner based on domain knowledge and comfortable with tolerances relative

to detection accuracy can choose an appropriate classifier based on our findings. Our inves-

15



tigation suggests that a simple set of morphological features together with time and ampli-
tude features from the P-QRS-T waveform sampled at a 114 Hz and a well-trained (offline)

ensemble of neural networks can yield satisfactory results.

4.4  Detection of Classes of Heart Arrhythmias based on Heartbeat Mor-
phology Patterns

4.4.1 Heartbeat Classes

After careful analysis of the heartbeat morphology, we observed that SVEB follows two
different morphological patterns. We grouped together the beats of type N, F and Q into one
class named N and split the class SVEB into subclasses S1 and S2, each representing a
specific morphological pattern as seen in Figure 4.2. The fourth class is VEB. We trained
the classifier to identify N, VEB and the two subclasses S1 and S2, making it a four class

classification problem.
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Figure 4.2: Example for variation in heartbeat pattern. Class SVEB was divided into two sub-
classes S1 and S2

4.4.2 Feature Extraction

Our feature vector was based on the feature set FS3 mentioned in Table VI by Chazal et al
[4]. The feature set FS3 consists of RR Interval features and ECG morphology features. The
RR Interval features include the Pre-RR Interval, Post-RR Interval, Average RR-Interval
and Local avg. RR Interval. Pre-RR interval is time interval between the current R-Peak and
the preceding R-Peak and Post-RR interval is the time interval between the current R-Peak
and the next R-Peak. Average RR Interval is the average of all the RR intervals in a record-
ing. Local avg. RR Interval is calculated as the average of 10 RR intervals surrounding a
heartbeat. The ECG morphology features include fixed interval morphology features from
the QRS complex and T wave of a heartbeat cycle. In order to extract the ECG morphology
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features, two sampling windows were used. The first window was used to extract the fea-
tures from the QRS complex. The window represents the ECG signal between R-Peak -
50ms to the left of R-Peak and R-Peak + 100ms to the right of R-Peak. The QRS morpholo-
gy features includes 4 samples from R-Peak - 50ms to R-Peak, and 6 samples from R-Peak
to R-Peak + 100ms. The second window was used to extract features from T wave. It repre-
sents the ECG signal between R-Peak + 150ms to the right of R-Peak and R-Peak + 500ms
to the right of R-Peak. 8 samples were extracted from the second window representing the T
wave. The RR Interval features, QRS morphology features and T wave features are then
combined to form a 22 dimensional feature vector. The feature vector does not include fea-
tures from the P wave. We extracted the RR interval features and the ECG morphology fea-
tures to form the 22 dimensional feature vector. The feature vector was extracted for every

heartbeat in the 30 minute recording of each patient.

4.4.3 Classifier

We used a classifier based on Linear Discriminant function (See Chapter 3). We implement-
ed the classifier proposed by Chazal et al [4], which was used later for the classification pur-
pose. Classes N, V and SVEB (Class S1 and Class S2) were assigned equal prior probabili-
ties as mentioned in Chazal et al [4]. The prior probabilities for class N and class V were set

to 10/30 while that of S1 and S2 were set to 5/30.

4.4.4 Results and Discussion

We have reported the classification results in Table 4.5. Column 1 identifies the study, Col-
umns 2-5 represent the number of beats from the classes N, S1, S2, and V respectively (see
Section 4.1). Columns 6, 11 and 16, represent the results for the entire class SVEB (S). The
results reported for SVEB represent the gross result obtained from both S1 and S2. They are
used to compare our results with the results reported by Chazal et al [4]. Columns 7-10 rep-
resent the Sensitivity (Se) for each class while columns 12-15 represent the Positive Predic-
tive Value (PPV) for each class. We performed four class classification task for detecting
heartbeat arrhythmias using MIT-BIH patient archives (see Section 4.1). The four classes
are N, S1, S2 and V. We trained the classifier using the training set DS1 (see Section 4.1:
DS1) and tested the classifier on the testing set DS2 (see Section 4.1: DS2). Results for this
configuration has been reported in row 1 of Table 4.5 (Configuration 1). The sensitivity (Se)
and positive predictive value (PPV) for class S1 is 56.9% and 13.8% respectively. The sen-
sitivity and PPV for class S2 is 20.4%and 29% respectively. The gross Sensitivity (Se) for
the Class SVEB (S), which is a combination of S1 and S2 is 27.6% and Positive Predictive
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Value (PPV) is 20.1%. Table 4.6 reports the confusion matrix for Configuration 1. Clearly,
misclassification of S2 beats is significantly higher when compared to other classes. We
observed that the training set had inadequate number of training examples from Class S2,
resulting in large number of false negatives. This had significant impact on the overall
classification performance. However, when we updated the training set to include the first
three minutes of data from the test patient 232 (see Section 4.1), we observed significant
improvement in the classification performance for class S2. The motivation for adding first
three minutes of data to the training set is that the recording (Test Patient 232) contained
large number of heartbeats from Class S2. The resulting training set had adequate number of
training examples from class S2. With the updated training set, we achieved a Sensitivity
and PPV of 80.5% and 73.8% respectively.

