
Flash Aware DataBase

Management System

A Dissertation submitted in partial fulfillment of

the requirements for the award of

Master of Technology

in

Computer Science & Engineering

By

Prerana Tiwari
CS10m04

Department of Computer Sciences & Engineering

Indian Institute of Technology Hyderabad

June-2012

iv

Acknowledgement

I am deepely indebted to my adviser Dr. Ravindra Guruvanavar for his constant

guidance and support right from my problem selection to report documentation. He

patiently listened to all the problems I faced during the course of this work and

appropriately guided me with his full support. I thank him for patiently clearing all

my novice doubts.

I thank all the faculty members of the Department of Computer Science and engi-

neering for sharing their views and giving valuable suggetions during the discussion

of my work in department seminars.

I thank all my classmates for their friendly support who made the stay at this

institute enjoyable, we shared joy and knowledge. I thank all my friends at IIT

Hyderabad for the same.

I thank our director Prof. U.B.Desai for his friendly administrative support in get-

ting all our requirements done as quickly as possible.

Finally, I thank all my family members for their constant love and support. iv

v

Abstract

Flash Memory is valued in many application as a storage media due to its fast

access speed, low power, nonvolatile characteristics.Our survey report will contain

characteristics of flash disk, architechture of flash disk, various indexing structure

for magnetic disk and flash disk, storage techniques for hard disk and magnetic

disk and query processing techniques for flash disk. we have explored detail survey

of storage, indexing and query processing techniques developed to make database

system flash aware. We have implemented most of the techniques in a database

system prototype named Mubase developed at IITH. We present some experimental

results on TPC-H dataset demonstrating the benefits due to the flash aware storage

query processing techniques. We have implemented FD - Tree index structure for

flash disk on prototyped named Mubase.

Contents

1 Introduction 1

2 Flash Memory 3

2.1 Properties Of Flash Memory . 4

2.2 Flash Disk Architecture . 5

2.3 Flash Translation Layer . 6

2.3.1 Static Block Mapping . 7

2.3.2 Dynamic block mapping . 7

3 Indexing Structure For Magnetic Disk 8

3.1 B+ tree index structure . 8

3.2 Log Structured Merge Tree . 9

3.2.1 The Two Component LSM - Tree Algorithm 9

3.2.2 Deletion In LSM-Tree . 9

3.3 Stepped-Merged Tree . 10

3.3.1 Algorithm For Stepped Merge B+ - Tree 10

3.3.2 Run Index . 11

4 Index Structure For Flash Disk 12

4.1 µ Tree Index Structure . 12

4.2 BFTL index structure . 13

4.2.1 Commit policy . 16

4.2.2 The Node Translation Table 16

4.3 FD-Tree Index Structure . 18

4.3.1 Operations on FD tree . 19

vi

Contents vii

5 Data Placement Schemes 23

5.1 Data Placement Schemes Used In DBMS 23

5.2 Data Page LayOuts for Relational Database 23

5.2.1 N - Ary Storage Model . 24

5.2.2 The Decomposition Storage Model 24

5.2.3 PaxPage Storage Model:- . 26

6 Flash Aware Query Processing 29

6.1 Scan Selections And Projections . 29

6.1.1 FlashScan Operator . 29

6.1.2 FlashScan And Column Store :- 30

6.2 FlashJoin . 30

6.2.1 FlashJoin Overview . 30

6.2.2 JoinKernel . 31

6.2.3 Materialization Strategy . 31

6.2.4 FetchKernel . 31

7 Implementation And Experimental Results 33

7.1 Read Write Performance Of SSD and HardDisk 33

7.2 Implementation Details . 37

7.2.1 Mubase Details . 37

7.2.2 Pax Page And Slotted Page Experimental Results 38

7.2.3 FlashJoin for PaxPage and NormalJoin for SlottedPage . . . 39

7.3 Indexing Structure . 39

Bibliography 40

Chapter 1

Introduction

Flash memory is an electronic device based on semiconductor technology. It is

a type of nonvalatile, electrically erasable programmable read only memory (EEP-

ROM) that has been used in consumer devices like thumb drives, PDA’s, cameras,

and mobile phones. Flash disk also known as solid state disk (SSD). It falls be-

tween RAM and hard disk in terms of acquisition cost, transfer bandwidth, spatial

density,cooling cost.[Grae07] . It is packaged in hard disk form and uses the same

standard host interface used in traditional hard disk [leve08].

Flash disk is pure electronic device, it does not have mechanically moving parts

like the read/ write head that increases latency in magnetic disk, because of this

property of flash disk random data access is very fast compare to magnetic disk.

Moreover, flash disk is more compact in size, and has better shock resistance than

magnetic hard disk.Write operation in flash memory is quite expensive because of

intrinsic property of flash memory. Pages in flash disks are units of read and write

operations. A page in a flash disk can have either of two states - erased or non-erased

(dirty) [Myer 07]. Data can be written to a flash disk page only if when page is in

an erased state. Flash memory is organised as set of blocks. A block is an erase unit

of flash disk. An erase unit can contain as many as 256 or more pages. When we

want to update any page of flash memory, that block which contains particular page

should be in erased state. For erasing that block all the pages of that block will be

written into main memory, than after updating pages all the pages will be written

back to the disk. Erase is very costly as compared to read and write operations (it

takes approximately 1.5ms to erase a block). Further the number of erase cycles per

1

Chapter 1. Introduction 2

erase block is limited, typically ranging from 10, 000 to 1, 000, 000. After the cycle

limit has been exceeded, the erase block burns out, and it becomes useless.

For increasing the write performance of magnetic disk based on B+ tree some

index structures have been proposed. B+ tree is a balanced binary search tree which

gives very less lookup cost. For example, LSM-tree, stepped merge tree, where

random writes are limited to fixed area and large amount of data is sequentially

written to the hard disk.

In this report we have explored detail survey of storage, indexing, and query pro-

cessing techniques to make the database system flash aware. We have implemented

most of these techniques in a database prototpe named mubase developed at IITH.

We present experimental results on TPC-H data set demostrating the benefits due

to flash aware storage, indexing, queryprocessing techniques.

