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Abstract 

 

The broad objective of the work reported here is to provide a fundamental 

basis for the use of Lead Zirconate Titanate (PZT) patches in damage 

detection of concrete structures. Damage initiation in concrete structures 

starts with distributed microcracks, which eventually localize to form cracks. 

By the time surface manifestation in the form of visible cracking appears there 

may be significant degradation of the capacity of the structure. Early detection 

of damage, before visible signs appear on the surface of the structure is 

essential to initiate early intervention, which can effectively increase the 

service life of structures. Development of monitoring methodologies involves 

understanding the underlying phenomena and providing a physical basis for 

interpreting the observed changes in the parameters which are sensed. PZT is 

a piezoelectric material, which has a coupled constitutive relationship. In the 

case of the PZT patches bonded to a concrete structure, any sensing strategy 

requires developing an understanding of the coupled electromechanical (EM) 

response of the PZT-concrete system. 

The challenges associated with the use of PZT patches for damage monitoring 

in a concrete substrate include providing the following: a clear understanding 

of the fundamental response of the PZT patch when bonded to a concrete 

substrate; interpretation of the coupled response of the PZT patch under load 

induced damage; and development of an efficient, continuous monitoring 

methodology to sense a large area of the concrete substrate. Due to a lack of 

a fundamental basis, the use of PZT patches in concrete structures often 

involves inferring the measured response using model-based procedures. The 

work outlined in this thesis addresses the key issue of developing the 

theoretical basis and providing an experimental validation for PZT-based 

damage monitoring methodology for concrete structures. A fundamental 
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understanding of response of the PZT patch when bonded to concrete 

substrate is developed. The outcome of the work is an integrated local and 

distributed sensing methodology for concrete structures by combining the 

electromechanical impedance and stress wave propagation methods using an 

array of bonded PZT patches. 

The work presented in this thesis is focused on using PZT patches bonded to 

a concrete substrate. A fundamental understanding of the coupled 

electromechanical behaviour of a PZT patch under an applied electrical 

excitation in an electrical impedance (EI) measurement, is developed. The 

influence of the substrate size and its material properties on the frequency 

dependent EI response of a PZT patch is investigated using concrete substrates 

of different sizes. The dynamic response of a PZT patch is shown to consist of 

resonance modes of the PZT patch with superimposed structural response. 

The resonance behaviour of the PZT patch is shown to be influenced by the 

material properties of the substrate. The size dependence in the EI response 

of a PZT patch bonded to a concrete substrate is produced by the dynamic 

behaviour of the structure. The size of the local zone of the concrete material 

substrate in the vicinity of the bonded PZT patch, which influences the 

frequency dependent EI response of the PZT patch is identified. For each 

resonant mode, a local zone of influence, which is free from the influence of 

boundary is identified. The dynamic response of the PZT resonant mode is 

influenced by the elastic material properties and damping within the zone of 

influence. The structural effects of the concrete substrate produced by the 

finite size of the specimen are separated from the material effects produced by 

the material properties and the material damping in the coupled EM response 

of the bonded PZT patch. The influence of size of the concrete substrate on 

the coupled impedance response of the PZT is identified with peaks of 
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structural resonance, which are superimposed on the resonant peaks of the 

bonded PZT patch  

The EI response of the PZT patch when bonded to concrete for detecting load-

induced damage from distributed microcrack to localized cracks within the 

zone of influence of the PZT patch is investigated. Using an approach which 

combines an understanding of the coupled EM constitutive behaviour of PZT 

with experimental validation, a methodology is developed to decouple the 

effects of stress and damage in the substrate on the coupled EM response of a 

PZT patch. The features in the EI signature of a bonded PZT patch associated 

with stress and damage are identified. An increasing level of distributed 

damage in the concrete substrate produces a decrease in the magnitude and 

the frequency of the resonant peak of the bonded PZT patch. The substrate 

stress produces a counter acting effect in the EI spectrum of the bonded PZT 

patch. A measurement procedure for the use of bonded PZT patches for 

continuous monitoring of stress-induced damage in the form of distributed 

microcracks in a structure under loading is developed. 

An integrated methodology for damage monitoring in concrete structures is 

developed by combining the EI method for local sensing and the stress wave 

propagation-based method in a distributed sensing mode. An array of surface 

mounted PZT sensors are deployed on a concrete beam. The EI measurements 

from individual PZT sensors are used for detecting damage within the local 

zone of influence. PZT sensor pairs are used as actuators and sensors for 

distributed monitoring using stress wave propagation. A stress-induced crack 

is introduced in a controlled manner. It is detected very accurately from the 

full-field displacement measurement obtained using digital image correlation. 

The crack opening profile in concrete produced by the fracture is established 

from the surface displacement measurements. From the measurements of 

bonded PZTs, the localized crack is detected in the zone of influence by EI. 
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The change in compliance of the material medium due to a localized crack is 

small and it is reflected in the smaller change in the measured EI when 

compared to distributed damage. Stress wave based measurements sensitively 

detect crack openings on the order of 10m. The material discontinuity 

produced by a closed crack, after removal of the stress is also detected. A 

damage matrix is developed for stress wave based method which is 

independent of transmission path to assess the severity of damage produced 

by the crack in a concrete structure. 
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Nomenclature 

l Length of the PZT 

b Width of the PZT 

t Thickness of the PZT 

S Strain vector 

T Stress vector 

CE Elasticity matrix 

dT Piezoelectric coefficients 

E Applied electric field vector 

D Electric displacement vector 

𝜀𝑇 Dielectric permittivity 

e Relative permittivity 

ν Poisson’s ratio of the PZT 

ρ Density of the PZT 

δ Dielectric loss factor of the PZT 

ζ Damping ratio of the PZT 

Qm Mechanical quality factor 

Y Admittance 

�̅� Complex admittance of the PZT 

𝑍𝐴 Mechanical impedance of the PZT 

𝑍𝑆 Mechanical impedance of the substrate 

𝑓 ̅ Centroidal frequency of the resonance peak 

𝑓�̅� Centroidal frequency at Loading or Unloading states 

𝑓0̅ Base line centroidal frequency 

𝑌𝐶𝑖 Baseline value of conductance 

 𝑌𝐶𝐵 Value of conductance at Loading or Unloading states 

𝑌𝐶 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒  
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𝑌𝐶𝑁 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒  

𝑌𝐶𝑁
′  𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 

I Current 

V Applied voltage 

IZ Current density along the poling direction of the PZT 

𝐶𝐸̅̅ ̅ Complex elasticity matrix 

𝜀𝑇̅̅ ̅ Complex dielectric permittivity 

j √−1 

𝜂𝑠 Isotropic loss factor of the PZT 

𝜂 Isotropic loss factor of the concrete cube 

(𝑇𝑂𝐹)0 TOF at zero CMOD level 

(𝑇𝑂𝐹)𝑑 TOF at different CMOD level 

𝑟𝑠 Received signal 

𝑎𝑠  Actuating signal 

𝑙𝑒𝑎 Signal losses due to epoxy at concrete-beam interfaces for actuator  

 𝑙𝑒𝑠  Signal losses due to epoxy at concrete-beam interfaces for sensor 

𝑙𝑠𝑝 Signal losses due to path 

∗ Convolution operator 

𝑟𝑠(𝑓)0 Sensor signal at zero CMOD level 

𝑟𝑠(𝑓)𝑑 Sensor signal at different CMOD levels 

𝐿𝑑 Signal losses due to crack 

𝑥𝑖 Conductance at zero CMOD level 

𝑦𝑖 Conductance at different CMOD levels 

N Total number of frequencies 
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Chapter 1 

 

Introduction 

   

 

1.1 Motivation and introduction  

Assessment of the integrity of a structure and its constituent parts requires 

reliable non-destructive evaluation (NDE) procedures and continuous 

monitoring of structural parameters to determine the intensity and location of 

the damage. This involves sensors, data acquisition and signal processing tools. 

The performance characteristics of the structure depend upon the level of 

damage produced by the combination of load-induced stress and internal 

stress. Often the damage, particularly in the incipient stages is not directly 

visible and by the time signs of distress appear on the surface of the structure, 

significant damage would have accrued in the structure. Aging and 

deterioration of the existing infrastructure leads to a high cost of maintenance 

if corrective measures and remedial action are initiated when visible signs of 

distress appear on the surface of the structure. Continuous monitoring and 

assessment of structural performance assures an as-needed maintenance 

practice reducing the need for expensive scheduled maintenance.  

Typically, methods for damage detection have relied on applying a low 

frequency excitation to a structure and observing its dynamic characteristics. 

Major drawbacks of the global method of damage detection are that it works 
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well only if the damage is substantial, and the exact location and extent of 

damage are hard to infer. Localized damage is hard to detect with a level of 

certainty by the global method. The detection of damage using the global 

schemes, which rely on inferring damage from the measured response of the 

entire structure, requires accurate models which represent the dynamic 

response of the structure. Developing accurate representation of the structural 

response is challenging for large civil structures. The model uncertainty 

coupled with the loss in sensitivity to local effects in a global system parameter 

have limited the application of the vibration-based global methods in concrete 

structures.  

In concrete structures, damage can occur due to load or environmental effects. 

The damage in concrete is identified with cracking and it can take a localized 

form or it can result in distributed cracking. Tensile cracking in concrete is 

very localized and occurs due to several factors such as overloads and internal 

stress development due to restrained shrinkage and thermal effects. Damage 

due to environmental distress on concrete associated with alkali-silica reaction 

or freeze-thaw degradation takes the form of distributed patterns of cracks. 

Damage in concrete initiates in the form of microcracks. The microcracks 

coalesce to produce cracks. Often, by the time a surface manifestation of 

damage is visible, there is a substantial loss in capacity. Therefore, for concrete 

structures effective monitoring methods, which can help identify the location 

and extent of damage are essential for initiating timely repairs. 

Damage monitoring of civil structures relies on sensing, which can be done on 

a local or a distributed basis. Local monitoring provides information about the 

state of the material in the immediate vicinity of the sensor. Distributed 

sensing provides information about the presence and extent of damage in a 

structure or a part as a whole. Successful application of the distributed 

methodology requires substantial instrumentation, which makes it expensive. 
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Effective implementation of large scale monitoring requires inexpensive 

sensors, which can be used for combined local and distributed sensing. Low-

cost sensors, which can provide integrated local and distributed sensing would 

enable continuous monitoring of the health of the structure.  

The use of Lead Zirconate Titanate (PZT) patches is becoming popular in 

health monitoring of structures because of their low cost and the potential for 

integrated monitoring. PZT is a piezoelectric material which has the ability to 

produce surface charges when strained and strain when electrically excited. 

The electrical measurements from a PZT patch have been used to infer about 

the local stiffness of the structure. Changes in the electrical impedance (EI) of 

the PZT due to the elastic restraint by the surrounding medium provides the 

basis for the electrical impedance-based measurements. Successful applications 

of PZT sensors have been limited to light metallic and composite structures, 

primarily in aerospace applications. Vibration based techniques, high 

frequency wave based and piezoelectric based electro mechanical impedance 

methods have been developed for detecting microcracks in metallic and thin 

structural elements. PZT patches can be used as emitters for sending stress 

waves, receivers for collecting stress waves, monitoring of the stiffness of the 

surrounding medium in the single electromechanical impedance mode and as 

vibration sensors. Therefore, PZT patches provide the potential for developing 

local and distributed sensing capability.  

There are few studies available on the application of surface mounted 

piezoelectric patches for monitoring of concrete structures. The changes in the 

EI response of the surface mounted PZT patches bonded to concrete are not 

fully understood. Understanding of the coupled response of the PZT provides 

the basis for establishing an EI-based monitoring methodology. The coupled 

dynamic response of a PZT patch required for interpreting the measured 

electrical response is yet not fully studied. The effects of geometry, substrate 
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size and material properties on the coupled impedance behaviour of the PZT 

patch bonded to a concrete structure are still not understood. Most concrete 

structures support substantial load in the form of self-weight and therefore, 

the substrate stress is present. Further damage is induced by the substrate 

stress and there is a change in the stress level after damage. The influence of 

substrate stress on the EI response of a PZT has not been studied. Wave 

propagation methods typically rely on using ultrasonic bulk or guided waves 

for evaluating the structure. The effective utilization of the bonded PZT 

patches, which are bonded as an array, includes using them for stress-wave 

based monitoring. Changes in the characteristics of the stress waves, which 

are usually detected using a through transmission or a surface reflection 

measurement, are related to the elastic material properties of the material 

medium. Most of the wave-based techniques are not amenable for continuous 

monitoring of the structure and will be tedious if the area of examination is 

inaccessible and the accessories involved in the above methods are more.  

In this thesis an integrated local and distributed sensing methodology for 

concrete structures by combining the EI and stress wave propagation methods 

using an array of bonded PZT patches is developed. The research presented 

here deals with developing the fundamental basis, which is required for 

interpretation of the EI and stress wave propagation measurements are 

developed through a combined experimental and numerical approach. A study 

of the influence of the material properties and substrate size on the EI response 

of a PZT patch bonded to a concrete substrate is conducted. The learnings 

from this study translate to identifying the local zone, identified as the zone 

of influence, monitored by the PZT patch. The influence of the change in the 

substrate compliance induced by stress-induced damage in concrete on the 

measured EI of a PZT patch bonded to concrete substrate within the zone of 

influence is determined. The influence of substrate stress on the measured EI 
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response of a bonded PZT patch is established from a physical understanding 

of the coupled electromechanical constitutive response of the PZT material. A 

theoretical framework is developed to decouple the effect of stress and damage 

from the EI response of the bonded PZT. Finally, the concept of an array of 

PZT sensors for continuous monitoring of concrete structures, which combines 

local monitoring with distributed sensing, is developed. Surface mounted PZT 

patches are used for continuous local monitoring of local material properties 

in the immediate vicinity of the patch. Information from the multiple PZT 

patches distributed over a structural element is used for assessing uniformity 

in property. The array of bonded PZT patches are used as actuator and 

receiver pairs for monitoring using stress-wave propagation. A frequency 

domain based damage index which is independent of wave transmission paths 

is developed to interpret the stress wave data collected from different actuator 

and receiver pairs of PZT. 

1.2 Objectives and scope of work 

The objective of the work is to develop a fundamental basis for combined local 

and distributed monitoring of damage in concrete structures using a surface 

mounted PZT sensor array. Specific objectives, which contribute to an 

understanding of the underlying effects on the measured response of a PZT 

patch in EI measurements and the effective implementation of the stress-wave 

propagation technique include:  

(a) To develop an understanding of the dynamic response of a PZT patch 

bonded to a concrete substrate and the influence of the local material 

properties and the substrate size on the mechanical impedance to the 

motion of the PZT;  

(b) To determine the influence of damage and substrate stress on the material 

compliance and its impact on the coupled electromechanical response of a 

bonded PZT patch in an EI measurement; 
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(c) To develop a methodology for accurate measurement of stress wave 

attenuation produced by a physical discontinuity in the medium 

introduced by a stress-induced crack;  

(d) To develop the concept of using an array of surface mounted sensors for 

global and local monitoring of concrete structure using combined EI and 

wave propagation methods. 

1.3 Outline of the thesis 

A brief description of the work presented in different chapters is given below 

Chapter 2 gives the review of literature related to the presented research, 

including experimental methods and theoretical modeling used to study the 

damage assessment in concrete structures using EI method and wave 

propagation method (PZT in actuator/receiver (AR) pairs) using surface 

mounted PZT patches. 

Chapter 3 emphases on the influence of substrate size on the coupled dynamic 

electromechanical response of a PZT (Lead Zirconate Titanate) patch bonded 

to a concrete substrate. For each resonant mode of the bonded PZT patch a 

finite zone of influence, where there is an influence of the boundary on the 

resonant behaviour of the bonded PZT patch, is identified. For a substrate 

size smaller than the zone of influence of a resonant mode of the PZT patch, 

the coupled dynamic response of the PZT patch would include the influence 

of the geometry of the specimen given by the dynamic structural response. 

Chapter 4 presents the influence of damage and substrate stress on the 

electromechanical impedance of the PZT bonded to concrete structures with 

in the zone of influence of the PZT. The effect of stress and microcrack damage 

is decoupled using the normalized conductance signatures of the bonded PZT. 

It is identified that, for distributed microcracking, the counteracting influences 

of increasing level of damage and increasing stress on the resonant peak result 

in no shift in frequency for measurements under applied load. 
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Chapter 5 presents the development of a sensing methodology which combines 

EI, wave propagation methodologies for detecting damage in concrete. Surface 

mounted PZT patches are used for continuous local monitoring of concrete 

and obtaining the information related to damage in the vicinity of the patch. 

Additionally, the PZT sensor array is used for monitoring damage in the 

actuator-receiver (AR) mode. A new damage index known as attenuation 

factor is introduced for the wave propagation technique. The attenuation 

factor is shown to be an effective damage index for detecting the severity of 

discontinuity produced by a crack. 

Chapter 6 presents the major findings and future directions of research which 

arise from this study. 
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Chapter 2 

 

Literature Review and Theoretical 

Background 

   

 

2.1 Introduction  

Piezoelectric elements are commonly used in developing smart structural 

systems. Piezoelectric effect refers to the property when a poled piezoelectric 

ceramic is mechanically strained it becomes electrically polarized, producing 

an electric charge on the surface of the material. When an alternating current 

is applied to a Lead Zirconate Titanate (PZT) patch, it produces mechanical 

vibration of the PZT. When bonded to a substrate, the vibratory motion of 

the PZT patch results in stress waves in the material. The resistance to the 

free motion of the PZT patch provided by the substrate, which is referred to 

as the mechanical impedance of the substrate, has an influence on the 

vibratory signature of the PZT patch. This also influences the electrical 

impedance of the PZT patch and forms the basis of the electrical impedance-

based measurements. Impedance-based measurements of a bonded PZT patch 

to a substrate provide an effective way for monitoring changes in the material 

stiffness (or compliance). The major advantage of piezoelectric materials is 

that the coupled electromechanical response of a PZT patch allows it to sense 
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changes in stress in the substrate. This forms the basis for using piezo elements 

as actuator and receiver pairs in stress wave transmission based measurements.  

The use of PZT patches in electrical impedance (EI) based measurements and 

through transmission-based measurements in concrete is reviewed in this 

section. The development of the electrical impedance (EI) technique and the 

significant contributions of researchers in providing a theoretical basis for 

relating the impedance measurements with the properties of the PZT material 

and the substrate are summarized. The progression in through transmission 

based measurements using surface bonded ultrasonic transducers or PZT 

patches to assess the damage in concrete structures is reviewed. 

2.2 EI-based Measurements 

2.2.1 Theoretical formulation  

The coupled electromechanical constitutive equation describes the behaviour 

of the piezoelectric material. The relationships between mechanical strain and 

mechanical, electrical charge and electrical potential and their inter-relations. 

The constitutive equations describing the piezoelectric property consider the 

total strain in the transducer as a sum of mechanical strain induced by the 

mechanical stress and the actuation strain caused by the applied electric 

voltage. The constitutive relation for a PZT is given as [1, 2]. 

𝑆𝑘 = �̅�𝐸𝑘𝑚𝑇𝑚 + 𝑑𝑗𝑘𝐸𝑗  (2.1) 

𝐷𝑖 = 𝜀̅𝑇𝑖𝑗𝐸𝑗 + 𝑑𝑖𝑚𝑇𝑚 (2.2) 

where vector 𝐷𝑖 of size (3 × 1) is the electric displacement (Coulomb/m2), 𝑆𝑘 

is the strain vector (6 × 1), 𝐸𝑗 is the applied electric field vector (3 × 1) 

(Volt/m) and 𝑇𝑚 is the stress vector (6 × 1) (N/m2), 𝑠̅𝐸𝑘𝑚 is complex dielectric 

constant of size (3 × 3) (Farad/m),. �̅�𝐸𝑘𝑚 is complex compliance of size (6 × 

6) (m2/N), the piezoelectric coefficient 𝑑𝑗𝑘 (6 × 3) (m/Volt) is the strain per 

unit field at constant stress and 𝑑𝑖𝑚 (3 x 6) (Coulomb/N) is the electric 

displacement per unit stress at constant electric field. 
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For 1-D motion, which considers only uniaxial strain (along one in-plane 

direction) and electric potential applied in the perpendicular direction the 

constitutive relations can be simplified as, 

𝑆2 = �̅�𝐸22𝑇2 + 𝑑32𝐸 (2.3) 

𝐷3 = 𝜀̅𝑇33𝐸 + 𝑑32𝑇2 (2.4) 

Electrical impedance is a measure of opposition to alternating current for a 

unit applied electrical potential. When a PZT patch is excited with an 

alternating current of variable frequency ranging between 10 kHz and 500 kHz, 

there is a relative phase change between current and voltage and the extracted 

electrical impedance will be complex in nature. Typical admittance (inverse of 

impedance) and conductance responses (real part of admittance) of the free 

PZT of size 20mm x 20mm x 1mm are shown in Fig. 2.1. The distinct 

resonance modes of the PZT patch can be identified in the measured frequency 

responses.  

 

  

(a) (b) 

Figure 2.1: Free response of PZT (a) admittance (b) conductance 

Mechanical impedance (inverse of compliance) is defined as the ratio of applied 

force to the velocity of motion. For an elastic substrate, the driving point 

impedance, which is the dynamic point response of medium, is dependent on 

elastic properties of the material. The driving point impedance of the substrate 

medium influences the mechanical response of a PZT patch bonded to the 
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substrate. The electrical impedance signature of a PZT bonded to a substrate, 

depends upon the effective mechanical impedance of the PZT patch and the 

mechanical substrate. Monitoring the electrical impedance of a bonded PZT 

patch therefore provides information about the substrate.  

The first systematic attempt to derive the electrical impedance of the PZT 

which is mechanically connected to a structure was made by Liang et al. [3]. 

The effective mechanical impedance was derived considering the model shown 

in Fig. 2.2, which idealizes the PZT patch as 1-D element coupled to a 

structure which is idealized as a single degree of freedom system. The motion 

is restricted in one direction (only in y-direction in the coordinates shown in 

Fig. 2.2). In this arrangement, for an applied input potential, the PZT patch 

functions like an actuator moving along its axis. The motion of the interface 

subjected to continuity conditions is governed by the combined mechanical 

impedance of the structure and the PZT. The mechanical impedance of the 

PZT actuator was derived in terms of the elastic properties of the PZT 

material and the dimensions of the patch. To derive the admittance of the 

coupled system, one of the constitutive relation of PZT patch and structure 

was coupled with their equilibrium, compatibility conditions and the equation 

of motion. The formulation for total admittance of the system was derived in 

terms of the mechanical impedances of the PZT patch and mechanical 

impedance of structure.  

The electrical impedance of the PZT bonded to a structure was obtained as 

function of the constitutive parameters of the PZT material and the 

mechanical impedances of the PZT and structure as 

∴  �̅� =  
𝑖𝜔𝑤𝑙

ℎ
(
𝑍𝐴𝑑32

2 �̅�22
𝐸

(𝑍𝐴+𝑍)
 
𝑡𝑎𝑛(𝑘𝑙)

𝑘𝑙
+ 𝜀̅𝑇33 − 𝑑32

2 𝐸�̅�22
𝐸 ) (2.5) 

where Z is the impedance of the structure and ZA is the impedance of the PZT 

actuator, where �̅� is the complex admittance of the PZT. 𝑤 , l and h are the 
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width, half-length and the thickness of the PZT patch, respectively. 𝐸 is the 

applied electric field. 𝜀̅𝑇33 is complex dielectric constant at constant stress, 

ε̅T33 = ε33
T (1 − δi), δ=dielectric loss factor. �̅�22

𝐸  is the complex Young’s 

modulus of PZT at constant electric field, which is given as Y̅22
E = Y22

E (1 + iη), 

where 𝑌22
𝐸  is the  Young’s modulus of the PZT and η is the mechanical loss 

factor. 𝑑32 is the piezoelectric strain constant, k is the wave number which is 

calculated by 𝑘 = 𝜔√
𝜌𝑝

�̅�22
𝐸 , 𝜌𝑝 is the density of the PZT material, 𝜔 is the 

circular frequency of the applied electric field for actuation and i is √−1.  