Table 4.5: Classification Results for Configuration 1 and Configuration 2

Number of Beats Sensitivity (Se) Positive Predictive Value (PPV)
N S1 S2 A% S N S1 S2 v S N S1 S2 v S
Config. 1 44624 | 362 | 1474 | 3221 | 1837 | 959 | 602 | 20.6 | 81.6 | 284 | 973 14 28 85.2 19.7
Config. 2 44624 | 362 | 1331 | 3221 | 1693 | 958 | 71.5 | 80.8 | 88.1 | 78.8 | 99.3 | 145 | 77.2 | 858 42
Chazal et al [4] 3221 | 1837 - - 71.7 | 75.9 - - 81.9 38.5

For the latter case, the gross Sensitivity for the class SVEB is 77.1%, while PPV is
41.1%. This indicates that with sufficient representation in the training set, class S1 and S2
can act as two independent subclasses within the class SVEB, while improving the
classification performance. We have reported the results for the latter case in row 2 of Table
4.5 (Configuration 2). The confusion matrix for Configuration 2 has been reported in Table
4.7. By comparing with the confusion matrix of Configuration 1 (see Table 4.6), it is clear
that the misclassification of S2 beats reduced significantly with Configuration 2. For class
S2, Configuration 2 produced fewer false negatives (260) when compared to Configuration
1 (1172). We compared our results with the results reported by Chazal et al [4]. Row 3 in
Table 4.5 present the results reported by Chazal et al [4]. Our results for SVEB (Sensitivity
=77.1, PPV = 41.1%) is comparable to the results reported by Chazal et al [4] (Sensitivity =
75.9%, PPV = 38.5%). Our results for VEB improved upon the results reported by Chazal et
al [4]. While Chazal et al [4] achieved a sensitivity of 77.5% and Positive Predictive Value
(PPV) of 81.9%, we achieved a Sensitivity of 87% and Positive Predictive Value (PPV) of
81.9%. Our investigation has shown that it is possible to divide the class SVEB into multi-

ple subclasses on the basis of their morphological patterns and classify the SVEB heartbeats
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into one of these subclasses. This can have a non-trivial impact on the classifier performance
as the classifier trains on more a coherent set of examples from each subclass, leading to
better classification performance. Preliminary results show that our method emulate the re-

sults reported by Chazal et al [4].

Table 4.6 Confusion Matrix for Configuration 1

Algorithm
N S1 \% S2
é N 42792 | 1213 374 245
q% S1 51 218 25 68
) \% 67 53 2628 470
S2 1043 71 56 304

Table 4.7 Confusion Matrix for Configuration 2

Algorithm
N s1 v $2
g | N 4292 [ 1334 | 378 163
[0
S | st [ 58 | 259 | 36 9
~
v o[58 | 177 | 2837 | 146
s2 [ 182 | 19 54 1076

4.4.5 Summary

The main contribution of the section is the study of various heartbeat patterns within the
SVEB class and its impact on the classification performance. We analyzed the performance
of the classifier in detecting the SVEB type of arrhythmia and compared it with the state of
the art. We subdivided SVEB into two subclasses based on their morphological patterns and
trained the classifier to detect these subclasses. Our investigation suggests that these sub-
classes accommodates for the inter-patient variations and have a non-trivial influence on the

classification performance. The results reported are comparable to the state of the art.
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4.5  Feature Extraction and Selection for Detecting Certain Types of Heart