Chapter 2

Flash Memory

Flash memory is a type of nonvolatile memory i.e. it does not need power to

maintain information in it. There are two types of flash memory:-

• NOR-Type Flash Memory

• NAND-Type Flash Memory

NOR type flash memory is bit adrresable and has a fully memory mapped ran-

dom access interface with dedicated address and data lines allowing the cells to be

programmed bit-by-bit. It is used for storing codes since it is directly addressable

by processors. NAND-type flash memory has no dedicated address lines and is con-

trolled by sending commands and addresses through an indirect IO-like interface.

It is accessed on a page bassis (typically 512 bytes to 4 Kbytes) and provide higher

cell densities.Therefore, NAND- type flash memory behaves as a block based device

similar to magnetic drives [Lee 07]. The NAND type is primarily used for removable

flash cards, USB thumb drives, and internal data storage in portable devices.

NAND based flash disk are cheaper and in common use today and come in two

varieties, namely SLC (single level cell) and MLC(multi level cell)[Leve 08].SLC can

store single bit per memory cell whereas MLC can store multiple bits per cell.Rather

than simply being on or off each transistor in MLC NAND is able to enter one of

four states allowing them to encode data to achieve a storage density of two bits per

memory cell, which effectively doubles the capacity of NAND flash memory. SLC

flash disk costs twice as much as MLC flash. However, it is much more reliable and

has much better endurance (write/erase cycles). It is also much faster (in terms of

read/write speed) than MLC flash [Mosh 08]. Therefore, SLC flash disk is suitable

3

2.1. Properties Of Flash Memory 4

for enterprise systems. Throughout the rest of this thesis, we will use solid state disk

(SSD) or simply flash disk to refer to NAND-based solid state disk (NAND-based

flash disk).

2.1 Properties Of Flash Memory

1. No Mechanical Latency:-The solid state disks are purely electronic based

device, thus they do not have any moving parts, so that there is no rotational

and seek latencies in the flash disk.On the other hand magnetic disks have me-

chanically moving parts like read write head. Time necessaryto move the disk

arm to the desired cylinder called seek time and the time necessary to move

to the desired sector to rotate the disk head called rotational latecy. Because

of these rotational and seek latencies random access time of magnetic disk are

much more high.On the average rotational latecies are 4.2 ms for 7200RPM, 3

ms for 10,000 RPM and 2ms for 15,000 RPM. Seek time for these disks ranges

from 3ms to 10 ms. Therefore performance of SSD is better than magnetic disk.

2. No In-Place Updates:- Flash memory consists of set of blocks. Size of

block ranging from 128KB to 256 KB and it consists of set of pages. Bits in

flash memory is organized in to pages of size ranging from 512B to 2KB. Data

read and write operation in flash disks are done at the granularity of flash

pages.

Flash pages have only two possible states: erased and non erased. In the

erased state all bits are considerd to be 1. Only in a erased state data can

be written. Writes to a page can only clear bits (reset them to 0) and can

not set a bit back from 0 to 1. Therefore page can not be updated in-place or

overwritten after it is written once unless it is somehow brought back in to an

erased state.

When we want to update any page first page containing that block should be

in erased state.This erase operation will set all bits in the block to 1. Erase

operation is much more costly than read and write operation.

3. Assymetric speed of reads and writes:- Although random read operation

2.2. Flash Disk Architecture 5

on flash disks are significantly faster than on magnetic disks, write operation

on flash disks, especially small random writes, exibhit relatively poor perfor-

mance. The read speed of flash memory is typically at least twice as fast as

the write speed. This is because it takes longer time to inject charge into the

memory cell than reading its status.[Lee07,North 08]

4. Limited Number Of Writes:-A block in flash disk has a limit to the number

of erase cycles it can sustain before it becomes unusable. MLC flash supports

up to 100, 000 erases per block whereas an SLC flash is typically rated at

1, 000, 000 to 5, 000, 000 program or erase cycles per block. Flash memory

devices use a technique known as wear- leveling in order to ensure that cells

are stressed uniformly so that hot cells do not cause premature device failure.

Flash devices keep a pool of spare blocks for bad-block remapping. Most flash

devices also have the capability to estimate their own remaining lifetime so that

a system can anticipate failure ahead of time and take necessary precaution

measures. [Leve 08]

2.2 Flash Disk Architecture

A Flash based SSD is constructed as an array of flash packages. A Flash packages

consists of one or more dies or chips. In the following diagram 4 GB flash disk

consistiing of 2 GB of dies, sharing an 8-bit serial I/O bus and a number of common

control signals. The two dies have separate chip enable and ready/busy signals.

Thus one of the die can accept commands and data while other is carrying out

another operation. The package also supports interleaved operations between the

two dies.

Each die whinthin a package contains 8192 blocks, organized among 4 planes of

2048 blocks.The dies can operate independently, each performing operations involv-

ing oone or two planes. Two planes command can be executed o either plane- pairs

0-1 or 2-3, but not across other Each block in turn consist of 64 4KB pages. In

addition to data, each block includes 128 byte region to store metadata.

2.3. Flash Translation Layer 6

Flash packages receive commands and transmit data over a serial interface. Dur-

ing a read operation, data is first transformed from a place to associated on chip

register. The data is than transffered to an off chip controller via a serial interface.

The exact reverse process take place during write operation. Each of the chips have

separate enable and ready/busy signals.This feature enables interleaving of opera-

tions among the different chips in a package thus providing a considerable speed up.

An SSD can be connected to a host using one of different possible host intercon-

nect like USB, FiberChannel, PCI Express or SATA. An internal buffer manager

and a multiplexer are used to match the limited bandwidth of interface with the

performance available from a array of flash packages.

2.3 Flash Translation Layer

Flash based SSDs emulate mechanical disks using a structure called logical block

mapping technique. Static logical block mapping and dynamic block mapping.

Physical to logical block mapping is performed for accessing data residing in the

physical memory of the magnetic disk. In-place update is possible in magnetic disk,

new data is written in a given LBA and same LBA is used to retrieve data. In place

update is not possible in flash based disk. Every write operation in flash based SSD

requires some form of mapping between logical block address and physical flash page

allocation. There are two kinds of block mapping techniques

2.3. Flash Translation Layer 7

2.3.1 Static Block Mapping

In static block mapping, LBAs are directly mapped to the page IDs of the flash

disk. Since no inplace update is possible in flash disk each update in a page requires

erasing block that contains that page. Before erasing, that block is written in to the

main memory than after erasing modified data is again written back to the disk.

