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Abstract

Light has traditionally been used for making objects visible to the naked eye. Lately,

there has been tremendous interest in using it for free space communication. This

has simultaneously been accompanied by significant interest in light emitting diodes

(LEDs) that have been replacing conventional light sources in almost all applications

like television, traffic lights, homes and offices etc. LEDs are better than existing

incandescent lamps in terms of long life expectancy, high tolerance to humidity, low

power consumption, and minimal heat generation. Fair amount of existing literature

has focused on achieving uniform irradiance over a planar surface [1–7]. This has

been addressed as the problem of finding the optimal LED geometry at the light

source to achieve uniform irradiance. Several computationally intensive optimization

routines like evolutionary, genetic algorithms were used for power allocation for the

LED sources to realise uniform irradiance on the incident surface.

The most practical scenario would be the case when the LEDs are placed randomly

at the source with uniform illumination being achieved through power allocation,

keeping the total power constant. This is addressed as the first problem in this thesis

by considering a binomial point process (BPP) based stochastic geometry. Further, a

simple meta-heuristic power allocation scheme is proposed for uniform irradiance on

the incident surface. Power allocation is done by maximizing a metric for uniformity

of the signal to noise ratio (SNR) at the output of the photo-detector.

The performance of a stochastic visible light communication (VLC) system based

on a BPP with a heuristic power allocation scheme to provide uniform irradiance is



analyzed in terms of bit error rate (BER). By intelligently using various approxima-

tions, an analytical expression for the BER for the BPP based VLC is obtained . This

expression is then used to numerically obtain the optimum number of LEDs required

for a stochastic VLC system. Such results for VLC are rare and usually restricted to

light sources with a fixed geometry. The asymptotic BER for a circular BPP VLC is

obtained in closed form and found to be numerically close to that for a square BPP.

The BER expression is used to estimate the cost of the VLC system in terms of the

number of LEDs required for optimum system performance.

While a BPP based stochastic model is a powerful tool for resource allocation for

VLC, it is useful to consider power allocation for a VLC based on a single realization

of a stochastic point process. Here, a Matern type II hard-core point process (HCPP)

is desirable, since it accounts for minimum separation between any two LEDs for

better coverage. This is the focus of the next problem addressed in the thesis. The

variance of the power on the receiver plane is used as an objective function. Under

some conditions, this function is shown to be convex, allowing for optimum power

allocation. Through numerical results, it is shown that this approach is superior to

existing techniques for power allocation.
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Chapter 1

Introduction

Optical Wireless communication (OWC) is a general term which refers to all types

of optical communications like VLC, free space optics (FSO), light fidelity (Li-Fi)

and infra-red. VLC is a subset of optical wireless communications technologies. VLC

uses visible light spectrum between 400 and 800 THz (780–375 nm) as a medium for

communication.

A design of new communication technologies is crucial to overcome the drawbacks

of the RF communication systems. VLC serves the purpose in overcoming them.

VLC systems employ visible light for communication that utilize the spectrum from

375 nm to 780 nm resulting in bandwidth of 400 THz. This spectrum is non-licensed

and approximately 104 times the radio frequency (RF) spectrum solving the problem

of bandwidth limitation in RF. Unlike RF waves, the light cannot penetrate through

walls and thus, it is immune to security issues that arises in the RF communication

systems. The increase in RF power beyond a certain threshold would result in health

issues to humans. A regulatory body is administered to standardize and control the

RF power and spectrum. In VLC, the power used for illumination also serves the pur-

pose of communication as well. A rise in optical power results in higher illumination

and this can be seen by the eye which enables people to respond accordingly.

1.1 Related Work

There has been tremendous interest in using it for free space communication [8]. This

has simultaneously been accompanied by significant interest in light emitting diodes

(LEDs) that have been replacing conventional light sources in almost all applica-

tions [9–11]. LEDs are better than existing incandescent lamps in terms of long life

expectancy, high tolerance to humidity, low power consumption, and minimal heat
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generation. Fair amount of existing literature has focused on achieving uniform ir-

radiance over a planar surface [1–3, 12], beginning with the problem of finding the

optimal LED geometry at the light source to achieve uniform irradiance [4]. This

was done by using the irradiance distributions at the closest points on the incident

surface. The case of LEDs using a free-form lens with a large view angle has been

considered in [13]. More literature on similar themes is available in [14, 15]. In [16],

the properties of white LEDs were studied and shown to be useful for indoor optical

transmission. More literature on using white LEDs for communication is available

in [17–20].