Arrhythmias

4.5.1 Feature Extraction

We extracted time domain features, ECG morphology features and frequency domain fea-
tures from Lead A of each ECG recording. Out of the 18 features extracted, 12 features are
time domain features, 2 are ECG morphology features and 3 are frequency domain features.
The last feature is a flag indicating 0 or 1. Time domain features include RR Interval fea-
tures, QRS duration, QR duration, RS duration and T wave duration, energy of QRS com-
plex, energy of QR segment, energy of RS segment and energy of T wave. Energy of a sig-
nal is calculated as the sum of squares of magnitude of samples in that segment. We extract-
ed the RR Interval features proposed by Chazal et al [4]. They are Pre-RR Interval, Post-RR
Interval, Average RR-Interval and Local average RR Interval. Pre-RR interval is time inter-
val between the R-Peak of current heartbeat and the R-Peak of preceding heartbeat. Post-RR
interval is the time interval between the R-Peak of current heartbeat and the R-Peak of sub-
sequent heartbeat. Average RR Interval is the average RR interval of all the heartbeats in a
recording. Local average RR Interval is the average RR interval of 10 heartbeats surround-
ing a heartbeat. QRS duration is the time interval between the QRS onset and QRS offset. R
duration is the time interval between the QRS onset and the R-Peak of QRS complex. RS
duration is the time interval between the R-Peak of QRS complex and QRS offset. ECG
morphology features include features extracted from the QRS complex; and the T wave of a
heartbeat cycle. Before extracting the ECG morphology features from QRS complex, the
ECG signal was down sampled to 120 Hz. Once down sampled, magnitude of 2 samples to
the left of R-Peak, the magnitude of sample at R-Peak and the magnitude of 2 samples to the
right of R-Peak were extracted. In total, 5 samples were extracted from the QRS complex.
In order to obtain the ECG morphology features from T wave, linear interpolation was ap-
plied as in [4] before extracting the magnitudes of 9 samples representing the T. For ease of
presentation, we counted the 5 features extracted from QRS complex as a single set. Simi-
larly, 9 features extracted for T wave was treated as a single set. The frequency domain fea-
tures include maximum Fourier coefficients of QRS complex, QR segment of QRS complex
and RS segment of QRS complex. In addition to time domain features, ECG morphology
features and Frequency domain features, we also extracted the P wave flag, which is a bina-
ry flag representing the presence or absence of P wave associated with a beat. In total, we

extracted 18 different types of features from Lead A. The features were extracted for every
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heartbeat in the 30 minute recording of each patient. Table 4.8 is a listing of the different

features used.

Table 4.8: List of features extracted from ECG signal

Group Label Features

e  Pre RR Interval e RS duration
e  Post RR Interval e T wave duration

Time Domain e Average RR Interval e Energy of QRS complex
e  Local avg. RR Interval e  Energy of QR segment
e QRS duration e  Energy of RS segment
e QR duration e  Energy of T wave

ECG Morphology e  ECG Morphology of QRS complex (5 samples)

e  ECG Morphology of T wave (9 samples)
e Max. Fourier coefficient of QR segment
Frequency Domain e  Max. Fourier coefficient of RS segment

e Max. Fourier coefficient of QRS complex

Others e P wave flag

4.5.2 Classification Methodology

4.5.2.1 Classifier

We used Linear Discriminant classifier (See Chapter 3) throughout our study.

4.5.2.2 Feature Selection

In our study, the universe of features that we considered are given in Table 4.8. Subsets of
those features are used for classification purpose. Use of all these features in training the
classifier may not guarantee the best performance. During feature selection, we select the
subset that maximize classification performance. A set of N features can have 2N-1 possible
feature subsets. We used Incremental Wrapper Approach [7] with forward selection algo-
rithm, to find the best subset of features for Classifiers 1, 2 and 3 (See sections 4.5.2.4 and
4.5.2.5). We start with an empty subset. During each step, we add to the subset the feature
with maximum impact on classification performance. A metric called F Score, described in
section 4.2 was used to evaluate the performance of each feature. The feature that maximiz-
es F-Score when combined with the existing feature set, is added to the subset. Though this

approach does not guarantee an optimal solution, it has been proven to be reliable and effi-
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cient. We ran the algorithm to find three features sets. Classifier 1 was trained on Feature
Set 1 and Classifier 2 was trained on Feature Set 2. Feature Set 3 was used to train Classifi-
er 3. The F-Scores for classifiers 1 and 2 are computed using the sensitivity and PPV of
Normal beats and similarly, F-Score for classifier 3 is computed using the sensitivity and
PPV of SVEB, as our primary focus is on detecting SVEB. The feature sets have been re-
ported in Table 4.9.