Given that an erase block consists of 64 pages, such strategy imposes a massive

overhead. This technique can also lead to premature failure of blocks containing hot

pages.[Myer 07]

2.3.2 Dynamic block mapping

In a Dynamic Block Mapping LBAs can be mapped to page IDs of flah disk dy-

namically using FTL(flash translation layer). Since no inplace update is allowed in

flash disk. Updated page should be written to a free page and page ID is dynami-

cally mapped to LBA. Such dynamic mapping of LBA to page ID is possible using

FTL(flash translation layer). FTL is a translation layer between the file system and

the flash disk that work in the cooperation with operating system in order to make

flash disk appears like magnetic disk to the application. In reality write in place

is not possible in flash but FTL manages data on flash so that it appears like a

magnetic disk. During write operation data is written to available free page. The

persistent mapping record entry for the LBA is than updateed with this new page’s

ID and the old flash page is marked as dirty or garbage. In case of crash recovery

garbage collection is possible through FTL. Since each block has some fixed life time.

Wear-leveling is performed in the blocks to use all the blocks evenly using FTL.

Chapter 3

Indexing Structure For Magnetic

Disk

Indices are used to retrieve data from large database. B+ tree is more popular data

structure used as a index structure to retrieve data.

3.1 B+ tree index structure

B+ tree is a balanced tree having a large fanout. All the records are stored into the

leaf level. and internal nodes contain pointers to the next level. B+ tree node has

n-1 key values and n pointers that will point to the next level. A pointer Pi in leaf

node points to the record with key value Ki. Pointer Pn+1 in leaf nodes is used for

chaining the leaf nodes in order to facilitate range search. For inserting value in B+

tree we find out appropriate node location in B+ tree. If node does not have space

to locate that entry node split operation is performed in that node.Node is devided

into two left and right node. First element of the right node is inserted into the

parent node. If parent node exceed its capacity parent node is splited.

In deletion if node size is less than n/2 than merge operation is performed. For

inserting and deleting value from the B+ tree, tree nodes are fetched from hard disk

to the main memory and than written back to the hard disk. Since B+ tree index

structure is the most commonly used structure and gives fast read performance for

search intensive applicatione.

8

3.2. Log Structured Merge Tree 9

3.2 Log Structured Merge Tree

Log structured merge tree also known as LSM - tree , proposed in [ONei 96] is an

index structure that defers individual insert and/or update operations and migrates

them later to disk in batches. It is mainly designed for applications where search

queries are less frequent than insert/update operations.B+ tree index structure is

not efficient for such application. A LSM - tree is composed of two or more tree -

like component data structure.

3.2.1 The Two Component LSM - Tree Algorithm

In two component LSM - tree one component is memory resident called C0 and

other is disk resident called C1. First new entry is written to the C0 tree and when

the capacity of C0 exeeds the entries are migrated to the C1 tree. A rolling merge

operation is performed and entries from the C0 tree is deleted and it is merged with

the C1 tree.

The rolling merge operation is a series of merge steps. Each merge step then reads

a disk page sized leaf node of the C1 and buffered it in a block, merges entry from

the leaf node with entries taken from the leaf level of the C0 tree, thus decreasing

the size of the C0 and creates new merged leaf tree in C1.

New merged child tree is written to the entirely new location in the C1 tree. and

old child nodes of the C1 tree that has involved in merging are kept for recovery in

crash, and parent of that old child tree is now assigned to the new tree.This paent

node of C1 also buffered in memory, and frequently referenced page nodes in C1 will

remain in memory buffer, so that popular high level directory nodes of the C1 can

be counted on to be memory resident.

3.2.2 Deletion In LSM-Tree

In deletion we search that key value and record ID in C0 tree, if it is found we

delete it from that position, if it is not found in C0 tree same entry is inserted to

the appropriate position in the C0 tree. While rolling merge process same entry will

3.3. Stepped-Merged Tree 10

be encountered than both old and new entry will be discarded.

3.3 Stepped-Merged Tree

It is an another variant of LSM -tree, that is used in database where writes are more

frequent and large amount of data has to be stored for example datawarehouse and

recording system where the value of index entry are randomly distributed. This

indices are designed for write intensive indices to minimize the write overhead while

steel providing a relatively efficient speed. Organizing the data on disk as the data

arrives using standard techniques would result in more that one I/O which is very

expensive when the data arrive rate is very high . A commonly work used in dataware

houses is to collect the record and update the database only periodically. Instead

of performing each write operation when data arrives we group the data and finally

merge them into the disk. A stepped merge B+ tree effectively handle this situation

by providing fast insertion/update operation in a reasonable time.The basic principle

behind this tree is external merge sort.

3.3.1 Algorithm For Stepped Merge B+ - Tree

1. First collect the incoming data in to the main memory and call it current

run.When memory is full call it previous run and store in a disk by construct-

ing a b+ tree structure and start storing new incoming data in main memory

in current run. The B+ tree is constructed in a bottom up since the data is

sorted. Both the in memory run and the one just constructed is called Level

0 runs.

2. When at level i k runs are there merge them in to a single run and make first

entry of the level i+1. After merging delete the old run.

3. When N level K-1 runs are accumulated, merge them, but instead of writing

them in to a new run, insert the entries in to the root relation. The root

relation is also organized using a B+- tree file organization.

3.3. Stepped-Merged Tree 11

Single lookup cost is (K*N+1)*(Ts + Tt) .

[jaga]

3.3.2 Run Index

A run index stores pointers to all the runs currently in the existence. including the

run currently being constructed in main memory. When K runs are merged to get

a single run at a higher level, pointers to the K runs are deleted from the run index,

and replaced by a pointer to the single higher level run. And when a new run is

created in memory, a pointer to it is added to the run index. All the trees together

with the run index constitute a multi tree index.