∴ 𝑍𝐴 =
𝐾𝐴(1+𝑖𝜂)

𝑖𝜔

𝑘𝑙

𝑡𝑎𝑛(𝑘𝑙)
 (2.6) 

where 𝐾𝐴 is the static stiffness of PZT. 

 

 

 

Figure 2.2: Schematic representation of the idealization for obtaining the 

impedance of the PZT coupled with a structure  [3] 

Zhou et al. [4] extended the Liang’s [3] one-dimensional (1D) impedance model 

to two-dimensional (2D) by considering PZT in plane stress condition. From 

planar forces and velocities in two directions, the direct and cross structural 

mechanical impedance elements were derived (Fig. 2.3) by applying boundary 

conditions and equilibrium conditions along two directions, the coupled 

admittance of the PZT is calculated. The coupled admittance equation of the 

PZT consisted of four mechanical impedance parameters. The model was 
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shown to be more accurate than one-dimensional (1D) impedance model and 

experimentally verified for simply supported thin plate.  

 

 

Figure 2.3: Schematic representation of the idealization for two dimensional 

PZT-Structure interaction [4] 

Giurgiutiu and Rogers [5] derived an electro mechanical impedance model for 

thin plate like structures based on one-dimensional (1D) impedance model. 

Structural response of the host structure was included as structural dynamic 

stiffness in the formulation. Structural dynamic stiffness of the structure was 

calculated by replacing PZT response as force and moments acting on the host 

structure. A numerical model of a composite beam with simulated damage 

were used show the change in point -wise structural impedance of pristine and 

damaged structure. 

One-dimensional (1D) impedance model which was composed of one spring 

mass damper idealization (1DOF) further updated to two degrees of freedom 

(2 DOF) impedance model by introducing one more spring mass damper for 

bonding layer as shown in the Fig. 2.5 [6]. The coupled electrical admittance 

for the bonded PZT was derived by applying equilibrium at the interface 

between the PZT patch and bonding layer and the interface between the 

bonding layer and host structure. A coefficient ‘α’  introduced as a multiplier 

to the structural mechanical impedance in the coupled impedance model which 

was a function of dynamic stiffness of the structure (𝑘𝑠) and bonding layer (𝑘𝑏) 
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, 𝛼 = [
1

(1+
𝑘𝑠
𝑘𝑏
)
]. The effect of bonding layer on coupled electrical admittance was 

numerically studied using ‘α’ and shown that with decrease in bonding quality, 

a PZT-driven system would show decrease in resonant frequencies. 

The 1-D approximation of the PZT is suited for describing the wave response 

in a PZT bar where the motion of the PZT patch is unconstrained in the in-

plane transverse direction. Therefore, it is not suited for describing the motion 

of a square or a rectangular patch, where the in-plane motions along two 

perpendicular in-plane directions of the patch and the electric field in a 

direction perpendicular must be considered. The mechanical impedance of the 

PZT actuator was derived assuming only in-plane behaviour of the PZT 

subjected to spatially uniform and harmonic electric field and the symmetry 

conditions which affect the motion of the edges of the PZT [7]. This is shown 

graphically in Fig. 2.4. The effective 1D model is based on a 2-dimensional 

impedance of the PZT patch replaced the concept of cross impedance model 

by “effective impedance”. The two dimensional deformation of PZT is included 

in the model as the ratio of change in surface area (𝛿𝐴) to perimeter (𝑃𝑜) which 

is a one dimensional parameter. The admittance of the bonded PZT patch was 

derived by updating PZT constitutive equations with mechanical equilibrium 

equations which is calculated by applying boundary conditions and force 

equilibrium conditions. The effective mechanical impedance of structure was 

extracted from the admittance signature of a PZT patch bonded to the surface 

of the structure and used as a damage indicator of the structure. The results 

of the proposed model were validated using finite element analysis. The 

effective 1-D motion considers in-plane motion of the PZT subjected to an 

electric potential in a plane perpendicular to the plane of motion. The out-of-

plane motion and any influence of out-plane motion on the in-plane behaviour 

is ignored in this model. The in-plane direction is considered to be a plane of 



15 

 

isotropy. It does however provide a realistic representation of the polarization 

response of the PZT which is a square. Further, considering symmetry, 

displacements at the active boundaries of 
1

4
  of the patch (the boundaries along 

the nodal axes are “inactive” boundaries) an effective 1-D formulation was 

developed considering in terms of the ratio of the change in the area to 

perimeter of the PZT given as, 

 𝑢eff =
𝛿𝐴

𝑃𝑜
=

𝑢1𝑜𝑙+𝑢2𝑜𝑙+𝑢1𝑜𝑢2𝑜

2𝑙
≈

𝑢1𝑜+𝑢2𝑜

2
 (2.7) 

The effective mechanical impedance of the PZT in terms of the effective 1-D 

displacement parameter (𝑢eff) was derived as, 

 𝑍𝑎,eff =
2𝜅𝑙ℎ𝑌𝐸̅̅ ̅̅

𝑖𝜔(𝑡𝑎𝑛 𝜅𝑙)(1−𝜈)
 (2.8) 

The admittance �̅�, which is the ratio of current to voltage, of the PZT bonded 

to the elastic substrate is derived as, 

 �̅� =
4𝜔𝑖𝑙2

ℎ
[𝜀 ̅𝑇33 −

2𝑑31
2 𝑌𝐸̅̅ ̅̅

(1−𝜈)
+

2𝑑31
2 𝑌𝐸̅̅ ̅̅ 𝑍𝑎,𝑒𝑓𝑓

(1−𝜈)(𝑍𝑠,𝑒𝑓𝑓+𝑍𝑎,𝑒𝑓𝑓)
(
tan𝜅𝑙

𝜅𝑙
)] (2.9) 

Where Za,eff and 𝑍𝑠,𝑒𝑓𝑓 are effective mechanical impedance of the PZT and the 

substrate, respectively refers to the of the substrate to effective 1-D motion. 𝜈 

is the Poisson’s ratio of the piezoelectric material. 𝑑31is the piezoelectric strain 

constant. YE̅̅̅̅  is the complex  Young’s modulus of PZT at constant electric 

field, which is given as YE̅̅̅̅ = YE(1 + iη), where 𝑌𝐸 is the Young’s modulus of 

the PZT and η is the mechanical loss factor.  k is the wave number which is 

calculated by  k = ω√
ρp(1−ν2)

YE̅̅ ̅̅
, 𝜌𝑝 is the density of the PZT material 
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(a) (b) 

Figure 2.4: (a) PZT patch bonded to a structure (b) Stresses and displacements 

on patch [7] 

The effective 1-D formulation was used to study the damage in structures by 

idealizing the mechanical impedance of the structure using spring (k), viscous 

damper (C) and mass (m) elements. The change in mechanical impedance due 

to material damage changes the spring constant and the damping. The 

frequency of the resonance mode mainly depends on the spring and mass 

element and the admittance of resonance mode mainly depends on the damper 

system. So from the impedance signature the value of k, C and m can be 

extracted. Comparing the value of k, C and m the structure can be analyzed. 

The extended effective impedance model of PZT-structure interaction by 

incorporating shear lag effect in to the model [8]. The effect of bonding layers 

on PZT- structure interaction was studied. Based on the study, the PZT patch 

should be bonded to the structure using an adhesive of high shear modulus 

and smallest practicable thickness. 

 

PZT Patch

Substrate
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Figure 2.5: Analytical model for PZT-Structure interaction via bonding layer [6] 

A 1D and a 2D generic impedance-based model for predicting the 

electromechanical impedance of one dimensional and two-dimensional 

structure-piezoceramic interacting systems was developed [9]. The vibration of 

a PZT patch is first analyzed for different boundary conditions with 

assumption that the dimension of the host structure is much larger than that 

of the PZT patch and PZT patches are not close to the boundary. The effect 

of the host structure is then represented by its force impedance, which is 

obtained by a semi analytical method. EM impedance of a 2D system was also 

derived using cross impedance elements for all four edges. The generic model 

was experimentally verified.  

Annamdas and Soh [10] proposed a three dimensional (3D) semi analytical 

generic electromechanical impedance model (no constraints on thickness, 

shape, or size on the PZT) including both longitudinal (thickness) and 

extensional actuations of the PZT. A 3D PZT-Structure interaction model is 

derived using generalized stress-strain relationships and applying boundary 

conditions and solved by numerical methods. The impedance of the host 

structure was calculated as sum of direct and cross impedances which were 

calculated from normal and shear stresses of the PZT upon actuation. The 

model was experimentally validated using PZT surface bonded on an 

aluminum plate. 
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A simplified 1-dimensional impedance model including shear lag effect into 

electromechanical admittance was formulated [11]. The formulation is then 

extended to an effective 1D model based on a 2-dimensional impedance of the 

PZT. The extracted structural impedance from the measured conductance 

(real part of admittance) and susceptance (imaginary part of admittance) 

signature using new formulation is shown to be more accurate. 

A new impedance measurement technique based on a dual PZT transducer is 

developed theoretically and numerically verified [12]. The new technique 

utilizes two separate but concentric PZT segments within a single dual PZT 

for independent excitation and sensing (Fig. 2.6).  It is shown that the dual 

PZT measures the EM impedance signals from massive structures with a high 

signal-to-noise ratio (SNR) and good repeatability. 

 

 

Figure 2.6: Schematic representation of dual PZT impedance model [12] 

Wang et al. [13] developed 3D electromechanical (EM) impedance model based 

on the 2D model and by using concept of effective mechanical impedance. The 

structural mechanical impedance was extracted from the measured EM 

admittance signatures. Changes in the mechanical impedance of the host 

structure was shown to be more sensitive to changes in the compressive 

strength of the concrete cube than changes based on EM impedance. Wang et 

al. [14] further extended the concept of effective mechanical impedance for 

developing 3D EM impedance model for dual PZT transducer and validated 
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experimentally by embedding dual-PZT transducers in cement cubes and also 

by finite element modelling. 3D effective impedance model is shown to be more 

accurate when compared with 1D and 2D and more close to actual 

circumstances. 

A 1D EM impedance model was developed and experimentally verified to 

study the effect of axial load on EI signature of bonded PZT on bar like 

structures [15]. The model used 1D beam dynamic governing equation for 

longitudinal vibration and nonlinear piezoelectric constitutive equations for 

deriving the coupled response of the PZT. It is concluded from the study that 

the resonance peak shifts towards lower frequencies as the applied stress varies 

from tension to compression and the stress-induced conductance resonance 

shifts associated to flexural vibrational modes are independent of the 

excitation frequency. 

2.2.2 Application of EM impedance-based technique  

Ayres et al. [16] studied the application of EM impedance technique to monitor 

the damage using the 1-D model proposed by Liang et al. [3]. A quarter scale 

deck truss bridge joint was used to study the damage due to loose bolts. The 

electrical admittance of PZT placed at different location in the truss member 

was compared with the corresponding admittance pristine state. A vertical 

shift in the admittance measurements was observed for small damage 

(loosening of two bolts) while distinct change in the admittance measurements 

in the form of distinct peak and valleys was observed for larger damage 

(loosening of fourteen bolts). The level of damage was quantified using root 

mean squared error (RMSE) of admittance. The localized damage was found 

to be sensitively detected by the application of high frequency impedance 

measurements.  

EM impedance technique was used to monitor the crack growth in spot welded 

lap-shear structural joint specimen under fatigue load [17]. Root mean square 
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(RMS) change of real part of impedance were used as damage index. Change 

in stiffness of the specimen due to fatigue loading is shown to be correlated 

with the change in the RMS of the real part of impedance of the PZT. 

Park et al. [18] extended application of EM impedance technique of structural 

health monitoring using the 1-D model proposed by Liang et al. [3] to real 

time damage detection of the masonry wall reinforced externally with fiber 

reinforced polymer sheets (composite reinforced wall). The wall was loaded 

diagonally and the joint failure between the cement blocks of the wall was 

monitored. The influence of boundary condition and temperature effect on the 

measured impedance was also investigated. The capability and robustness of 

technology was demonstrated by consistent repetition of tests. The influence 

of dielectric constant which is sensitive to temperature changes on the 

imaginary part of the impedance makes analysis based on imaginary part of 

the impedance unreliable. The real part of impedance was shown to be more 

reliable for monitoring damage.  

Soh et al. [19] tested the impedance approach during the destructive load test 

of a prototype scaled laboratory sized reinforced concrete bridge. The 

conductance signatures recoded from the PZTs located near the load-induced 

crack showed higher change compare to PZTs located farther away from the 

crack (Fig. 2.7). Root mean square deviation (RMSD) was used as damage 

index. Unstable and non-repetitive readings were shown to be a result of 

weakening bond between PZT and concrete beam or PZT break down. 
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(a) (b)  

Figure 2.7: (a) Conductance signatures of PZT patch at various load levels (b) 

Variation of RM SD (%) with load [19] 

Ong et al. [20] numerically investigated the effect of axial load on EM 

admittance signature of the bonded PZT. It was shown that the shift in 

resonance frequency of the bonded PZT is linearly related to the magnitude of 

applied load.  

Tseng and Naidu [21] investigated the effect of frequency range on the 

detection of incipient damage in metallic structures using the EM impedance 

technique. PZT patch was bonded to the upper surface of a thin aluminum 

strip specimen and damage was simulated on the strip by drilling 5 mm 

diameter holes sequentially, with a spacing of 50 mm. Impedance signatures 

were taken at two frequency ranges of 100–150kHz and 400–450 kHz after 

drilling each hole. Signature acquired for the undamaged and damaged states 

were evaluated using RMSD, mean absolute percentage deviation (MAPD), 

covariance (Cov) and correlation coefficient (CC). Based on the study, higher 

frequency ranges are found to be more sensitive in characterizing damage. The 

RMSD and MAPD indices were found to be more suitable for characterizing 

growth and the location of damage, whereas the increase in damage size at a 

fixed location was more effectively monitored by covariance and CC. 

A new method for damage diagnosis was introduced using mechanical 

impedance extracted from the electro-mechanical admittance signatures of 
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piezoelectric-ceramic (PZT) patches surface bonded to the structure using the 

EM impedance technique [22]. Damage was induced on a laboratory sized RC 

(reinforced concrete) portal frame mounted with PZT patches by different 

levels of base vibrations. The passive (parameters depends on the PZT patch) 

and active (parameters depends on the structure) components are separated 

from 1D coupled EM equation using coupled experimental EM response. Real 

and imaginary part of the active component extracted were used for damage 

evaluation. A damage index based on extracted complex mechanical 

impedance was also used for assessing damage. It is shown that damage index 

based on new analysis technique can be used for sensitive evaluation of 

damage.  

The effectiveness of surface mounted PZTs to monitor damage progression in 

concrete using EM impedance technique was studied experimentally and 

numerically [23]. Cracks were simulated on a laboratory sized specimen of 500 

mm in length by machine cut of 5 mm in depth with a spacing of 50 mm. 

Calculated RMSD index from the conductance measurements was correlated 

to the crack location in order to locate the crack. The results obtained were 

also verified numerically. 

Soh and Bhalla [24] examined the damage progression in concrete structure 

using EM impedance technique introducing new damage index based on 

equivalent mechanical parameters of the substrate. A concrete cube of size 

150mm surface mounted with PZT patch tested under compressive load and 

EM signatures were taken at regular load intervals. The coupled EM 

signatures at no load state were used to extract mechanical impedance of the 

cube using effective 1D formulation and fitted with a parallel spring-damper 

(k, c) system in small frequency range (60-100 kHz). The k, c parameters 

extracted at different load levels were used to assess the damage in concrete. 

It is concluded that proposed damage index based on mechanical impedance 
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was shown to be better for characterizing damage (incipient to severe) when 

compared to the conventional statistical methods. 

Park et al. [25] developed a procedure for damage detection using root mean 

square deviation (RMSD) in the impedance signatures of the PZT patches. 

Two frequency ranges were selected, one is 1 to 5 MHz (high frequency range) 

for the thickness modes of the PZT patch, and the other is 20 to 500 kHz (low 

frequency range) for the lateral modes of the PZT patch. It was shown the 

lateral mode impedance has larger sensing area (more than 30 cm) as compared 

with the cases which use the thickness mode-impedance in the PZT patch for 

progressive surface damage in a concrete beam.  

Lim et al. [26] used EM admittance response, initially for structural 

identification then identified parameters were used for damage 

characterization using 1D and effective 1D impedance models. The real and 

imaginary part of measured extracted mechanical impedance for a narrow 

frequency range from surface mounted PZTs were compared with the 

behaviour of different combinations of spring-mass-damper (k, m, c) system 

and equivalent mechanical system for the structure is identified (Fig. 2.8). The 

extracted k, m, c from the admittance response for damaged states were used 

as damage index. It is shown from the study that proposed damage index were 

shown to be better for characterizing damage (incipient to severe) when 

compared to the conventional RMSD. 

 

   

(a) (b) 

Figure 2.8: Equivalent mechanical system identified for (a) Concrete cube (90-

100 kHz) (b) A luminum beam (55-60 kHz) [26] 
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Annamdas et al. [27] experimentally investigated the influence of loading on 

EM admittance signatures. PZTs were bonded to the bottom of laboratory 

sized aluminum beam specimens and tested under simply supported boundary 

condition with increment loading. It is observed that the susceptance signature 

(imaginary part of admittance) is a better indicator of influence of stress than 

the conductance of the PZT.  

Identification of damage severity and location was done using root mean 

square deviation (RMSD) to associate the damage level with the changes in 

the EM admittance signature at both low (30-100 kHz) and high frequency 

(200-400 kHz) ranges and dividing them into sub frequency intervals. The 

results of RMSD values obtained from PZTs bonded to a concrete structure 

show that damage close to the PZT changes the RMSD at high frequency 

range significantly, while the damage far away from the PZT changes the 

RMSD at low frequency range significantly [28]. 

Wang et al. [29] studied crack propagation in 2.7x.15x.25 m RC beam using 

EM technique with surface mounted distributed PZT patches. Five PZT 

patches were bonded to the soffit of the simply supported beam near the 

midpoint, load points and support points. The electric admittance 

corresponding to the frequency bands of 30-50 kHz were taken under different 

levels of loading. It is concluded that surface mounted distributed PZT was 

found to be effective in RC concrete structures to monitor the cracking load 

and crack propagation by analyzing qualitative changes in piezoelectric 

admittance. 

A sensitivity analysis using different frequency ranges of surface bonded PZTs 

to monitor crack depth change in concrete was studied [30]. Damage was 

artificially induced on specimen at different depths by machine cut. One PZT 

was bonded 20mm and other was at 60 mm away from the notch. EM 

impedance was taken at frequency ranges of 20–70 kHz, 80–260 kHz and 600 
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kHz–2.4 MHz at each crack depth increment. It is shown that 20–70 kHz, 80–

260 kHz frequency ranges (planar vibration frequencies) are insensitive to 

crack depth change while thickness vibration frequencies (600 kHz–2.4 MHz) 

are shown to be an effective frequency range for monitor crack depth change. 

Park et al. [31] applied wireless EM impedance method to detect the debonding 

of Carbon fiber reinforced polymer (CFRP) laminated concrete structures. 

Debonding condition was artificially simulated by partially bonding CFRP 

sheet. The impedance signals were measured over the frequency range of 1–3 

kHz. Debonding conditions were evaluated using the 1-CC (cross correlation) 

method as a statistical method. Bases on the study, the irregular resonance 

peak shift was observed with different levels of debonding and 1-CC method 

can be used effectively used to diagnose the debonding condition of CFRP 

laminated concrete structures. 

The effect of axial load on the impedance signature of the PZT coupled to a 

thin aluminum beam was studied [32]. An analytical model was developed to 

simulate the interaction between the PZT patch and uniform beam structure 

in the presence of axial loading. It is found that the tensile stress will induce 

stiffening effect, resulting in an increase in natural frequency as well as 

resonance frequency of peaks in the admittance signature spectrum. 

The damage locations and severities of damage of a plain concrete beam was 

determined by measuring the electrical admittance signals of surface mounted 

PZT in different frequency ranges. Damages were artificially induced on the 

beam.  A cross-correlation (CC) coefficient based damage matrix was 

introduced to measure the location and severity of the damage and had shown 

that the CC index value decreases gradually with the damage severity 

increasing [33]. 

Ribolla et al. [34] extended the EM impedance method to biomedical 

applications by monitoring the effectiveness of dental implant using wafer type 
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surface mounted PZT patch. The curing of the sealer, which connects the 

implant and the bone was monitored by bonding a PZT patch to the side of 

an abutment secured to the implant. It is concluded that the RMS and the 

RMSD index can be used to assess the healing stage since change in 

conductance and peak frequency of the conductance peak strongly depend on 

the conductance of the free PZT and are minimally influenced by the location 

within the same bone. 

Annamdas et al. [35] used EM impedance technique and DIC (digital image 

correlation) based techniques to study the fatigue growth in high strength 

steel. It is shown that frequency shift of the conductance signature can be used 

effectively to monitor fatigue growth in steel while DIC images can be used to 

separate strain coalesce stage and crack propagation stage. 

EM impedance technique was applied to monitor damage in rock in dry as 

well as saturated conditions [36]. Small PZT patches of size 0.5x0.5x0.2 mm3 

were surface mounted to cylindrical specimens. Based on the investigation, the 

frequency range of interest of the conductance spectrum should contain 

resonance peaks and the RMSD index was shown to be directly related to 

damage level in rocks under dry and saturated/moist underground conditions. 

Ai et al. [37] investigated the load-induced structural tension/compression 

stress and damage using surface mounted PZT patches on a full scaled concrete 

beam. The effect of tension/compression stress and stress-induced damage 

were evaluated by analyzing the electrical admittance signatures of the bonded 

PZT. Frequency range containing the resonance peak were used for analysis. 

Based on the study, the resonance frequency and amplitude increased for PZT 

conductance response under compressive stress and resonance frequency and 

amplitude decreased for PZT conductance response under tensile stress. The 

change in frequency shift and amplitude can be correlated to the stress level 

and used as effective stress-monitoring indices. 
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2.3 Wave propagation based damage detection in concrete 

The crack growth in concrete cylinders of different mix-proportions under 

uniaxial compression and cyclic compression loads were monitored using 

longitudinal ultrasonic waves [38]. Commercially available ultrasonic 

transducer pair of 700 kHz were placed in the axial direction and 500 kHz ,150 

kHz transducer pair were used in the lateral direction. Results showed that, 

ultrasonic attenuation can be used effectively to monitor the crack growth in 

concrete and usage of excitation frequency more than 250 kHz for concrete will 

be inefficient as this frequency would undergo a large amount of attenuation. 

The results also showed that prediction of fatigue life using linear damage 

accumulation may lead to erroneous results since damage accumulation as 

measured by pulse attenuation during cyclic loading was found to be nonlinear. 

Berthaud [39] extended the study to investigate the effect of compressive stress 

and damage on ultrasonic wave propagation in concrete. The configuration of 

the ultrasonic transducers is shown in Fig. 2.9. The study has carried out in 

two stages, the behaviour of stress on wave propagation was studied by 

applying three different load values when the specimen was in elastic zone. 