Table 4.9: Features selected for Feature set 1, Feature Set 2 and Feature Set 3

Feature Set 1 Feature Set 2 Feature Set 3
Group Label
(10 dimension) (13 dimension) (10 dimension)
e QRS duration
. Normalized Pre RR
e  Local avg. RR Interval
. Pre RR Interval Interval
Time Do- . Pre RR Interval
. Local Avg. RR Interval . Post RR Interval
main e  Post RR Interval .
. Energy of T wave e T wave duration
. Energy of QR segment
e  Energy of T wave
e  Energy of T wave
ECG Mor- . ECG Morphology of e  ECG Morphology of e ECG Morphology of
phology QRS complex (5 sam- QRS complex (5 sam- QRS complex (5
ples) ples) samples)
e Max. Fourier coefficient e Max. Fourier coefficient
e Max. Fourier coeffi-
Frequency of QR Segment of QR Segment
. cient of
Domain . Max. Fourier coefficient . Max. Fourier coefficient
RS segment
of RS segment of RS segment

4.5.2.3 RR Interval Normalization

Pre RR Interval is the time duration between the R-Peaks of consecutive heartbeats, meas-
ured in milliseconds or number of samples. We measured Pre RR Interval as the number of
samples between consecutive beats in a signal sampled at 360 Hz. As an example, we chose
Patient Records 209, 222 and 232 from MIT-BIH to demonstrate inter and intra-patient var-
iations. Lannoy et al [7] demonstrated that Pre RR Interval is an important feature for classi-
fication. However, Pre RR Interval undergoes significant inter-patient and intra-patient vari-
ation. To reduce the impact of inter-patient and intra-patient variations, we propose a nor-
malization technique that achieves significant improvement over existing Pre RR Interval
normalization techniques [7]. Table 4.10 shows the behavior of Pre RR Interval. Each case
represents a set of 5 consecutive heartbeats, with the Pre RR Interval reported on the bottom
of each beat. Case 1 represents the variation in Pre RR Interval of 5 consecutive Normal
beats from Patient Record 222 with a mean of 317 samples and standard deviation of 10.42

samples. With a standard deviation of 10.42 samples, the variation is minimal. Case 2 shows
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the variation in Pre RR interval of 5 consecutive SVEB’s from Patient Record 209 with a
mean of 141.8 and standard deviation of 2.39 samples. With a standard deviation of 2.39
samples, the variation is minimal for SVEB. Our analysis show that when we have a combi-
nation of heartbeats, as shown in Case 3 and Case 4, Pre RR Interval of SVEB is always
lower than that of Normal beats. Case 3 and Case 4 represents a set of 5 consecutive beats
from Patient Records 222 and 232. Our experiments have shown that behavior of Pre RR
Interval of VEB is similar to that of SVEB, i.e. Pre RR Interval of VEB is lower than that
of Normal beats. This makes Pre RR Interval an effective feature for separating SVEB or
VEB from a Normal beat. However, Pre RR Interval exhibits inter and intra-patient varia-
tions, due to variations in heart rate, as shown in Table 4.11. Table 4.11 shows the overlap
of Pre RR Intervals due to inter and intra-patient variations. Cases 3 and 4 in Table 4.10
demonstrates the same.

We propose a normalization technique to reduce overlap, resulting in a feature that
captures the relation between SVEB and Normal beats. The normalized feature must be
such that any occurrence of SVEB must have a Pre RR Interval that is lower than that of
Normal beats and this property should hold in all cases. The global and local averages of Pre
RR Interval proposed by [4, 11] is ineffective due to intra-patient variations. However, the
local averaging of Pre RR Interval [11] is superior to global averaging [4].

Our approach identities Normal beats in the neighborhood of each heartbeat and av-
erages the Pre RR Interval of Normal beats detected. Normalization includes dividing Pre
RR Interval of current heartbeat by the average of Pre RR Interval values in the neighbor-
hood. The size of the neighborhood is determined empirically. The details are given in Sec-
tion 4.5.3. In case no normal beats are identified, nearest average Pre RR Interval is used.
Case 5 and Case 6 in Table 4.10 are normalized values of Pre RR Interval corresponding to
Cases 3 and 4. Average Pre RR Interval of Normal beats for Cases 3 and 4 are 432.33 and
684.5 samples respectively. Each Pre RR Interval in Case 3 is divided by 432.33 and that in
Case 4 is divided by 684.5, resulting in values reported in Cases 5 and 6. Such a normaliza-
tion technique ensures that SVEB has a Pre RR interval lower than that of Normal beats,
hence reducing overlap between SVEB and Normal beats. Comparing unnormalized and
normalized values of SVEB in column 3 of Table 4.10, we noticed that while the unnormal-
ized values are substantially different (165 and 247), the normalized values are close to each
other (0.38 and 0.36). This reduces inter and intra-patient variations inherent in the Pre RR
interval feature. Note that since VEB has Pre RR Interval lower than that of Normal beats,
the same process helps separate VEB from a Normal beat. Section 4.5.2.4 describes the pro-

cedure used to detect the normal beats surrounding each heartbeat.
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Table 4.10: Each pair of rows represents a case study