We now consider some optimization. While creating the Kth run of Level i, in-

stead of writing out to the disk and reading back from the disk for merging it can

be directly merged with other level i runs. As a result recursively applying this

optimization runs of several levels may get merged simultaneously.Applying the op-

timization to multiple levels, one in memory run of level 0 and k-1 runs of each

levels 0...i on disk, will get merged to form a single run of level i+1 on disk. Than

no level will have more than k-1 runs at a time in this optimization. Look up cost

will be N(K-1) B+ tree and the last root B+ tree.

Chapter 4

Index Structure For Flash Disk

As we have discussed many index struture for magnetic disk like B+ tree. Index

sturcture used for magnetic disk is not suitable for flash disk because of the intrinsic

property ”no in place write” of the flash disk. Write operation is very expensive in

flash disk. So to reduce the cost of the write operation some index structures have

been proposed .

4.1 µ Tree Index Structure

A B+ tree is implemented in flash disk withput its own FTL. An update to the

leaf node leads to a chain of update on index nodes up to the root node because of

the intrinsic property of flash disk i.e no in-pace update is allowed. They call this

method of updating tree ”wandering tree”. Here updated node is written in a new

free location and old location is marked as garbage collection.From parent of that

node up to the root node is written in new free location. Since the parent node

to the leaf node contain pointer to the old location , this pointer value need to be

updated to the new location of of the child leaf node. The cost of this process is

very high.

µ tree proposed in [kang 07] is a balanced tree indexing scheme for flash disks

mainly degined to address the suboptimal wandering tree update method. µ tree is

a balanced tree similar to B+ tree and is degined for both SLC and MLC nand flash

memory to solve the inefficieency in wandering tree. µ tree arranges the layout so

that updated nodes fit into a single flash memory page. We define the level of node

in µ tree as the length of the path from leaves to the node plus one. The level of a

12

4.2. BFTL index structure 13

leaf node is always one, height of the µ tree is defined as the level of the root.The

size of each node in µ tree varies depending on the level of the node and the height

of the µ tree. This is because µ tree should be able to store all the nodes in a path

from the root to any leaf in to a single page. Suppose the height of µ tree as H,

and the set of nodes in level L as Nl. For µ - tree such that H>2, a leaf node n

∈ N1 always occupies the half of the page.As the level is increased, the node size

is reduced by half. For an index node mL, such that mL ∈ NL, 1<L< H, the size

of the node is reduced by half compared to its children at the next level L-1. Only

the root has the same size as its children nodes. When µ tree consists of consists of

single level the entire flash page is used for root node.[kang07]

4.2 BFTL index structure

We present B-tree layer over flash memory to reduce the redundant data written to

the flash memory because of hardware restriction of flash memory.There is a B-tree

layer called BFTL over FTL that provides file systems to create and maintain B-

tree index structure.[Wu07] BFTL consists of reservation buffer and node translation

table. First keys and records are inserted to the BFTL then block wise requests are

sent to the FTL from BFTL.Primarily records will be in reservation buffer.When

4.2. BFTL index structure 14

it reaches to its threshold entry it need to be flushed to the flash memory.To flush

out dirty records in the reservation buffer, BFTL construct a corresponding ”index

units” for each dirty records, the records are written to allocated location.Since

index units are very small they can be grouped in to few sectors to reduce the no of

pages physically written.Sectors are the are logical items, which are provided by the

block device emulation of FTL. We try to pack index units belonging to different

B-tree node in a small number of sectors.Now the no of updates will be reduced,

index units of one B-tree node could now exitst in different sectors. To construct the

logical view of a B-tree node, relavant index unit is collected and parsed.An index

units has several feilds data ptr, parent node, primary key, left ptr, right ptr, an

identifier, and an op feild. identifier of an index unit denotes to which B-tree node

belongs.The op feild will show operation could be done insertion, deletion,insertion

or an update.In addition, time stamps are added for each batch flushing of index

units to prevent BFTL from using stale index units. Index units could be scattered

over flash memory. The logical view of B-tree will be constructed through the help

of BFTL.

4.2. BFTL index structure 15

4.2. BFTL index structure 16

4.2.1 Commit policy

The reservation buffer is a write buffer residing in main memory.When a B-tree

node is inserted, deleted, modified is temporarily held by the reservation buffer. For

each record r in reservation buffer, there exits a corresponding B-tree node to which

r belongs.The relationship of records in the reservation buffer and B-tree node is

maintained for the commit policy.

For each record BFTL will first generate index unit. Based on primary keys of the

records and the value range of the leaf node, the index unit will be partitioned in to

some disjoint sets. partitioning prevents index units of the same B -tree node from

being fragmented. A sector can store fix number of index units. All the index units

will be grouped in to few numberof sectors. The capacity of reservation buffer is not

unlimited.once it is full, it needs to flush out to the flash memory.

4.2.2 The Node Translation Table

A node translation table is adopted to maintain a collection of index units of a B-

tree node so that the collecting of index units is efficient.NTT is built in RAM and

keeps the list of pages which contain index units belonging to each B-tree node.It

maps a B-tree node to a collection of LBA’s where the related index units resides.B-

tree node consists of several index units, which come from different sectors. The

LBA’s of the sectors are chained as a list after the corresponding entry of the table.

When a B-tree node is visited, all the index unit belonging to the visited node are

collected by scanning the sector whose LBA’s are stored in the list. In order to form

a correct logical view of a B - tree node, BFTL visits all sectors where the related

index reside and than construct an up-to-date logical view of the B-tree node. The

node translation table is rebuilt when the system is powered up.

ALGORITHM FOR COMMIT POLICY

1. Let φ denote the set of disjoint sets of index units

2. Let θ denote the set of the sectors

3. Let ntt denote a node translation table

4. while φ is not empty

let ds be a disjoint set in φ

4.2. BFTL index structure 17

let en be the that entry of ntt of a B-tree node that ds would update

if length of en is more than C than execute compaction

endif

if there exits a used sector that can store ds than ds is stored in

sector sec

record the LBA of sec in the list after the corresponding entry en of ntt

else

create a new sector nsec to store ds

record the LBA of nsec in the list after the corresponding entry

en of ntt

θ = θ+nsec

endif

φ= φ - ds

end while

5. flush out θ to flash memory

4.3. FD-Tree Index Structure 18

4.3 FD-Tree Index Structure

An FD-Tree consists of multiple levels as L0 ∼ Ll−1.The top level, L0 is a B+ tree

called head tree. The size of node in head tree is equal to the size of page in flash

disk. Each of the other levels, Li (1 ≤ i ≤ l), is a sorted run stored in contiguous

pages.Each non-leaf level in FD -tree will have fences (pointer) to point to the next

level.