The effect of damage on wave characteristic was studied by loading the 

specimen in load steps up to failure. Based on the study, it was shown that 

there was decrease in velocity spectrum and increase in amplitude of the 

received wave in stress only stage and vice versa in stress-damage state of 

study.  It is deduced that the coupled effect of stress and damage should be 

considered for interpreting wave propagation results when the concrete 

specimen is under load since even in undamaged state, the specimen is micro 

cracked and the waves are also expected to be sensitive to stress even in 

damaged state.  
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Figure 2.9: Schematic representation of test set up [39] 

Selleck et al. [40] investigated the efficiency of ultrasonic wave propagation 

technique to evaluate distributed cracking in concrete structures. Distributed 

cracking in prismatic concrete specimens was induced by freeze-thaw cycling 

and salt-scaling. A through transmission measurement was conducted using 

immersion type ultrasonic transducer pair of 500 kHz center frequency.  

Changes in attenuation, pulse velocity, and peak frequency of the ultrasonic 

waves were correlated to the change in the specimen due to the distributed 

damage. It was found that ultrasonic pulse velocity is very insensitive to 

changes caused by distributed micro cracking while the wave amplitude and 

peak frequency were found to be sensitive indicators to evaluate the 

distributed damage in concrete. 

Freezing and thawing deterioration in concrete was studied using ultrasonic 

waves [41]. A through transmission ultrasonic measurements was conducted 

at 54kHz pulse using pulsar/receiver set up. It was concluded that the signal 

energy of ultrasonic waves is a more sensitive measure for detection of freezing 

and thawing damage than ultrasonic wave velocity. 

Yeih and Huang [42] examined the applicability of ultrasonic wave propagation 

measurements to evaluate the corrosion damage of reinforced concrete 

members. The direct pitch-catch method was used to obtain the ultrasonic 
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signals. The wave amplitude decayed as the corrosion of the rebars caused 

some deterioration in the concrete. There was a linear relationship between 

open circuit potential and wave amplitude attenuation. 

Nogueira and William [43] investigated the efficiency of longitudinal and 

transverse ultrasonic waves for assessing microcrack growth and degradation 

of elastic properties in concrete specimens of different mix proportions under 

uniaxial compression. The specimens were subjected to monotonic axial 

loading until failure. Changes in peak to peak amplitude of the wave with the 

increase of stress was correlated to the microcrack growth. The peak-to-peak 

amplitude of the longitudinal wave showed mixed trend while transverse wave 

did not show much variability in amplitude trend (Fig. 2.10). It was concluded 

that the change in peak–to-peak amplitude of the transverse waves provided 

a measure to monitor microcrack growth than the longitudinal waves. 

 

  

(a) (b) 

Figure 2.10: Decrease of peak-to-peak amplitude with increase in stress for (a) 

Longitudinal wave (b) Transverse wave [43] 

Jung et al. [44] examined the possibility of using ultrasonic guided waves to 

detect the internal defect in reinforced concrete beams. Three types of defects 

honeycomb, Plexiglas inclusion. and cracks were artificially induced in the 

beam. The lamb wave signal attenuation parameter was more sensitive to 

damage than ultrasonic through transmission measurements.  
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Chaix et al. [45] investigated the possibility of using back scattered ultrasonic 

waves for monitor damage evolution in concrete. Cylindrical concrete 

specimens a 110 mm diameter and 210 mm length was used in the study. 

Damage were induced in the specimen by thermal loading at different 

temperatures between 80 and 2000c. Ultrasonic transducers of 500 kHz,1 MHz 

2.5 MHz center frequency were used for the study. Ultrasonic backscattered 

signals were recorded at different spatial positions for different thermal states. 

It is shown from the study that the backscattered wave attenuation coefficient 

increases with damage growth and hence can be used as a measure of damage 

in concrete. It is also concluded that transducer frequency should be optimized 

for maximum penetration and scattering for effective use of the method.  

A new nondestructive method called actively modulated acoustic was 

introduced for analyzing damage progression in concrete. Experiments were 

carried out on cylindrical concrete specimens in through transmission mode 

under compression test [46]. An amplified continuous sinusoidal signal of 100 

kHz was used for exciting the transducer and a low-frequency stress wave by 

using tuned impact hammer was used to modulate the received signal. A 

frequency domain analysis was carried out to analyze the signal along with 

wave attenuation and pulse velocity. Based on study, actively modulated 

acoustic method is shown to be sensitive to incremental damage and can be 

used for assessing level of damage in concrete structures. 

Stauffer et al. [47] compared the effectiveness of a nonlinear ultrasonic testing 

method with established ASTM testing methods such as pulse velocity, 

resonance in detecting early damage in concrete. The investigation was based 

on the theory that when the fundamental ultrasonic frequency interacts with 

a material, harmonics are generated. As damage increases, the magnitude of 

the nonlinear interaction increases, causing a greater portion of the 

fundamental frequency to be converted to higher harmonics. Concrete prism 
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specimens equipped with ultrasonic transducers on the side faces for through 

transmission mode were tested under different levels of compression loading. 

Transducers with a center frequency of 50 kHz were used as transmitter while 

transducers with a center frequency of 150 kHz were used as receivers. The 

study concluded that the ratio of amplitude of third harmonics to cubic power 

of first harmonic can be used as a sensitive parameter for detecting early 

damage when compared with ASTM methods. 

The repair effectiveness of RC bridge deck was studied using a combination of 

Rayleigh surface waves and longitudinal waves [48]. Through thickness cracks 

of the bridge deck were repaired using epoxy injection. A total of ten 

transducers were used in equal numbers on top and bottom of the deck. 

Rayleigh waves were used to check the repair condition of the material into 

the shallow layer near the surface while longitudinal waves used for the area 

inside the structure. The effectiveness of the repair was analyzed using change 

in longitudinal velocity and phase velocity of the longitudinal and Rayleigh 

waves respectively. It is shown that combination of Rayleigh waves and 

longitudinal waves is effective than using single method to check the repair 

condition. 

Sun et al. [49] examined the possibility of using surface mounted piezoceramic 

patches for wave propagation based damage evaluation studies in concrete 

structures. Three circular PZT patches were surface mounted to the concrete 

prism as shown in Fig. 2.11. PZT1 worked as the transmitter, PZT2 and 3 as 

the receiver. PZT1 was excited with five cycle Hanning windowed signal of 

frequency 120 kHz. The concrete prism was loaded up to half of the design 

load and the received signals were collected at regular load interval. The 

procedure repeated to study the effect of internal microcracking. The change 

in amplitude of first, second and third wave packets of the received signal 

(PZT 3) were taken for assessing damage in the specimen (Fig. 2.11). The 
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change in amplitude for first wave packet decreased continuously while 

changes in the amplitudes for second and third wave packets showed increases 

in value at early stages of loading. It was concluded from the study that surface 

mounted PZTs can be effectively used for wave propagation studies in concrete 

and effect of stress, debonding of surface mounted PZT should be carefully 

studied for interpreting the wave measurements and the change in amplitude 

of the wave packets can be used as a sensitive measure for assessing internal 

microcracking.  

 

   

(a) (b) 

Figure 2.11: (a) schematic diagram of test set up (b) Variation of amplitude of 

the first wave packet [49] 

The through-the-thickness ultrasonic wave measurements were carried out on 

mortar cubes with vinyl inclusions of 1%, 5% and 10% for simulate different 

degrees of distributed damage [50]. An electric spike with duration of 2µs was 

used as an excitation signal for piezoelectric broadband transducers with 

response up to 1MHz. The ultrasonic measurements were analyzed using 

wavelet transform. As the degree of damage increased, the frequency content 

of the received signal decreased and the distribution of signal energy was 

increased. There was an increase in dispersion of frequency content with an 
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increase in the damage. It is also concluded that pulse velocity was not 

sensitive even for material with 10% of artificial damage. 

The sensitivity of linear and nonlinear analysis tools of received ultrasonic 

signal from through transmission measurement to evaluate the damage 

progression in concrete cylinder was compared under compressive loading [51]. 

The study showed that nonlinear analysis method like Scaling Subtraction 

Method, which is a nonlinear parameter was found to be a sensitive parameter 

for damage characterization in concrete when compared with linear parameters 

like pulse velocity and wave attenuation. 

Zhu and He [52] experimentally investigated the effect of excitation frequency 

and amplitude to estimate the interior local damage of concrete when using 

surface mounted PZT actuator/sensor based wave propagation method. 

Surface mounted PZTs were excited by a harmonic sine wave of frequencies 

of 1, 2, 5, 10, 20, 30, 50 kHz having amplitudes ranging from 15 V to 75 V 

with increment of 15 V by the arbitrary waveform generator and the power 

amplifier. The results obtained were analyzed using relative voltage 

attenuation coefficient (output voltage to input voltage). Based on the study, 

amplitudes of excitation voltage only affect the intensity of sensor signals and 

of actuator sensor distance. It was also concluded that higher frequency under 

goes higher attenuation in concrete. 

Efficiency of PZT surface mounted sensor based wave propagation to detect 

the damage in concrete structures were studied [53]. A 5-cycle Hanning-

windowed tone burst at 50 and 200 kHz central frequencies with a peak-to-

peak voltage of 60 V was used to excite the PZT. Cracking was induced in the 

concrete beam by subjecting to four-point bending and the sensor signals were 

acquired. From the study, it was concluded that PZT surface mounted sensor 

based wave propagation technique can be applied to monitor the damage in 



34 

 

concrete and also showed that wave magnitude and delay in the arrival time 

of longitudinal waves are sensitive measures to detect the damage in concrete. 

Rucka and Wilde [54] studied damage evolution in reinforced concrete element 

subjected to tensile loading by wave propagation studies using surface 

mounted PZT transducers. A pair of PZTs were surface mounted on the 

concrete element and tensile force was applied through corrugated steel rod as 

shown in the Fig. 2.12. A 4-cycle Hanning-windowed tone burst at 96 kHz of 

central frequency was used as excitation signal. Signals were measured at each 

15 seconds and each signal was assigned ordinal number ‘n’ during the 

incrementally increased loading. The measured signals were analyzed using 

power spectral density (PSD) and were plotted in the form of maps (Fig. 

2.12b). It was deduced that frequency components decreased at early stages of 

cracking while lower frequencies decreased at a later stage of damage. 

 

    

(a) (b) 

Figure 2.12: (a) schematic diagram of test set up (b) Power spectral density 

maps of signal received by PZT 3 [54] 

Sensitivity of ultrasonic waves to distinguish damage phases (structural 

cracking to yielding of reinforcing bars) in the concrete slabs during bending 
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test was studied [55]. Ultrasonic transducers of 250-kHz central frequency were 

placed on the same face and generated signals were detected from the other 

pair of transducers on the opposite side. According to the study, the robust 

methods for monitoring stress changes in concrete such as velocity variations 

and time shift methods are not applicable because the ductility property of 

reinforced concrete distorts acoustic waves and changes the waveform. It is 

concluded that wave energy approach to time-domain and frequency-domain 

signals can be sensitively used to assess the stress evolution and cracking 

propagation in the reinforced concrete elements. It is also shown that 

ultrasonic waves are capable of detecting initial structural crack and bars 

yielding phases.  

Divsholi and Yang [56] used surface-bonded PZT patches in a concrete beam 

to monitor the damage growth by wave propagation technique. Five surface-

bonded PZT patches were installed on one side surface of the beam of size 

220x40x20 cm. One PZT was bonded at the center of the beam, two PZTs 

were bonded in alignment with two loading points, and remaining two PZTs 

near the two ends of the beam. The beam was tested under four-point bending. 

The PZTs were excited individually and signals were collected at regular 

loading intervals. Based on the study, it is showed that a large area can be 

monitored efficiently in concrete by using wave propagation technique using 

surface mounted PZTs. It is also concluded that distances greater than 70 cm 

were unsuitable for damage monitoring purposes in concrete. Percentage 

change in wave energy can be used as damage index for monitoring crack 

development in the beam. 

Chen et al. [57] attempted to correlate the both linear and nonlinear damage 

parameters of the ultrasonic wave signal with the change of crack opening in 

cement-based materials. Artificial notches of five different widths were used to 

simulate cracks in concrete. An amplified tone burst signal of 100 cycles at 22 
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kHz was used to actuate the piezoelectric transducer. Piezoelectric transducers 

with center frequency of 25 kHz and 50 kHz were used as actuator and sensor, 

respectively in the through transmission mode and the signals were collected 

for the different notch widths. Pulse velocity and second harmonic amplitude 

based damage index were used as linear and non-linear analysis parameter 

respectively for analysis. Damage index based on nonlinear parameter, second 

harmonic amplitude was found to be very sensitive to the presence of a notch, 

about an order of magnitude larger than the pulse velocity for the growing 

crack width. Nonlinear parameter showed an exponential increase with respect 

to the crack width and was proposed for the damage diagnostics of cement-

based materials. 

Sensitivity of amplitude and phase measurements of continuous pulsed single 

frequency ultrasonic signals to detect the concrete damage was investigated 

[58]. Measurements were performed in the unloaded stage on a concrete slab 

subjected to incremental damage level with piezoelectric transducers of center 

frequency 47 kHz. The amplitude and phase measurements are shown to be 

good indicators of damage in a reinforced concrete slab.  

Ju et al. [59] nondestructively evaluated the damage induced by alkali-silica 

reaction (ASR) in concrete using wave mixing technique. The experiment was 

conducted on concrete prism made with highly reactive coarse aggregate. Six 

pairs of ultrasonic transducers were used in through transmission mode. The 

ASR affected specimens were tested using three individual excitation 

frequencies 0.1 MHz, 0.25 MHz, 0.35 MHz and using mixing wave frequencies 

of 0.25 MHz, 0.35 MHz. The collected signals were analyzed using wave speed, 

wave attenuation for normal waves and acoustic nonlinearity parameter 

measurement for mixed wave and results were compared. It was concluded 

that changes in the linear parameters of the concrete (wave speed and 

attenuation) are not sufficient to be effective for quantitative non-destructive 
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evaluation purposes. The acoustic nonlinearity showed an increasing trend 

with ASR damage and provided better correlation with the degradation of 

compressive strength due to ASR. 

2.4 Summary and Overview 

A clear understanding of the coupled EI response of a PZT patch bonded to a 

concrete substrate is still evolving. Concrete structural elements typically have 

a large mass and therefore structural modes of vibration have low frequencies. 

The energy requirements for exciting structural modes in concrete structures 

are high. While in previous studies, some low frequency peaks in the EI 

response of PZT patches bonded to concrete cubes have been reported, the 

exact nature of these peaks was not clearly established. The influence of the 

boundary in finite-sized concrete specimens is not fully understood. 

Considering the high material damping of concrete, information on the finite 

zone of influence beyond which the influence of the boundary may be 

insignificant is not yet available. The contributions of the material of the 

substrate and the structural motion to the mechanical impedance in the EI 

response of the PZT bonded to a concrete substrate is not fully decoupled. 

Several studies on the use of bonded PZT patches for detecting damage in 

structures using the EI measurements are reported in the literature. Most of 

the studies have been conducted using artificial damage and are predominantly 

in steel or composites. Studies of damage in concrete using EI-based 

measurements of PZTs have been conducted using embedded defects and 

machine cuts. In concrete, the influence of artificial damage on the mechanical 

impedance experienced by the PZT is not identical to that of load-induced 

damage. Stress induced damage occurs in the form of microcracks, which 

coalesce to form discrete cracks in the material medium. The level of 

discontinuity in concrete depends upon the level of stress in the substrate. 

Upon unloading, the cracks close. This aspect of combined crack opening and 
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stress is not captured when artificial damage is used. Distributed damage in 

concrete results from microcracks in the material medium, which also produce 

an increase in the material damping in addition to an increase in the material 

compliance. While a few experimental studies on the influence of load induced 

damage have also been reported, a fundamental understanding of the influence 

of the material damping and damage on the EI response of a PZT bonded to 

a concrete substrate is still not available. Load-induced damage in concrete is 

associated with an increase in the stress in the material. For a PZT placed in 

a stress field, its EI response includes the influence of the stress in the 

substrate, in addition to the effect of increase in the level of damage in the 

material. The use of EI -based monitoring of concrete structures requires 

identifying changes in the impedance signature due to an increment in the 

level of damage and a change in the applied stress, which is currently not fully 

understood.   

Through transmission of elastic waves have been used to assess the damage in 

concrete structures using surface bonded ultrasonic transducers or PZT 

patches. Ultrasonic transducers (transmitter and receiver) were temporarily 

adhered to the surface of the concrete using couplant and the effect of load 

induced distributed cracking in concrete was studied using through 

transmission measurement of ultrasonic waves. Majority of the studies relied 

on the change in attenuation and pulse velocity of the ultrasonic waves to 

quantify the damage. Most of the through transmission measurements use 

ultrasonic transducers as actuator-receiver pairs, to scan a large area of the 

structure the ultrasonic transducer pairs to be relocated and it results in slow 

measurements. Concrete structures often encounter uneven surfaces, and it is 

difficult to attain effective coupling between transducer and the surface. 

Measurements are shown to be extremely sensitive to the contact between the 

transducer and the concrete surface, which is very difficult to maintain using 
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typical couplant. Partial contact results in scattering of the waves and noisy 

signals. 

Few studies have been reported on through transmission studies using surface 

mounted PZT pairs for damage detection in concrete structures. Most of the 

studies used a single PZT pair on laboratory sized specimen to evaluate the 

effect of the damage on the elastic wave characteristics. Wave velocity and 

change in energy of the received signal were used to evaluate the presence and 

degree of damage. It is shown that change in energy of the received wave is a 

sensitive parameter to quantify the damage. The effect of transmission path 

and other losses which influence the energy of the received signal has not been 

addressed in any of the experimental studies. A single PZT pair often limits 

the applicability of the technique to small portion of the structure while 

distributed crack often happens in concrete structures. A systematic study to 

evaluate the sensitivity of the PZT pair to different levels discrete 

discontinuity due to a stress induced crack has not been studied. 
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Chapter 3 

 

Understanding the Coupled Electro-

mechanical Response of a PZT Patch 

Bonded to Concrete: Influence of 

Substrate Size 

   

 

3.1 Introduction  

PZT patches are increasingly being used in health monitoring schemes and in 

developing damage detection strategies for structural components. The use of 

a PZT patch to infer about the level of damage in the substrate requires 

interpreting the coupled electrical impedance (EI) response of the PZT patch 

bonded to the substrate. When a PZT patch is bonded to a substrate, the 

dynamic motion of the PZT patch in response to an applied electrical potential 

depends on the dynamic mechanical impedance to its motion provided by the 

substrate. Most experimental studies on the coupled EM response of PZT 

patches bonded to a concrete substrate involve using laboratory-sized 

specimens [16, 60-65]. Application of these results to real structures requires a 

careful evaluation of the influence of geometry and size of the specimen on the 

dynamic mechanical impedance provided to the motion of the PZT patch. 
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Separating the influence of the geometry and the finite size of the substrate 

from the mechanical impedance of the substrate material is essential for 

developing EI-based damage detection procedures suitable for structural 

applications. 

The electrical admittance (or impedance) spectrum of a PZT patch, which is 

obtained by varying the frequency of the electrical input depends on the 

coupled EI response of the PZT patch to the given electrical input. The 

mechanical motion of the PZT is influenced by the dynamic restraint to its 

motion from the substrate. Most approaches for predicting the dynamic 

response of a coupled PZT patch subjected to a given electrical input idealize 

the dynamic restraint as the mechanical impedance of the substrate derived 

from a single or a multi-degree of freedom system [3, 6, 7, 9, 12, 14, 34]. This 

method provides a reasonable approximation for the coupled EI response of a 

PZT bonded to a structure where the energy supplied by the motion of the 

PZT patch is sufficient to excite structural motion or to represent the dynamic 

impedance of the substrate over a narrow range of frequencies. The approach 

of representing resistance to the motion of the PZT patch using the dynamic 

impedance derived from distinct structural modes associated with a known 

pattern of structural motion has been applied successfully to thin, light plate-

like structures made of aluminum and composites, typically used in aerospace 

applications [6, 8, 66-72]. 

A clear understanding of the coupled EI response of a PZT patch bonded to a 

concrete substrate is still evolving. Concrete structural elements typically have 

a large mass and therefore structural modes of vibration have low frequencies. 

The energy requirements for exciting structural modes in concrete structures 

are high. While in previous studies, some low-frequency peaks in the EM 

response of PZT patches bonded to concrete cubes have been reported, the 

exact nature of these peaks was not clearly established [24, 73]. The influence 
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of the boundary in finite-sized concrete specimens is not fully understood. 

Considering the high material damping of concrete, information on the finite 

zone of influence beyond which the influence of the boundary may be 

insignificant is not yet available. The contributions of the material of the 

substrate and the structural motion to the mechanical impedance in the EI 

response of the PZT bonded to a concrete substrate is not fully decoupled.  

The objective of this study is to understand the influence of the finite size of 

a concrete substrate on the electrical impedance measurement of a bonded 

PZT. The approach followed includes experimentation using different sized 

concrete cubes and a calibrated numerical model for evaluating the full range 

of variables including PZT patch size. The experimental investigation 

establishes the fundamental issue of scaling of response with size. The 

numerical simulation is performed to provide additional insight into 

understanding the influence of size of PZT relative to the concrete substrate. 

From the measured electrical response of PZT patches bonded to concrete 

cubes of different sizes, the baseline response contributed by the mechanical 

impedance of the material, is extracted. The influence of the finite boundary 

is shown to be associated with structural resonance modes of the finite sized 

specimen, which overlap with the baseline resonant response of the bonded 

PZT patch. From an analysis using the calibrated numerical model, the 

resonant modes of the bonded PZT patch are evaluated for different sizes of 

PZT patch. Smaller PZT patches are shown to have resonant modes at higher 

frequencies in the bonded configuration. A finite-sized zone of influence is 

identified with each resonant mode of the bonded PZT patch. The zone of 

influence is smaller for resonant modes of higher frequency. For a size of 

specimen smaller than the zone of influence of the resonant mode, the 

structural modes are superimposed on the resonant mode of the PZT patch. 
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3.2 Background 

In a piezoelectric material, the application of an electrical field results in 

mechanical strain in the material due to the coupled electro-mechanical 

constitutive relations. The constitutive relation for a PZT is given as [1, 2, 74] 

𝑆 =
𝑇

𝐶𝐸
+ 𝑑𝑇𝐸 (3.1) 

𝐷 = 𝑑𝑇 + 𝜀𝑇𝐸 (3.2) 

where vector D of size (3 × 1) is the electric displacement (Coulomb/m2), S is 

the strain vector (6 × 1), E is the applied electric field vector (3 × 1) (Volt/m) 

and T is the stress vector (6 × 1) (N/m2), 𝜀𝑇 of size (3 × 3) (Farad/m) is the 

Dielectric permittivity, CE is the elasticity matrix of size (6 × 6) (N/ m2), the 

piezoelectric coefficient, dT (6 × 3) (m/Volt) is the strain per unit field at 

constant stress and d (3 × 6) (Coulomb/N) defines electric displacement per 

unit stress at constant electric field. From the constitutive relation of 

piezoelectric material, it can be seen that there is a coupling between electrical 

displacement and applied stress through piezoelectric strain coefficient. 

Change in the applied stress will reflect a change in electrical displacement of 

the PZT, and thus the conductance of the PZT. 

