One-pot synthesis of hydrophilic flower-shaped iron oxide nanoclusters (IONCs) based ferrofluids for magnetic fluid hyperthermia applications

Kandasamy, Ganeshlenin and Khan, Shaheen and Giri, Jyotsnendu and Bose, Suryasarathi and Veerapu, Naga Suresh and Maity, Dipak (2018) One-pot synthesis of hydrophilic flower-shaped iron oxide nanoclusters (IONCs) based ferrofluids for magnetic fluid hyperthermia applications. Journal of Molecular Liquids. ISSN 0167-7322 (In Press)

Full text not available from this repository. (Request a copy)

Abstract

Herein, flower-shaped hydrophilic superparamagnetic iron oxide nanoclusters (IONCs) are synthesized via one-pot thermolysis of iron acetylacetonate using triethanolamine (TEA) and diethylene glycol (DEG)/tetraethylene glycol (TTEG) mixtures at 9:1, 8:2 and 7:3 (v/v) ratios. The as-prepared 24–29 nm sized IONCs displayed (i) saturation magnetization (Ms) values of ~68–78 emu/g, (ii) hydrodynamic diameters of ~95–192 nm and (iii) zeta potential values of +46 to +65 mV. Due to relatively high magnetization and water solubility, IONCs (prepared using 8:2 TEA:DEG, and 8:2 & 7:3 TEA:TTEG ratios) based aqueous ferrofluids i.e. NCAFF-1, NCAFF-2, and NCAFF-3 are investigated by calorimetric magnetic fluid hyperthermia (MFH) at 0.5–8 mg/ml concentrations by exposing them to the alternating magnetic fields (AMFs, H*f ~2.4–9.9 GA m−1 s−1). The NCAFF-3 demonstrated excellent time dependent temperature rise (42 °C within 0.7–9.7 min) as compared to the NCAFF-1 and NCAFF-2. Moreover, the NCAFF-3 at 0.5 mg/ml concentration exhibited enhanced heating efficacies with specific absorption rate (SAR) and intrinsic loss power (ILP) values of 142.4–909.4 W/gFe and 4.2–14.7 nHm2/kg, respectively. Furthermore, the NCAFF-3 presented better cytocompatibility, and substantially reduced proliferation capacity of HepG2 cancer cells in in vitro MFH studies. Thus, the IONCs based ferrofluids (NCAFF-3) are very promising candidates for MFH therapeutics applications.

[error in script]
IITH Creators:
IITH CreatorsORCiD
Giri, JyotsnenduUNSPECIFIED
Item Type: Article
Uncontrolled Keywords: Flower-shaped magnetic particles, Superparamagnetic iron oxides nanoclusters, Aqueous ferro fluids, Magnetic fluid hyperthermia, Thermotherapy, Biomedical applications
Subjects: Biomedical Engineering
Divisions: Department of Biomedical Engineering
Depositing User: Team Library
Date Deposited: 28 Nov 2018 09:06
Last Modified: 28 Nov 2018 09:06
URI: http://raiith.iith.ac.in/id/eprint/4569
Publisher URL: http://doi.org/10.1016/j.molliq.2018.11.108
OA policy: http://www.sherpa.ac.uk/romeo/issn/0167-7322/
Related URLs:

Actions (login required)

View Item View Item
Statistics for RAIITH ePrint 4569 Statistics for this ePrint Item