Some of the above literature has focused on a regular geometry with equal power

allocation to individual LED sources. While uniform illuminance is desirable, opti-

mal power consumption is an extremely important factor in the design of LED light

sources. To address this, recent literature has focused on power allocation, along with

flexiblity in the LED source geometry to achieve uniform irradiance [5, 6, 21, 22].

Several power allocation schemes have been proposed to achieve uniform irradi-

ance for visible light communication (VLC) applications [5,6,21,22]. A trial and error

approach for power allocation for uniform irradiance is used in [21] for a combination

of circular square geometry in order to illuminate the edges of the incident surface.

An evolutionary algorithm based optimization scheme is proposed in [6] to modify

the power of LED transmitters to reduce the signal power fluctuation at the receiver.

In [5], a genetic algorithm is proposed to optimize the refractive indices of the con-

centrators on receivers to achieve a uniform distribution of the received power. An

optimal LED arrangement to achieve uniform irradiance is investigated as a convex

optimization problem in [22]. The optimization of the location of an irregular LED

array for uniform irradiance is discussed in [7, 23].

1.2 Research Contributions of This Thesis

• A simple heuristic power allocation scheme is proposed for a random LED array

to obtain uniform irradiance on the receiver plane. This is done by consider-

ing a binomial point process (BPP) for modeling the LED location and using

the quality factor as a performance metric. Numerical results are provided to

validate the proposed model and demonstrate its simplicity over existing LED

geometries.

• Once it is established that BPP modeling can achieve uniform illuminance in an

2



average sense, we analyzed the BER performance of VLC for a BPP model. A

theoretical closed form approximation for the asymptotic bit error rate (BER)

is obtained and used for estimating the cost of the visible light communication

(VLC) system in terms of the number of LEDs as well as the power required

for satisfying the system performance requirements.

• There are some scenarios where LED sources in a VLC system cannot be placed

at certain locations due to design restrictions. Such cases can be modeled by

approximating the square BPP with multiple non-overlapping circles. This pro-

cess is referred as circle-square BPP. We present the BER performance analysis

of circle-square BPP and compare it with square BPP.

• While we have established the uniform illumination in the average sense, it

would be interesting to find the optimum power allocation for a single realization

of a random geometry. So an optimal power allocation scheme is proposed

to achieve uniform illuminance. Regular arrays and random geometries are

considered for an arrangement of the source LEDs. Uniform illuminance is

accomplished by considering the variance of the received power on the receiver

plane as a metric and framing it as a convex optimization problem. Numerical

results show that the quality factor of random geometries are superior to fixed

geometries. While preserving uniformity, the cost of the system can be reduced

when random geometries are used.

1.3 Thesis Organization

The overall operation of a general LED based VLC system and relevant background

information is discussed in chapter 2. In chapter 3, we present heuristic based power

allocation scheme for a random LED array. Further analysis of BER performance for

a VLC system using BPP model is discussed in chapter 4. Further BER performance

analysis of circle-square BPP model is presented in chapter 5. We address the op-

timum power allocation for a single realization of a random geometry in chapter 6.

The final conclusions and future research scope is discussed in chapter 7.
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Chapter 2

System Model

2.1 Operation of Visible Light Communication Sys-

tem

Let us understand how the VLC system communicates with a simple example of

transmitting data in form of digital signals ’0’s and ’1’s. An ordinary light is used to

send the data. It is turned on when ’1’ is to be transmitted and turned off when ’0’

is to be transmitted. But when ’0’ is transmitted the light is turned off, it doesn’t

meet the purpose of illumination. Now if the light is switched on and off continuously

at high rate, then the light appears to be constant. It serves the purpose of both

illumination and communication at the same time. A human eye can perceive this

flickering effect upto a frequency of 100 to 120 Hz. The fluorescent lamps or ordinary

lamps can transmit signals at 10 Kbps and light-emitting diodes (LEDs) can reach

upto 500 Mbps.