3.3 Experimental program 

The influence of the finite specimen size on the coupled EI response of a PZT 

patch bonded to a concrete substrate was evaluated using concrete cubes of 

sizes equal to 40 mm, 70 mm, 100 mm, 150 mm, 200 mm and 250 mm. All the 

specimens were made from the same batch of concrete and cured under water 

for 90 days. The elastic properties of concrete measured using three 150 mm 

cubes are given in Table 3.1. The average compressive strength of concrete 

measured from the 150 mm cubes was 63 MPa.  
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Table 3.1: Properties of the concrete and epoxy 

Properties Concrete Epoxy 

Density (kg/m3)  

Young’s modulus (GPa)  

Poisson’s ratio 

2380 

40 

0.2 

1250 

2 

0.36 

 

Square PZT patches of 20 mm size and 1 mm thickness were used in the study. 

The PZT is composed of the two chemical elements lead (Pb) and zirconium 

(Zr) combined with the chemical compound titanate. The powders of the 

component metal oxides are mixed in specific proportions then heated to 

attains a dense crystalline structure. The electrodes are applied to the 

appropriate surfaces and poled at high electric field and temperature. The PZT 

material properties are given in Table 3.2. The electrical admittance 

measurements were performed on the PZT patches using a 6500B series 

impedance analyser of Wayne Kerr make which has a frequency range of 20Hz 

to 20MHz with frequency step size of 0.1mHz and a measurement accuracy of 

±0.05%. In a typical electrical admittance measurement, the electrical 

admittance of the PZT patch was measured at an applied voltage of 1 V and 

frequencies varying in the range between 10 kHz and 500 kHz. Measurements 

were performed at 800 discrete frequencies at a frequency interval of 613.2Hz. 

Conductance (real part of admittance) response of the free PZT patch was 

extracted from the electrical admittance measurements before attaching it to 

the concrete cube. Typical conductance responses of free PZT patches (before 

attaching to the concrete substrate), as a function of the frequency of applied 

electrical input are shown in Fig. 3.1a. The resonant behaviour obtained from 

PZT patches used in the experimental study were nominally comparable. 

Resonant modes of the free PZT patch can be identified with peaks in the 

conductance spectra (identified as f1 through 𝑓6over the frequency range 

between 10 kHz and 500 kHz). Each PZT patch was bonded to the centre of 
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one face of a concrete cube using a two-component epoxy. The epoxy was 

allowed to cure for one day before initiating measurements. A block of mass 

1 kg (9.81 N) was placed on the bonded PZT patches during the curing time 

to maintain the similar thickness of epoxy among the specimens. The 

properties of the hardened epoxy are given in Table 3.1. A schematic figure 

and a photograph of the experimental test setup for electrical admittance 

measurements from a PZT patch bonded to a concrete cube, are shown in 

Fig.3.2. The conductance signature derived from an electrical admittance  

measurement of a PZT patch bonded to a 250 mm concrete cube is shown in 

Fig. 3.1b. Resonant modes of the bonded PZT patch are identified with peaks 

in the conductance response (identified as 𝑏1 through 𝑏6 over the frequency 

range between 10 kHz and 500 kHz). In the electrical admittance response 

obtained from the PZT patch bonded to the concrete cube, the amplitudes of 

the resonant frequencies of the PZT patch are significantly smaller than the 

resonant peak amplitudes in the free condition. There is also a distinct baseline 

shift which increases with an increase in frequency. Closely spaced local peaks 

can be identified in the EI response of the bonded PZT patch which is shown 

in the subplot in Fig. 3.1b. 
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(a) (b) 

Figure 3.1: The conductance signature from electrical admittan ce measurement 

of PZT patches: (a) in the free state; (b) in the coupled response obtained from 

250 mm concrete cubes. 

   

(a) (b) 

Figure 3.2: Experimental set-up for electrical admittance measurements from 

PZT patches: (a) Schematic representation; (b) Photograph. 

The electrical admittance signatures acquired from PZT patches bonded to 

the different sized cubes are plotted in Fig. 3.3. The conductance spectra 

recorded from PZT patches bonded to 40 mm, 70 mm and 100 mm cubes are 

shown in Fig. 3.3a. There are several closely-spaced, narrow, local peaks in the 

conductance spectrum, which appear to be superimposed over broad peaks of 

the bonded PZT patch. These local resonance peaks are dominant in the 

40 mm cube and extend over the entire range of frequencies used in the 

measurement. The local peaks diminish in amplitude with increasing size of 

the cube. The local peaks diminish more rapidly at higher frequencies. 

Comparing the spectra recorded from the 40 mm cube and the 70 mm cube, 
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the local peaks are not visible on the broad peak identified with 𝑏6 in the 

conductance spectrum. There is a convergence in the broad peak,  b6 in the 

spectrum of the PZT patch bonded to the 100 mm cube. This trend continues 

with increasing size of the cubes up to 250 mm as seen in Fig. 3.3b. At 250 mm 

there appears to be a convergence in all the broad peaks identified with b1 to 

𝑏6, in the conductance spectrum of the bonded PZT patch. For the 250 mm 

cube, the closely spaced local peaks appear at frequencies smaller than the 

center frequency of the first broad peak, 𝑏1 of the bonded PZT patch and are 

of very small magnitude when compared with the magnitudes of peaks from 

the 40 mm and the 70 mm cubes. 
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(a) 

 

(b) 

Figure 3.3: Experimental conductance plot for coupled PZT with different 

substrate sizes: (a) cubes ranging from 40 mm to 100 mm; and (b) cubes 

ranging from 150 mm to 250 mm. 

On increasing the size of the cube, the resonant frequencies of the bonded PZT 

patch exhibit a convergent behaviour; the resonant peak becomes better 

defined and there is no further change in the center frequencies and amplitudes 

of the resonant peaks. The broad peaks in the conductance spectrum are 

identified with the resonant behaviour of the PZT patch as influenced by the 

substrate material properties. The closely spaced local peaks, which are 

superimposed on the broad peaks are associated with the finite size of the 

substrate and clearly show a dependence on the size of the cube. The closely-

spaced narrow peaks are influenced by the boundaries in the finite sized 

specimens and are identified as structural modes of vibration of the cube. The 
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range of frequencies over which the narrow, closely-spaced structural peaks 

occur, increases with a decrease in the size of the cube. For the small size of 

the cube, the structural modes overlap with all the resonant modes of the 

bonded PZT patch. With increasing size of the cube, the effect of boundary 

decreases and the local peaks tend to decrease in magnitude at higher 

frequencies.  

From the electrical admittance response of a bonded PZT patch, a finite zone 

of influence beyond which the influence of the boundary is insignificant can be 

identified for each resonant mode of the PZT patch. For the PZT patch used 

in the study, the zone of influence for the broad peak,  b6 appears to be around 

100 mm and for the broad peak identified as b3 it appears to be smaller than 

150 mm. The peak associated with the first resonant mode of the bonded PZT, 

 b1 shows convergence for concrete cube of size 250 mm. The low-frequency 

resonant modes of the bonded PZT patch have a larger zone of influence. For 

the 20 mm square PZT patch of 1 mm thickness, beyond 250 mm, the overlap 

of structural modes is limited to frequencies lower than the first resonant mode 

of bonded PZT patch. The underlying response obtained upon convergence as 

indicated by the spectrum recorded from the 250 mm cube is therefore 

associated with the resonant modes of the bonded PZT, which is influenced 

by the dynamic impedance of substrate material free from the influence of the 

finite size of the domain. 

3.4 Identification of resonance modes in bonded PZT patch 

In the conductance response of the PZT bonded to concrete cubes of different 

sizes apart from the closely-spaced structural peaks, the broad peaks are also 

identified in all the responses. To identify the nature of broad peaks, a 

numerical study has been carried considering the PZT patch bonded to a half-

space (elastic space with no boundaries). The response of a PZT patch bonded 

to a half-space was simulated to identify the electrical conductance response 
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of the PZT patch associated with the material, free from the effects of 

boundaries in a finite sized specimen. The numerical simulations were 

performed using the Structural Mechanics Module available in COMSOLTM 

Multiphysics. A half space model was created using a concrete cube with a 

perfectly matched layer (PML) available in the COMSOLTM Multiphysics. 

The PML provides perfect acoustic impedance match, and eliminates reflection 

of waves at the boundary. A finite sized cube with a PML therefore simulates 

the response of an elastic half-space. The material properties used for 

numerical simulation of the PZT, concrete and epoxy is same as used in section 

3.5.1 of the chapter. The thickness of the epoxy layer is assumed as 0.1mm. A 

comparison of conductance response obtained from numerical simulation for 

PZT bonded to a 150 mm cube and to the concrete half-space is shown in Fig. 

3.4. The conductance response of the PZT bonded to the 150 mm cube shows 

closely spaced structural peaks of the specimen superimposed on broad peaks 

while in the response of the PZT bonded to concrete half space, the broad 

peaks are free from the closely spaced local peaks. For the PZT bonded to 

concrete half-space, there is no influence of geometry of the substrate on the 

PZT conductance response, the broad peaks present in the conductance 

spectrum is solely due to the resonance behaviour of PZT. It can be concluded 

from the study that the closely spaced local peak are resonance peaks of the 

finite substrate while the broad peaks are resonance peaks of the PZT. 
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Figure 3.4: Comparison of conductance response obtained from numerical 

simulation for PZT bonded to 150mm cube and to concrete half space  

3.5 Extraction of structural resonance response 

The experimental study using different substrate sizes with the 20 mm square 

PZT patches proves that the effect of finite size structure can be identified 

with structural peaks, which are superimposed on the resonant peaks of the 

bonded PZT patch. A baseline detection algorithm was used to separate the 

closely-spaced structural peaks present in the electrical conductance response 

of the bonded PZT patch. An end-weighted algorithm was used for baseline 

separation, to extract the broad baseline function associated with the bonded 

PZT resonance [75, 76]. This method creates a baseline using the end-points 

of the spectrum. The adjacent average smoothing method was used to reduce 

the influence of local noise. A simple linear interpolation was used to generate 

the baseline. The baseline identified from the EM response spectrum of the 

40 mm cube is shown in Fig. 3.5a. The extracted baseline signatures of the 

bonded PZT patch from the coupled conductance responses of the PZT 

patches bonded to 40 mm, 100 mm and 150 mm cubes are shown in Fig. 3.5b. 

The extracted baseline signatures of bonded PZT patches corresponding to 

different sized concrete cubes are similar to the spectra obtained directly from 

larger sized cubes shown in Fig. 3.3b. Due to the presence of intense structural 

peaks in the lower frequency range for smaller cubes, an accurate detection of 
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the first peak is difficult. While the convergent behaviour is clearly identified 

with increasing size of the concrete cube, the exact magnitude and the central 

frequency of the first peak in the electrical conductance response of the bonded 

PZT bonded to smaller sized cubes are not accurately established through the 

baseline analysis. This is indicated by a slight mismatch observed in the first 

peak of the bonded PZT bonded to a 40 mm concrete cube.  

 

  

(a) (b) 

Figure 3.5: Conductance response of a 20 mm square PZT patch of 1 mm 

thickness (a) Total conductance spectrum and the extracted baseline response 

for the 40 mm concrete cube (b) A comparison of the extracted baseline 

responses of the bonded PZT resonance peaks from 40  mm, 100 mm and 

150 mm concrete cubes. 

The structural peaks, which are separated from the electrical conductance 

response of the bonded PZT patches bonded to different substrate sizes using 

the baseline detection algorithm are shown in Fig. 3.6. As the size of the 

substrate increases, the structural modes identified with the finite sized cube 

diminish in amplitude. There is a larger relative decrease in amplitude at 

higher frequencies. There are a significant number of the structural modes 

close to the first mode of the bonded PZT patch. The amplitudes of the 

structural peaks close to the first resonant peak of the bonded PZT diminish 

drastically as the size of the cube increases larger than 200 mm.  
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Figure 3.6: The structural peaks extracted from the electrical conductance 

spectrum of a PZT patch bonded to concrete cube of different sizes: (a) 40mm 

cube; (b) 70mm cube; (c) 100mm cube; (d) 150mm cube; (e) 200mm cube; (f) 

250mm cube. 

3.6 Numerical analysis of the EI response of PZT patch 

A numerical simulation of the coupled EI response was performed to 

understand the relative influence of the substrate size and size of the PZT 

patch on the measured electrical response of a bonded PZT patch. A calibrated 

3-dimensional numerical model was developed for the 20 mm square patch 

used in the experimental program using the Structural Mechanics Module 
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available in COMSOLTM Multiphysics. Free and coupled behaviour of the PZT 

patch was obtained from a 3-dimensional numerical simulation. A discretized 

model of the PZT patch with nominal dimensions of width, b = 20 mm, length, 

l = 20 mm and thickness, t = 1 mm was modeled in the Piezoelectric devices 

physics interface in the Structural Mechanics Module of COMSOL, which 

combines the solid mechanics and the piezoelectric interfaces to model 

piezoelectric materials. The piezoelectric coupling can be in stress-charge or 

strain-charge form [74]. The PZT material properties provided by the PZT 

vendor (Sparkler Ceramics) were used in the numerical analysis and are given 

in Table 3.2. The constitutive relations of the PZT material, in notation used 

in COMSOLTM Multiphysics are given equation in 3.1 and 3.2. 

Table 3.2: M aterial properties of the PZT 

Properties Values 

 

Elasticity 

matrix (Pa) 

 

𝐶𝐸 = 

[
 
 
 
 
 
 1.20 x 1011 
 7.51 x 1010 
7.50 x 1010

0
0
0

   7.51 x 1010 
   1.20 x 1011 
  7.50 x 1010

0
0
0

  7.50 x 1010

  7.50 x 1010

  1.10 x 1011

0
0
0

0
0
0

2.10 x 1010

0
0

0
0
0
0

2.10 x 1010

0

0
0
0
0
0

2.25 x 1010]
 
 
 
 
 

𝑃𝑎 

 

Piezoelectric 

Constants 

(C/N) 

 

𝑑

= [
0 0 0
0 0 0

−1.71 x 10−10 −1.71 x 10−10 3.74 x 10−10
  

0 5.84 x 10−10 0
5.84 x 10−10 0 0

0 0 0

]𝐶

/𝑁 

 

Relative 

permittivity 

  

𝑒 = [
1730 0 0
0 1730 0
0 0 1700

] 

Poisson’s 

ratio (ν) 

Density, ρ (kg/m3) Dielectric loss 

factor (δ) 

Damping ratio 

(ζ) 

Mechanical 

quality factor 

(Qm) 

0.35 7700 0.02 0.006 75 
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In the numerical analysis, the 20 mm square faces were treated as 

equipotential surfaces and a potential of 1 V was applied to the opposite faces 

of the PZT patch. The analysis was performed with a frequency interval of 

613.2 Hz with varying frequencies between 10 kHz and 500 kHz. The 

admittance, which is a complex number consisting of real and imaginary parts, 

was determined as the ratio of the current to the applied voltage as 

Admittance, 𝑌 =
𝐼

𝑉
 (3.3) 

where I is the current and V is the applied voltage. The electric current flowing 

in the PZT was determined from the surface integration of current density 

extracted from the equipotential surface.  

𝐼 = ∬𝐼𝑍 𝑑𝐴 (3.4) 

where Iz is the current density component along the poling direction.  

The results of the analysis for a free PZT patch are shown in the plots of 

admittance and conductance as a function of frequency, in Figs. 3.7a and b, 

respectively. Distinct resonant modes of vibration can be identified by the local 

maxima in the conductance spectrum of the PZT patch. The results indicate 

that numerical model under-predicts the resonant frequencies while the. 

magnitudes of admittance and conductance are over predicted. Significantly, 

the difference between the predicted and experimental resonant frequencies 

increases at higher modes while the difference in the magnitudes appears to 

decrease at higher modes. 
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(a) (b) 

Figure 3.7: Comparison of experimental and simulated electrical impedance 

response of a free PZT patch (a) Admittance (b) Conductance  

A better prediction of the EM response signature was obtained by updating 

the constitutive material properties of the PZT given by the supplier. The 

values of the material constants in the constitutive relationship of the PZT 

were assumed to be the median values applicable to a large population. The 

elastic properties of the PZT was considered to vary in the range of 5% - 20% 

of the nominal values, according to the range of variability expected in the 

properties [7, 77]. A parametric study was performed in order to ascertain the 

influence of the different properties on the resonant signature of the PZT. The 

influence of increasing the elastic constants, the dielectric and the piezoelectric 

constants by 5% on the first resonant mode in conductance spectrum of a free 

PZT patch is shown in the Figs. 3.8a and b. It can be seen that increasing the 

axial components 𝐶𝐸11 , 𝐶𝐸22 and 𝐶𝐸33 of the elasticity matrix values result in 

a rightward shift of the first resonance frequency while shear components 

𝐶𝐸44 , 𝐶𝐸66 and 𝐶𝐸66 has very negligible effect on the signature. Increase of 

dielectric and the piezoelectric constants properties produced a minor change 

in the magnitude of the peak as shown in the figures.  
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  (a) (b) 

Figure 3.8: Effect of PZT properties on the first resonant peak in the electrical 

conductance measurement of a free PZT patch (a) changes produced by varying 

𝐂𝐄𝟏𝟏, 𝐂𝐄𝟐𝟐, 𝐂𝐄𝟑𝟑, 𝐂𝐄𝟒𝟒, 𝐂𝐄𝟓𝟓, , 𝐂𝐄𝟔𝟔 (b) changes produced by varying 𝐝𝟑𝟏, 𝐝𝟑𝟐, 𝐝𝟑𝟑, 𝛆𝟑𝟏, 

𝛆𝟑𝟐and 𝛆𝟑𝟑. 

The frequency shifts in the resonant modes can be accommodated within small 

variations of the elastic material properties. The change in the magnitude of 

the admittance, however, could only be achieved with a significant decrease in 

the mechanical quality factor (Qm) which in turn increases the damping of the 

PZT material and an increase in dielectric loss factors. The loss factor 

damping, which introduces complex material properties to add damping to the 

model was found suitable for the frequency dependence of material damping 

over an extended range of frequencies [69,70]. In order to define dissipation in 

the piezoelectric material for a harmonic analysis, all material properties in 

the constitutive relations were defined as complex-valued matrices where the 

imaginary part defines the dissipative function of the material. The loss in the 

mechanical parameter was introduced in the form of an isotropic loss factor 

(𝜂𝑠) in the elasticity matrix of the constitutive equation such that, 𝐶𝐸̅̅ ̅ =

𝐶𝐸(1 + 𝑗𝜂𝑠) while dielectric matrix becomes  𝜀𝑇̅̅ ̅ = 𝜀𝑇(1 − 𝑗𝜂𝑠), where 𝐶𝐸̅̅ ̅ and 

𝜀𝑇̅̅ ̅ are the complex elastic modulus and the complex dielectric permittivity of 

the PZT, respectively. The isotropic loss factor (ηs) can be calculated as ηs =

2ζ for light damping. 
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The axial components of the elasticity matrix, dielectric loss factor, and 

damping ratio were updated in an iterative manner to obtain a match with 

the experimental response. Figs. 3.9a and b show a comparison of the 

experimental and predicted admittance and conductance response, 

respectively of the free PZT patch with updated values of the properties of the 

PZT. It can be seen that the predicted conductance and admittance signature 

match well in both magnitude and resonant frequency. The updated values of 

the properties of the PZT, which provide the best match with the experimental 

response are given in Table 3.3. 

 

  

(a) (b) 

Figure 3.9: Comparison of the EM  response of a free PZT patch obtained from 

numerical analysis with updated material properties of the PZT material and 

the experimental response: (a) admittance; and (b) conductance  

 

Table 3.3: Updated elastic, dielectric and piezoelectric properties of the PZT  

Parameter Value Updated value 

CE11 & CE22 1.20 x 1011 1.24 x 1011 

CE33 1.11 x 1011 1.09 x 1011 

δ .02 .012 

ζ .006 .00845 

Mechanical quality factor (Qm) 75 60 
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3.6.1 Modelling PZT-structure Interaction 

The PZT-structure interaction was evaluated using a numerical simulation of 

the EI response of a PZT patch bonded to 40 mm cube. A numerical model of 

the PZT patch bonded to a concrete cube was developed in COMSOLTM 

Multiphysics (Fig. 3.10). The epoxy thickness was assumed to be equal to 

0.1 mm and its isotropic loss factor was taken as 0.05. The properties of epoxy 

are given in Table 3.1. The properties of the concrete are taken as in Table 

3.1. The isotropic loss factor (𝜂) of concrete was assumed to be 0.03. 

Considering symmetries, a one fourth model of the PZT coupled to concrete 

cube was developed. Similar to the analysis of the free PZT, the 20 mm x 

20 mm faces were treated as equipotential surfaces and a potential of 1 V was 

applied across the opposite faces of the PZT patch. The frequency of the 

voltage excitation was varied from 10 kHz to 500 kHz and the analysis was 

performed with a frequency interval of 613.2 Hz. The updated properties of 

the PZT given in Table 3.3 were used in the simulation.  

 

 

Figure 3.10: The finite element (FE) model for simulating impedance response 

of PZT bonded to a cube in COM SOL 

PZT

Adhesive Layer
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Figure 3.11a shows a comparison of conductance plot obtained from 

experiments and numerical simulation. Numerical simulation provides a good 

prediction of resonance frequencies. While the numerical analysis slightly 

under predicts the resonance frequencies, there is a large difference in the 

predicted amplitude. The differences in the magnitudes of the predicted and 

the experimental resonant peaks values are attributed to several factors such 

as damping of the substrate and epoxy, the thickness and the stiffness of the 

epoxy layer. The exact values of damping for the two materials and the 

stiffness of the epoxy are not known precisely [78]. 

From simulations, the following were recorded. Changes in the thickness and 

the stiffness of the epoxy produced changes in the magnitude of the resonant 

peak accompanied with a frequency shift. The influence of these parameters is 

more on the frequency content than the magnitude of the peak. An increase 

in the material damping of epoxy produced a decrease in both the frequency 

and the amplitude of resonant peak. The influence of damping is more on the 

amplitude of resonant peak than the resonant frequency. An increase in the 

substrate damping was found to have a significant influence on decreasing the 

amplitude of the local peaks present at low frequencies.  

The thickness and the elastic modulus of the epoxy layer and the isotropic loss 

factors of the epoxy and the concrete substrate were changed iteratively to 

match the experimental response. The final values of the parameters which 

produced a close match with the experimental result are shown in Table 3.4. 

A comparison of the conductance response of the coupled PZT patch 

calculated using updated properties is shown in Fig. 3.11b. It can be seen that 

the numerical model with updated values of parameters gives a very good 

prediction of the electrical conductance response of the PZT patch bonded to 

a concrete cube. 
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Table 3.4: Updated parameters of the epoxy and concrete substrate used in 

numerical simulation 

Parameter Value Updated value 

Thickness of epoxy layer 0.1 mm 0.05 mm 

Loss factor damping of epoxy 0.05 0.02 

Loss factor damping of 

substrate 

0.03 0.017 

Young’s modulus of the epoxy 2 GPa 4 GPa 

 

  

(a) (b) 

Figure 3.11: Comparison of electrical conductance response of a PZT patch 

bonded to a 40 mm concrete cube: (a) W ithout correction; (b) W ith updated 

material constants 

The calibrated model for the coupled EI response of a PZT patch bonded to a 

40 mm cube was extended to evaluate the influence of finite size of substrate 

on the coupled EM response of PZT patches of different size. The responses of 

10 mm and 5 mm square PZT patches of 1 mm thickness were evaluated. The 

updated material parameters, from the previous analysis were used in the 

numerical simulations. The electrical conductance signatures of the free PZT 

patches of different sizes are shown in Fig. 3.12a. There are increases in the 

resonant frequencies of the free PZT patches with a decrease in its size. As a 

reference, the frequency of the first resonant mode of the 20 mm, the 10 mm 

and the 5 mm square PZT patches are equal to 84.16 kHz, 168 kHz, and 334.22 

kHz, respectively. The coupled EI response of a bonded PZT patch was 
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evaluated from the electrical conductance measurements over a range of 

frequencies. The electrical conductance signatures of the PZT patches of 

different sizes bonded to the 40mm cube are shown in Fig. 3.12b. On decreasing 

the size of the PZT patch, the resonant peaks identified in the conductance 

response of the PZT patches bonded to the concrete cube also show an upward 

shift in the resonant frequencies and the local resonance peaks identified with 

the structural vibration modes of the finite sized substrate become less 

prominent. The narrow, closely-spaced peaks are prominently identified over 

all the broad resonant peaks in the response of the 20 mm PZT patch bonded 

to the concrete cube. For the 10 mm patch, the closely spaced peaks overlap 

with the first peak in the electrical conductance spectrum of the bonded PZT 

patch. The closely spaced structural modes are not evident in the coupled 

electrical conductance response of the 5 mm PZT patch.  