” Each level of FD-tree has a capacity in terms of entries, denoted as |Li|.Following

the logrithmic method, we set the levels with a stepped capacity, i.e |Li+1|=k

× |Li| (0 ≤ i ≤ l − 2),where k is the logarithmic size ratio between adjacent lev-

els.Therefore |Li| = ki × |L0|.”[yina09].Initially all the updates are performed in

the head tree when head tree reaches its maximum capacity entries are migrated

from head tree to the sorted run using merging operation where entries are stored

in sorted order. Following the design principle P2, the maximum size of the head

tree is set to the maximum size of local area like ram memory so that random writes

performance is similar to the sequential one.

We categorize the entry in FD- tree in to two kinds,index entry and fence.

• Index Entry. An index entry contains three field: an index key, key, and a

record ID, rid, for the indexed data record, and type indicating its role in the

logarithmic deletion of FD - tree.Depending on the type, we further categorize

index entries into two kinds,filter entries and normal entries.

– Filter Entry. (type = Filter) . A Filter entry is a mark of deletion.The

filter entry is insertd inn FD-tree upon a deletion to indicate that its

corresponding record and index entry have been nominally deleted. It

has the same key and the record ID as that deleted index entry.We call

that index entry as a phantom entry, as it has been logically deleted but

has not been physically removed from the index.

– Normal Entry. (type = Normal) All index entries other than filter

entries are called normal entries.

• Fence. A fence is an entry with three fields. a key value, key, a type, and

a pid, the id of the page in the immediate lower level that a search will go

next.Essentially a fence is a pointer, whose key is selected from the index entry

in FD-tree.

4.3. FD-Tree Index Structure 19

INVARIANT 1. The first entry of each page is a fence. INVARIANT 2. The

key range between a fence and its next fence at the same level is contained in the

key range of the page pointed by the fence. Depending on whether the key value

of the fence in Li is selected from Li or Li+1. We categorize fences in Li into two

kinds, internal fence and external fence.

• External Fence. (type = External). The key value of an external fence in Li

is selected from Li+1. We create a fence for each page of Li+1 . For page Pin

Li+1, we select the key of the first entry in P to be the key of the fence, and

set the pid field ofthe fence to be the id of P, in order to satisfy INVARIANT

2.

• Internal Fence. (type = Internal). The key value of an internal fence in Li is

selected from Li. If the first entry of any page P is not a external fence, we

add an internal fence to the first slot of this page in order to satisfy Invariant

1. The key value of the internal fence is set to be the key of the first index

entry e in page P. The pid field of the internal fence is set to the id of the page

in the next level whose key range covers the key of e.

4.3.1 Operations on FD tree

• Search. For searching an entry in FD-tree first look up opeation is performed

in the head tree. Since head tree is B+ tree, searching in head tree is similar

to the searching in B+ tree. Than from leaf node of the B+ tree we find best

suitable external fence to direct the search to the next level. At each level only

one page is accessible if no duplicate is allowed. Since entries are stored in

sorted order in pages in sorted runs binary search can be performed to find the

greatest key equal to or less than searching element within the page.Than we

will scan the page from right to left untill we get a fence entry.Than we will go

to the next level guided by the fence entry. Searching an element is performed

from top to bottom. We can get filter entry and corresponding phantom entry

of same key value and same rid that need to be deleted.

4.3. FD-Tree Index Structure 20

• Insertion. Initially we insert new entry in to the head tree similar to B+

tree.When head tree reaches its maximum capacity we merge head tree with

the sorted runs and migrate all the entries from head tree to the sorted run.If

first sorted run Li reaches its maximum capacity merge is performed between

Li+1.If leaf level exceeds new level will be created. All the entries from head

tree is sequentially written to the sorted runs and random writes are limited

to the headtree following design principle P2.

• Merge.When a level exceed its capacity it is merged with the next level. The

merge operation sequentially scans the two inputs, and combines them into

one sorted run in contiguous pages. A newly generated level Li consists of

all index entries from L−1, all index entries and external fences fromLi. We

keep all external fences in Li because the level (Li+1) pointed by these exter-

nal fences does not change. According to the INVARIANT -1 first entry of

the page should be fence entry during merge process first entry of the page

will become internal fence if external fence is not possible. This merging can

change external fences of upper level up to the root level. That is, given two

adjacent levels, Li−1 and Li, the merge process generates i + 1 new sorted

runs to update all levels from L0 to Li. If the new Li exceeds its capacity, Li

and Li+1 are merged. This process continues until the larger one of the two

newly generated levels does not exceed the capacity.

The merge operation involves only sequential reads and writes, thus we suc-

cessfully transform the random writes of insertion into sequential reads and

writes, following the design principle P1 . We further optimize the I/O per-

formance by applying the multi-page I/O optimization, following our design

principle P3 . Since the pages in each level of FD-tree are stored contiguously

on the flash disk, we fetch multiple pages in a single I/O request. Similarly,

as the newly generated sorted runs are sequentially written, we write multiple

pages in a single request. The suitable number of pages in an I/O request is

set to be the access unit size when the transfer rate of the sequential access

pattern reaches the maximum.

4.3. FD-Tree Index Structure 21

• Deletion. For deleting an entry from FD-tree first we insert that entry with

same key value and record id to the head tree. and make that entry as a filter

entry and migrated to the lower levels as the merge process occurs, and we

perform deletion to the lower level. The entry to be deleted is became phantom

entry, and is left untouched. Than we perform search on FD-Tree for entry

that has to be deleted. The actual deletion is performed in the merge opera-

tion when the filter entry encounters its corresponding phantom entry.When

filter entry encounters its phantom entry both entries are discarded and will

not appear in the merge result. After discarding these entries newly generated

sorted run will be sorter than the old one. The space overhead of filter and

phantom entry is very low.

