
Efficient Database Distribution using Local Search

Algorithm

D. Sivakumar

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

Department of Computer Science and Engineering

June 2011

Acknowledgements

I am deeply indebted to my adviser Dr. Ch.Sobhan Babu for his constant guidance and support

right from my problem selection to thesis documentation. He patiently listened to all the problems

I faced during the course of this work and appropriately guided me with his full support.

This work would have been come to halt without the expertise guidance of my co-adviser Dr.

Ravindra Guruvannavar in desining and implementation. I thank him for patiently clearing all my

novice doubts.

I thank all the faculty members of the Department of Computer Science & Engineering for

sharing their views and giving valuable suggestions during the discussion of my work in department

seminars.

I thank all my classmates for their friendly support who made the stay at this institute enjoyable,

we shared joy and knowledge. I thank all my friends at IIT Hyderabad for the same.

I thank our director Prof. U.B.Desai for his friendly administrative support in getting all our

requirements done as quickly as possible.

Finally, I thank all my family members for their constant love and support.

iv

Dedication

To Bhagawan Sri Sathya Sai Baba

v

Abstract

A problem in railway database is identified. Focus of the problem is to reduce the average response

time for all the read and write queries to the railway database. One way of doing this is by opening

more than one database servers and distributing the database across these servers to improve the

performance. In this work we are proposing an efficient distribution of the database across these

servers considering read and write request frequencies at all locations.

The problem of database distribution across different locations is mapped to the well studied

problem called Uncapacitated Facility Location(UFL) problem. Various techniques such as greedy

approach, LP rounding technique, primal-dual technique and local search have been proposed to

tackle this problem. Of those, we are using local search technique in this work. In particular, poly-

nomial version of the local search approximation algorithm is used to solve the railway database

problem. Distributed database is implemented using postgresql database server and jboss appli-

cation server is used to manage the global transaction. On this architecture, database is distributed

using the local optimal solution obtained by local search algorithm and it is compared with other

solutions in terms of the average response time for the read and write requests.

vi

Contents

Declaration . ii

Approval Sheet . iii

Acknowledgements . iv

Abstract . vi

Nomenclature viii

1 Introduction 3

1.1 Organisation of the thesis . 4

2 Railway Database Problem 5

2.1 Problem definition . 5

2.2 Two-phase commit protocol . 6

2.2.1 Commit-request phase . 6

2.2.2 Commit phase . 6

2.3 Assumptions . 7

3 Related Work 8

3.1 Database Partitioning . 8

3.1.1 Partitioning types . 8

3.1.2 Traditional criteria for partitioning . 9

3.2 Complexity of Partitioning Problem . 9

3.2.1 File Allocation Problem . 9

3.3 Solution Methods . 11

3.3.1 Mathematical Programming . 11

3.3.2 Heuristic methods . 11

4 Facility Location Problem 13

4.1 Terms related with the problem . 13

4.2 Variants of the problem . 14

4.3 The uncapacitated facility locatioin problem . 14

5 Mapping Railway Database Problem to UFL 15

5.1 The Mapping . 15

vii

6 Solution through Local Search 17

6.1 Local Search Technique . 17

6.2 Polynomial Local Search Algorithm . 18

6.3 Local Search Algorithm for UFL . 19

7 Implementation of Distributed Database 20

7.1 Database Setup . 20

7.2 Simulation . 20

7.3 Results . 21

7.3.1 Configuration 1 . 21

7.3.2 Configuration 2 . 23

8 Summary and Future Work 28

Bibliography 29

viii

List of Figures

6.1 General local search algorithm . 18

6.2 Polynomial local search algorithm . 18

7.1 Sites configuration 1(fully connected, but all links are not shown) 22

7.2 Sites configuration 2(fully connected, but all links are not shown) 24

1

List of Tables

7.1 Distance metric . 21

7.2 Read and write requests frequencies . 23

7.3 Results of the simulation . 23

7.4 Time taken at different sites for solution (0 0 0 1 0 0) 24

7.5 Time taken at different sites for solution (0 0 0 0 1 0) 24

7.6 Time taken at different sites for solution (0 0 0 1 1 0) 25

7.7 Time taken at different sites for solution (1 1 1 1 1 1) 25

7.8 Distance metric . 25

7.9 Read and write requests frequencies . 25

7.10 Results of the simulation . 26

7.11 Time taken at different sites for solution (0 0 0 1 0 0) 26

7.12 Time taken at different sites for solution (1 0 0 0 0 1) 26

7.13 Time taken at different sites for solution (1 0 0 0 1 1) 27

2

Chapter 1

Introduction

Optimization is the area which solves many practical problems. We want to optimize on any task

which consumes our resources which may include time, money, etc. Improving the performance of

the database is one of the current problems which needs to be addressed. Distributed processing is

one approach which improves reliability and performance of the database. In a distributed database

system, the database is stored on several computers. Primary concern of distributed database

system design is to make fragmentation of the relations in case of relational database or classes

in case of object oriented databases, allocation and replication of the fragments in different sites

of the distributed system, and local optimization in each site[2]. Some of the reasons for building

distributed database systems are sharing of data, autonomy, and availability.

Data Fragmentation: Fragmentation is a design technique to divide a single relation or class

of a database into two or more partitions such that the combination of the partitions provides the

original database without any loss of information[5]. There are two different schemes for fragmenting

a relation: horizontal fragmentation and vertical fragmentation. Horizontal fragmentation splits the

relation by assigning each tuple of relation to one or more fragments. Vertical fragmentation splits

the relation by decomposing the scheme of the relation.

In this work, we are considering a problem which is particular to the railway database where

we want to optimize on the response time an user gets for his requests. To improve this response

time we want to efficiently distribute the database at different locations where each location gets a

particular set of rows in the database. Here a particular record may be placed at more than one

location(i.e replications are allowed). We will describe in detail this problem in the next chapter.

Here we are horizontally fragmenting the railway database relation based on the empirical data

such as frequecy of read and write requests at each site . Above mentioned problem is solved in

an indirect way where we map this problem to an already well defined problem in the literature.

This well defined problem is facility location problem. There are several variants to this problem.

Identified database problem is mapped to a particular variant of the facility location problem called

’Uncapacitated facility location problem’. This uncapacitated facility locaiton problem is widely

studied and so many approacahes are proposed to solve this problem. This problem is described in

detail in chapter 4.