Before Normalization

After Normalization

Case 1

Case 2

Case3

Case 4

Case 5

Case 6

Normal
323

SVEB
142
Normal
411
Normal
665
Normal
0.95
Normal

0.97

Normal
299

SVEB
145
SVEB
165
SVEB
247
SVEB
.38
SVEB
0.36

Normal
318

SVEB
143
Normal
452
SVEB
268
Normal
1.05
SVEB
0.39

Normal

325

SVEB
140
SVEB
175

Normal
704
SVEB

Normal

1.03

Normal
320

SVEB
139
Normal
434
SVEB
250
Normal
1.00
SVEB
0.37

Table 4.11: Table demonstrates the overlap of Pre RR Interval of SVEB and Normal beats due to
inter and intra-patient variations. With a range of 159.17 — 182.65 and 159.5 — 187.66 for SVEB and
Normal beats respectively, Pre RR Intervals of Patient Record 222 clearly has overlap due to intra
patient variations (Bold entries in first row of Table 4.11). With a range of 257.52 — 270.48 for SVEB
in Patient Record 232 and 265.66 — 292.98 for Normal beats in Patient Record 222, Pre RR Interval
of Normal beats clearly overlaps with the Pre RR Interval of SVEB (Bold entries in last two rows of

Table 4.11).
Range
of Pre Range of Pre
Range of Pre
Ingklival Patient 1;):;1 # of Mean Std RR Interval #1\? f Mean Std If{ORr g‘;:;:’;l
Record SVEB | (SVEB) | (SVEB) | for SVEB (In (Normal)
beats beats (Normal) beats (In
samples)
(In Samples)
samples)
151 - 222 712 182 170.91 11.74 159.17-182.65 | 530 173.58 14.08 159.5-187.66
200
232 2 2 173.50 12.02 161.48 -185.52 0 - - -
201 222 269 23 218.09 14.66 203.43-232.75 | 246 2229 13.92 208.98-236.82
230 232 209 207 244 5.62 238.38-249.62 2 247 2.12 244.88-249.12
251 - 222 749 4 262 10.58 251.42-272.58 | 745 279.32 13.66 265.66-292.98
300 232 1170 1170 264 6.48 257.52-270.48 0 - - -

4.5.2.4 Classifier 1 and Classifier 2

Stated formally, if we define a window of size k, the purpose of Classifiers 1 and 2 is to

detect the Normal beats in that window of size k. Figure 4.3 shows an example of a window

of size 5. Once the Normal beats are detected within the window, the average Pre RR Inter-

val of Normal beats within the window is used to divide the Pre RR Interval of the current

heartbeat, to normalize the feature. This is repeated for each heartbeat in a patient record.

Our analysis show that Normal beats are harder to detect when occurring at high heart rate.
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To solve this problem, we trained Classifier 1 to detect Normal beats at low heart rate and
Classifier 2 to detect the Normal beats at high heart rate. Any heartbeat with Pre RR Interval
less than 230 samples are considered as occurring at high heart rate and any heartbeat with
Pre RR Interval greater than or equal to 230 samples if considered as occurring at low heart
rate. The threshold of 230 was determined empirically. Classifier 1 was trained on dataset
DSI1. Classifier 2 was trained on dataset DS1 after removing from DS1 all the heartbeats
with Pre RR Interval greater than or equal to 230 samples. Such a classifier is fine-tuned for
classification at high heart rate. Separate feature sets were extracted from dataset DS1 for
training Classifiers 1 and 2. Using the wrapper algorithm (See section 4.5.2.2), the best set
of features is Feature Set 1 in Table 4.9 for detecting Normal beats at low heart rate. Simi-
larly, Feature Set 2 from Table 4.9 is the best set of features determined by the wrapper al-
gorithm to detect Normal heartbeat at high heart rate.