  

(a) (b) 

Figure 3.12: The electrical conductance response of PZT patches obtained using 

the calibrated numerical model with updated material properties: (a) Free 

response of PZT patches of different sizes (b) Response of PZT patches of 

different sizes bonded to 40 mm concrete cube. 

3.6.2 Analysis of Structural Modes 

The low-frequency electrical conductance responses of the square PZT patches 

of different sizes bonded to the 40 mm concrete cube between 10 kHz and 

100 kHz are shown in Fig. 3.13. The resonant frequencies obtained from both 
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the 20 mm and the 10 mm patches are identical, indicating the same structural 

modes are excited over the given range of frequencies. While the 10 mm PZT 

patch excites the structural modes, the amplitudes of the structural peaks are 

lower when compared with the 20 mm PZT patch. For 5 mm square PZT 

patch (Fig. 3.13b), the structural modes while present are very small in 

amplitude when compared with the 20 mm and the 10 mm patches. The 

existence of the structural peaks in the response of the 5 mm PZT patch 

bonded to the concrete cube is shown using enlarged ordinate axis in the Fig. 

3.13b. The resonant frequencies from the 5 mm patch are obtained at identical 

frequencies as the other two patches. The exact match in the resonant 

frequencies in the responses from the PZT patches of different sizes confirms 

that the closely spaced peaks identified in the EI response of a bonded PZT 

patch are due to the structural resonance of the finite sized cube. 
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(a) 

 

(b) 

Figure 3.13: Low-frequency response of the PZTs of different sizes bonded to a 40 mm 

concrete cube (a) 20mm,10mm PZT patch (b) 5mm PZT patch 

The structural resonance modes are produced by standing patterns of waves 

in the substrate produced by the dynamic motion of the PZT. Considering the 

large material damping of concrete, the structural modes are heavily damped 

as the size of the substrate increases. This is confirmed by the results of the 

structural modes extracted from the conductance response of the bonded PZT. 

Due to the high material damping of concrete, the high-frequency structural 

modes of cubes are also more highly damped than the low-frequency modes. 

As the energy available for the PZT is centered on its resonant modes, the 

shift in the resonance peaks to higher frequency due to a decrease in PZT size 
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results in less energy in the low-frequency range which overlaps with the 

structural modes. So the energy of the bonded PZT available to excite the low 

frequency structural modes of the 40 mm cube decreases as the size of the PZT 

decreases. From Fig. 13, it can be concluded that the first resonant mode of 

the PZT for the 20 mm and 10 mm PZT patches overlap with the range of 

frequencies of the structural modes of vibration of the cube; several structural 

modes overlap with the modes of vibration of the PZT. The first resonant 

mode of the 5 mm PZT patch is significantly higher than the structural modes 

of vibration of the cube. The energy available to drive the structural modes is 

therefore very small at frequencies removed from the resonant frequency of the 

PZT. The influence of the structural modes is therefore not significant in the 

case of 5 mm PZT patch.  

 

3.7 Findings 

For a PZT patch bonded to a concrete substrate, the influence of the size of 

the substrate is seen in the form of local peaks of structural resonance, which 

are superimposed on the baseline EI response of the bonded PZT patch. For 

the cubes of concrete used in this study, the local peaks which are identified 

as the structural peaks of the concrete substrate, are closely spaced and are 

superimposed over the resonant peaks of the bonded PZT patch. As the size 

of the substrate increases, the structural peaks are heavily damped and 

diminish in amplitude relative to the resonant amplitude of the bonded PZT 

patch. The resonant peaks of the PZT patch show convergence on increasing 

the size of the substrate.  

For each resonant mode of the bonded PZT patch, a finite zone of influence 

where there is an influence of the boundary on the resonant behaviour of the 

bonded PZT patch, is identified. The zone of influence represents the volume 

of substrate material, which influences the dynamic EI response of the bonded 
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PZT patch. The zone of influence is larger for lower frequency modes. The 

zone of influence decreases in size with an increase in the resonant frequency 

of the PZT patch. The zone of influence for a given mode of the bonded PZT 

depends on its resonant frequency, which in turn would depend on the 

dimensions of the PZT and the material properties of the substrate. If the size 

of the substrate is larger than the zone of influence at a given frequency of 

measurement, the dynamic response of the PZT patch would depend only on 

the material properties of the concrete medium. The coupled dynamic response 

of the PZT patch within the zone of influence of a given resonant mode will 

contain the superimposed influence of the structural response. For a substrate 

size smaller than the zone of influence of a resonant mode of the PZT patch, 

the coupled dynamic response of the PZT patch would include the resonant 

modes of the substrate superimposed on the resonant response of the bonded 

PZT patch. 
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Chapter 4 

 

Sensing of Damage and Substrate Stress 

in Concrete using Electro-Mechanical 

Impedance Measurements of bonded 

PZT Patches 

   

 

4.1 Introduction 

Signs of distress in concrete are often associated with visible cracking. Since 

concrete is a brittle material, which is weak in tension, cracking is the 

manifestation of damage in the material which results from tensile stress in 

the material. Stress induced damage in concrete could result from load 

application or due to effects such as restrained shrinkage and thermal 

contraction. Damage initiation is stress-induced and takes place in the form of 

distributed microcracks, which eventually coalesce to form localized cracks. 

Damage produces an increase in compliance of the material, which results in 

an increase in the strain in the material. By the time surface manifestation in 

the form of visible cracking appears there may be significant degradation of 

the capacity of the structure. Early detection of damage is essential to initiate 

early intervention measures, which can effectively increase the service life of a 
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structure. Methods to detect incipient damage in the form of microcracks are 

required to provide effective methods of monitoring structural health and 

service life performance of structures. 

Electrical Impedance (EI)-based measurements of PZT patches bonded to a 

concrete substrate provide an effective way for monitoring incipient damage 

in the material. Studies of damage in concrete using EI-based measurements 

of PZT patches have been conducted using embedded defects and machine 

cuts [23, 26, 33, 79]. In these studies, electrical impedance measurements were 

conducted for increasing level of artificial damage. The influence of artificial 

damage on the mechanical impedance of the substrate experienced by the PZT 

is not identical to that of load-induced damage. In concrete structures, the 

evolution of material level damage from distributed microcracks to localization 

in the form of visible cracking is also associated with a change in the level of 

strain in the material medium and an accompanied increase in the material 

compliance [80, 81]. Experimental studies on the influence of load induced 

damage on the response of bonded PZT patches have also been reported [18, 

19, 28]. In these tests, the response of PZT patches were continuously 

monitored for monotonically increasing load. The PZT patch was placed in a 

stress field and therefore the measured response from the PZT patch in such 

experiments includes the influence of the stress in the substrate and an increase 

in the level of damage in the material. The influence of load induced damage 

in compression without the influence of applied stress was investigated using 

specimens unloaded from a specific load level. In measurements performed in 

the unloaded state, the level of material damage was evaluated using change 

in the equivalent stiffness extracted from identified equivalent system model, 

which is derived from the drive point mechanical impedance within a narrow 

frequency range from the EI response [24]. In the unloaded state, microcrack 
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damage was shown to produce a decrease in the frequency of the resonant 

peaks of the PZT patch in the EI measurement. 

Some studies on the influence of stress in the substrate on the response of a 

bonded PZT patch have been reported. Most of these studies have been 

performed on metallic substrates using small specimen and the influence of 

stress was evaluated using structural modes in the EI response of the PZT 

patch. For increasing strain in the substrate, frequency shifts and amplitude 

changes in the conductance response of the PZT have been reported [20, 27, 

32, 82]. The susceptance part of the measured admittance spectrum in an EI 

measurement of the bonded PZT, associated with the structural modes, is 

shown to be more sensitive than real part of the admittance for monitoring 

stress in the substrate [27]. The effect of axial stress on the conductance 

signature of the coupled PZT was studied using Aluminium specimen and a 

compensation technique using effective frequency shift (EFS) by cross-

correlation analysis was applied to conductance spectrum to compensate the 

effect of loading for the accurate estimation of damage [82]. The individual 

effect of load and damage on the structural peaks was decoupled by considering 

the influence of stress obtained from a pristine specimen as a correction for 

the specimen with damage in the form of an artificial cut at the corresponding 

stress level. Decoupling approach is not directly possible in concrete structures, 

since increasing stress level in the substrate is often associated with an increase 

in the level of damage. Further, considering the energy requirements for 

exciting structural modes, the use of these modes in concrete elements may 

not be feasible. 

Embedded PZT smart aggregates were used to observe the effect of stress at 

various levels by observing the changes in embedded PZT resonance peaks [62, 

83]. It has been reported that the embedded smart aggregates are insensitive 

to the stress since the local stress in the material is different from the applied 
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stress field. There were no systematic trends observed in the impedance 

resonance peak and the interpretations were very subjective. In embedded 

smart aggregates, there are several intervening effects which do not allow the 

delineation of inference of strain and damage in the substrate. 

In concrete structures, an increase in the applied stress is often linked with an 

increment of damage. Increments in damage level and applied stress produce 

a change in the substrate strain. The increase in the level of damage has also 

been shown to produce a change in the substrate compliance. Therefore, a 

PZT patch coupled to a concrete substrate potentially experiences a change in 

the imposed strain and a change in the substrate compliance due to a changes 

applied load. Practical application of the impedance-based measurements to 

detect incipient damage in concrete structures requires an understanding of 

the influence of level of damage and substrate strain on the response of a PZT 

patch bonded to the substrate. The use of EI-based monitoring of concrete 

structures requires identifying changes in the impedance signature due to 

changes in damage and substrate strain. Further, the influence of both 

phenomena on the observed impedance response of a bonded PZT patch need 

to be separated. In this chapter an experimental investigation of concrete 

subjected to incremental levels of damage and stress are reported. The level of 

damage in concrete is increased in a controlled manner using progressively 

incremental loading. The level of substrate strain associated with applied stress 

and material damage are obtained using digital image correlation. The 

influence of damage and strain in the concrete substrate on the EI response of 

a bonded PZT patch are identified. 
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4.2 Background 

For a PZT patch bonded to a substrate subjected to an applied electrical 

input, the motion of the interface subjected to continuity conditions is 

governed by the combined mechanical impedance of the structure and the 

PZT. The constrained motion in turn produces a change in the measured 

electrical impedance. The first systematic attempt to derive the electrical 

impedance of the PZT which is mechanically connected to a structure using a 

1D idealization of the system was developed by Liang et al. [3]. Subsequent 

improvements in modelling the PZT response have included the effective 1-D 

model of the PZT and varying levels of idealization of the structural impedance 

[6, 7, 9]. Most of the available analytical solutions are applicable for 1 or 2-D 

idealizations of the PZT, substrate or both. Typically the complex electrical 

admittance of the PZT patch (�̅�) for a given electrical input at a frequency 

can be represented as  

�̅� =  �̅�(𝑍𝐴, 𝑍𝑆, 𝜔, 𝑙𝑖, 𝐸) (4.1) 

Where 𝑍𝐴 And 𝑍𝑆 are the mechanical impedance of the PZT and substrate 

respectively. li, represent the dimensions of patch and E is the electric field 

applied for actuation. Such equations have been derived assuming the mean 

strain in the PZT is zero. Damage in the material produces a change in its 

mechanical compliance, and the associated change in the substrate impedance 

(𝑍𝑆) results in a change the electrical admittance (inverse of impedance) of the 

PZT patch (�̅�). Change in the mean strain of PZT on account of change in 

substrate stress is not considered.  

A change in the substrate stress would produce a change in the imposed strain 

on the PZT patch. The strain in the substrate for a given stress depends on 

the mechanical compliance of the material which is related to the level of 

damage in the material. The strain experienced by a PZT patch bonded to a 

concrete substrate would therefore depend upon the magnitude of stress and 
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the level of material damage. Considering the coupled electro-mechanical 

constitutive relations of the PZT, the imposed strain on the PZT would 

produce a change in its EI signature.  

4.3 Materials and Methods 

An experimental program was conducted for measuring the impedance of PZT 

patches bonded to concrete cubes made with two different grades of concrete. 

150 mm concrete cubes were used in the test program. Three cubes from each 

concrete batch were tested to determine the elastic properties and compressive 

strength of concrete. The material properties of the Normal strength concrete 

(NSC) and High strength concrete (HSC) are listed in Table 4.1. The material 

properties of the PZT are given in Table 3.2. 

Table 4.1: Properties of materials 

 

Type 

Avg. compressive 

Strength 

(MPa) 

Avg. Young’s 

Modulus 

(GPa) 

 

Density 

(kg/m3) 

 

Poisson’s 

ratio 

High strength concrete 75 

(Std. dev. 3.35) 

44 2370 0.2 

Normal strength concrete 49 

(std. dev. 3) 

35 2300 0.2 

Epoxy - 2 1250 0.36 

 

EI measurements were performed on a PZT patch bonded to a concrete 

substrate for different levels of compressive stress in the substrate and 

compression stress-induced damage in the material. From an EI measurement, 

the frequency dependent electrical admittance of the PZT is analysed using 

the conductance spectrum. A square PZT patch of 1 mm thickness, and 20 mm 

length was bonded to the centre of one of the face of 150 mm concrete cube 

for experimental study (Fig. 4.2a). A two-component epoxy adhesive was used 

to bond the PZT patch to concrete cube. Admittance signatures were collected 
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from the PZT patches in the free-state before attaching to concrete cubes. In 

a typical admittance measurement, the frequency was varied between 1 kHz 

and 0.5 MHz at an applied voltage of 1 V and data was collected at 800 

discrete frequencies (Fig. 4.2c). Average of five measurements were collected 

to minimize the influence of random noise. The electrical admittance signature 

of the PZT patch was collected at different loaded and unloaded levels by 

subjecting the concrete cube to cyclic compressive loading. The poled direction 

of the PZT was kept normal to direction of loading. 

The conductance signatures derived from the EI measurements on the PZT 

patches bonded to NSC and HSC cubes are shown in Fig. 4.1b. The 

conductance signature of the PZT in the free-state is also shown in the Fig. 

4.1a with its resonant modes marked for reference. The PZT resonant modes 

are identified by the peaks in the response of the free PZT patch. Comparing 

the responses of the free and the bonded PZT patches, it can be seen that the 

dominant PZT resonant modes are clearly identified in the response of the 

bonded PZT at frequencies close to the resonant frequencies of the free PZT 

patch (previously discussed in section 3.2 of Chapter 3). In the EI response of 

bonded PZT patch there is an increasing trend in the background conductance 

with increasing frequency. 

The low frequency response contains closely spaced peak (shown in the inset 

in Fig. 4.1b) and are identified with the structural modes of the cube. The 

structural modes in the response of the bonded PZT are found to be 

overlapping with the first resonance mode of the PZT in the conductance 

spectrum of the bonded PZT. The first resonant peak of the bonded PZT is 

not well defined in HSC when compared with NSC cube because of the 

significant overlap of structural modes. The higher material stiffness of HSC 

produces structural resonant modes at higher frequencies than the NSC. The 

third peak in the bonded PZT response is produced by two closely spaced 
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modes and the relative magnitudes of the two modes are different for the two 

grades of concrete; while in the stiffer HSC, the lower frequency mode has 

higher amplitude, the higher frequency mode has relatively higher magnitude 

in NSC. Objective identification and comparative evaluation of the influence 

of damage, free from the influence of boundary effects and baseline material 

compliance in HSC and NSC would not be possible using the first and third 

peaks in the conductance spectra of bonded PZT patch. The second peak in 

the impedance response of the bonded PZT patch was selected for evaluation 

since it is consistently well defined in both HSC ad NSC cubes and is associated 

with a single resonant mode. The influence of substrate impedance on the 

response of second peak in the impedance response of bonded PZT patch is 

obtained by comparing with the third resonant peak of free PZT patch. The 

centre frequency of the third peak of the free PZT patch is 236 kHz and the 

second peak in the conductance spectrum of the bonded PZT patch is centred 

on 256 kHz. Considering the free PZT patch to be the limit case of a substrate 

material with no impedance, an increase in material impedance is associated 

with a decrease in amplitude and an increase in the frequency of the resonant 

peak. 

 

  

(a) (b) 

Figure 4.1: The conductance spectrum obtained from the EI measurement : (a) 

free PZT patch; (b) PZT patch bonded to concrete cubes  
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In the test program, the compressive stress in the substrate was incremented 

in a controlled manner using a computer controlled servo-hydraulic testing 

machine. To ensure uniform contact with the platens of the test machine, the 

concrete cubes were levelled using a capping compound. The concrete cubes 

were subjected to cyclic compressive loading where the load amplitude was 

increased in increments of 10% of the average compressive strength in every 

cycle as shown in Fig. 4.2b. The loaded and unloaded states in the loading 

program are referred to as L and U states, respectively. The load in the L 

states is given as a fraction of the average compressive strength (Fig. 4.2b). In 

the loading program, the load was cycled between a fixed lower load level and 

an increasing upper load level at a constant rate of 2 kN/s. The load was held 

constant at the upper and lower load levels for a duration of 120 seconds. EI 

measurements were performed at the top and bottom of the loading cycle, 

when the applied load on the specimen was held constant. The specimens were 

loaded to failure from the 0.9U state. During the entire loading procedure, 

deformations were measured using two linear variable differential transformers 

(LVDTs) over a gauge length of 55 mm. The LVDTs were mounted on 

opposite faces of the cubes and the average of the two LVDTs was used to 

measure the deformation of concrete. 
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(d) 

Figure 4.2: Compression testing of concrete (a) Specimen with LVDT and PZT 

patch (b) Applied loading history (c) Test setup for EI measurements; and (d) 

DIC measurement 

The surface displacements on the surface of the concrete cube during the 

loading procedure were determined using a full-field optical technique based 

on digital image analysis called Digital Image Correlation (DIC). In 

preparation for the use of DIC technique, a sprayed- on speckle pattern was 

created on the surface of the specimen. Digital images of the specimen were 

captured using a camera of 5 mega-pixel resolution which was fitted with a 50 

mm lens. The camera was placed at a distance of 1 m from the specimen 

surface. Uniform light intensity was ensured across the surface of the cube 

using normal white light (Fig. 4.2d).  

The speckle pattern represents a random pattern, which gives a unique 

distribution of pixel grey level values. Cross-correlation of the pixel grey levels 

between the image of the deformed specimen and the image of the specimen 

in the reference configuration is used to determine the 2-dimensional 

displacement field on the surface of the specimen. In a given image, the pixel 

DIC Camera

Light source

Impedance 
Analyzer

DAQ

Compression Testing 
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gray-levels in each subset associated with the random sprayed-on pattern gives 

a unique gray-level pattern, which differs from gray-level distribution in 

another subset. In the analysis, positions within the deformed image were 

mapped on to positions within the reference subsets using second-order, two-

dimensional shape functions. Spatial domain cross-correlation was performed 

to establish correspondence between matching subsets in images of the 

reference and deformed states. Quintic B-spline interpolation of the gray 

values was used to achieve sub-pixel accuracy. Correlations are performed over 

small subsets of size equal to 32x32 pixels. The cross correlation analysis of 

the digital images was performed using the VIC-2DTM software [84]. Surface 

displacements at each loading stage were calculated at each subset centre, by 

evaluating the shape functions and their partial derivatives at the subset 

centre. Strains were computed from the gradients of the displacements. For 

the setup used in this study, the random error in the measured displacement 

is in the range of 0.002 pixels. A conservative estimate of the resolution in 

strain obtained from the digital correlation was 5 [85, 86]. 

Prior to initiating the loading program, load was cycled between 25% and 5% 

of the average compressive strength. The loading was initiated from a seating 

load 10 kN (approximately 1% of the average compressive strength). For use 

of image analysis, a reference image corresponding to the unloaded state for 

computing strains was taken while the specimen was under seating load, before 

starting the loading program. Baseline EI signatures were also recorded prior 

to starting the loading program. 

4.4 Experimental Results 

Typical cyclic stress-strain responses obtained from NSC and HSC cubes using 

deformation measured by surface mounted LVDTs are shown in Fig. 4.3a. The 

progressive decrease in mechanical stiffness and continued accumulation of 

plastic strain are evident with each additional cycle of loading. The secant 
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compliance calculated between the top and bottom of each unloading cycle is 

shown in Fig. 4.3b. It can be seen that there is an incremental decrease in 

stiffness with increasing load amplitude. In HSC, for load amplitude exceeding 

0.4L (40% of the average compressive strength), there is an almost linear 

decrease in stiffness with incremental load. There is an decrease in stiffness 

with increasing load in NSC where the rate of change is increasingly higher for 

each additional load level. The plastic strains and hysteresis loops in HSC are 

significantly smaller indicating a significantly lower level of energy dissipation 

associated with damage when compared with NSC. 

 

  

(a) (b) 

Figure 4.3: (a) Stress-Strain responses of concrete cubes (b) Secant stiffness as a 

function of load level 

Contours of horizontal strain (εxx) obtained using DIC for both NSC and HSC 

cubes in the 0.4L, 0.7L and 0.9L states, are shown in Fig. 4.4. The formation 

of cracks is identified with the localization of strain. From the strain contours, 

in NSC, the localization of the strain into major cracks is evident at 70% of 

the compressive strength. At the corresponding load level (0.7L state), a 

significant lower level of damage associated with microcracks and small cracks 

are seen in HSC. At 0.7L, visible cracking could not be identified in HSC. At 

0.9L, there is significant cracking associated with large strains in NSC. A major 

crack is seen in HSC at 0.9L. 
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(a) (b) (c) 

   

(d) (e) (f)  

Figure 4.4: Strain contour (𝛆𝐱𝐱)at different load levels obtained from DIC in 

different loaded states: NSC at (a) 0.4L (b) 0.7L (c) 0.9L; HSC at (d) 0.4L (e) 

0.7L (f) 0.9L. 

The average yy (vertical strain) at the bottom and top of each load cycle 

obtained from DIC is shown in Fig. 4.5. The average yy was obtained by 

averaging yy from the DIC measurement across the entire front surface of the 

cube. The average strain at the top of a load cycle corresponds to strain due 

to load-induced stress and damage. The average strain at the bottom of the 

load cycle is indicative of plastic strain due to damage. There is no measurable 

plastic strain in both NSC and HSC up to 0.4L of the peak load (in the 0.4U 

state). As the loading increases, there is an increase in overall strain at the 

top of a load cycle and a steady accumulation of plastic strain upon unloading. 