The advantage we get by mapping the given problem to this particular standard problem called

’Uncapacitated facility location problem’ is that we can directly borrow different techniques which

3

are there to solve this problem along with their analysis. The method we chose to solve the problem

is called local search heuristic. Local search is an approximation algorithm to find the solution for

the uncapacitated facility location problem in polynomial time. This technique is described in detail

in chapter 6.

1.1 Organisation of the thesis

In chapter 2 we clearly and formally stated the railway database problem for which a solution is

proposed in this thesis. Chapter 3 descirbes in detail the facility location problem, using which we

solve our railway database problem. Chapter 3 elaborates on uncapacitated facility location problem

a variant of facility location problem to which our railway database problem is mapped. In chapter

4 we describe how exactly this railway database problem is mapped to the standard uncapacitated

facility location problem. Chapter 5 describes the local search technique, by using which we solve

the uncapacitated facility location problem. Polynomial local search approximation algorithm is

given in chapter 5 to find an local optimal solution for the uncapacitated facility location problem

in polynomial time. Finally in chapter 6 we present the results obtained after distributing the table

using different solutions. And, locality gap of the local search approximation algorithm is verified

practically.

4

Chapter 2

Railway Database Problem

2.1 Problem definition

The following problem arises for Indian Railways if they plan to use geographically distributed

databases to improve the response time of reservation requests. Suppose that Indian Railways has

got main table in which they store the information of seat availability on each train. This table

is queried and updated very frequently from different locations in which are randomly spread. We

want to partition and replicate the table across different sites so that we may improve the response

time of requests. Suppose that the number of sites across which we want to distribute our table is

fixed.

This process of distribution can be done in many ways. One naive way of doing this is by

replicating the whole table across all the sites. One major problem with this type of allocation is

that whenever we want to update any particular row in the table we need to update it at all the

locations, which is time consuming. Moreover during this updating process we won’t be able to read

that particular row which is being updated. These issues may cause poor response time if we follow

this procedure to distribute our table.

There are some more elements we need to consider while solving this problem. Every region has

got different set of demands i.e at each site the number of requests will vary for every row in the

table. Even at a given site the number of reads will be different from the number of writes for a

particular row in the table.

Therefore, considering all these factors we need to come up with a solution which allocates a

subset of rows of main table at all the sites so that the average response time for requests is optimized.

Here the problem is defined in a more formal way:

• T is a table consisting of n records(rows) (r1, r2, ..., rn).

• s1, s2, ..., sm represents m sites across which we want to distribute our main table T.

• R(si, rj), W (si, rj) represents number of read requests and write requests respectively origi-

nating at site si for record rj per unit time(we consider per minute).

• To each site si we must assign a subset of records Ti of T so as to minimize the average response

time of requests.

5

• Response time of a read request for record rj at site si is 0 if rj is assigned to site si(stored

locally) otherwise it is min C(si, sk) where sk is any site to which rj is assigned and C(si, sk)

represents the cost of communication between sites si and sk, generally it is taken proportional

to the distance between the sites.

• Response time of a write request for record rj at site si is∑
2 ∗ C(si, sk) where sk is any site to which rj is assigned. To write a record the site must

lock all the copies of the records and then update all the copies. Factor 2 is used here in the

response time because two-phase commit protocol is used in writing at all the sites where the

record is located. This requires twice the communication compared to read request. In next

section we give a brief description of two-phase commit protocol.

• Every record must be stored at atleast one site i.e

T1 ∪ T2 ... ∪Tm = T.

Extended problem: This problem can be extended where there exists a maximum load a

site can handle. Each site si can handle a maximum of ci requests per unit time.

2.2 Two-phase commit protocol

To ensure atomocity, at all the sites which are involed in a transaction T, T must either commit

at all sites or must abort at all sites. This is taken care by two-phase commit protocol [6, 7].

Two-phase commit protocol is a distributed algorithm that coordinates all the processes that

participate in a distributed atomic transaction on whether to commit or abort the transaction.

The protocol comprises of two phases viz. commit-request phase and commit phase. One

site is designated as the coordinator and the rest of the sites are designated as cohorts. The

protocol is initiated by the coordinator after the last step of the transaction has been reached.

2.2.1 Commit-request phase

– The coordinator sends a query to commit message to all sites(cohorts) and waits until

it has received a reply from all cohorts.

– Each site executes the transaction upto the point where they will be asked to commit.

They write an entry to the log.

– Each site replies with an aggrement messsage if the transaction at that site is succeeded

or an abort message if it experiences a failure.

2.2.2 Commit phase

Success

If the coordinator received an agreement message from all cohorts during the commit-request

phase:

6

1. The coordinator sends a commit message to all the cohorts.

2. Each cohort completes the operation, and releases all the locks and resources held during

the transaction.

3. Each cohort sends an acknowledgment to the coordinator.

4. The coordinator completes the transaction when all acknowledgments have been received.

Failure

If any cohort votes No during the commit-request phase (or the coordinator’s timeout expires):

1. The coordinator sends a rollback message to all the cohorts.

2. Each cohort undoes the transaction using the undo log, and releases the resources and

locks held during the transaction.

3. Each cohort sends an acknowledgement to the coordinator.

4. The coordinator undoes the transaction when all acknowledgements have been received.

2.3 Assumptions

After setting up of more than one database servers for railway database, if a user wants

to access the railway database(through read or write requests), he is allowed to access only

the nearest database server which is currently in condition. For read request, the particular

database server fetches the information from its local database if that data exists, otherwise

it fetches from the nearest database server where that particular data is located. For write

request, the contacted server ensures that the data is updated at all the required locations.

The same procedure is followed in the simulation of the distributed database.

7

Chapter 3

Related Work

3.1 Database Partitioning

The problem of partioning(fragmentation) of database optimally is faced in several scenarions in

information system design [18]-[24] . A partition is a division of a logical database or its constituting

elements into distinct independent parts. Database partitioning is generally done for improving

manageability, performance, availability and reliability reasons.

The decomposition of a relation into fragments permits a number of transactions to execute

concurrently. In addition, the fragmentation of relations typically results in the parallel execution of

a single query by dividing it into a set of subqueries that operate on fragments. Thus fragmentation

can increase the level of concurrency and therefore the system throughput.

There are also difficulties raised by the fragmentation. If the applications have conflicting re-

quirements that prevent decomposition of the relation into mutually exclusive fragments, those

applications whose views are defined on more than one fragment may suffer performance degra-

dation. It might be the case where we need to retrieve data from two fragments and then take

their join, which is costly. Therefore, minimizing the number of distributed joins is a fundamental

fragmentation issue.