ALGORITHM FOR INSERTION IN FD-TREE

Insert(e)

parameter: e is entry to be inserted

1: Insert e into L0

2: if L0 reaches level capacity then

Merge(L0,L1)

ALGORITHM FOR MERGING TWO LEVELS

Merge(Li−1,Li)

Parameter:Li−1,Li: the levels to be merged set : x=0 and y=0

1:Suppose ei−1[x] and ei[y] is the first element of Li−1 and Li

2:Create an array Li’of size Li

3:Repeat the process untill all the elements of Li−1 and Li are visited

4: while ei−1[x].type=Fence

5: x=x+1

4.3. FD-Tree Index Structure 22

6: while ei[y].type=Internalfence

7: y=y+1

8: ifei−1[x].type=filter and ei[y].type=normal and ei−1[x].key=ei[y].key and

ei−1[x].rid=ei[y].rid than entry should be deleted x=x+1 and y=y+1

9: ifei−1[x].key≤ei[y].key

10: insert entry=ei−1.key

11: x=x+1

12: else

13: insert entry=ei[y].key

14: y=y+1

15: if insert entry=Fence

16: temp=insert entry

17: if current page in Li’is empty then

18: if insert entry 6= fence and Li[y]6= leaf

19: internalfence.key=insertentry.key

20: internalfence.rid=insertentry.rid

21: insert internalfence in to Li’

22: insert insert entry into Li’

23: externalfence.key=insert entry.key

24: externalfence.rid=ID of the current page in Li’

25: insert externalfence in to Li−1

26: update external fence upto the root level

27: else

28: insert insert entry to the Li’

29:ifLi’ reaches its level capacity then

30: Merge(Li’,Li+1)

31:Replace Li by Li

Chapter 5

Data Placement Schemes

5.1 Data Placement Schemes Used In DBMS

There are two types of data placement schemes used in DBMS.

• Row Oriented DBMS

• Column Oriented DBMS

In Row Oriented DBMS a whole row of data has to be read from disk, even

if few attributes are required to answer the query. It means system has to read

unnecessary attributes to answer the query. It decreases the cache utilization of

system.

In Column Oriented DBMS only the required columns are read from the disk. It

increases cache utilization of the system. It needs some extra processing to construct

the output tuples from these individual columns.

5.2 Data Page LayOuts for Relational Database

• N - Ary Storage Model

• Data Decomposition Storage Model

• PaxPage Data Layout

23

5.2. Data Page LayOuts for Relational Database 24

5.2.1 N - Ary Storage Model

It is a row oriented storage model also known as Slotted Page storage model. It

stores records sequentially in disk. Each record has a record header that contains a

null bitmap, offset to the variable length value, and other implementation specific

information. Each record is inserted when available free space is greater than length

of the record. Offset of the begning of record is inserted into next available slot

from the end of the page. The nth record of the page will be accessed by the nth

pointer from the end of the page. During the predicate evaluation it exibhit poor

cache performance.

consider a query.

select name from R where age ≤ 40.

To evaluate this query query processor uses a scan operator, that evaluates predicate

and retrieves age attribute. Suppose NSM page is already in memory and record

size is smaller than cache block size.Suppose age attribute size is 4 - byte and cache

block size is 16 - byte. When scan operator retrieves age attribute it will bring other

attributes stored next to age. It will waste cache space to store non-reference data,

and incurring unnecessary access to main memory.

5.2.2 The Decomposition Storage Model

It uses vertical partitioning of relation. It partitions relation into n sub-relations

where n is the number of attributes in that relation. Vertical Partitioning was

proposed in order to reduce I/O cost and to improve cache performance of the

system. DSM offers a heigher degree of spatial locality when sequential accessing

5.2. Data Page LayOuts for Relational Database 25

the values of attribute. DSM performance is superior to NSM when queries access is

fewer than 10% of the attributes in each relation. When evaluating multi attribute

query it gives poor performance due to reconstruction cost of each subrelations. The

time spent on joining increases with the number of attributes increases in the result

relation. In addition, DSM incurs a significant space overhead because the record

id of each record needs to be replicated.

5.2. Data Page LayOuts for Relational Database 26

5.2.3 PaxPage Storage Model:-

Following are the main advantages of PaxPage layout.

• Maximize inter record spatial locality within each column and within each

page which eliminates unnecessary request to main memory.

• Minimizes record reconstruction cost.

• It is orthogonal to design decision, because it only affects the layout of data

stored on the single page.

The motivation behind PAX is to keep the all attributes of the relation into

single page. It partitions the page vertiacally into n minipages where n is the

number of attributes in that relation. In PAX each records resides on the same

page as it would resides when NSM were used. Pax improves cache perfor-

mance. Pax inceases inter-record spatial locality. It employs in-page vertical

partitioning, which reduces reconstruction cost.

Design Of Pax Page :-In order to store a relation with n attributes, Pax

partitions each page in to n minipages. Values of the first attribute will be

in first minipage and so on. At the begining of the each page there is a

page header that contains offset to the beginning of each minipages. The

5.2. Data Page LayOuts for Relational Database 27

record header information is distributed across the minipages. The structure

of minipages will be defined as follows:-

There are two types of attribbutes:-

– Fixed Length Attribute

– Variable Length Attribute

Fixed Length Attributes are stored in F-minipages. At the end of each mini-

page there is a presence bit vector with one entry per record that show null

value if that attibute value is not present.

Variable length attributes are stored in V-minipages. V - minipages are slotted.

Offset of each value of a v-minipage is stored at the end of that v-minipage.

Null vaues are denoted by null pointer.

Each page contains a page header and number of minipages equal to the num-

ber of attributes of relation. The page header contains the number of at-

tributes, attribute size (for fixed length attribute), offset to the begining of

the minipages, the total number of records on the page and the total space

still available.

Given figure depicts an example where two records have been inserted, where

two attributes are of fixed length size and one attribute is variable length size.

There is two f - minipages and one v - minipage. At the end of v - minipage

there are offsets to the end of each variable length value. Records on a page

are accessed sequentially or in a random order. In sequentially access a sub-

sets of attributes, the algorithm sequentially access values in the appropriate

minipages.