2.1.1 Propagation of Light from LED

Using the Lambertian radiation pattern to model the LED radiant intensity, [10, 11]

Ro (φ) =
(m+ 1) cosm (φ)

2π
, (2.1)

where φ is the angle of incidence of light on the surface and m is the order of Lam-

bertian emission, with φ 1
2
being the LED semi-angle at half power, provided by the

manufacturer.

In Fig. 2.1, the transmitter emits an axially symmetric radiation pattern described

by the radiant intensity PtRo (φ). A receiver located at a distance d at an angle φ with

4



ψ 1
2

θ

φ

Photo− detector

LED

Receiver plane

Transmiter plane

Figure 2.1: Propagation model

respect to (w.r.t.) transmitter the irradiance is PtRo(φ)
d2

. Ignoring reflection losses, a

detector achieves an effective signal-collection area of

Aeff = A cos (θ) (2.2)

where A is the detector physical area and θ is the angle of incidence with respect to

the receiver axis. The power received at the receiver is given by

Pr =
PtRo (φ)Aeff

d2
(2.3)

The parameter that characterizes the channel is DC channel gain which can then be

expressed as [10, 11]

H =
Ro(φ) cos(θ)A

d2
=

(m+ 1) cosm (φ)A cos(θ)

2πd2
(2.4)

where d is the distance between the LED and the photo-detector, A is the physical

area of photo-detector, and θ is the inclination of the photo-detector to the incident

surface.

2.1.2 Transmitters

A huge opportunity for VLC is created because of the widespread use of LEDs. LEDs

are semiconductor devices that can switch at very high speeds that was not possible

with fluorescent and incandescent lamps. The low cost, lesser power consumption,

longer lifetime, smaller size, and less heat dissipation are the additional features of

LEDs. The LEDs are chosen as the transmitters or light sources in VLC because of

the above listed advantages.
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L

DD

Photo-detectors

LED Sources

Figure 2.2: Realization of BPP with 16 LEDs

2.1.3 Receivers

In the typical VLC, the light is detected using a photo-diode and then converted into

a electrical signal. In case of mobility, the image sensor can be used in place of a

photo-diode because of its larger field-of-view (FOV). The drawback of image sensors

are more power consuming and slow operating. Image sensors are available in all the

handheld smart phone devices this drives towards adopting to VLC systems at no

additional cost.

2.2 Trans-receiver Model

Consider the random source geometry generated using a BPP for N = 16 LEDs as

shown in Fig. 2.2. The photo-detectors lie in a plane parallel to the LED array plane.

The optical signal transmitted by the ith LED of the VLC in Fig. 5.1 is given by [21]

pi(t) = Pti [1 +MIxi(t)] , (2.5)

6



Table 2.1: System Model Parameters.

Symbol Description

P =
∑N

i=1 Pti Total power allocated to the
source

ri Distance of the ith LED from the
centre of the square in Fig. 1

Hij =
(m+1)A cosm(φ) cos(ψ)

2πd2
ij

Propagation loss with distance

m =
ln( 1

2)

ln

(

cos

(

φ 1
2

)) , Order of Lambertian emission

R Responsivity

φ = cos−1 h
d

Angle of incident light

ψ Inclination of the photodetector
to the incident surface

where, Pti is the transmit power at the ith LED, xi is the corresponding mod-

ulating bipolar OOK signal and MI is the modulating index [24]. Here the former

term (Pti)in (2.5) takes care of illumination while the latter (PtiMIxi) is for commu-

nication. After photo-detection, assuming that the DC component of the detected

electrical signal is filtered out at the receiver, the received signal at photo-detector j

is given by

yj = RPrj + nj (2.6)

where

Prj =

N
∑

i=1

HijPtiMIxi (2.7)

All the above parameters are defined in Table 2.1. More details are available in [21,25].

The BPP in Fig. 2.3 represents the possible distribution of LEDs at the source. The

square in all the figures in Fig. 2.3 has edge L. All the LEDs are located vertical to

the plane where the photo-detector is placed.