3.1.1 Partitioning types

The partitioning can be done by either building separate smaller databases (each with its own tables,

indices, and transaction logs), or by splitting selected elements, for example just one table.

Horizontal partitioning: Horizontal partitioning splits the relation by assigning each tuple

of relation to one or more partitions. For example, customers with ZIP codes less than 50000 are

stored in CustomersEast, while customers with ZIP codes greater than or equal to 50000 are stored

in CustomersWest. The two partition tables are then CustomersEast and CustomersWest, while a

view with a union might be created over both of them to provide a complete view of all customers.

Vertical partitioning: Vertical partitioning splits the relation by decomposing the scheme

of the relation. Normalization also involves this splitting of columns across tables, but vertical

partitioning goes beyond that and partitions columns even when already normalized.

8

3.1.2 Traditional criteria for partitioning

Relational database management systems provide for different criteria to split the database. They

take a partitioning key and assign a partition based on certain criteria.

Range partitioning : Selects a partition by determining if the partitioning key is inside a

certain range. An example could be a partition for all rows where the column zipcode has a value

between 70000 and 79999.

List partitioning A partition is assigned a list of values. If the partitioning key has one of

these values, the partition is chosen.

Hash partitioning : The value of a hash function determines membership in a partition.

Assuming there are four partitions, the hash function could return a value from 0 to 3. Composite

partitioning allows for certain combinations of the above partitioning schemes, by for example first

applying a range partitioning and then a hash partitioning. Consistent hashing could be considered

a composite of hash and list partitioning where the hash reduces the key space to a size that can be

listed.

3.2 Complexity of Partitioning Problem

File allocation problem : The problem of database partitioing is related to file allocation problem if

we add some constraints.

3.2.1 File Allocation Problem

Assume that there are a set of fragments F = {f1, f2, ..., fn} and a distributed system consisting

of sites S = {s1, s2, ..., sm} on which a set of applications Q = {q1, q2, ..., qq} is running. The file

allocation problem consists of finding the optimal distribution of F to S.

The optimality can be defined with respect to two measures :

1. Minimal cost: The cost function consists of the cost of storing each fi at a site sj , the cost

of querying fi at site sj , the cost of updating fi at all sites where it is stored, and the cost

of data communication. The allocation problem, then, attempts to find an allocation scheme

that minimizes a combined cost function. In our problem defined in chapter 2 we are not

considering this cost.

2. Performance: The other very important aspect we consider in getting optimal solution to

this problem is to increase the performace. Two well-known ones are to minimize the response

time and to maximize the system throughput at each site.

The optimality measure should include both the performance and the cost factors. One should

be looking for an allocation scheme that, for example, answers user queries in minimal time while

keeping the cost of processing minimal. A similar statement can be made for throughput maximiza-

tion.

Let us consider a very simple formulation of the problem. Let F and S be defined as before. For

instance, we consider only a single fragment, fk . We make a number of assumptions and definitions

that will enable us to model the allocation problem.

9

1. Assume that Q can be modified so that it is possible to identify the update and the retrieval-

only queries, and to define the following for a single fragment fk : T = {t1, t2, ..., tm} where

ti is the read-only traffic generated at site si for fk, and U = {u1, u2, ..., um} where ui is the

update traffic generated at site si for fk .

2. Assume that the communication cost between any two pair of sites si and sj is fixed for a unit

of transmission. Furthermore, assume that it is different for updates and retrievals in order

that the following can be defined:

C(T) = { c12, c13, ..., c1m, ..., cm−1,m }
C(U) = { c′12, c

′

13, ..., c
′

1m, ..., c
′

m−1,m}
where cij is the unit communication cost for retrieval requests between sites si and sj , and c

′

ij

is the unit communication cost for update requests between sites si and sj .

3. Let the cost of storing the fragment at site si be di . Thus we can define D = {d1, d2, ..., dm}
for the storage cost of fragment fk at all the sites.

4. Assume that there are no capacity constraints for either the sites or the communication links.

Then the allocation problem can be specified as a cost-minimization problem where we are trying

to find the set I ⊆S that specifies where the copies of the fragment will be stored. In the following,

xj denotes the decision variable for the placement such that

xj =

expx if fragment fk is assigned to sitesj

0 otherwise

So, the specific problem formulation is :

min

 m∑
i=1

 ∑
j|sj∈I

xjujc
′

ij + min
j|sj∈I

cij

 +

m∑
i=1

xjdj

 , (3.1)

subject to xj = 0 or 1.

There are a number of reasons why simplistic formulations such as the one we have discussed

are not suitable for distributed database design. These are inherent in all the early file allocation

models for computer networks.

This simplistic formulation of facility location problme is not suitable for distributed database

design, since there we need to consider so many other factors like access pattern of the application

to the data, cost of integrity enforcement, relation ship with other fragments, cost of enforcing

concurrency control mechanism,...etc.

But this formulation matches to the problem we defined in chapter 2 because of the assumptions

we made. Only difference between above formulated file allocation problem to the problem defined

in chapter 2 is that we are not considering the storage costs in our problem.

The first term in the objective function 3.1 corresponds to the cost of transmitting the up-

dates(write cost) to all the sites where the replicas are situated, and the cost of retrieving the

requests at the site. The second term of the objective function calculates the total cost of storing

all the duplicate copies of the fragment.

10

The above formulated problem was proven to be NP-complete by Eswaran[19]. So, the database

partition problem which is more complex than file allocation problem is also NP-complete and can

be shown.

3.3 Solution Methods

Since our database partitioning problem introduced in chapter 2 is almost similar to the file allocation

problem, here we give an overview of the techniques that had been introduced to solve this problem

and some related database partitioning problems, rather than the solution methods for general

database partionining problem which involves more complex issues which are not required to solve

the problem we are considering.

The previous work in the file allocation is mostly based on static distribution, which means

allocation does not change with time. Grapa and Belford have shown that a particular solution to

this file allocation problem solved a thirty node problem in one hour on an IBM 360/91 computer

[33]. The difficulty in optmization is discussed in [34]. The algorithms for static allocation can be

divided into two types:

• Mathematical programming

• Exhaustive searches, and heuristics.

3.3.1 Mathematical Programming

Mathematical programming approach has been followed by Chu[18], Casey [25], Levin and Morgan

[26], [21] and Chen[22]. Using Casey’s formulation, we got the formulation of file allocation problem

as

min

 m∑
i=1

 ∑
j|sj∈I

xjujc
′

ij + min
j|sj∈I

cij

 +

m∑
i=1

xjdj

 , (3.2)

subject to xj = 0 or 1.