To store relation space required for PAX and NSM are same. NSM stores

records continuosly so it requires one offset per record and one additional off-

set for variable length attribute in each record. PAX on the other hand stores

one offset for each variable length attribute and one offset for each of the n -

minipages. So NSM and PAX will occupy same amount of space for storing

relation. Size of minipages will be calculated on average sizes of attribute

values.

5.2. Data Page LayOuts for Relational Database 28

Chapter 6

Flash Aware Query Processing

Our investigation is on query processing techniques that improve the performance

of complex data analysis of dataware houses and buiseness intellegence workloads.

Towards this goal, we will evaluate data structures and algorithms that gives fast

random read to speed up selection, projection, and join operations.Sorts and aggre-

gation are the most important in complex query plan. We are considering ”SSD only

DBMS” where all the datas are stored in SSD. We wil investigate which query pro-

cessing technique gives better performance in SSD. We have discussed PAX PAGE

layout which mprove cache performance of the system. In SSD, PAX PAGE layout

will reduce amount of data read from SSDs.

6.1 Scan Selections And Projections

There is flash scan operator that is used in PAX PAGE layout to improve selection

and projection on flash SSD.

6.1.1 FlashScan Operator

In column based page layout PAX page is devided in to minipages where values

of each attribute are physically separeted within the same page, thus it allows the

operator to acccess only the attributes that are needed to answer the query, which

reduces memory bandwidth requirement. Data transfer unit in main memory can be

as small as 32 to 128 bytes, whereas a database page is typically 8K to 128K .With

SSDs, the minimum transefer unit is 512 to 2K bytes, which allows to selectively

29

6.2. FlashJoin 30

read only parts of the regular page.

FlashScan takes advantages of the small transfer unit of SSds to read only the

minipages of the attributes that it needs. Suppose there is scan without select

predicate that projects first and third attribute of the relation. For each scan,

flashscan read minipage for the first attribute and than seeks to the start of the

third minipage. similarly it reads for all the pages of that relation.

6.1.2 FlashScan And Column Store :-

FlashScan’s behaviour in SSD is in many case similar to a column store scan on

traditional disk. FlashScan needs to seek between minipages, and that seek is very

fast, adds a small overheads but it is preferable over a full sequential access. Column-

stores on HDDs read a large portion of a single column at a time to amortize the read

disk head seek between different columns. These two scans will perform similarly for

both SSDs and HDDs with comparable bandwidths. In heighly selective scans Flash

Scan can skip some minipages , that do not contain the qualifying tuple. A column-

store on HDDs can only skip entire chunks which are two orders of magnitude larger

than flash SSd transfer unit. It means that column store scans on HDDs need to be

100 times more selective than FlashScan to witness similar benefits.

6.2 FlashJoin

FlashJoin is a multiway join algorithm for solid state drives. The component of the

flash join is decribed below.

6.2.1 FlashJoin Overview

Flash Join takes advantages of the fast random read of the SSD. It uses same method

like flashscan and avoid reading unnecessary attributes from the relation and post-

pones retriving tuples attributes as long as possible. FlashJoin is the multi way

equi join, implemented as a pipeline of the stylized binary joins. Each binary join

is broken in to two parts.

1. Join Kernel

6.2. FlashJoin 31

2. Materialization Strategy

3. Fetch Kernel

6.2.2 JoinKernel

Join Kernel stores only page id and slot no of the qualifying tuples. Group of

pageid and slotnumber is called join index. This join can be implemted from any

existing join algorithm like block nested loop, sort merge, hybrid hash etc. In our

implemtation we have nested loop join to produce join indexes for join kernel.

6.2.3 Materialization Strategy

In FlashJoin we use late materialization strategy. This heuristics postpones retriev-

ing attributes as down stream as possible. In late materialization each join passes

only page numbers and rids of the given base relation. Attributes will be retrieved

as late as possible.

6.2.4 FetchKernel

The fetchkernel uses join index, produced by the join kernel to retrive the attributes

from join result. FetchKernel Retrives the attribute values whenever it is needed.

For each join index fetch kernel locates the needed minipages in the bufferpool and

then compose the resulting tuples. This approach is reasonable when all the pages

6.2. FlashJoin 32

needed to generate the tuple can be fit in to the main memory because random read

are cheap.

This approache offers some benefits over traiditional joins since we are accessing

only needed attribute through rid in flashjoin. For storing records we are using

PaxPage layout that will also improve cache utilization of the system.

Chapter 7

Implementation And

Experimental Results

7.1 Read Write Performance Of SSD and Hard-

Disk

Some experimental results of read write performance of SSD and hard disk are given

below Randomwrite performance of SSD and HardDisk is given in graph.

33

7.1. Read Write Performance Of SSD and HardDisk 34

Randomread performance of SSD and HardDisk is given in graph.

7.1. Read Write Performance Of SSD and HardDisk 35

Sequential Write performance comparision between SSD and Hard Disk.

7.1. Read Write Performance Of SSD and HardDisk 36

Sequential Read performance comparision between SSD and Hard Disk.

7.2. Implementation Details 37

7.2 Implementation Details

7.2.1 Mubase Details

1. Storage Manager Of Mubase It will keep track of which block is used

by which objects.This object can be a table or an index structure. In index

structure it will maintain root page id of each index structure. Initially it will

link all the pages in link list. It will also maintain free pages available in disk.

It will make use of buffer manager to fetch the disk block in memory and write

them back.

2. Buffer Manager Of Mubase LRU replacement policy has been imple-

mented. Pinpage of buffer manager will bring the page into memory(if that

page is not already there.)It will increment the pincount of that page and re-

turns the address of that page. Unpinpage of buffer manager will reduce the

pincount of that block, if pincount is zero that buffer block will be available

for eviction.

3. Disk Manager Of Mubase It will direct write disk blocks to the file and

direct read from the file.

4. Relation Manager Of Mubase It will create schema for the particular

7.2. Implementation Details 38

table to store in the database. All the entries of the tables will be stored

and retrieved using relation manager. Joining of the tables has also been

implemented in relation manager.