2.2.1 Noise at the photo-detector

The noise at the photo-detector is the sum of the contributions from shot noise and

thermal noise, and expressed as [26]

σ2
j = σ2

shot + σ2
thermal, (2.8)
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Table 2.2: Sample noise parameters

Parameters Symbol Configuration

Boltzmann constant k 1.38064852×
10−23m2kgs−2K−1

Electronic charge q 1.60217662× 10−19C

Area of Photo-detector A 10−4m2

Fixed capacitance of
photo-detector

η 112pF/cm2

Responsivity R 1A/W

Noise bandwidth BN 100MHz

Background current Ibg 5100µA

Noise bandwidth factors I2, I3 0.562, 0.0868

Absolute temperature Tk 295K

Open-loop voltage gain G 10

FET channel noise factor Γ 1.5

FET trans-conductance gm 30mS

where

σ2
shot = 2qRPrjBN + 2qIbgI2BN ,

σ2
thermal =

8πkTk
G

ηAI2B
2
N +

16π2kTkΓ

gm
η2A2I3B

3
N

(2.9)

with the parameters defined in Table. 2.2.

2.2.2 Modulation technique

The modulation scheme employed for performance analysis is On-Off Keying (OOK).

In VLC, the power to the LED transmitter is modulated to transmit ’1’s and ’0’s.

Since the power is always non-negative, unlike conventional digital modulation tech-

niques. The modulated signal is Pt(1 + xi), xi assumes bipolar symbols +1 and -1

for bits ’1’ and ’0’ respectively. This power drives the source LEDs which results a

change in intensity and hence the name intensity modulation (IM)

2.2.3 Detection technique

The receivers used for detection are photo-diodes. The photons emitted by light

sources hits the photo-diode, electron-hole pairs are created in the depletion region

of the photo-diode. This mechanism is called as the inner photoelectric effect. The
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holes in the depletion region move towards the anode, and electrons move towards the

cathode producing a photocurrent. Thus the photo-diode converts the optical energy

into electrical signal. This is known as direct detection (DD). Note that if multiple

sources transmit the signal, the signal at photo-detector is the sum of all the received

signal from individual sources.

2.3 Point process

A point process is a collection of points randomly located on the space such as the real

line, the Cartesian plane etc.. Point processes or stochastic processes is a powerful

tool in statistics for modeling and analyzing spatial data. These point processes are

frequently used as models for random events in time like location of base stations in a

telecommunication network. Generally the point processes depends on some random

measure. If the random measure follows a Poisson random variable, such a process is

called Poisson point process (PPP). The average density of the points in the Poisson

process located in some space is constant, then the resulting point process is called a

homogeneous or stationary Poisson point process.
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(a) Square BPP
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(b) Circular BPP (c) HCPP

Figure 2.3: Arrangement of N = 16 LEDs for different geometries.

2.3.1 Square BPP

The square BPP in Fig. 3.1b provides a realistic distribution of light sources in an

indoor environment, where N LEDs are placed randomly within a square of edge L at

the points (an, bn) : an, bn ∼ U (−L/2, L/2) , ∀n = {1 · · ·N}, according to a uniform

9



distribution U defined by

fU (u) =











1
L

−L
2
≤ u ≤ L

2

0 otherwise
(2.10)

2.3.2 Circular BPP

The circular BPP in Fig. 3.1d provides a reasonable approximation to the square

BPP in Fig. 3.1b, where N LEDs are placed randomly within a circle of radius Rc

at the points (an = rn cos θn ,bn = rn sin θn) : θn, rn, according to distributions Θ,R
defined by the probability density functions (PDF)

fΘ (θ) =











1
2π

0 ≤ θ ≤ 2π

0 otherwise
(2.11)

fR (r) =











2r
R2

c
0 ≤ r ≤ Rc

0 otherwise
(2.12)

where Θ is a random variable distributed uniformly between (0, 2π) and fΘ is the

corresponding probability density function (PDF) and R is a random variable dis-

tributed between (0, Rc) and fR is the corresponding PDF. Though the BPP process

captures the uniform distribution of LEDs, each realization of the process may result

in two LEDs at the same location leading to high interference. This can be avioded by

ensuring a minimum separation between the LEDs. Matern is one such point process.

2.3.3 Matern process of type II

The HCPP in Fig. 2.3c resembles the possible distribution of LEDs at the source.