Optimization problem can be solved by using integer programming techniques [35]. In [13] it

is shown that file allocation problem can be formulated into a non linear zero-one programming

problem. It is shown that by adding additional constraint equations, these non-linear terms in

the objective and constraint equations can be reduced to linear equations. But here updations are

not considered. Casey[25] and Levin and Morgan [26], [21] have used the hypercube technique to

enumerate over a reduced set of possible solutions in order to find the optimum. However, the

approach of using integer programming or exhaustive enumeration is only feasible when the problem

size is small. Due to this difficulty, Grapa and Belford have developed some simple conditions to

determine whether a copy of a file should be placed at a node [33]. This helps in reducing the

complexity of the problem.

3.3.2 Heuristic methods

Heuristics refers to experience-based techniques for problem solving, learning and discovery. Heuris-

tics are reasonable or polynomial time search strategies which do not guarantee optimality.

11

Firstly, a feasible solution is generated. Then the decision algorithm decides whether to improve

the solution or not and how to improve it. An example of a decision algorithm is the add-drop

algorithm which perturbs on an existing solution to see if a better solution can be obtained [20].

Other heuristics include the greedy algorithm [27, 28], steepest ascent and subgradient method [28]

and clustering algorithm [29].

Since heuristics do not always generate optimal solutions and it is difficult to solve analytically

for the average and worst-case behavior, evaluations are generally done by simulations on example

cases. Therefore, heuristics may perform unpredictably on unanticipated cases. Even though the

file allocation problem is NP- completeness, some special cases of this problem can be solved in

polynomial time. Ghosh proposed polynomial time algorithms to distribute a database for parallal

searching [36], [30]. Kikuno et al. have found that the placement of multiple files on a tree network

with no storage capacity constraint and no update cost is polynomially solvable [31]. It is shown

[37] that the number of copies of a file can be optimized very easily to achieve the maximum read

throughput when it is assumed that there are infinitely many reads and updates arrive stochastically.

The isomorphism of the file allocation problem and the single commodity warehouse location

problem has been shown by Ramamoorthy[41]. Therefore heuristics developed by operations re-

searchers have commonly been adopted to solve the file allocation problem. Examples of these

heuristics include knapsack problem solution [38], branch-and-bound techniques [28], and network

flow algorithms [39].

12

Chapter 4

Facility Location Problem

Optimization is very important activity which is done on all the operations any organization is

performing. One of these operations includes setting up of resources or facilities in a cost effective

manner and which allow efficient access of these facilities from the demand points. Examples of

these include setting up of a supply chain of a business, locating essential services such as health

care and education, and construction of transportation networks.

One simple faciltiy problem is, suppose a company is considering opening as many as four ware-

houses in order to serve 12 different regions. Main objective of the company is to minimize the

sum of fixed costs associated with opening warehouses as well as the various transportation costs

incurred to ship goods from the warehouses to the regions.

Here we give the definition of a faciltiy location problem in general. The goal of facility location

problem is to open a set of facilities from the given set of facilites and assign each client to one of the

open facilities to satisfy the demands of the clients in a cost effective and efficient manner. There is

a cost associated with opening a facility at a given location. We generally assume that there exists

a metric among facilities and clients(metric version of the problem) that is distances are defined

among the facilities and clients.

4.1 Terms related with the problem

Let F denotes set of facilities and C denotes set of clients. The distances between a pair of points

i,j ∈ F ∪ C is denoted by cij . These distances define a metric.

Service cost of the solution: Suppose in the solution a client j is served by a facility i then

the service cost of the client j is nothing but the distacne cij . Service cost of the solution is sum of

the service costs of all the clients in C.

Facility cost of the solution: Let fi denotes cost associated with opening a facility at i ∈ F.

The cost of opening all the facilities in the solution is called as facility cost of the solution.

Capacities: Depending on the variant of the facility location problem we are considering there

may be a limit on number of clients a facility can serve, this is called as the capacity of the facility.

The facility location problem is NP-hard. The proof for the NP-hardness is based on the reduction

from the minimal set cover problem which is NP-hard[40].

13

4.2 Variants of the problem

By varying facility costs, service costs and capacity constraints differently, we will get differnet

versions of the facility locatioin problem. Here are the major variants of the facility location problem:

1. k-median problem.

2. Uncapacitated Facility Location(UFL).

3. k-Uncapacitated Facility Location (k-UFL).

4. Facility Location with Soft Capacities (∞-CFL).

5. Universal Facility Locaiotn Problem (UniFL).

6. Budget Constrained k-median problem

Since we will be using the Uncapacitated Facility Location(UFL) version of the problem, we will

be elaborating upon it in the next section.

4.3 The uncapacitated facility locatioin problem

Uncapacitated facility location problem[1, 4] is one of the most widely studied variants of the facility

location problem. This problem arises mostly when both the facility cost and service cost are incurred

only once.

• Input to the problem: The set of facilities F, the set of clients C, and the distance metric

(cij). For each i ∈ F , the cost of opening a facility at i, denoted by fi, is also given.

• Output: Find a set S ⊆ F such that (
∑

i∈S fi +
∑

i∈C dist(i, S)) is minimized, where dist(i,S)

denotes the minimum distance between i and a facility in S(solution). We want to open facilities

such that sum of facility cost and service cost is minimized.

Approximation algorithm for UFL was first given by Hochbaum[9] based on the greedy heuristic

for the set cover problem and it was proved to have an approximation factor of O(log n). Later so

many techniques were provided and got constant factor approximation algorithms. The best result

for UFL problem was given by Guha and Kuller that the problem cannot be approximated with a

factor of (1.436 - ε), for ε > 0, unless NP ⊆ DTIME(nO(log log n)). We will be using local search

procedure to solve this problem.

14

Chapter 5

Mapping Railway Database

Problem to UFL

In this chapter we are going to map the railway database problem to the Uncapacitated facility loca-

tion problem(UFL). When we are not considering the capacity limits at each location,the presence

of a record at a site won’t effect the service or facility cost of other records at the same site. Here we

are assuming that queries are only read and write and they involve only one row at a time. So, we

will be considering each row separately and find out the best sites at which we can place the record.

Combining all these solutions we will get the solution for the main problem.

5.1 The Mapping

Here we are going to map the given problem (finding the best locations for a given row in the table,

given demands and costs associated with the locations) which is defined in chapter 2 to UFL which

is described in the previous chapter. For immediate reference, we once more state the input to the

UFL problem here, i.e:

Input to the UFL problem: The set of facilities F, the set of clients C, and the distance metric

(cij). For each i ∈ F , the cost of opening a facility at i, denoted by fi, is also given.