Current beat
v

N N S N 5 S ) N N S
i |

Figure 4.3: Normalization for a window of size 5

We combined Classifier 1 and Classifier 2 into a single system. When a new test
heartbeat arrives, we scan a window surrounding the new heartbeat. For each heartbeat in
the window, if the Pre RR Interval is greater than or equal to 230 samples, Feature Set 1 is
extracted and classified using Classifier 1. If the Pre RR Interval is less than 230 samples,
Feature Set 2 is extracted and classified using Classifier 2. The average Pre RR Interval of
Normal beats detected within the window is used to normalize the Pre RR Interval of cur-
rent heartbeat. We tested the system on dataset DS2 with window size fixed at 3, which was
determined empirically (See section 4.5.3). Results are reported in Table 4.13. Classifier 1
and Classifier 2 detected 41621 out of 44228 Normal beats, resulting in a sensitivity (See
section 4.5.3) of 94.1%.

4.5.2.5 Classifier 3

The application of wrapper algorithm produced Feature Set 3 which was used in conjunction
with classifier 3. We extracted Feature Set 3 from each heartbeat in training set DS1 and

used it to train Classifier 3. Note that since we have apriori knowledge on the type of each
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heartbeat in the training set, calculating normalized Pre RR Interval for each heartbeat in the
training set is straightforward. This is because we have apriori knowledge of Normal beats
within the window surrounding each heartbeat. However to normalize Pre RR Interval of
heartbeats in testing set, detection of normal beats within the window is necessary. Once
classifier 1 and classifier 2 detects the Normal beats within a window of size 3, the Pre RR
Interval of the current heartbeat is normalized using the average Pre RR Interval of detected
normal beats. In case normal beats are not detected within the window, the previous mean is
used. With the normalization complete, Feature Set 3 is extracted from the current heartbeat.
Classifier 3 is then used to perform the final classification. Table 4.12 shows classification
algorithm.
Table 4.12: Algorithm to implement our approach

1. Fix a window size, e.g. 3 ( In our illustration we chose 3, the user can chose window size ‘k’ as appropriate)
Extract Feature Set 1 from each heartbeat present in training dataset DS1.

Train Classifier 1 using the data extracted in step 1

Locate the heartbeats in training dataset DS1 that has Pre RR Interval less than 230 sample time.

Extract Feature Set 2 from each heartbeat located in training set using Step 3

Train Classifiers 1 and 2 using the data extracted in step 3 and step 4 respectively

N R W N

For each heartbeat in testing dataset DS2
1) For each heartbeat in the window surrounding the heartbeat, extract Feature Set 1 and Feature Set 2
2)  For each heartbeat in the window
a.  If Pre RR Interval is greater than or equal to 230 sample time, use Classifier 1 to classify the
heartbeat
b.  IfPre RR Interval is less than 230 sample time, use Classifier 2 to classify the heartbeat
3)  Locate the beats within the window that has been classified as a Normal beat in step 7.2 and find their aver-
age Pre RR Interval. If no normal beats are detected in current window, use previous average.
4)  Divide the Pre RR Interval of current heartbeat using the average calculated in step 7.3
5)  Extract Feature Set 3 for the current heartbeat.
6)  Use classifier 3 to classify the heartbeat into one of the 5 classes {Normal, SVEB, VEB, Fusion and Paced}

4.5.3 Results and Discussion

Table 4.13 reports the classification results for the combined classifier (Classifier 1 and
Classifier 2) and Classifier 3. Classification performance is measured in terms of sensitivity
(Se), positive predictive value (PPV) and F-Score. Column 1 in Table 4.13 represents the
classifier, Column 2 represents the sensitivity (Se) for SVEB and column 3 represents the
Positive predictive value (PPV) for SVEB.

A combined system of classifier 1 and classifier 2 achieved a sensitivity of 94.1%
and PPV of 47.7% in detecting Normal beats when tested on dataset DS1. For detecting
SVEB, classifier 3 achieved the highest F-Score of 77.86 when window size was set to 3,
with a sensitivity of 91.94% and PPV of 67.52%. We tested for windows of size 3,
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5,7,11,13,15,17 and 21. It was observed that as the window size increases, F-Score decreas-
es. The decrease in F-Score is triggered by the reduction in PPV. This confirms the observa-
tion that Pre RR Interval of a heartbeat is a localized phenomenon and dependent on the
local heart rate. For detecting VEB, classifier 3 achieved a sensitivity of 81.98% and PPV of
96.63%.