In this point process, points are generated from a stationary parent Poisson point

process (PPP) of intensity λppp and a random mark is associated with each point,

and a point of the parent Poisson process is deleted if there exists another point

within the hard-core distance δ with a smaller mark. The intensity of the Matern

point process is [27]

λmpp = λpppe
−λpppπδ2 (2.13)

10



2.4 Performance metric

The quality factor, defined in [21] for measuring the irradiance performance of the

light source, can be expressed as

FΛ =
Λ

2
√

var(Λ)
, (2.14)

where

Λj =
P 2
rj

σ2
j

(2.15)

is the received signal to noise ratio (SNR) at the jth photo-detector and Λ and var(Λ)

are the mean and variance of {Λj}Kj=1, where K is the number of photo-detectors.

For uniform illumination, it is important that the mean Λ be large and the variance

var(Λ) be small, resulting in (2.14). Since the output of the photo-detector is an

electrical signal which is affected by noise, it is important to consider the SNR Λj

while computing the quality factor in (2.14).
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Chapter 3

Power Allocation for Uniform

Illumination with Stochastic LED

Arrays

Recent research in LED based VLC system have focused on achieving uniform irra-

diance over a planar surface with the goal of finding the optimal LED geometry at

the light source to achieve uniform irradiance [4]. This has been achieved by using

irradiance distributions at the closest points on the incident surface. In some of the

other research work [17–20], the properties of white LEDs were studied and shown to

be useful for indoor optical transmission.

Also, fair amount of focus has gone on achieving uniform irradiance with a regu-

lar geometry with equal power allocation to individual LED sources [1–3, 12]. While

uniform illuminance is desirable, optimal power consumption is an equally and some-

times more important factor in the design of LED light sources especially in modern

IoT based applications. To address this, recent research has focused on power allo-

cation, along with flexiblity in the LED source geometry to achieve uniform irradi-

ance [5, 6, 21, 22].

To achieve this, several power allocation schemes have been proposed to achieve

uniform irradiance for visible light communication (VLC) applications [5, 6, 21, 22].

For example a trial and error approach for power allocation for uniform irradiance is

used in [21] for a combination of circular square geometry in order to illuminate the

edges of the incident surface. An evolutionary algorithm based optimization scheme

is proposed in [6] to modify the power of LED transmitters to reduce the signal power

fluctuation at the receiver. In [5], a genetic algorithm is proposed to optimize the

refractive indices of the concentrators on receivers to achieve a uniform distribution

12



of the received power. An optimal LED arrangement to achieve uniform irradiance

is investigated as a convex optimization problem in [22]. The optimization of the

location of an irregular LED array for uniform irradiance is discussed in [7, 23].

3.1 Cost-effective approach to achieve uniform il-

lumination

In all the above approaches, computationally intensive optimization routines were

used for power allocation for the LED sources to realise uniform irradiance on the

incident surface. The system proposed in [22] departs from the conventional model

by considering arbitrary locations for the LED sources. The most practical scenario

would be the case when the LEDs are placed randomly at the source with uniform

illumination being achieved through power allocation, keeping the total power con-

stant.

This problem is addressed in this Chapter by considering a binomial point pro-

cess (BPP) based stochastic geometry [28]. Further, a simple meta-heuristic power

allocation scheme is proposed for uniform irradiance on the incident surface. Power

allocation is done by maximizing a metric for uniformity of the signal to noise ratio

(SNR) at the output of the photo-detector. Through numerical results, it is shown

that the performance of the BPP model and the associated power allocation is com-

parable to the model in [21].

Consider the various source geometries for N = 16 LEDs in Fig. 3.1. Using (2.15),

the respective SNR profiles for the sources in Fig. 3.1a and 3.1b are plotted in Fig.

3.2, when each of the LEDs has equal power. Circular geometries are limited by their

inability to sufficiently illuminate the corners of the incident surface. Figure 3.3a has

the SNR profile for the source in Fig. 3.1d, with optimal locations for the LEDs on

the circle as well as the corners [21] with equal power. Due to this optimal location,

the arrangement in Fig. 3.1d has a more uniform SNR profile, since the coverage

at the edges is better. The performance improves with optimal power allocation, as

shown in Fig. 3.3b.

Figure 3.3 and [21] indicate that LED sources distributed over an area according

to a fixed geometry can achieve uniform irradiance with optimal location and power.

In practice, LED sources used for illuminating larger areas may not follow a fixed

geometry. When the locations of the LED sources are fixed but do not follow a

definite pattern, like in Fig. 3.1c, the geometry can be modeled using a BPP. In
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Figure 3.1: Arrangement of LEDs for different geometries

such cases, one possible way to obtain uniform illumination is through optimal power

allocation by using the statistics of the BPP.