In mapping the railway database problem to UFL, first thing to decide upon is: what are the

set of facilities and the set of clients? Since any site is capable of holding the given record, each

site (s1, s2, ..., sm) becomes a facility and since every site is having some amount of demand(here

we are assuming that every location has got demand for any given record, if that is not the case

then we can put number of read requests and write requests for that site to be zero), every site

(s1, s2, ..., sm) becomes a client. Therefore F = {f1, f2, ..., fm} where each fi = si and C =

{c1, c2, ..., cm} where each ci = si

The distance metric between the facilities and clients was formed using the communication

cost between any two pair of sites(here we are assuming that communication costs satisfy metric

properties). Therefore cij = c(si, sj) where c(si, sj) dentotes the cost of communication between

sites si and sj .

Now, we need to define the costs associated with the solution i.e service cost and facility cost.

Note that these costs are depend upon the the solution, if we don’t have soution in our hand then

15

we won’t be able to find the values for these quantities. Suppose S is any solution to the problem.

Service Cost: Service cost of client i is dist(i,S) * R(i), where dist(i,S) denotes the minimum

distance between i and a facility in S(solution) and R(i) dentotes the number of read requests at

location i for the given record. Therefore total service cost of the solution S is:∑
i∈C

dist(i, S) ∗R(i) (5.1)

Facility Cost: We pushed the read requests response time into service cost. Similarly we push

all the write request response time into facility cost. By opening a record at a site, we are forcing

any site which is updating the record to communicate this updating information to this site. We

turn this writing cost(cost of communication) into facility cost of the site.

fi =
∑
j∈C

2 ∗ cij ∗W (j) (5.2)

where j iterates through all the clients in C and W(j) denotes the number of write requests at j.

Facility cost of the solution is sum of all the facility costs of the facilities opened.

NOTE : While mapping database partitioning problem to the uncapacitated facility location

problem, read request response time is pushed into service cost and write request response time into

facility cost. If we alter these(i.e read response is taken as facility cost and write response is taken

as service cost), it won’t make any change in our solution because , what we are trying to optimize

is the sum of facility cost and service cost. This alteration may not work for all the variants of the

facility location problem. If we are to consider capacity limits(Facility location with soft capacities)

then the above alteration produces wrong results.

16

Chapter 6

Solution through Local Search

Hochbaum was the first one to come up with an approximation algorithm for Facility location

problem. Since then many different techniques to solve the problem were proposed. Here is the list

of techniques which have been used to solve some variants of the facility location problem.

• Greedy Heuristics.

• LP Rounding techniques.

• Primal-Dual techniques.

• Local search techniques.

We have chosen local search technique to solve the problem in first instance due to its simplicity

and even though the algorithm looks simple, its approximation facotr is near to the approximation

factors of other good techniques.

6.1 Local Search Technique

Suppose P is an optimization problem which we want to solve and let I be the instance of the

problem. Given instance I of the problem P, local search procedure starts from an arbitrary solution

and iterates through the space of feasible solutions to I and outputs a local optimum solution. The

local step the procedure takes at every iteration depends on the neighbordhood structure we define

for the particular local search procedure. The generalized local search procedure is given in figure

6.1 from [1].

The elements we need to have, to describe local search procedure are:

1. S: Set of all feasible solutions to the instance I of the given problem P.

2. Cost Function cost(S): Represents the cost associated with the given solution(sum of facility

and service cost) cost: S → R.

3. Neigborhood Structure N(s): This function maps every solution to a subset of the feasible

solution space.

N: S → 2S

17

Algorithm Local Search

1. s ← an arbitrary feasible solution in S.

2. While ∃ s′ ∈ N(s) such that cost(s′) < cost(s)

3. s ← s′

4. return s

Figure 6.1: General local search algorithm

Algorithm Local Search

1. s ← an arbitrary feasible solution in S.

2. While ∃ s′ ∈ N(s) such that cost(s′) < (1-ε/Q)cost(s)

3. s ← s′

4. return s

Figure 6.2: Polynomial local search algorithm

4. Given any solution s ∈ S we should be able to find out s′ ∈N(s) (if exists) such that cost(s′)

< cost(s).

Cost function and the neighbordhood structure changes from problem to problem. A solution

s∈S is called local optimum solution if it is the best solution in its neighbordhood i.e cost(s) < cost(s′)

for all s′ ∈ N(s). The algorithm described in figure 6.1 returns a local optimum solution to the given

problem. Now we define a property of the local search procedure called locality gap. Locality gap of

procedure LS(P)(Local search procedure for problem P) is defined as supremum local(I)/global(I)

where local(I) denotes the cost of the local optmum solution returned by procedure LS(P) and

global(I) denotes the cost of the global optimum solution.

6.2 Polynomial Local Search Algorithm

The algorithm given in figure 6.1 is not guarantied to run in polynomial time. To make the algorithm

run in polynomial time we make a small change in the algorithm. In the local step, instead of picking

up any solution which has cost lesser than the current one in the neighbordhood, we pick up a solution

only if it reduces the cost by a certain factor. Therefore the improved algorithm is given in figure

6.2 where ε > 0 is constant and Q is a suitable integer which is polynomial in the size of input. One

thing to note here is that, the solution returned by the algorithm given in 6.2 is not local optimum.

We need to choose Q such that locality gap is not increases much.

18

6.3 Local Search Algorithm for UFL

Here we give the local search algorithm for the uncapacitated facility location problem. We already

have a general algorithm 6.1, the only thing we need to specify is the neighbordhood structure.

Neigborhood is defined by the local operations allowed at each step. The local operations allowed

here are adding a facility, dropping a facility and swapping a pair of facilities. Therefore

N(s) = {S + {s′}|s′ ∈ F} ∪ {S − {s}|s ∈ S} ∪ {S − {s}+ {s′}|s ∈ S, s′ ∈ F}.

. It is proved that the local search procedure for the metric uncapacitated facility location problem

with the neighbordhood structure N given above has a locality gap of atmost 3 [1]. Using scaling

technique from [8], we can get an algorithm with approximation factor of 1 +
√

2 + ε.

19

Chapter 7

Implementation of Distributed

Database

7.1 Database Setup

To simulate the real world scenario of the railway database, few terminals were taken which were

connected throug LAN. On each terminal PostgresSql(9.0.3) database server was installed. To

manage the global transactions the Jboss Application server(5.0.0) was used. This Application server

was also installed on all the machines. PostgresSql driver which supports distributed transactions

was placed in the library of the application server.