7.2.2 Pax Page And Slotted Page Experimental Results

PaxPage and Slotted page have been implemted for storing TPC-H lineitem table

into the disk. These are the pag layouts used to store rows of the table into the

disk. They use all the layers of mubase to store records. We performed queries

for retrieving single attribute and two attributes and so on. We tasted paxpage on

solid state drive and slottedpage on harddisk. Given graph will show performance

comparision between paxpage and slotted page. The experimental results show total

elapse time for retrieving records from the paxpage is less than the slotted page.

7.3. Indexing Structure 39

7.2.3 FlashJoin for PaxPage and NormalJoin for Slotted-

Page

We implemented flashjoin for paxpage and normal join for slotted page. Experi-

mental results shows that flashjoin on paxpage is 20 % faster than normal join in

slotted page.

7.3 Indexing Structure

Indices are used to retrieve data from the large database. B+ tree is a indexing

structure for magnetic disk .If we use B+ tree index structure for flash disk it will

benefit from fast random read speed for search performance but will suffer form poor

random write speed in update performance. To optimized the update performance

while preserving search performance FD - tree will be suitable for flash disk. We

implemented FD - tree index structure.

Bibliography

[1] [Agra 08] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse,

and R. Panigrahy. Design tradeoffs for SSD performance. In: ATC08: USENIX

2008 Annual Technical Conference on Annual Technical Conference, pp. 5770,

USENIX Association, Berkeley, CA, USA, 2008.

[2] [Boug 09] L. Bouganim, B. r Jnsson, and P. Bonnet. uFLIP: Understanding

Flash IO Patterns.. In: CIDR, www.crdrdb.org, 2009.

[3] [Deve 09] R. S. Y. D. Devesh Agrawal, Deepak Ganesan. Lazy-Adaptive Tree:

An Optimized Index Structure for Flash Devices. 2009. Proceedings of the 35th

International Conference on Very Large Databases (VLDB), Lyon, France.

[4] [Grae 04] G. Graefe. Write-optimized B-trees. In: VLDB 04: Proceedings of

the Thirtieth interna- tional conference on Very large data bases, pp. 672683,

VLDB Endowment, 2004.

[5] [Grae 07] G. Graefe. The five-minute rule twenty years later, and how flash

memory changes the rules. In: DaMoN 07: Proceedings of the 3rd international

workshop on Data management on new hardware, pp. 19, ACM, New York,

NY, USA, 2007.

[6] [Gray 08] J. Gray and B. Fitzgerald. Flash Disk Opportunity for Server Ap-

plications. Queue, Vol. 6, No. 4, pp. 1823, 2008.

[7] [Inte 98] Intel-Corporation. Understanding the Flash Translation Layer(FTL)

specifications. 1998. www.embeddedfreebsd.org/Documents/Intel-FTL.pdf.

[8] [Jaga 97] H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, and R.

Kanneganti. Incremental Organization for Data Recording and Warehousing.

In: VLDB 97: Proceedings of the 23rd International Conference on Very Large

40

Bibliography 41

Data Bases, pp. 1625, Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 1997.

[9] [Lee 07] S.-W. Lee and B. Moon. Design of flash-based DBMS: an in-page

logging approach. In: SIG- MOD 07: Proceedings of the 2007 ACM SIGMOD

international conference on Management of data, pp. 5566, ACM, New York,

NY, USA, 2007.

[10] [Lee 08] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W. Kim. A case for

flash memory ssd in enterprise database applications. In: SIGMOD 08: Pro-

ceedings of the 2008 ACM SIGMOD international conference on Management

of data, pp. 10751086, ACM, New York, NY, USA, 2008.

[11] [Leve 08] A. Leventhal. Flash storage memory. Commun. ACM, Vol. 51, No.

7, pp. 4751, 2008.

[12] [Mosh 08] M. Moshayedi and P. Wilkison. Enterprise SSDs. Queue, Vol. 6, No.

4, pp. 3239, 2008.

[13] [Myer 07] D. Myers. On the Use of NAND Flash Memory

in High-Performance Relational Databases: MSc Thesis. 2007.

http://people.csail.mit.edu/dsm/flash-thesis.pdf.

[14] [Nath 07] S. Nath and A. Kansal. FlashDB: dynamic self-tuning database for

NAND flash. In: IPSN 07: Proceedings of the 6th international conference on

Information processing in sensor networks, pp. 410419, ACM, New York, NY,

USA, 2007.

[15] [Norh 08] H. O. Norheim. How Flash Memory Changes the DBMS 1 World.

2008. www.hansolav.net/blog/content/binary/HowFlashMemory.pdf

[16] [ONei 96] P. ONeil, E. Cheng, D. Gawlick, and E. ONeil. The log-structured

merge-tree (LSM-tree). Acta Inf., Vol. 33, No. 4, pp. 351385, 1996.

[17] [Shah 08] M. A. Shah, S. Harizopoulos, J. L. Wiener, and G. Graefe. Fast

scans and joins using flash drives. In: DaMoN 08: Proceedings of the 4th in-

ternational workshop on Data management on new hardware, pp. 1724, ACM,

New York, NY, USA, 2008.

Bibliography 42

[18] [Silb 05] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System

Concepts. McGraw-Hill, Inc., New York, NY, USA, 2005.

[19] [Wu 07] C.-H. Wu, T.-W. Kuo, and L. P. Chang. An efficient B-tree layer im-

plementation for flash- memory storage systems. Trans. on Embedded Com-

puting Sys., Vol. 6, No. 3, p. 19, 2007.

[20] [Yin 08] S. Yin, P. Pucheral, and X. Meng. PBFilter: indexing flash-resident

data through partitioned summaries. In: CIKM 08: Proceeding of the 17th

ACM conference on Information and knowledge management, pp. 13331334,

ACM, New York, NY, USA, 2008.

[21] [Yina 09] Q. L. Yinan Li, Bingsheng He and K. Yi. Tree Indexing on Flash

Disks. 2009. IEEE International Conference on Data Engineering (ICDE).

[22] Query Processing Techniques For Solid state drive Dimitris Tsirogiannis Uni-

versity of Toronto Toronto, ON, Canada dimitris@cs.toronto.edu Stavros Hari-

zopoulos HP Labs Palo Alto, CA, USA stavros@hp.com Mehul A. Shah HP

Labs Palo Alto, CA, USA mehul.shah@hp.com