The strain measures indicate a relatively larger plastic strain at corresponding 

load level (fraction of compressive strength) obtained from DIC measurements 

than from the surface mounted gages. This is due to the inclusion of localized 
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strains from cracking over the entire surface, which are accurately captured in 

the DIC measurements. After localization of damage, the surface gages may 

not detect the presence of the crack unless located over it, while it is reflected 

in the averaged surface measurement of DIC. The measurements indicate that 

NSC has a higher level of damage in the material when compared with HSC 

at the corresponding load level. In the 0.9U state, there is significant strain, 

on the order of 1000 ɛ  in the NSC. The strain in HSC in the 0.9U state is 

significantly smaller. Findings from DIC measurements suggest that the strain 

in the substrate is influenced by both the level of damage and the applied 

stress. Under applied loading, above 40% of the compressive strength, an 

increment in load would produce an increment of strain associated with both 

effects.  

 

 

Figure 4.5: Average vertical strain yy at different L and U states obtained from 

DIC 

The level of damage in NSC and HSC can be assessed from LVDT and DIC 

measurements. The change in secant modulus (Fig. 4.3b) with incremental 

load at corresponding load levels with respect to the compressive strength is 

higher in NSC when compared with HSC. NSC exhibits significantly higher 

level of distributed microcracks at lower loads which coalesces to form visible 

cracks at 0.7L load level. In HSC, the overall level of damage was lower and 
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the failure was brittle with lower accumulation of plastic strains. Visible cracks 

do not appear till 0.9L load level. 

The conductance signatures associated with the second resonant peak in the 

admittance response of PZT patch bonded to concrete cubes, for both NSC 

and HSC, at different levels of applied load are shown in Fig. 4.6. The 

conductance peak is associated with the second resonant peak is centred on 

253 kHz and 255 kHz for NSC and HSC, respectively. Conductance spectra 

exhibit an increase in peak amplitude at successively higher load levels. There 

is also an overall increase in the amplitude at all frequencies. At corresponding 

load levels (fraction of compressive strength), larger shifts are observed in NSC 

when compared with HSC.  

 

  

(a) (b) 

Figure 4.6: Conductance spectra close to second peak in the EI admittance 

response of PZT patch bonded to concrete cube at different levels of load (a) 

NSC cube (b) HSC cube 

Changes in the second resonant peak in the conductance spectrum of the PZT 

patch bonded to concrete block after unloading from different load levels are 

shown in Fig. 4.7a and b for NSC and HSC, respectively. It can be seen that 

on unloading from successively higher load levels, consistently there is a 

leftward shift in the spectrum resulting from a larger relative decrease in 

amplitude at frequencies higher than the centreline frequency in the spectrum. 

The magnitude of shift and decrease in amplitude of the spectrum are 

0.002

0.0023

0.0026

0.0029

0.0032

2.45E+05 2.49E+05 2.53E+05 2.57E+05 2.61E+05

C
o

n
d
u
c
ta

n
c
e

 (
S

)

Frequency  (Hz)

baseline

0.4L

0.5L

0.7L

0.9L

Crack initiation

0.0017

0.0022

0.0027

0.0032

0.0037

2.40E+05 2.47E+05 2.54E+05 2.61E+05

C
o

n
d
u
c
ta

n
c
e

 (
S

)

Frequency (Hz)

baseline
0.4L
0.5L
0.7L
0.9L

Crack initiation



83 

 

consistent with the level of damage indicated by the change in compliance and 

increase in substrate plastic strain obtained from mechanical measurements. 

For unloading from a given load level, the higher level of damage observed in 

NSC coincides with the larger shift in the spectrum and a larger decrease in 

amplitude of conductance. Visible crack appeared in NSC when the load level 

was 0.7L. There is correspondingly a larger shift in frequency to the left 

accompanied by a broadening of the peak. A slight flattening of the peak is 

also observed when the visible crack appeared. In NSC there is an abrupt 

change in the shape of the spectrum at 0.9L of the peak load, which produces 

significant peak broadening coinciding with significant localized damage in the 

form of visible cracking in the vicinity of the PZT. Visible cracking in HSC at 

0.9L also produces significant decrease in amplitude and shift in the peak. 

 

  

(a) (b) 

Figure 4.7: Conductance spectra close to second peak at different levels of 

damage (a) NSC cube (b) HSC cube 

The susceptance part of the measured admittance spectrum obtained from an 

EI measurement of the bonded PZT patch in the U and L states is shown in 

Fig. 4.8a and b, respectively. The low frequency susceptance signature, which 

is related with the structural modes (or response) is also shown in the figure. 

The overall change in the slope of the low- frequency susceptance signature 

has previously been shown to be sensitive to stress under increasing loading 
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recorded from PZT patches bonded to thin aluminium specimens [27]. The 

slope of the low-frequency susceptance signature does not exhibit any 

significant or consistent variation with loading. Unlike the case of aluminium 

specimen, increasing stress level in concrete specimen is associated with an 

increase in the level of damage. The combined effect of increasing stress and 

damage in concrete may likely result in no change in the slope. 

 

  

(a) (b) 

Figure 4.8: Susceptance signatures obtained from the admittance response from 

an EI measurement of bonded PZT in (a) L states; and (b) U states  

The response of the PZT patch to an imposed strain was evaluated by applying 

small strains directly on the PZT patch. The PZT patch was subjected to an 

imposed strain using a digital micrometre. A photograph of the test setup is 

shown in Fig. 4.9a. The direction of applied strain in the PZT patch was kept 

the same as in the concrete specimen. The conductance signature of the second 

resonant mode of the bonded PZT patch for different levels of imposed strain 

is shown in Fig. 4.9b. The changes in peak of the conductance spectrum 

produced by imposed strains results in a shift in the central frequency to a 

higher value and an increase in the amplitude of the peak. The observed 

behaviour of the PZT patch confirms that an applied compressive strain 

influences the impedance response of a PZT patch resulting in a change in the 

resonant behaviour of the PZT patch. For a PZT patch bonded to a concrete 
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substrate, the incremental strain associated with an increment of load is 

expected to introduce an increase in the frequency and amplitude of the 

resonant peak in the electrical conductance response. 

 

 

(a) 

 

(b)  

Figure 4.9: (a) M icrometer setup for imposed strain measurement; (b) 
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Observations from the conductance signatures from all specimens were 

nominally similar. Some differences in the magnitudes of shifts in frequency 

and amplitude were observed, particularly in normal strength concrete at 

higher load levels. In the microcracking stages, prior to localization, the 

responses from the different specimens were consistent. After localization, the 

pattern of cracks is spatially heterogeneous. Proximity of the crack from the 

PZT patch had a significant influence on the observed behaviour. In some 

cases, the cracks formed directly under the PZT patch as shown in Fig. 4.10a. 

Cracking directly under the PZT patch impacts the bond between the PZT 

patch and the substrate resulting in reduction in the constraint from the 

substrate and hence resulting response is closer to the free response of PZT 

patch. This resulted in an increase in the amplitude and narrowing of the 

peaks in the conductance response as shown in Fig. 4.10b. Cracks passing 

under the PZT patch potentially produce splitting failure of the PZT patch as 

well. 

 

  

(a) (b) 

Figure 4.10: (a) Formation of crack in the proximity of the PZT patch (b) 

Increase in amplitude of the resonant peak in the EI conductance measurement.  
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4.5 Analysis of the results 

The results of experimental program clearly indicate that the change in the 

measured conductance in the admittance response of a PZT patch bonded to 

a concrete substrate depends upon the level and type of damage and the stress 

in the substrate material. The observed changes in the PZT resonant peaks in 

the conductance spectrum can be interpreted in terms of considering the level 

of damage, stress in substrate material and strain in the PZT as shown 

schematically in Fig. 4.11. The increment in strain levels between two adjacent 

U levels is associated with an increment in the plastic strain. Between two 

adjacent U states, for a given change in the substrate plastic strain, the strain 

induced in the PZT depends on the material compliance of concrete. The 

compliance of the material also depends on the level of damage in the material. 

Further, the admittance spectrum from an EI measurement of the bonded 

PZT patch depends on the mechanical impedance of the substrate (and hence 

material compliance), which directly depends on the level of damage. 

Therefore, comparison of adjacent U states provides information about 

incremental levels of damage. A measure of the mechanical impedance of the 

substrate is obtained from the mechanical stiffness of the specimen. As the 

level of damage increases, there is an increase in the compliance of the material 

(and hence a decrease in its mechanical impedance). Consistently there is a 

downward shift in the resonant frequency to gather with an overall leftward 

shift in the spectrum recorded in the U states (shown in Fig. 4.7). The increase 

in the level of damage in the form of microcracks is associated with an increase 

in damping and an increase in compliance of the substrate, which produces a 

decrease in frequency of the peak. While the increase in material compliance 

produces an increase in amplitude, increase in damping results in a reduction 

in the amplitude of the peak. The amplitude variation in the resonant peak in 
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the conductance spectrum depends on the relative influence of damage on the 

elastic modulus and damping. 

 

 

Figure 4.11: Schematic representation of strain and damage levels in substrate  

On unloading the specimen from the L state to the U state, the stress in the 

substrate is reduced, while the level of damage is the same. In the L state, 

there is strain in the substrate associated with applied stress, in addition to 

the permanent strain produced by damage in the substrate. The strain in the 

substrate depends on the material compliance, which in turn depends on the 

level of damage. Since the level of damage is the same, comparing the L and 

the immediate U states allows for assessing the influence of stress in the 

substrate (and hence of strain in the PZT) on the EI response of a PZT patch 

for a given level of damage. A comparison of the conductance spectra from 

specimens at the top of the load cycle and after unloading from the load 

envelope is shown in Fig. 4.12. It can be seen that compared to the U state 

the corresponding L state exhibits an increase in the amplitude and a 

rightward shift in the spectrum.  The results considering the increment in the 

PZT strain produced by applied stress in the substrate are consistent with the 

findings from direct application of strain on the PZT patch (shown in Fig. 

4.9b). At the very high load level, corresponding to 0.9L, noticeable decreases 

in frequency and amplitude are observed in the unloaded state for both NSC 
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and HSC. The localized cracking in the vicinity of the PZT patch in NSC also 

produces a significant change in shape associated with broadening of the 

resonant peak. However, the level of damage is not that evident considering 

the response under load. The resonant peak in conductance spectrum from an 

EI measurement in the 0.9L state shows an increase in the amplitude and the 

observed changes are not so significant. The results indicate that the increment 

in the level of substrate stress has a dominant effect on the conductance of a 

bonded PZT patch.  

 

  

(a) (b) 

Figure 4.12: Conductance spectra close to second peak in the EI measurement of 

a bonded PZT patch from the L and the U states for: (a) NSC; (b) HSC. 

The conductance spectra recorded at successively higher load levels correspond 

to the influence of change in mechanical compliance of substrate (produced by 

increasing material damage) and an increase in the induced strain in the PZT 

(produced by an increase in substrate stress). Strain induced in the PZT due 

to increasing stress in the substrate increases the amplitude of the conductance 

and produces a frequency shift to higher values. An increase in material 

compliance due to damage produces a leftward shift in frequencies, with a 

change in amplitude which depends on the relative influence of damping and 

increasing material compliance. The frequency shift in the EI spectrum is 

influenced by the counteracting effects produced by imposed strain and change 
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in material compliance. The shape of the spectrum is also influenced by level 

of damage and the imposed strain on the PZT.  

4.5.1 Measures of quantification 

A quantification of the observed frequency shifts and changes in the shape of 

the spectrum induced by applied stress and damage is now attempted. 

Measures of change include the shift in frequency, the change in bandwidth of 

the peak and the Root Mean Square Deviation (RMSD). A measure of the 

shift in frequency is obtained using the mean frequency measure of the 

resonant peak in the conductance spectrum.  

𝑓′ = 
∫ 𝑓𝑌𝐶𝑑𝑓
𝑓2
𝑓1

∫ 𝑌𝐶𝑑𝑓
𝑓2
𝑓1

 (4.2) 

Where 𝑌𝐶 is the conductance at a given frequency, f1 and f2 are fixed 

frequencies. 

The mean frequency is the centroidal measure of the spectrum between two 

fixed frequencies. Shift in frequency, ∆𝑓 is calculated using equation 4.3, where 

𝑓𝑐
′ is the centroidal frequency of the spectrum and 𝑓0

′  is the initial centroidal 

frequency. 

∆𝑓 =  |𝑓𝑐
′ − 𝑓0

′| (4.3) 

The broadening effect of the peak at each damage level was quantified using 

bandwidth of the peak (BW). The bandwidth represents the distance between 

the two points in the frequency spectrum where the signal is 
1

√2
 of the 

maximum amplitude (half power). The bandwidth is defined with respect to 

the full width at 
𝑌

√2
 as shown in Fig. 4.13. Percentage change in bandwidth is 

calculated using equation 4.4. 

∆𝑩𝑾(%) =
(𝑩𝑾𝒄−𝑩𝑾𝟎)∗𝟏𝟎𝟎

𝑩𝑾𝟎
 (4.4) 
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Figure 4.13: Bandwidth of resonant peak 

The root-mean-square deviation (RMSD) is used to calculate the difference 

between values of baseline measurement of conductance signature and the 

signatures in the different L and U states. The RMSD for second resonant 

peak with respect to the baseline measurement were calculated in the 

frequency range (245 kHz-260 kHz) using equation 4.5, where.𝑌𝐶𝐵 and 𝑌𝐶𝑖 are 

the baseline and values of conductance at L or U states, respectively. 

𝑅𝑀𝑆𝐷 = √
∑ (𝑌𝐶𝑖−𝑌𝐶𝐵)2
𝑁
𝑖=1

∑ 𝑌𝐶𝐵
2𝑁

𝑖=1

 (4.5) 

Fig. 4.14 shows the frequency shift of the conductance peak in the L and the 

U states. The frequency shift for the L and U states have been calculated with 

reference to the centroidal frequency recorded before initiating loading. While 

shifts are noticeable in the U states, there is no change in centroidal frequency 

in the L states. For both NSC and HSC there is a continuous frequency shift 

after 0.4U. There is a consistent increase in the centroidal frequency, with 

increasing damage level in the successive U states. The frequency shift in the 

U states follows a trend which is similar to the observed decrease in stiffness 

obtained from mechanical measurements; there is an exponential shift at 

higher load ratios in NSC, while the HSC exhibits a linear increase. At higher 

level of damage, the peak was flattened and there was no distinctive peak. The 

centroidal frequency therefore provides a good indication of damage level in 
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the U state. The insensitivity of resonance peak frequency shift in the L states 

is due to the combined influence of damage in the substrate and imposed strain 

on the PZT, which produce counteracting effects. 

 

  

(a) (b) 

Figure 4.14: Frequency shift in resonant mode with unloading in the U  states 

(a) NSC (b) HSC. 

Change in the RMSD values for the L and U states in NSC and HSC are 

shown in Fig. 4.15. The RMSD values obtained in both the L and U states are 

generally in agreement for loads higher than after 70% of the compressive 

strength. While the RMSD values obtained from the L states are essentially 

constant up to 0.7L. The magnitude of change in the U states at any load level 

is higher in NSC than the corresponding change observed in HSC. The RMSD 

values in the U states have previously been shown to correlate well with the 

damage level. The RMSD value obtained in the L state is reflective of both 

damage and imposed strain. The observed trend in the RMSD indicates that 

the influence of imposed strain and damage produce counteracting effects. The 

influence of damage is evident after 0.7L. Thus it can be concluded in the 

presence of imposed strain, RMSD shows a change only at very high levels of 

damage in the material. At low stress levels, the counteracting influences of 

damage and stress produce little or no change in the RMSD.  
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(a) (b) 

Figure 4.15: RM SD of resonance peak at L and U states: (a) NSC cube (b) HSC 

cube 

The changes in bandwidth of the conductance spectrum in the U and L states 

for NSC cube are shown in Fig. 4.16. No change was obtained in the bandwidth 

for HSC cubes up to very high load levels. This suggests that the change in 

bandwidth is more related to localized damage as observed in NSC specimen. 

In NSC cubes, the bandwidth measured in the U states indicates a continuous 

increase with an increase in damage level. In the L states, the increase in 

bandwidth is minimal at low stress levels and an increasing trend can be 

observed under higher load ratios. Thus the strain dominant and damage 

dominant effect on conductance signature can be differentiated from the 

change in bandwidth. 
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(a) (b) 

Figure 4.16: Percentage change in bandwidth in the (a) U states; and (b) L 

states 

4.5.2 Identification of Stress induced damage 

A measure of normalized conductance given in equation 4.6 is introduced to 

identify the amplitude shifts from the baseline signature produced by damage 

and induced strain. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑎𝑛𝑐𝑒 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 (𝑌𝐶𝑁) =  
𝑌𝐶𝑖− 𝑌𝐶𝐵

𝑌𝐶𝐵
 (4.6) 

where 𝑌𝐶𝑖 is the conductance at a given frequency in the L or U states and 𝑌𝐶𝐵 

is the corresponding baseline conductance. Fig. 4.17 shows the normalized 

conductance signature at different load levels for NSC and HSC. The strain 

induced conductance changes can be clearly identified from the normalized 

conductance values. An upward shift can be seen qualitatively in the 

normalized signature from the L states. Consistent shifts are produced with 

increasing stress level in the substrate, irrespective of damage level. The 

magnitude shift of normalized signature in the L states for HSC cube is lower 

even than the shifts observed in the NSC cubes at the corresponding load 

levels. This can be correlated with the overall lower strain in the L states in 

HSC as seen in Fig. 4.5. 
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(a) (b) 

Figure 4.17: Conductance (Normalized) signature in the different L and U 

states: (a) NSC; (b) HSC 

To quantify the observed shifts in the normalized conductance signature, the 

centroid of the normalized conductance, 𝑌𝐶𝑁
′  was computed as shown in 

equation 4.7. 

𝑌𝐶𝑁
′ =

∫ 𝑌𝑁
2𝑑𝑓

𝑓2
𝑓1

2∫ 𝑌𝑁𝑑𝑓
𝑓2
𝑓1

 (4.7) 

where f1 and f2 are fixed frequencies  

The trends in the values of 𝑌𝐶𝑁
′  in the L and U configurations are shown in 

Fig. 4.18a and b for NSC and HSC, respectively. The influence of strain in the 

substrate can be clearly identified with a positive shift (an upward movement) 

of the centroid. The magnitude of the shift in the L states corresponds with 

the level of stress in the substrate; a larger shift is observed in NSC when 

compared with HSC. With an increase in the substrate stress, up to 0.7L in 

NSC and 0.9L in HSC, there is an upward shift in 𝑌𝐶𝑁
′ . The values of 𝑌𝐶𝑁

′ , upon 

unloading to the U states show no change. The difference between the L and 

the immediate U state is the imposed strain in the PZT due to stress in the 

substrate. Comparing two U states, there is an increase in the level of damage, 

which produces additional plastic strain and an increase in material 

compliance. The counteracting influences of increase in material compliance 
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and increasing plastic strain (and hence imposed strain on PZT) result in no 

shift in the centroid of the normalized amplitude. 

Localization of damage and the formation of a crack produces a downward 

shift in the 𝑌𝐶𝑁
′ , which occur close to 0.7L and 0.9L in NSC and HSC, 

respectively. The crack formation produces an overall downward shift in the 

centroid in both the L and U states. The downward movement of centroid in 

the L states shows that the influence of damage is more dominant on resonant 

peak behaviour after the localization into a visible crack. 

 

  

(a) (b) 

Figure 4.18: Position of centroid in the L and U  states (a) for NSC; and (b) 

HSC 

The effect of stress and microcrack damage can be decoupled using the 

normalized conductance signature as a quantitative measure. The absolute 

value of centroid of the normalized spectrum associated with the second 

resonant peak of a PZT bonded to a concrete substrate curve gives the 

identification of stress and microcrack damage induced change. The downward 

shift of the centroid can therefore be taken as indicator of localized damage in 

the form of cracks. The upward shift of the centroid is indicative of increasing 

stress in the substrate. 
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4.5.3 Identification of Damage and Strain 

The results of the quantitative analysis can be assimilated to provide an 

understanding of the influence of damage and stress. The influence of 

increasing damage in the material substrate can be identified with three effects: 

(a) increase in material compliance; (b) increase in plastic strain; and (c) 

increase in material damping. While increase in material compliance effects a 

leftward shift in spectrum, the increase in plastic strain (increases the imposed 

strain on PZT) produces a rightward shift. In the absence of stress in the 

substrate, such as in the U states, while there are counteracting influences of 

the two effects, the influence of decrease in compliance is dominant producing 

a net shift in frequencies (as seen in Fig. 4.14). Considering the three effects 

of damage while (a) and (b) produce an increase in the amplitudes, damping 

produces a decrease in the amplitude. In the absence of stress, the influence of 

these counteracting effects is to produce no change in the amplitude centroid 

of the spectrum (as seen in Fig. 4.18). 

Stress in the substrate produces an imposed strain in the PZT, which produces 

an increase in the frequency and the amplitude. For a given level of damage, 

on increasing the stress in the substrate, there is a net increase in the 

amplitude of the spectrum and no shift in the centroidal frequency of the 

spectrum.  

4.6 Findings and Summary 

The use of EI-based monitoring of concrete structures is evaluated in this 

study. Damage in concrete has been evaluated using full-field displacement 

measurements on the surface of a concrete cube obtained from digital image 

correlation. The evolution of micro- cracks, which coalesce leading to 

localization of damage in the form of cracks is shown to correlate with 

conductance obtained from EI measurements from a PZT patch bonded to the 
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concrete substrate. The results of the experimental program presented here 

clearly show that the conductance spectrum obtained from the EI 

measurement of a bonded PZT patch reflects changes in the local mechanical 

compliance of the substrate due to damage. Damage in the form of 

microcracking is found to influence the conductance through a change in 

substrate compliance. Increasing damage is shown to produce a decrease in the 

magnitude and frequency of the resonant peak of the PZT patch in the 

electrical conductance spectrum of the bonded PZT patch. 

Imposed strain resulting from stress in the substrate is also shown to influence 

the conductance signature from an EI measurement of the bonded PZT patch. 

Increments in imposed strain in concrete are produced by increments of stress 

and level of damage in the material. Change in imposed strain on the PZT 

patch produces changes in the resonant peak which are counteracting to the 

influence of damage. In the presence of stress, the observed change in the 

resonant peak signature in the conductance spectrum did not show any 

significant changes for low levels of damage associated with microcracking. 

With an increase in stress, as the damage in the material increases in a non-

linear manner, the influence of damage is reflected in most measures of damage 

such as the frequency shift, RMSD and band width calculated from the 

resonant peak. At low levels of damage, associated with distributed 

microcracking, the normalized conductance peak signature accurately reflects 

the level of stress in the substrate. 

The use of EI measurements for evaluating damage in a concrete substrate 

requires careful consideration of the stress in the substrate in addition to the 

type and level of damage. An increment in the magnitude of stress is associated 

with an increment in the strain and also the level of damage. The presence of 

damage and the type of damage also influence the strain in the substrate for 

a given applied stress. Localization of damage in the form of cracks results in 
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a non-linear increase in strain in the substrate. The behaviour of the bonded 

PZT patch is influenced by the substrate compliance as influenced by the 

amount and type of damage. The localization of damage in the form of cracks 

is reflected in the non-linear decrease in the mechanical stiffness. Therefore, 

the extent and type of damage influence both the strain in the substrate and 

the mechanical compliance of the substrate. 