Schema of the simple relation table we chose to work on is

AVAILABILITY(TRAIN ID, AVAILABLE) where TRAIN ID is VARCHAR type and AVAILABILE

is INTEGER type. This table contains the information about the available unbooked seats for a

particular train. This table was created in all the database servers at all terminals(sites). In our work

we are considering only one tuple of the relation and finding out the best possible locations(sites)

to place the tuple. Since determination of this is independet of other tuples of the table, we can do

this for all the tuples independently and distribute the table accordingly.

7.2 Simulation

EJBs(Enterprise Java Beans) were used in the Jboss application server to do the distributed trans-

actions. EJBs are the Java EE server side components that run inside the ejb container and en-

capsulates the business logic of an enterprise application. EJB container is a program that runs

on the server and implements the EJB specifications. EJB container provides special type of the

environment suitable for running the enterprise components. Enterprise beans are used to perform

various types of tasks like interacting with the client, maintaining sessions for the clients, retrieving

and holding data from the database and communicating with the server. There are two types of

enterprise beans viz. Sessinon bean and Message driven bean. Session beans directly interact with

the client and contains business logic of the business application. Message beans works like a listener

or a customer for a particular messaging service such as JavaMessage API. Session beans were used

in our simulation.

20

All the EJBs which were deployed at all the sites have got the same functionality. They contain

functions which can be called by the clients remotely. The major functions these EJBs contain are

getAvailability() which returns the number of available seats and setAvailability(int) which takes

an input parameter and reduces the number of available seats by those many number. At each site

there was a client program running which executes the operations based on the workload file given

to it. The workload file contains sequence of read and write operations with delays in between. The

client program at a particular site contacts the local ejb and that ejb responds by contacting the

local database server if the record exists locally(for read operations) or it fetches the record from the

nearby site to which this site was assigned by contacting the corresponding ejb on that machine.

To test the algorithm, we gave some random read and write request values at each site for the

particular tuple we had chosen. Distances between the sites were taken randomly such that they

obey the triangle inequality. These values were given as input to our algorithm(approximation

algorithm: local search) and then the solution was obtained which indicates us where to place the

record. To simulate distances, whenever an ejb at a site contacts the ejb at other site, the contacting

ejb was delayed for some time proportional to the distance between them. Workload file was created

at each site which reflects the read and write request frequencies at that site. This wass achieved

by including wait requests for a particular period between each read and write operations such that

per minute the number of read and write requests match the frequencies we gave as input to our

algorithm. The clients at all the sites were run using this workload files and the time taken for read

and write requests were calculated at each site and then the average time taken for the requests(read

and write) were calculated.

7.3 Results

Initially we designed the problem by doubling the communication cost between the servers involved

in write request as compared to read request. This was because for the write request we require

two-phase commit protocol, where as for read request we don’t require it. But in Jboss application

server by default all the global transactions are following the two-phase commit protocol. Currently

Jboss transaciton manager doesn’t directly allow us to make a transactio read-only(which prevents

it to follow 2 phase commit protocol). So for this purpose we changed communication cost in write

request accordingly and generated the local optimal soltuions for the following configurations.

7.3.1 Configuration 1

Table 7.1: Distance metric

1 2 3 4 5 6
1 0 5 10 16 20 30
2 5 0 14 10 17 29
3 10 14 0 15 13 15
4 16 10 15 0 10 16
5 20 17 13 10 0 11
6 30 29 15 16 11 0

21

Figure 7.1: Sites configuration 1(fully connected, but all links are not shown)

The configuration of sites were as shown in the figure 7.1. Sites are labelled as 1,2,3,4,5 & 6.

Distances between each of the sites are as given in the table 7.1. Number of read and write requests

per minute at each site are as given in the table 7.2. Convention we follow to express where the

record is placed is as follows. We express this using an array where each postion refers to a site

and each postion in array contains 0 or 1, where 0 represents that the record is not placed at that

particular site and 1 represents that the record is placed at that site. When we give this configuration

to the local search algorithm , the solution array we got is (0 0 0 0 1 0) which means we need to

open the record at only one site that is at location 5.

The terms ε and ’Q’ mentioned in the algorithm 6.2 were taken as 0.1 and 12 respectively.The

algorithm started with a random solution that is (0 0 0 0 0 1) whose cost of solution is 1682 and the

cost of the final local optimal solutioin (0 0 0 0 1 0) is 1002. This solution we got after one local step

of swapping. But this solution was turned out to be the optimal solution. Our algorithm is random

as it chooses the initial solution randomly every time we run it. After running the algorithm for a

number of times we could get other solution (0 0 0 1 0 0) as local optimal solution. The reason that

we were interested in other solution rather than the optimal solution is to compare the local optimal

solution and the optimal solution. Here the ratio (local optimal soltuion cost/optimal solution cost)

turned out to be 1.02 which is less than 3 which is locality gap for the local search apporximation

algorithm.

When we ran the clients at all the sites with the work load as given in table 7.2 with the solution(0

0 0 0 1 0), the average response time for read and write requests was 1002 milli seconds. And the

average response time for the other solutions are given in table 7.3. When an ejb was contacted

from the another server the current ejb was made to wait the distance between them multipled by

100 milli seconds before calling the method in ejb.

Time taken for read and write requests at each particular site for different solutions are given in

tables 7.4, 7.5, 7.6 and 7.7.

22

Table 7.2: Read and write requests frequencies

Sites read requests per minute write requests per minute
1 3 1
2 15 10
3 7 4
4 12 8
5 20 12
6 9 5

Table 7.3: Results of the simulation

Solutions cost avg. re-
sponse
time(in
millisecs)

0 0 0 1 0 0 (local
optimal solution)

1023 1027

0 0 0 0 1 0 (best
solution)

1002 1002

0 0 0 1 1 0 1141 1139
1 1 1 1 1 1 2992 2156

7.3.2 Configuration 2

In the previous configuration write cost dominated the read cost. Therefore the optimal solution

consists of opening record only at one place. In the following configuration 2, number of read requests

are far more than number of write requests. This yielded an optimal solution where we need to open

record at more than one place.

When this configuration 7.2 with read and write frequencies as given in 7.9 was given to the local

search algorithm the local optimal solution we got is (1 0 0 0 1 1) whose cost is 7984. This also

turned out to be the optimal solution. How many number of times we ran our local search algorithm

we end up with the same optimal solution. In this case also values for ε ,’Q’ were taken as 0.1 and

12 respectively, which are terms in the polynomial local search algorithm given in Figure6.2.