3.2 Power allocation for a BPP array

For a BPP, each LED is at a random location, so, heuristically, the power should also

depend on the distance of the LED from the center of the array. The proposed power

allocation is

Pti =
rαi

∑N
i=1 r

α
i

P, (3.1)
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Figure 3.2: SNR distribution with equal power allocation
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Figure 3.3: SNR distribution for circle-square geometry

where P is the total source power, ri is the location of the ith LED from the center,

α is a suitable exponent and Pti is the power allocated to the ith LED. The heuristic

in (3.1) makes the power allocation sub-optimal. For a BPP,

Λj = EΦ

[

Prj

σ2
j

]

(3.2)

where EΦ is the expectation with respect to the BPP. Here we are looking at the

illumination, hence Prj =
∑N

i=1HijPti. Plotting the quality factor FΛ (α) in (2.14)

with respect to α in Fig. 3.4, FΛ (α) appears to be concave and has a maximum. An
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Table 3.1: Simulation parameters

Parameters Symbol Configuration

Room size L× B ×D 5m× 5m× 3m

Height of receiver plane hr 0.85m

LED semi angle φ 1
2

60o

optimal value of α can then be obtained as

max
α

FΛ(α), (3.3)

0 1 2 3 4 5 6 7 8 9 10

α

1

1.5

2

2.5

3

3.5

F
Λ
(α

)

Figure 3.4: FΛ(α) has a maximum

3.2.1 Algorithm for optimal α

The golden section search algorithm [29] in Fig. 3.6 is used for finding the optimum

value of α in (3.1)
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Figure 3.5: Golden section search algorithm

3.3 Results

The simulation parameters for the results obtained in this section are available in

Tables 2.2 and 6.1 and are similar to those used in [21] and [26]. A simple search

routine for maximizing FΛ (α) in (2.14) using Fig. 3.4 results in α ≈ 3.1. The value
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Figure 3.6: Golden section search algorithm

remains unchanged for higher values of N . This value is used in (3.2) and (3.1)

to calculate the SNR profile. Figure 3.7 shows the SNR profiles calculated using

(3.2) with and without power allocation for the BPP in Fig. 3.1c. The SNR profile

for N = 64 for two different BPP realizations with sub-optimal power allocation is

provided in Fig. 3.8. From Fig. 3.8, it is obvious that the heuristic power allocation

scheme in (3.1) results in a uniform SNR profile. Also, the FΛ value in Table 3.2 for

the BPP in Fig. 3.1c is close to that of the circle-square array in Fig. 3.1d, indicating
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Figure 3.7: Average SNR for a BPP. N = 16

Table 3.2: SNR performance

Circle-square BPP

Equal Power Optimal Power Equal Power Proposed heuristic

Λ (dB) 18.2658 17.3447 20.1121 18.8510

var (Λ) (dB) 21.4585 17.8065 33.5970 21.1082

FΛ 2.8355 3.4924 1.0723 3.3780

that the BPP with even sub-optimal power allocation performs as well as a fixed

geometry with optimal power allocation.
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Figure 3.8: SNR for two different realizations for N = 64
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Chapter 4

Resource Allocation for Visible

Light Communication using

Stochastic Geometry

A significant amount of research work has been done recently on using traditional

light sources for wireless communication. Traditional digital communication and well-

known wireless techniques have been applied in designing such a VLC system. Some

of the notable systems are listed below:

• The performance of MIMO VLC is analyzed for different equalizers [30].

• An LED inclined MIMO (LIM) model is proposed and compared with an LED

vertical MIMO (LVM) [31].

• The angular diversity is obtained by placing multiple photodetectors on a re-

ceiver node with a curved surface [32].

• Equalization is employed at the receiver to improve the data rate [33].

• An expression for the BER in the presence of interference is obtained [26].