In a real structure, the possibility of unloading to establish the true level of 

damage without the influence of applied stress does not exist. Features of the 

resonant peak in the conductance spectrum of a bonded PZT patch are 

indicative of the state of substrate in terms of the level of strain and the type 

and extent of damage. At low levels of damage, the increment in the substrate 

stress can be identified using the shifts in the normalized conductance 

signature. In a loaded state, localization of damage and formation of cracks 

can be identified using the shifts in the bandwidth of the resonant peak and 

the downward shift in the centroid of the normalized conductance signature. 
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Chapter 5 

 

PZT Sensor Array for Local and 

Distributed Damage Measurements in 

Concrete 

  
 

5.1 Introduction  

PZT (Lead Zirconate Titanate) is a piezoelectric material, which is being used 

for developing economical methods for continuous damage assessment in 

structures. PZT exhibits a coupled electromechanical response; surface charges 

are produced when strained and strain when electrically excited. PZT-based 

sensors offer significant potential for continuously monitoring the development 

and progression of internal damage in concrete structures. Several damage 

detection strategies have been developed using PZT patches bonded to a 

substrate [32, 37, 52-54, 56, 72, 87, 88]. The use of PZTs has been primarily 

focused on metallic and composite structures with very limited application to 

concrete. The use of PZT patches in concrete structures is still evolving.  

The EI measurements use the measured electrical response of a PZT patch 

bonded to a substrate. The EI response of each PZT to a given electrical input 

is influenced by the resistance to its motion offered by the substrate material, 

the mechanical impedance [3, 5, 25]. The use of a PZT patch to infer about 

the level of damage in the substrate requires interpreting the EI response of 
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the PZT patch bonded to the substrate. When a PZT patch is bonded to a 

substrate, the dynamic motion of the PZT patch in response to an applied 

electrical potential depends on the dynamic mechanical impedance to its 

motion provided by the substrate. Understanding the response of PZT patch 

bonded to a concrete substrate is still progressing. The application of EM 

impedance measurements to concrete structures has demonstrated that 

changes are registered due to formation of cracks well in advance of failure 

[18]. The EI -based measurements from concrete have been shown to be 

sensitively detect changes in the local material compliance produced by 

distributed damage in the vicinity of the sensor [Chapter 4]. For a PZT patch 

bonded to a concrete substrate, its motion at a given frequency is directly 

influenced by a zone of influence, which represent a finite volume of the 

material. The EM based measurements from a concrete substrate are shown 

to be sensitive to incipient distributed damage in the material within the zone 

of influence [Chapter 3]. A smaller zone of influence and higher sensitivity to 

local changes increases at higher frequencies. The EI measurements therefore 

provide a local measure of damage in the vicinity of the sensor. 

The coupled constitutive electro-mechanical response of piezoelectric material 

allows a PZT patch to be used as an actuator for generating stress waves in 

the substrate material and as a receiver for sensing stress waves. The PZT 

patches are used as actuator/receiver (AR) pairs for generating and receiving 

stress waves. In the distributed sensing mode, damage in the material is 

inferred through changes in the elastic waves which propagate through the 

bulk material [44, 48, 55]. Presence of cracks in the wave propagation has been 

shown to significantly alter the wave characteristics [53, 89-91]. Most of the 

studies of PZT based distributed monitoring were reported on metallic 

structures. The condition monitoring of concrete infill in fiber reinforced 

polymer tubes and failure in concrete and composite structures has been 
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monitored using PZT sensor arrays [53, 56, 92, 93]. Most of the researchers 

used time of flight and decrease in wave energy to assess the change in material 

characteristics. 

In concrete, damage initiation takes place in the form of distributed micro 

cracks, which eventually coalesce to form localized cracks. Cracks in concrete 

are associated with cohesive crack bridging stresses. By the time surface 

manifestation in the form of visible cracking appears there may be significant 

degradation of the capacity of the structure. Early detection of damage is 

essential to initiate early intervention measures, which can effectively increase 

the service life of a structure. Methods to detect incipient damage in the form 

of micro cracks are required to provide effective methods of monitoring 

structural health and service life performance of structures. Procedures for 

locating cracks in concrete and for assessing the depth of opening of these 

cracks is critical for evaluating the degradation of concrete structures. 

Localized sensing methodology based on EM impedance technique provides 

information about changes in the local material, which produce changes in its 

compliance in the vicinity of PZT patch. Any damage located away from the 

sensing range of a PZT patch would not be detected in its EI signature. In 

concrete structures where large volume of material has to be monitored a large 

number of PZTs is required for local sensing. Sensing methodology using pairs 

of PZT patches for monitoring changes in the stress wave gives can be used 

for distributed sensing over a larger region. Local sensing technique (EI) can 

be employed to detect the damage in the vicinity of the PZT patches while 

distributed sensing using PZT sensor arrays can be used to monitor the 

location and the magnitude of damage in a region. The concept of array of 

sensors which combines both local and distributed sensing using minimum 

number of sensors provides detailed interpretation about the damage. 
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A sensing scheme using an array of PZT sensors for combined local and 

distributed damage monitoring is developed. Surface mounted PZT patches 

are used for continuous local monitoring of concrete and obtaining the 

information related to damage in the vicinity of the patch. Additionally, the 

PZT sensor array is used for monitoring damage in the actuator-receiver (AR) 

mode. The results of an experimental evaluation involving the use of a fracture 

test specimen are presented and issues related to the development of proposed 

system are evaluated for the case of localized damage in the form of a crack 

in concrete. The sensitivity of the EI -based local measurements and the 

through transmission measurements to a localized crack in concrete is 

evaluated. 

5.2 Background  

Piezoelectric materials exhibit electro-mechanical coupling characteristics; 

electric charges are produced when mechanically stressed and strain when 

electrically excited. PZT patches are piezoceramic materials which have high 

electro-mechanical coupling properties. The electrical admittance signature of 

the PZT patch can be measured when it is excited with a voltage of alternating 

frequency. The electrical admittance is a complex number consisting of real 

and imaginary parts and is determined as the ratio of the current to the 

applied voltage. The conductance response (real part of admittance) of the 

PZT patch (20x20x1 mm size) when excited with 10-500 kHz frequency of 1V 

amplitude is shown in Fig. 5.1. The peaks in the conductance response can be 

identified with the resonant modes of the PZT patch [3, 6]. The mechanical 

and the electromechanical resonances happen at the same frequency in a 

piezoelectric material because of the electro-mechanical coupling. The electro-

mechanical resonance frequencies of the PZT patch depends on the mechanical 

resonances which in turn depend on geometry of the patch [94]. 
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Figure 5. 1: Conductance spectrum of free PZT patch (patch size: 20mm x 

20mm x 1mm) 

The EI response of a PZT patch bonded to the substrate subjected to an 

applied electrical potential depends on the dynamic impedance to its motion 

from the substrate. The resistance to the motion of a PZT patch from the 

surrounding elastic medium is expressed as the mechanical impedance. Most 

approaches for modeling the PZT patch-structure interaction have varied in 

the degree of sophistication in representing the motion of the PZT patch and 

the structure. The first systematic attempt to model the PZT patch-structure 

interaction was presented by Liang et al. [3] using a PZT actuator driven one-

degree-of-freedom spring-mass-damper system. Subsequently for a PZT patch, 

an effective 1-D approach was found to give a better representation of the 

dynamic response of the PZT considering in-plane motion of the PZT coupled 

to an elastic substrate [7].  

A change in the mechanical impedance of the surrounding medium will change 

the electrical impedance response of the PZT patch. For a concrete substrate, 

the effective dynamic response of the PZT patch was shown to be influenced 

by the damping and the stress in the substrate. Considering high damping of 

concrete, the dynamic response of a PZT patch exhibits a frequency 

dependence. The vibratory motion of the PZT patch is influenced by the 

mechanical impedance derived from a zone of finite size. For a PZT patch 
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bonded to the concrete substrate, the dynamic response, which consists of 

distinct modes of vibration of the PZT patch is significantly influenced by the 

compliance of the material within a zone of influence. The zone of influence 

for the vibratory motion of a bonded PZT patch depends on the frequency of 

vibration; the zone of influence is smaller for higher frequencies [ Chapter 3]. 

Any changes in the material compliance within the zone of influence, 

influences the vibratory motion of the PZT patch. Distributed damage 

produces an increase in the compliance and material damping of the material. 

Both these effects are known to produce a downward shift in frequency and 

decrease in amplitude of the resonant mode. 

In this study, an array of surface mounted PZT patches were used in a 

substrate. EI-based measurement method is used as local measure of damage 

detection as shown in Fig. 5.2. An array of PZT patch sensors is deployed in 

a structural element, where impedance response of the PZT patch is used for 

local monitoring while the through transmission measurements are used for 

distributed sensing. Each PZT patch is used as an actuator and a sensor in 

the through-transmission measurements. A schematic representation of the 

methodology is given in Fig. 5.2. A received signal undergoes the losses due to 

signal propagation path and in epoxy at the concrete-beam interfaces. 

Measures for quantifying changes in the EI and the received waves due to 

damage in the form of stress-induced crack are developed for the level of 

material discontinuity produced by a stress-induced crack of a given opening. 
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Figure 5. 2: Schematic representation of local-distributed monitoring system. 

5.3 Materials and Methods  

Concrete used in this study had a composition by mass given as cement: water: 

fine aggregate: coarse aggregate = 1.0: 0.45: 1.85: 2.9. Coarse aggregate 

consisted of 20 mm and 10 mm crushed gravel in a 1:1 proportion and river 

sand was used as fine aggregate. Cement conforming to the requirements of 

OPC grade 53 as per the Indian code of practice, IS 12269:2013 was used. The 

28-day compressive strength and modulus of rupture obtained by testing 

standard 150 mm cubes and 500 mm x 150 mm x 150 mm sized beams were 

50 MPa and 3.6 MPa, respectively.  

The experimental program consisted of using PZT patches in the distributed 

(AR) mode and for local impedance-based measurements on beams where the 

damage is induced in the form of a localized crack. A fracture beam was used 

to produce a crack under flexure loading. The experiments were conducted 

using six beams of size 500 mm x 150 mm x 150 mm. All the beams were 

made with plain cement concrete. A notch, 25 mm in depth was introduced 

in the middle and fracture tests were performed using a computer-controlled, 

servo–hydraulic testing machine in crack mouth opening displacement 

(CMOD) control. The test setup consisted of third point loading as per the 

requirements of UNI 11039-2:2003 standard [97]. The flexure test was 

conducted with a span equal to 450 mm in four-point bending configuration 

Distributed sensing/Wave propagation
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where the CMOD was increased at rate of 30 µm/minute. During the test, the 

crack tip opening displacement (CTOD) was also measured using a clip gauge 

mounted at the tip of the notch. The complete test set up along with sensor 

locations is shown in Fig. 5.3a. Six square 20 mm PZT patches of 1 mm 

thickness were used in the study. Properties of the PZT are given in Table 

3.2. Two PZT patches were bonded on front face and two on back face, 

remaining two were bonded to the soffit of the beam. The PZT patches 

labelled PZT5 and PZT6 were positioned at the bottom of the beam 50mm 

away from the notch while all other PZT patches were bonded at mid-height 

of the beam. The PZT patches labelled PZT2 and PZT4 were bonded at a 

mid-height location, 75 mm from the bottom of the beam and 50mm from the 

center. The PZT patches labelled PZT1 and PZT3 were bonded at the mid-

depth location on opposite faces of the beam at a distance 50 mm away from 

the opposite side face of the beam. All the PZT patches were bonded to 

concrete using a two component epoxy. The properties of the epoxy are given 

in Table 3.1. The detailed configuration of the PZTs is given in Fig. 5.3a.  

The test program consisted of incremental loading to larger crack opening; the 

beam was progressively loaded to predefined increasing values of CMOD. The 

loading program is shown schematically in Fig. 5.3b. Initially the beam was 

loaded up to a CMOD equal to 50µm and unloaded. In subsequent load cycle, 

the specimen was loaded to CMOD values equal to 100 µm relative to the 

CMOD in the unloaded configuration. In subsequent load cycles, the CMOD 

was increased to values equal to 250µm and 450µm with respect to the residual 

crack opening from the previous load cycle. In the following text, the load 

cycles are referred to by the maximum relative CMOD in each cycle. The first, 

second, third and fourth load cycles are referred to by the maximum relative 

CMOD values equal to 50µm, 100µm, 250µm and 450µm, respectively.  
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(a) 

  

(b) 

Figure 5. 3: (a) Test set up along with configuration of PZT patches (b) Cyclic 

loading to increasing CM OD. 

The measurements from the PZT patches consisted of EI measurements from 

the individual PZT patches and through transmission measurements from 

pairs of PZT patches in the AR mode. A schematic sketch of the test setup is 

shown in Fig. 5.4. The impedance and wave propagation measurements were 

taken after unloading from the predetermined value of CMOD. The 

experimental set up for EI and the AR measurements consisted of an 

impedance analyzer, function generator, amplifier, digital storage oscilloscope 

and a computer. In the AR mode, the waveform generated by the function 
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generator was amplified and sent to the actuator PZT. Then, the response 

signal of the remaining five PZTs were logged by the computer through 

computer controlled digital storage oscilloscope. After acquiring wave 

propagation data from all the PZTs, the actuator PZT is switched to the 

impedance analyzer through switching unit and the admittance measurements 

were recorded. Electrical admittance measurements were performed on all the 

PZTs before attaching to the beam. The electrical admittance measurements 

of the PZTs were measured at an applied voltage of 1 V at 800 discrete 

frequencies varying between 10 kHz and 500 kHz using a 6500B series 

impedance analyzer of Wayne Kerr make. A typical conductance (real part of 

admittance) signature of the a PZT patch bonded to beam is shown in Fig. 

5.4. This measurement procedure was followed when the specimen is in 

unloaded state after each load cycle (unloading from CMOD openings equal 

to 50µm, 100µm, 250µm and 450µm, relative to the previous unloaded 

configuration).  
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Figure 5. 4: Experimental setups for EI from individual PZT patches and 

through transmission measurements from pairs of PZT patches in the AR mode.  

In the AR mode, wave propagation measurements, the excitation applied to 

the PZT patches consisted of a 3-cycle tone burst sine signal with center 

frequency of 120 kHz with a 45 V peak-to-peak voltage at a pulse repeating 

frequency equal to 100 Hz (Fig. 5.5a). A typical received signal when actuating 

PZT 1 and received at PZT 2 (A1R2) is shown in Fig. 5.5b. All the six PZT 

patches were individually excited and the response from the all other PZT 

patches were collected at a sampling frequency of 6.25 MHz.  
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(a) (b) 

Figure 5. 5: Signals from a through-transmission measurement in the AR mode: 

(a) The excitation signal applied to the actuator (b) The received signal at 

PZT2 when actuating PZT1 (A 1R 2) 

During the loading cycles, the surface displacements from the beam were 

obtained using the full-field optical technique based on digital image 

correlation (DIC). DIC measurements were performed on notched specimens 

to monitor the localization of damage and the subsequent propagation of a 

crack. A detailed description of DIC measurement system is discussed in 

section 4.3 of Chapter 4. A schematic representation of the DIC setup is shown 

in Fig. 5.6.  

 

 

Figure 5. 6: Schematic representation of the DIC setup 
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5.4 Experimental Results  

The load-CMOD responses of the three beam specimens are shown in Fig. 5.7a 

and a typical load-CMOD responses of the beam is shown in Fig. 5.7b for 

clarity. The beam was tested in four stages. In each stage, the beam was loaded 

in CMOD control to a predetermined crack opening relative to the beginning 

of load cycle and then unloaded to zero load. The EI and wave propagation 

measurements were taken in the unloaded configuration. The quasi-static load 

response can be readily identified with the load envelope obtained from the 

load cycles. The peak load of the envelope load response is attained in the first 

load cycle. CMOD equal to 50µm is in the post-peak part of the softening load 

response. There is a continuous increase in the residual CMOD on unloading 

after each loading cycle. There is also correspondingly a decrease in the 

stiffness of the load-CMOD response. With every subsequent load cycle, the 

peak load attained is also smaller. 

 

  

(a) (b) 

Figure 5. 7: (a) Load-CM OD responses of beams; (b) Load-CM OD of Specimen 

Beam 2. The CM OD relative to the residual CM OD for each cycle are shown. 

The absolute value of CM OD at the end of each cycle is also indicated in the 

bracket. 

Contours of horizontal strain (εxx) from the beam specimen 2 at different 

CMOD values obtained using DIC are plotted in Fig. 5.8. The contours of 
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strain are plotted at the top of the load cycle, just prior to unloading. 

Localization of the strain can be identified in all the contour plots. The location 

of the crack can be clearly identified even at a small CMOD equal to 50µm. 

The localized zone propagates along the depth of the beam with increasing 

CMOD. While the crack could be identified in the contours of εxx even at a 

small CMOD of 50µm, the crack could not be delineated visually up to a 

CMOD of 124µm. There is a sharp gradient in strain within a small region 

centered on the crack. In the region in the immediate vicinity of the PZT 

patch, the magnitude of strain is very small and there is no visible damage 

which produces variation in the measured strain. There is also no visible 

damage in the form of micro cracking in the region away from the crack.  

 

 

(a) (b) (c) (d) 

Figure 5. 8: Strain contour (𝜺𝒙𝒙) at different CM OD levels (a) 50 µm (b) 100 µm 

relative to unloading after first load cycle (up to an absolute CM OD equal to 

124.7 µm) (d) 250 µm relative to unloading after second load cycle (up to an 

absolute CM OD equal to 308 µm ) (e) 450 µm relative to unloading after third 

load cycle (up to an absolute CM OD equal to 627  µm) 

The horizontal strain (εxx) along length of the beam at the mid-height location 

along a line with Y coordinate fixed at 75 mm above the bottom face and 

50 mm above the notch for various CMOD levels are shown in Fig. 5.9. The 

variation of εxx along the length shows a sharp increase in the magnitude of 
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strain indicating localization of strain. It is observed that the width of the 

localization remains relatively constant with increasing crack opening. There 

is however an increase in the magnitude of strain and there is also a sharper 

strain gradient within the region of localization with increasing CMOD.  

 

 

Figure 5. 9: Variation in the horizontal strain (ε xx) with X coordinate for a line 

located at Y = 75 mm from the bottom of the beam at different values of 

relative CM OD after each unloading. 

The 3D contours of horizontal displacement (Ux) obtained at the end of the 

last load cycle when the CMOD was increased to 450 µm is shown in Fig. 

5.10a. The crack in the medium is identified by the displacement discontinuity 

emanating from the notch. The profile of the crack is identified by the sudden 

increase in the Ux over a small region. The discontinuity in Ux introduced by 

the crack emanating from the notch is evident in the jump in the Ux. For 

increasing CMOD, the physical opening produced by the crack originating 

from the notch resulted in a loss of correlation within a region corresponding 

to the subset size used for correlation overlapping with the opening. A 

procedure for obtaining the crack opening precisely, free from the error 

introduced by the finite subset size was developed using the asymptote 

matching procedure [95, 96]. The crack opening widths along the depth of the 

beam at different values of CMOD obtained using the asymptote matching 
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procedure and are shown in Fig. 5.10b for beam specimen 2. The CMOD 

corresponds to the displacement measured across the notch at Y=0, using the 

CMOD gauge located at the bottom of the beam. The CMOD is also shown 

marked in the figure at the location corresponding to Y=0. The crack opening 

widths were determined from the Ux measured using DIC. Corresponding to 

the CMOD value, the crack opening width exhibits a decreasing profile with 

increasing height above the notch (increasing Y coordinate). The zero crack 

opening along the depth of the beam indicates the physical location of the tip 

of the propagating crack. The observed crack opening as a function of depth 

for different values of CMOD indicates that the crack tip progresses along the 

depth of the beam with increasing CMOD. For a CMOD of 50µm, the crack 

has propagated along the depth and the tip of the crack can be identified at 

86 mm from bottom of the beam and the corresponding crack opening at the 

mid-height location is 12µm. At a CMOD equal to 100µm relative to unloaded 

configuration at the end of the first load cycle (absolute CMOD equal to 

124.7µm), the tip of the crack is located at Y= 119 mm and the crack opening 

at the mid-height location is 36µm. In the subsequent load cycles when the 

CMOD is increased to 250µm and 450µm relative to the unloaded CMOD from 

the previous cycles, the crack advances to a depth of 124 mm and 135 mm 

respectively. The corresponding crack openings at the mid-height are 102µm 

and 203µm, respectively. 
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(a) (b) 

Figure 5. 10: (a) Contours of correlation coefficient at the relative value of 

CM OD = 450µm after the third cycle; (b) Crack opening width as a function of 

depth of the beam at different crack mouth opening displacements.  

5.4.1 Measurements from PZT patches 

The stress wave attenuation measurements were performed in the unloaded 

state, where the removal of the load results in closing of the crack. The 

measured changes recorded by the PZT patches therefore correspond to the 

physical discontinuity in the medium produced by the stress-induced crack. 

PZT patches were individually actuated with a 3-cycle tone burst sine signal 

with center frequency of 120 kHz and 45 V peak-to-peak voltage (Fig. 5.11b) 

and response of all the other PZT patches were taken when one PZT patch 

was actuated. This measurement procedure was repeated when the specimen 

was in the unloaded state after pre-determined crack opening indicated by 

different relative values of CMOD (50µm, 100µm, 250µm and 450µm). The 

level of noise obtained from the standard deviation of the initial part of the 

signal was on the order of 0.1 mV. All the received signals were conditioned 

with a linear phase, band-pass filter. A comparison of actual received signal 

and filtered received signal is shown in Fig. 5.11a. Fig. 5.11b shows a typical 

signal received by PZT2 using PZT1 as the actuator (A1R2) at the seating 

load, prior to initiation of the first cycle of loading. The received signal is 

significantly smaller in magnitude when compared with the excitation. The 
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decrease in the magnitude of the received signal is attributed to losses in the 

path of the wave produced by the geometric spreading of the wave and the 

material attenuation in the wave path in the epoxy and in the concrete. There 

is also a significant increase in the length of the received wave when compared 

with the excitation applied, which is due to several effects such as, the ringing 

of the PZT patch, geometric spreading and multiple reflections, mode 

conversions and from inhomogeneity of the beam specimen [48]. 

 

  

(a) (b) 

Figure 5. 11: (a) Comparison of actual received and filtered received signal (b) 

Comparison of actuating signal with sensor signal prior to loading. 

Figure 5.12 shows the signals recorded from different PZT sensors (PZT2, 

PZT4, PZT6) when PZT1 was actuated. The received signals at PZT6 have a 

smaller amplitude when compared with the signals recorded by PZT2 and by 

PZT4 even in the pristine stage. The amplitude of the signal is influenced by 

the material and geometric attenuation in path of the transmission. Each 

subfigure in Fig. 5.12 shows the variation in the received signal in the unloaded 

state after each cycle. The changes recorded at the different PZT patches 

however vary depending on the positions of the PZT patches relative to the 

notch. With increasing CMOD, there was a decrease in the amplitude and an 

increase in the time of arrival of the stress waves received at PZT2 and PZT6 

when compared with the corresponding baseline signatures. The changes in 
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the received waves are produced by the presence of the crack in the path of 

stress wave propagation. The received signals of PZT4 are not significantly 

altered since the wave path does not intersect the crack. The received signals 

at PZT4 exhibit a small change which may be attributed to stress wave 

reflection from the crack surface. 

 

(a) 

 

(b) 

 

(c) 

Figure 5. 12: Sensor signals when PZT1 is actuated and received at: (a) PZT2 

(b) PZT4 (c) PZT6 
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When PZT1 is actuated, the stress wave signals received at the other PZT 

patches depend on the stress wave transmission path. Any changes in the 

received signal characteristics are produced by changes in the signal 

transmission path. When comparing the sensor signals after each load cycle 

with base line signature, the signals received at PZT 2 and PZT6 undergo 

changes in the time of arrival and the energy content. The contours of ε   

shown in Fig. 5.9 also show that there was ε   concentration beyond the mid 

height of the beam in the A1R2 transmission path for all four CMOD levels. 