As before sites are labelled as 1,2,3,4,5 & 6. Distances between each of the sites are as given in

the table 7.8. Number of read and write requests per minute at each site are as given in the table

7.9. Time taken for read and write requests at each particular site for different solutions are given

tables 7.11, 7.12 and 7.13. Average response times for each solution are given in table 7.10.

23

Table 7.4: Time taken at different sites for solution (0 0 0 1 0 0)

Server no.of read re-
quests

time taken
for reads(milli
secs)

no.of write re-
quests

time taken for
writes(milli
secs)

total time(milli
secs)

1 3 5114 1 1645 6759
2 15 15997 10 10665 26662
3 7 11407 4 6334 17741
4 12 460 8 464 924
5 20 20699 12 12547 33246
6 9 15206 5 8353 23559

Table 7.5: Time taken at different sites for solution (0 0 0 0 1 0)

Server no.of read re-
quests

time taken
for reads(milli
secs)

no.of write re-
quests

time taken for
writes(milli
secs)

total time(milli
secs)

1 3 6213 1 2046 8259
2 15 26339 10 17597 43936
3 7 9815 4 5430 15245
4 12 12681 8 8494 21175
5 20 590 12 631 1221
6 9 10579 5 5854 16433

Figure 7.2: Sites configuration 2(fully connected, but all links are not shown)

24

Table 7.6: Time taken at different sites for solution (0 0 0 1 1 0)

Server no.of read re-
quests

time taken
for reads(milli
secs)

no.of write re-
quests

time taken for
writes(milli
secs)

total time(milli
secs)

1 3 5023 1 3675 8698
2 15 15831 10 27996 43827
3 7 9503 4 11626 21129
4 12 395 8 8725 9120
5 20 356 12 13047 13403
6 9 10552 5 14080 24632

Table 7.7: Time taken at different sites for solution (1 1 1 1 1 1)

Server no.of read re-
quests

time taken
for reads(milli
secs)

no.of write re-
quests

time taken for
writes(milli
secs)

total time(milli
secs)

1 3 5023 1 3675 8698
2 15 15831 10 27996 43827
3 7 9503 4 11626 21129
4 12 395 8 8725 9120
5 20 356 12 13047 13403
6 9 10552 5 14080 24632

Table 7.8: Distance metric

1 2 3 4 5 6
1 0 21 42 55 57 72
2 21 0 66 30 52 99
3 42 66 0 35 90 33
4 55 30 35 0 40 25
5 57 52 90 40 0 60
6 72 99 33 25 60 0

Table 7.9: Read and write requests frequencies

Sites read requests per minute write requests per minute
1 75 2
2 35 5
3 40 7
4 20 3
5 60 12
6 10 10

25

Table 7.10: Results of the simulation

Solutions cost avg. re-
sponse
time(in
secs)

1 0 0 0 1 1 (lo-
cal optimal & op-
timal)

7984 2.3

1 0 0 0 0 1 9680 3.4
0 0 0 1 0 0 12710 3.8

Table 7.11: Time taken at different sites for solution (0 0 0 1 0 0)

Server no.of read re-
quests

time taken
for reads(milli
secs)

no.of write re-
quests

time taken for
writes(milli
secs)

total time(milli
secs)

1 75 414581 2 11088 425669
2 35 107039 5 15319 122358
3 40 134232 7 53194 187426
4 20 532 3 168 700
5 60 242722 12 48645 291367
6 10 25660 10 25653 51313

Table 7.12: Time taken at different sites for solution (1 0 0 0 0 1)

Server no.of read re-
quests

time taken
for reads(milli
secs)

no.of write re-
quests

time taken for
writes(milli
secs)

total time(milli
secs)

1 75 744 2 14535 15279
2 35 75049 5 60464 135513
3 40 133961 7 53208 187169
4 20 51066 3 24328 75394
5 60 344832 12 141633 486465
6 10 275 10 72794 73069

26

Table 7.13: Time taken at different sites for solution (1 0 0 0 1 1)

Server no.of read re-
quests

time taken
for reads(milli
secs)

no.of write re-
quests

time taken for
writes(milli
secs)

total time(milli
secs)

1 75 891 2 26096 26987
2 35 75340 5 86803 162143
3 40 134265 7 116531 250796
4 20 51110 3 36483 87593
5 60 1053 12 1311 2364
6 10 378 10 133562 133940

27

Chapter 8

Summary and Future Work

In summary, we have identified a problem in Indian Railway Database and come up with a solution

based on local search algorithm for uncapacitated facility location problem. By using the solution of

this algorithm and distributing the database accordingly, we can considerably improve the response

time for the requests that users submit to the database. We showed this by simulating the real world

scenario using jboss applicaiton server. We assumed that we are properly given all the input data

like number of read requests and write requests at a particular site for a particualr row in the table.

Future work includes

1. Finding a solution for the extended database problem which is defined in chapter 2.

2. Implementation of other techniques and finding the best one in terms of time taken and quality

of the solution.

3. Comparing this approach with the other data fragmentation techniques in general.

28

References

[1] V.Pandit Local search heuristic for facility location problems, Ph.D. thesis, IIT Delhi 2004.

[2] S. I. Khan and D. A. L. Hoque. A new technique for database frgamentation in distributed

Systems International Journal of Computer Applications 9,5(2010).

[3] Madhukar R. Korupulu and C. Greg Plaxton and Rajmohan Rajaraman. Analysis of local searh

heuristic for facility location problems Proceedings of the ninth annual ACM-SIAM symposium

on Discrete Algorithms,1998.

[4] Madhukar R. Korupulu and C. Greg Plaxton and Rajmohan Rajaraman. Analysis of local

searh heuristic for facility location problems Technical Report DIMACS, (1998) 9830.

[5] M. T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice-Hall, 1999.

[6] Wikipedia, http://en.wikipedia.org/wiki/Two-phase commit protocol

[7] Abraham Silberschatz, Henry F.Korth and S. Sudarshan. Database System Concepts,

McGraw-Hill, 5, 2006.

[8] M. Charikar and S. Guha, Improved combinatorial algorithms for the facility location and

k-median problems. Proceeding of the 40th Annual Symposium on Foundations of Computer

Science, 77, (1999) 378-388.

[9] D.S. Hochbaum. Heuristics for the fixed cost median problem . Mathematica Programming ,

22, 1982(148-162).