Table 4.13: Classification Results. Classifier 1 and Classifier 2 represents the classification results for

detecting Normal beats. Classifier 3 represents the classification results for detecting SVEB and VEB

Classifier Se PPV F-Score
Classifier 1 and Classifier 2 94.1 98.7 96.34
Classifier 3 (SVEB) 91.94 67.52 77.86
Classifier 3 (VEB) 81.98 96.63 88.7

Table 4.14 reports the gross classification performance of classifier 3. Throughout
the analysis, we used a window of size 3. ‘Gross’ classification performance is the perfor-
mance of classifier 3 for the entire dataset DS2. We reported the gross results for two differ-
ent cases. While Alvarado et al [9] and Chazal et al [6] reported the gross results for the
dataset DS2 after ignoring the first 500 heartbeats from each patient record, Chazal et al [4]
reported gross results for the entire dataset DS2. Chazal et al [6] and Alvarado et al [9] used
a first 500 beats to train the local classifier and therefore did not include them in the testing
set. In order to compare our results with Chazal et al [4], Chazal et al [6] and Alvarado et al
[9], we reported the classification results for both the cases. The results for the entire dataset
DS?2 is represented by ‘Gross*’ and the results after ignoring first 500 heartbeats from each
patient record is represented by ‘Gross’. The performance is measured in terms of accuracy,
sensitivity, positive predictive value and false positive rate (FPR). The sensitivity and PPV
were calculated by treating it as a binary classification problem where a heartbeat is classi-
fied as either SVEB or a combined class consisting of ‘Normal,” ‘“VEB,” ‘Fusion,” and
‘Paced’. Table 4.14 summarizes patient level performance of Classifier 3. Column 1 repre-
sents the data used for gross statistics, column 2-6 represent the number of beats of each
type, and columns 7-10 represent the performance of the classifier 3. For SVEB, classifier 3
achieved a ‘Gross’ sensitivity of 91.39% and PPV of 65.21%. Classifier 3 achieved a sensi-
tivity of 91.94% and PPV of 67.52% for the entire dataset DS2, reported as ‘Gross*’ in Ta-
ble 4.14 (Bold entries in the last two rows of Table 4.14). Note that for VEB, ‘Gross’ sensi-
tivity is 81.77% and ‘Gross’ PPV is 96.7%. Classifier 3 achieved a ‘Gross*’ sensitivity of
81.98% and PPV of 96.63% (Bold entries in the last two rows of Table 4.14).
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Table 4.14: Classification Results for Classifier 3

Number of Beats SVEB VEB
Rec N S A% F | Q| Acc Se PPV | FPR Acc Se PPV | FPR
100 2237 33 1 0 0 99.82 90.91 96.77 0.04 100 100 100 0
103 2081 2 0 0 0 99.9 50 50 0.05 100 - - 0
105 2525 0 41 0 5 99.06 - 0 0.94 96.85 12.2 10 1.78
111 2122 0 1 0 0 99.91 - 0.09 100 100 100 0
113 1788 6 0 0 0 99.89 100 75 0.11 100 - - 0
117 1533 1 0 0 0 99.93 100 50 0.07 100 - - 0
121 1860 1 1 0 0 99.89 100 33.33 0.11 100 100 100 0
123 1513 0 3 0 0 99.93 - 0 0.07 100 100 100 0
200 1740 30 826 2 0 96.12 30 15.25 2.78 97.58 92.49 99.87 0.06
202 2060 55 19 1 0 95.83 87.27 36.92 3.94 99.2 26.32 62.5 0.14
210 2421 22 194 10 0 95.78 90.91 16 4.18 96.11 47.42 98.92 0.04
212 2747 0 0 0 0 98.07 - 0 1.93 100 - - 0
213 2639 28 220 | 362 0 99.47 53.57 83.33 0.1 97.62 65 100 0
214 2001 0 256 1 2 98.77 - 0 1.23 98.27 89.84 94.65 0.65
219 2081 7 64 1 0 98.33 14.29 333 1.38 97.54 25 76.19 0.24
221 2030 0 396 0 0 97.44 - 0 2.56 99.71 98.23 100 0
222 2272 209 0 0 0 88.84 91.39 42.26 11.4 100 - - 0
228 1687 3 362 0 0 98.53 33.33 4.17 1.36 99.12 95.3 99.71 0.06
231 1566 1 2 0 0 99.62 0 0 0.32 100 100 100 0
232 398 1381 0 0 0 94.45 98.33 94.63 18.29 98.76 - 0 1.24
233 2229 7 830 11 0 99.34 14.29 10 0.4 93.75 76.99 99.84 0.04
234 2698 50 3 0 0 98.25 10 55.56 0.15 100 100 100 0
Gross 34363 | 1440 | 2578 | 292 5 97.73 91.39 65.21 2.01 98.6 81.77 96.7 0.2
Gross* 44228 | 1836 | 3219 | 388 7 97.95 91.94 67.52 1.81 98.65 81.98 96.63 0.2