There is an increasing level of material discontinuity in the propagation path 

produced by the crack after each load cycle. Correspondingly, there is a larger 

decrease in the amplitude and a larger increase in the arrival time in the 

received signals. After the first load cycle, the crack was not visually apparent 

and was only detected from the displacement discontinuity recorded using 

DIC. From the crack opening width as a function of height shown in Fig. 

5.10b, for a CMOD equal to 50 µm, the crack propagating depth was 86 mm 

from bottom of the beam and the crack opening displacement at the mid-

height in the loaded configuration was 12µm. The crack propagated beyond 

the direct wave path of A1R2 (actuating PZT1 and receiving PZT2) even at 

the CMOD equal to 50µm.  

Typical electrical conductance spectra recorded from the six PZT patches 

bonded at different locations on the beam specimen 2 are shown in Fig. 5.13. 

Distinct resonance modes are clearly identified with peaks in the spectra. The 

relative locations and amplitudes of the peaks in the conductance spectra are 

relatively constant. The variations in the absolute values of amplitudes and 

the center frequencies of the individual peaks are due to variations in the 

properties of the individual PZT patches and the thickness of the epoxy used 

for bonding the PZT patch to the concrete substrate. The first and the second 

resonance peaks are centered on 120 kHz and 250 kHz, respectively. The peaks 
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of resonance have previously been shown to be sensitive to changes in substrate 

compliance within their respective zones of influence [Chapter 4]. The zones of 

influence for the first and the second resonant peaks for 1 mm thick, 20 mm 

square patches have been shown to be 100 mm and 75 mm, respectively. The 

local peaks on the first resonant peak are identified with the influence of the 

boundary of the specimen, which is within its zone of influence [Chapter 3]. 

The presence of distributed damage, which influences the mechanical 

impedance of the substrate in the zone of influence has been shown to produce 

changes in the amplitude and center frequency of the resonant peak.  

 

 

Figure 5. 13: Conductance spectra recorded from the PZT patches 

The electrical admittance measurements were recorded from the PZT patches 

in the unloaded state. The electrical conductance spectra over frequencies 

centered on the first and second peaks for PZT2 and PZT5 (50mm away from 

notch) and PZT3 (180mm away from notch) are shown in Fig. 5.14. The 

electrical conductance obtained from the PZTs centered on the first resonant 

peak are shown in Fig. 5.14 a, b, c. A change is noticed in the EI response of 

all the PZTs. As the crack is located away from the zone of influence of first 

peak for PZT 3, the changes are minimal. For PZT 2 and PZT5, there are 

irregular changes identified in the local peaks due to the presence of the 
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material discontinuity within the zone of influence of the first peak of the 

PZTs. 

The electrical conductance obtained from the PZTs centered on the second 

peak are shown in Fig. 5.14 d, e, f. There were no changes in the second peak 

of EI response of PZT 3 since the crack lies outside its zone of influence 

[Chapter 3]. There are small changes in conductance signatures centered on 

the second resonant peak for PZT2 and PZT5 at the different levels of CMOD 

as the crack passes through the zones of influence. The measurements from 

DIC indicated that the crack was very localized while the material away from 

the localized zone had no damage. Considering no visible distributed damage, 

the presence of localized damage within the zone of influence does not appear 

to significantly influence the mechanical impedance offered by the concrete 

medium to the motion of the PZT in the second resonant mode. The second 

resonant mode is therefore not sensitive to the presence of a localized material 

discontinuity produced by a stress-induced crack in concrete.  
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(a) (b) (c) 

 

(d) (e) (f) 

Figure 5. 14: Conductance spectra close to first peak at different CM OD levels 

of (a) PZT 3 (b) PZT 2 (c) PZT 5. Conductance spectra close to second peak at 

different CM OD levels of (d) PZT 3 (e) PZT 2 (f) PZT 5. 

 

5.5 Analysis of Results  

The experimental studies conducted on the beam at different levels of CMOD 

indicate that there is a consistent change in the recorded parameters induced 

by the localized crack. A quantification of the observed changes is performed 

to identify the changes in the wave characteristics and the EI measurements 

produced by the presence of the localized crack in the medium. In the AR 

measurements, the changes are observed in the time of flight of stress wave 

arrival and in the amplitude of stress wave. Percentage changes in the time of 

flight (TOF) and the attenuation factor (A(f)) were used to quantify the 

changes in the received signal. Changes in the conductance signature at the 

resonance peaks of the EI response were quantified using the root mean square 

deviation (RMSD). 
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The changes in propagation path of stress wave due to material discontinuity 

produce changes in the time of flight (TOF) of the received signal. The 

percentage (%) change in the time of light (TOF) at each levels of CMOD was 

calculated using equation 5.2, where (𝑇𝑂𝐹)𝑑 is the TOF at different CMOD 

and (𝑇𝑂𝐹)0 is the TOF at zero CMOD. Time of flight of the signals were 

calculated using voltage thresholding technique where a threshold value (5 V) 

was set for the signal and the time at which the received signal crosses 

threshold is taken as TOF. The threshold voltage was set based on maximum 

voltage of noise present in the signal. 

∆𝑇𝑂𝐹(%) =
[(𝑇𝑂𝐹)𝑑−(𝑇𝑂𝐹)0]

(𝑇𝑂𝐹)0
∗ 100 (5.2) 

The percentage change in the time of flight (TOF%) for the different AR 

pairs are plotted as a function of the different stress-induced crack opening at 

the mid-height of the beam in Fig. 5.15. The physical crack opening at the 

mid-height location of the beam determined using DIC are used for the plot. 

The values corresponding to reverse excitation of PZTs are avoided since there 

was no change in the TOF. After the first cycle of loading, for unloading from 

a CMOD equal to 50µm, there is a change in TOF in the received signals at 

the different PZTs. In the AR pairs, where the wave path did not intersect 

the crack registered no change in TOF. From the DIC measurements it was 

established that even at a CMOD equal to 50µm, the crack had propagated to 

a depth of 86mm above the notch. The physical opening at the mid-height was 

determined to be 12µm. In the subsequent load cycle when the relative value 

of CMOD was equal to 100µm, 250µm and 450µm there is a further increase 

in the TOF for in the AR pairs with signal path crossing the crack (A6R5, 

A1R3, A3R4. A4R6, A3R5 and A1R6). 

Percentage change in TOF for transmission paths A3R2- A2R4- A4R1, which 

connect PZTs located at mid-height, are plotted for the different stress-

induced crack opening in the stress wave path in Fig. 5.15b. There is no change 
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on the TOF measured in the signal path A3R2, A4R1. In the path A2R4 there 

is consistent increase in TOF with an increase in the stress induced crack 

opening. The stress induced crack in concrete produces a material 

discontinuity in the material, which is associated with a physical opening 

under applied loading. The discrete crack present in the concrete is also very 

localized and does not produce any additional strain or damage in the bulk of 

the medium. Changes in the time of flight of the received signal are therefore 

attributed to the changes in propagation path produced by the crack. The 

percentage (%) change in the time of light (TOF) therefore provides a reliable 

parameter for detecting changes in the transmission of the stress wave due to 

the discontinuity in the material medium produced by a localized crack in 

concrete.  

 

 

(a) (b) 

Figure 5. 15: (a) Percentage Change in TOF at different CM OD values. (b) 

TOF for transmission paths A 3R 2, A 2R 4 and A 4R 1 

A comparison between the actuated signal and the received signal prior to 

initiation of loading indicates that there is significant attenuation in the path 

of wave. When one PZT pair is used in the AR mode it is of interest to 

determine the additional attenuation produced by the material damage. The 

influence of attenuation produced by the materials, concrete and epoxy, have 
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to be separated to determine the effect of a crack in the wave path. In the case 

of array of sensors, the changes in the received signals due to the propagation 

of crack are nonlinear in nature and the degree of non-linearity varies in 

between the PZTs depending on the distance between actuator and sensor, 

depth and width of crack. In an array of sensors where comparison among 

different transmission paths are necessary to identify the location and the 

severity of the crack, a new damage index known as Attenuation factor (𝐴(𝑓)) 

was introduced in the analysis which can self-compensate all the intervening 

effects such as properties of PZTs, amplitude of the resonance frequencies of 

PZTs, epoxy concrete interface losses and length of propagation path by 

normalizing them in frequency domain. The signal processing in the AR mode 

consisted of determining the attenuation factor, A(f). Attenuation factor 

(𝐴(𝑓)) was calculated by using the conversion of non-reflected time domain 

signal obtained from sensor to the corresponding frequency domain. The initial 

26 µs (length of actuating signal) signal starting from time of flight of the 

received signal was taken as the non-reflected signal as shown in the Fig. 5.16a. 

The typical FFT of non-reflected time domain signal with the corresponding 

half power bandwidth was shown in Fig. 5.16b. 

The sensor signal in the time domain can be expressed as, 

𝑟𝑠=𝑎𝑠 ∗ 𝑙𝑒𝑎 ∗ 𝑙𝑠𝑝 ∗ 𝑙𝑒𝑠 (5.3) 

where 𝑟𝑠 is the received  signal,  𝑎𝑠 is the actuating signal, 𝑙𝑒𝑎, 𝑙𝑒𝑠 are the signal 

losses due to epoxy at concrete-beam interfaces for actuator and sensor, 𝑙𝑠𝑝 is 

the loss due to signal path, and ‘∗’ is the convolution operator. 

Since the computation of 𝐴(𝑓) is performed in the frequency domain, the 

sensor signal at zero CMOD (𝑟𝑠(𝑓)0)  and at different CMOD levels 

(𝑟𝑠(𝑓)𝑑) can be expressed as, 

𝑟𝑠(𝑓)0 =𝑎𝑠(𝑓). 𝑙𝑒𝑎(𝑓). 𝑙𝑠𝑝(𝑓). 𝑙𝑒𝑠(𝑓) (5.4) 

𝑟𝑠(𝑓)𝑑 =𝑎𝑠(𝑓). 𝑙𝑒𝑎(𝑓). 𝑙𝑠𝑝(𝑓). 𝑙𝑒𝑠(𝑓).𝐿𝑑(𝑓) (5.5) 
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where  𝐿𝑑(𝑓) is signal loss due to crack. 𝐿𝑑(𝑓) is calculated from equation 5.4 

and 5.5 as, 

𝐿𝑑(𝑓)  = (
𝑟𝑠(𝑓)𝑑

𝑟𝑠(𝑓)0
)
𝑓1,𝑓2

 (5.6) 

𝐴(𝑓)  = 𝐴𝑣𝑔. (𝐿𝑑(𝑓))𝑓1,𝑓2
 (5.7) 

𝑟𝑠(𝑓)0, 𝑟𝑠(𝑓)𝑑 are the magnitude of FFT corresponding to a frequency in the 

bandwidth of the of the received non-reflected time domain signals (26 µs) 

FFT peak which is ranging from 𝑓1 𝑡𝑜 𝑓2 (Fig. 5.16b). 𝐴(𝑓) is calculated as the 

average of 𝐿𝑑(𝑓). 

 

 

(a) (b) 

Figure 5. 16: (a) Non-reflected signal (26 µs) (b) FFT of the received non-

reflected time domain signal (26 µs) 

Attenuation factor (𝐴(𝑓)) is calculated for all the received signals using 

equation 7 and is shown in Fig. 5.17a. There is a considerable decrease in the 

𝐴(𝑓) for the transmission paths which encounters the crack, even at the stress-

induced physical opening of 12µm at the mid-height of the beam. The decrease 

in the attenuation factor values were high for signals received from PZTs 

placed at the soffit of the beam when compared with values of the signals 

received at the PZTs place at the center of the beam. This is can be explained 

considering the crack opening in the direct stress wave propagation between 

an AR pair. The crack width opening along the depth of a specimen at different 
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values of CMOD is shown in Fig. 5.10b. The signals received at the PZTs 

placed at the soffit of the beam experienced a higher attenuation because of a 

larger physical discontinuity in the direct path connecting the actuator to the 

receiver. There is a complete attenuation of direct stress wave when the 

physical discontinuity reaches a value of 200µm. This indicates that when the 

physical separation between the crack faces is on the order of 0.2mm, there is 

no direct transmission of direct stress waves centered on 120 kHz. There is no 

change in the attenuation factor even at very large crack openings for the 

transmission paths which do not encounter crack.  

The changes in 𝐴(𝑓) are only due to the changes in characteristics of discrete 

crack such as depth and width of crack, irrespective of length of signal 

transmission path. The changes in attenuation factor corresponding to the 

transmission paths which encounter a physical opening produced by a stress-

induced crack and pass through center line of beam (actuator and receiver 

located in the mid height of the beam) are shown in Fig. 5.17b. For the PZTs 

mounted at the mid-height, the stress wave paths linking the AR pair which 

cross the crack plane the 𝐴(𝑓) is identical. It can therefore be concluded that 

the observed 𝐴(𝑓)  in these cases is only due to the magnitude of the physical 

discontinuity produced by the crack. The similarity in the trends of changes 

in attenuation factor irrespective of length of signal transmission path also 

suggests that the attenuation factor only depends on the severity of crack 

irrespective of all other intervening effects. The 𝐴(𝑓), therefore provides an 

effective way to analyze the received signals to detect changes introduced by 

material discontinuity in the stress wave path. The opening displacement 

produced by a stress induced crack creates a physical discontinuity in the 

material medium. The 𝐴(𝑓) is sensitive to a physical discontinuity in the 

concrete medium even in the unloaded state associated with a stress induced 

crack opening on the order of 10µm. The physical discontinuity in the concrete 
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associated with a stress-induced crack opening on the order of 200µm produces 

a complete attenuation of the stress wave.  

 

(a) (b) 

Figure 5. 17: (a) Attenuation factor (𝐴(𝑓)) at different CM OD values (b) 𝐴(𝑓) at 

different transmission paths 

A damage index derived from the RMSD is used to calculate the difference 

between the conductance signatures recorded for different crack openings. The 

RMSD with respect to the baseline measurement (zero CMOD) were 

calculated in the frequency range of the bandwidth for first and second 

resonant peaks using equation 5.8, where, 𝑥𝑖 and 𝑦𝑖 are the values of baseline 

conductance and conductance at different CMOD levels and N is total number 

of frequencies in the bandwidth of the corresponding peak. 

RMSD = √
∑ (𝑦𝑖− 𝑖)

2𝑁
𝑖=1

∑ ( 𝑖)
2𝑁

𝑖=1

 (5.8) 

Damage index based on RMSD for PZTs of different positions is shown in Fig. 

5.18a. The damage index was calculated using the frequency range of the 

bandwidth for second resonant peak. PZT3, which located 180 mm from the 

crack location registered a small change in the RMSD with increasing crack 

opening. PZT2 and PZT5, which are bonded on the face and the soffit, 

respectively at the distances of 50 mm from the beam centerline show an 

increase in the RMSD with increasing CMOD. Fig. 5.18b shows the RMSD 
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calculated using first resonance peak in the frequency range of bandwidth. 

PZT3 is showing same RMSD trend as for second peak. There is a larger 

increase in value for RMSD at all CMOD values for PZT2 and PZT5 when 

comparing with RMSD of the second peak. The scatter in the RMSD values 

may be attributed to the irregular trend in the local peaks present on first 

resonance peak of the PZT.  

 

  

(a) (b) 

Figure 5. 18: RM SD (%) (a) second resonance peak (b) First resonance peak 

The measured RMSD detects changes in the first cycle while the changes in 

the subsequent load cycles are not significant. The measurements indicate 

changes in the material medium within the zone of influence produced by the 

discontinuity introduced by the crack. The discontinuity in the unloaded state 

represents the physical separation introduced in the material due to the stress-

induced crack opening. The RMSD values indicate that the EI measurement 

is very sensitive in detecting the discontinuity more than the magnitude of the 

discontinuity. EI measurement would therefore provide a very sensitive 

measure of crack initiation in concrete. 

5.6 Summary and Findings 

A combined local and distributed monitoring system for concrete structures 

using an array of surface mounted PZT patches is presented. EI measurements 

from individual PZT patches are used for local monitoring while the through-
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transmission stress wave propagation technique is used for distributed sensing. 

Progression of discrete crack in concrete was evaluated using a full-field 

displacements measured on the surface of the beam obtained with the use 

digital image correlation and was correlated with measurements obtained from 

the PZT patches. The crack opening is mapped from a very small value on the 

order to 10µm to 200µm. The material away from the localized discontinuity 

produced by the crack is shown to relatively free from any damage.  

Both the EI and the stress-wave propagation techniques are shown to be 

influenced by discontinuity in the concrete substrate produced by a stress-

induced crack. The impedance measure is not very sensitive to localized 

damage in the form of a load induced crack. The very localized material 

discontinuity does not affect the mechanical driving point impedance 

experienced by the PZT. A new damage index known as attenuation factor is 

introduced for the wave propagation technique. The attenuation factor is 

shown to be an effective damage index for detecting the severity of 

discontinuity produced by a crack. The attenuation factor is shown to 

determine attenuation of the wave produced by the discontinuity encountered 

by the direct stress wave, independent of the length of propagation. The 

attenuation measurements were performed in the unloaded state, where the 

removal of the load results in closing of the crack. The through transmission 

of direct stress wave through the medium is very sensitive to the presence of 

a discontinuity left in the medium resulting from a stress-induced crack in its 

path. There is an attenuation of the wave even for a physical discontinuity in 

the concrete in the stress free state associated with a small stress-induced crack 

opening on the order of 10µm. There is a complete attenuation of the direct 

stress wave transmission at 120 kHz for physical discontinuity in the concrete 

associated with a stress-induced crack opening on the order of 200µm.  
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The measurements from the PZT patches indicate that the localized 

discontinuity in concrete produced by a stress induced crack is easily detected 

using the attenuation factor from the direct stress wave transmission path. 

The stress-induced crack has considerable crack closing stresses provided by 

aggregates bridging the crack. The discontinuity in the unloaded state 

represents the physical separation introduced in the material due to the stress-

induced crack opening. The cracks which would have propagated due to 

overloads, but are closed due to removal of the loads can therefore be easily 

be detected using attenuation factor measurements. This provides a very 

convenient measure for monitoring increment of damage due in the material. 

Further, crack opening on the order of 200µm under service loads is often 

stipulated for durable design. The attenuation factor from distributed sensing 

provides for monitoring discontinuity in the material medium even in the 

unloaded state, when the crack is not visually detectable. The creating of the 

discontinuity would also be reflected in the EI signature if the discontinuity 

lies within its zone of influence. Service load condition of the concrete structure 

can therefore be monitored conveniently using combined EI and AR modes of 

an array of PZT patches. 
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Chapter 6 

 

Conclusions and Future Work 

   
 

A systematic approach is developed for local and distributed health monitoring 

for concrete structures using an array of surface mounted PZT patches. A 

combined damage monitoring approach where the Electrical Impedance 

measurement from individual PZT patches are used for local monitoring while 

the through-transmission stress wave propagation technique is used for 

distributed sensing is presented. The main contributions of this work are: (a) 

A methodology for assessing the zone of influence of surface mounted PZTs in 

Electro Mechanical response of a PZT patch obtained using the EI 

measurement is developed; (b) A theoretical frame work is developed to 

decouple the effect of stress and damage from the EI response of the bonded 

PZT; (c) Development of a procedure for accurately monitoring physical 

discontinuity on the order of 10 m using stress-wave propagation; (d) 

Development of an integrated methodology for monitoring concrete structures 

using an array of PZT sensors for local and distributed sensing.  

6.1 Key findings and conclusions  

Coupled Electromechanical Response of a PZT Patch Bonded to Concrete 

A study on the influence of the material properties and substrate size on the 

Electrical Impedance response of a PZT patch bonded to concrete is 

conducted. The electrical measurement obtained from the coupled dynamic 

electromechanical (EM) response of the PZT patch bonded to a concrete 
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substrate is derived using an approach which combines experimentation with 

numerical simulations. A fundamental understanding of the electrical 

conductance spectrum is obtained and the resonant behaviour in the dynamic 

electromechanical response of the PZT patch is established. The resonant 

modes in the dynamic electromechanical response of the bonded PZT patch 

exhibit a dependence on the size of the substrate. The resonant peaks in the 

dynamic response of the structure are superimposed on the resonant response 

of the PZT. For each resonant mode of the bonded PZT patch, a finite zone 

of influence where there is an influence of the boundary on the resonant 

behaviour of the bonded PZT patch, is identified. The zone of influence is 

larger for lower frequency modes and smaller for high frequency modes. If the 

size of the substrate is larger than the zone of influence at a given frequency 

of measurement, the dynamic response of the PZT patch would depend only 

on the material properties of the concrete medium.  

Effect of substrate stress and damage on EI response of coupled PZT 

The effect of substrate stress and damage on the coupled response of the 

bonded PZT was evaluated using tests conducted on concrete specimens under 

loading-unloading conditions. Damage in concrete is associated with a decrease 

in the mechanical impedance of the substrate. Increasing damage is shown to 

produce decrease in the mechanical impedance and an associated increase in 

the material damping. Both effects result in a decrease in the magnitude and 

the frequency of the resonant peak of the PZT in the electrical conductance 

spectrum of the bonded PZT. Imposed strain resulting from stress in the 

substrate produces changes in the resonant peak which are counteracting to 

the influence of damage. At low levels of damage, the counteracting effects of 

stress and damage do not show any significant changes in coupled resonance 

frequency of the bonded PZT. The centroidal shifts of the normalized electrical 

conductance spectrum of a bonded PZT allows to decouple the effect of 
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imposed strain on PZT and change in compliance of the substrate due to 

damage induced changes in the electrical conductance spectrum of bonded 

PZT patch.  

PZT sensor array for continuous monitoring of concrete structures 

A combined local and distributed monitoring system for concrete structures 

using an array of surface mounted PZT patches is investigated. The EI 

measurements from individual PZT patches are used for local monitoring while 

the through-transmission stress wave propagation technique is used for 

distributed sensing. The electrical impedance measure was found to be not 

very sensitive to localized damage in the form of a load induced crack since 

the material away from the localized material discontinuity is not effected. 

The mechanical driving point impedance experienced by the PZT is not 

significantly influenced by a localized tension crack in the medium. A 

frequency domain based damage index known as attenuation factor which is 

independent of wave transmission paths is developed to interpret the stress 

wave data collected from different actuator and receiver pairs of PZT. The 

attenuation factor is shown to be an effective damage index for detecting the 

severity of the discontinuity produced by a crack. The physical discontinuity 

produced in the material due to a stress-induced crack of 10m on unloading 

is sensitively detected. 

6.2 Future Work  

The findings presented in previous section sets the basis for future work on 

developing theoretical and experimental methodology for effective health 

monitoring system for concrete structures. The directions of future work which 

arise from this work are listed below. 

1. A relation between the elastic constants and level of damage of the 

substrate for surface mounted PZT can be established using the concept 

of zone of influence developed here. 
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2. The non-linear part of the transmitted stress waves has to be further 

analyzed to infer more details about damage in concrete structures. 

3. The methodology developed here can be extended to investigate the 

effect of embedded PZT sensors for stress and damage monitoring in 

concrete structures. 

4. Studying the environmental effects on the coupled EI response for 

implementing the presented monitoring methodology to real structures. 

5. Changing the baseline based damage index to baseline free damage 

index method for quantifying damage. 
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