[10] Eva Tardos Karen Aardal and David B. Shmoys. Approximation algorithms for facility location

problems STOC ’97 Proceedings of the twenty-ninth annual ACM symposium on Theory of

computing , (1997).

[11] Sanjay Agrawal, Surajit Chaudhuri, Lubor Kollar, Arun Marathe, Vivek Narasayya and Manoj

Syamala. Database tuning advisor for Microsoft SQL Server 2005. Proceeding of the 30th

VLDB Conference, Toronto, Canada, 2004.

[12] Anirban Mondal, Sanjay Kumar Madria and Masaru Kitsuregawa. CLEAR: An efficient con-

text and location-based dynamic replication scheme for Mobile-P2P Networks. Proceedings of

the International Conference on Database and Expert Systems Applications , 2006.

[13] Optimal file allocation in a multiple computer system. IEEE Transactions on Computers,

Vol:C-18 No:10, October 1969.

29

[14] David L. Black and Daniel D. Sleator. Competitive algorithms for replication and migration

Problems. Technical Report Carnegie Mellon University , CMU-CS-89-201, 1989.

[15] Jun Rao, Chun Zhang, Guy Lohman and Nimrod Megiddo. Automating physical database

design in a parallel database. Proceeding of the ACM SIGMOD , June 2002.

[16] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach Mike Bur-

rows, Tushar Chandra, Andrew Fikes and Robert E. Gruber. Bigtable: A distributed storage

system for structured Data. OSDI’06: Seventh Symposium on Operating System Design and

Implementationx , November, 2006.

[17] S. Ceri, M. Negri, G. Pelagatti. Horizontal data partitioning in database design. Proceedings

of the ACM SIGMOD international conference on Management of data, 1982.

[18] W. W. Chu. Optimal file allocation in a multiple computer system. IEEE-TC, vol. C-18, no.

10, 1969.

[19] K. P. Eswaran. Placement of records in a file and file allocation in a computer network. Proc.

IFIP Congress, North Holland, 1974.

[20] S. Mahmoud, J. S. Riordon. Optimal allocation of resources in distributed information net-

works. ACM- TODS, Vol. 1, no. 1, 1976.

[21] H. L. Morgan, J. D. Levin. Optimal program and data location in computer networks. CACM,

Vol. 20, no. 5, 1977.

[22] P. P. S. Chen, J. Akoka. Optimal design of distributed information system. IEEE-TSE, Vol.

SE-6, no. 12, Dec. 1980.

[23] S. Ceri, G. Martella, G. Pelagatti. Optimal file allocation on a network of minicomputers.

Proc. Int. Conf. on Database, Heyden Pub., Aberdeen, July 1980.

[24] S. Ceri, S. B. Navathe, G. Wiederhold. Optimal design of distributed databases. Working

paper, Stanford University, 1981.

[25] R. G. Casey. Allocation of copies of a file in an information network. AFIPS, SJCC 1972, pp.

617-625.

[26] K. D. Levin. Organizing distributed data bases in computer networks. Univ. Pennsylvania,

Philadelphia, Ph.D. dissertation, 1974.

[27] K. B. Irani and N. G. Khabbaz, A methodology for the design of communication networks

and the distribution of data in distributed supercomputer systems. IEEE Trans. Comput., vol.

C-31, pp 419-434, May 1982.

[28] M. L. Fisher, and D. S. Hochbaum. Database locations in computer networks. J. Ass. Comput.

Mach., Vol. 27, pp. 718-735, Oct. 1980.

[29] M. E. S. Loomis, Data base design: object distribution and resource constrained task schedul-

ing. Ph.D. dissertation, Dep. Comput. Sci., Univ. California, Los Angeles, 1975.

30

[30] B. Srinivasan and R. Sankar. Algorithms to distribute a database for parallel searching. IEEE

Trans. Software Eng., Vol. SE-7, p. I12, Jan. 1981.

[31] T. Kijuno et al. On a file initial-placement problem in distributed database systems. Hiroshima

Univ., Japan, CSG Tech. Res. 81-08, Apr. 1981.

[32] A. J. Smith, Optimization of I/O systems by cache disks and file migration. New York: North

Holland,1981, vol. 1, pp. 249-262.

[33] E.Grapa and G. G. Belford, Some theorems to aid in solving the file allocation problem.

Commun. ACM, 20(11):878882, 1977.

[34] L. V. Sickle and K. M. Chandy, Computational complexity of network design algorithms,

Information Processing 77, IFPS, 1977.

[35] A. M. Geoffrion and R. E. Marsten, Integer programming: a frame-work and state-of-the-art

survey, Manage. Sci., vol. 18, pp. 465-491, May 1972.

[36] S. P. Ghosh, Distributing a data base with logical associations on a computer network for

parallel searching, IEEE Trans. Software Eng., vol. SE-2, pp. 106-113, June 1976.

[37] E. G. Coffman, Jr. et al., Optimization of the number of copies in a distributed data base,

IEEE Trans. Software Eng., vol. SE-7, pp. 78-84, Jan. 1981.

[38] Ceri, S., Martella, G., and Pelagatti, G. Optimal file allocation in a computer network: A

solution method based on the knapsack problem. Comp. Netw., 6:345357. 1982.

[39] Chang, S. K. and Liu, A. C. , File allocation in a distributed database. Int. J. Comput. Inf.

Sci, 11(5):325340. 1982.

[40] J. van Louveen. Algorithms modeling and complexity. In lecture notes, university of Utrecht.

[41] Ramamoorthy, C. V. and Wah, B. W., The isomorphism of simple file allocation. IEEE Trans.

Comput., C-23(3):221231, 1983.

31

	thesis_Part1.pdf
	thesis_Part2
	thesis_Part3
	thesis_Part4
	thesis_Part5
	thesis_Part6
	thesis_Part7
	thesis_Part8
	thesis_Part9
	thesis_Part10
	thesis_Part11
	thesis_Part12
	thesis_Part13
	thesis_Part14
	thesis_Part15
	thesis_Part16
	thesis_Part17
	thesis_Part18
	thesis_Part19
	thesis_Part20
	thesis_Part21
	thesis_Part22
	thesis_Part23
	thesis_Part24
	thesis_Part25
	thesis_Part26
	thesis_Part27
	thesis_Part28
	thesis_Part29
	thesis_Part30
	thesis_Part31
	thesis_Part32
	thesis_Part33
	thesis_Part34
	thesis_Part35
	thesis_Part36
	thesis_Part37
	thesis_Part38
	thesis_Part39