Gross — Classification results for the dataset DS2 ignoring first 500 heartbeats of each record

Gross* - Classification results for the dataset DS2 including the first 500 heartbeats of each record

Table 4.15 compares our algorithm with the state of the art classification tech-
niques. Results are summarized in Table 4.15. Chazal et al [6] achieved a sensitivity of
87.7% and PPV of 47% for SVEB, while Alvarado et al [9] achieved a sensitivity and PPV
of 86.19% and 56.68% respectively. Clearly, our algorithm outperform both Chazal et al [6]
and Alvarado et al [9] with a ‘Gross’ sensitivity of 91.39% and PPV of 65.21%. We com-
pare ‘Gross*’ with Chazal et al [4], Ince et al [5] and Wiens et al [11]. While our results for
SVEB outperform Chazal et al [4] and Ince et al [5], Wiens et al [11] outperformed our
method with a sensitivity of 92% and PPV of 99.5%. However, Wiens et al [11] based on an
active learning methodology use patient specific data to aid the classifier, i.e. a subset of the
patient data is required to be labeled by a domain expert. More explicitly, while [5] and [6]
used roughly 350 and 500 beats respectively per patient and Wiens et al [11] requires 45

patient specific labeled samples, our method is fully automated and does not require a do-
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main expert to label patient specific heartbeats. Therefore, Wiens et al [11] approach pro-
duces improved performance relative to sensitivity and positive predictive value. Although
our results for VEB are comparable to the state of the art, our classifier achieved a compara-
tively lower sensitivity. Comprehensive results and implementation details, including the

source code, are available at [20].

Table 4.15: Comparison Results compared to the state of the art

Methods SVEB VEB
Chazal et al [4] 75.9 38.5 71.7 81.9
Chazal et al [6] 87.7 47 94.3 96.2
Alvarado et al [9] 86.19 56.68 92.43 94.82
Ince et al [5] 63.5 53.7 84.6 87.4
Wiens et al [11] 92 99.5 99.6 99.3
Proposed (Gross) 91.39 65.21 81.77 96.7
Proposed (Gross*) 91.94 67.52 81.98 96.63

4.5.4 Summary

We have shown that by addressing the problems related to inter-patient and intra-patient
variations, and selecting the most significant features that have measureable impact on clas-
sification metrics, overall performance can be improved significantly. We proposed a set of
new features in the time domain and frequency domain, and demonstrated the significance
of Pre RR Interval. We introduced a normalization technique, which when applied to Pre
RR Interval improved classification rates. Furthermore, our technique is fully automated and
eliminates the requirement for patient specific labeled data. Furthermore, these algorithms
can be used in a real-time setting, and as continuous monitoring of patients via sensors is
becoming a reality, our algorithms can be used in conjunction to provide timely interdiction
to prevent CVD fatalities and reduce unnecessary admissions to hospitals. In addition, while
others have leveraged the MIT-BIH database for arrhythmia detection, we examined the
heartbeat patterns extensively and painstakingly to tease out subtle variations in order to
extract features that significantly improve classification performance. This we believe
should benefit the machine learning community as they address CVD related automated

detection.
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Chapter 4

Conclusion

Heartbeat arrhythmias needless to say are a major cause of unnecessary fatalities and any
system that improves responsiveness for timely interdiction is not only helpful in reducing
costs, but a moral imperative. In this thesis, we addressed several aspects of automatic de-
tection, most notably, feature extraction, and a careful assessment of two types of arrhyth-
mia, ventricular ectopic beats (VEB), and supraventricular ectopic beats (SVEB). We uti-
lized a feature selection methodology which selects the most significant features from a
feature set based on time, and frequency domains. Furthermore, we evaluated the perfor-
mance of several classifiers; Linear Discriminant Analysis (LDA), Quadratic Discriminant
Analysis (QDA), and Artificial Neural Networks (ANN). The methodology and framework
we proposed is fairly automated and does not require the intervention of the domain expert
(cardiologist) in the extraction of the features and labeling of the segments of the ECG sig-
nals.

Our results bear testimony to the improvements as seen in the commonly used met-
rics such as classifier sensitivity, specificity, F-measure, and positive predictive value in the
evaluation of classifier performance for detecting arrhythmias. In the follow up studies, we
propose to build a framework for the on-line detection of heartbeat irregularities, while im-
proving the performance of the classifiers by extending our work on feature selection

and modifications to the classifiers.
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