4.1 Modeling light sources using stochastic geom-

etry

In [21], BER performance analysis is done by considering a fixed LED array with

optimal power allocation. Such results for VLC are rare and usually restricted to

21



light sources with a fixed geometry. In [21, 34], geometries of different kinds like

square, circular and hexagonal models are studied. Stochastic geometry can be used

for modeling all such geometries. Since each realization of a random geometry gives

different SNR profiles, we look at an average SNR profile and BER. In [25], a heuristic

power allocation was proposed and an average SNR was evaluated by averaging the

SNR of each realization over the BPP. It was shown to achieve uniformity for a

random geometry in an average sense. This can be observed in Fig. 4.1b for a

square BPP. In [21], the BER expression of bipolar on-off keying (OOK) modulated

signal for a fixed geometry is given by Q(
√
SNR). For a stochastic geometry, the

average BER is calculated by averaging the BER of each realization over the BPP

process Φ, EΦ[Q(
√
SNR)]. The BER curves obtained from simulations at the center

of the geometry are plotted in Fig. 4.2 for various geometries. The average BER for

stochastic geometry appears to be close to that for a fixed geometry, indicating that

stochastic geometry can be used for modeling a VLC and the average BER of a BPP

can be used for estimating system parameters.

In [25], the power allocation ensures the uniform illumination in the average sense,

it would be interesting to find the optimum power allocation for a single realization

of a random geometry.
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tion in (3.1)

Figure 4.1: SNR distribution with total power of 2 Watts

In this Chapter, the light sources are modeled using stochastic geometry [25], ac-

counting for all possible source configurations. Thus, based on this theoretical model,

it is possible to obtain estimates for the number of LED sources and their power con-

sumption. This is useful for designing practical VLC systems using OOK modulation

for an indoor environment where the light intensity is uniform [21]. Two stochastic
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Figure 4.2: Simulated BER curves for various geometries with different power alloca-
tion schemes.

models are considered, square BPP and circular BPP. For a square BPP, which is

the most appropriate stochastic model for an indoor environment, an expression for

the average asymptotic BER is obtained. The asymptotic BER for a circular BPP

is obtained in closed form. These help to provide reasonable estimates for the cost

of the VLC system. In [25], a heuristic power allocation scheme was proposed for a

BPP-VLC and shown to provide uniform irradiance on an average. To incorporate

uniform irradiance into the VLC model in this paper, the same scheme is considered

and described in the following section.

4.2 Power Allocation for a BPP array

The transmit power at the ith transmitter is given by the heuristic [25]

Pti =
rαi

∑N
j=1 r

α
j

P, (4.1)

where P is the total power allocated to the source, ri is the distance of the ith LED

from the center of the BPP in Fig. 2.3 and α is a constant.
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4.3 BER Analysis

It has been shown in [25] that the power allocation scheme in (3.1) results in average

uniform illumination. Thus, it is sufficient to obtain the BER at the photodetector lo-

cated at the center [21], since uniform illumination results in the same signal strength

at all photo-detectors at the receiver.We assume all the source LEDs transmit the

same symbol x. From (2.6), the received symbol at the central photo-detector is

y0 = RPr0 + n0 (4.2)

From (2.7) and Table 2.1,

Pr0 =

N
∑

i=1

Hi0PtiMIx

=
N
∑

i=1

Pti (m+ 1)Ahm+1x

2π
(

√

h2 + r2i

)m+3

=
N
∑

i=1

PMI (m+ 1)Ahm+1rαi x

2π
(

∑N
j=1 r

α
j

)(

√

h2 + r2i

)m+3 (4.3)

upon substituting for Pti from (3.1). Letting

C1 =
PMI (m+ 1)Ahm+1

2π

Vi =
rαi

(

∑N
j=1 r

α
j

)(

√

h2 + r2i

)m+3 ,
(4.4)

Pr0 in (4.3) can be expressed as

Pr0 = C1

N
∑

i=1

Vi (4.5)

Substituting (4.5) in (4.2),

y0 =

(

RC1

N
∑

i=1

Vi

)

x+ n0 (4.6)
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Table 4.1: Simulation Parameters

Parameters Symbol Configuration

Room size L× B ×D 5m× 5m× 3m

Height of receiver plane hr 0.85m

Modulation index MI 0.2

LED semiangle φ 1
2

60o

Since n0 is AWGN, the conditional BER for the BPP can be obtained from (4.6) as

Pe = Q

(

RC1

∑N
i=1 Vi

σ0

)

(4.7)

where Q(.) is the Q-function, defined as [35]

Q (x) =
1√
2π

∫ ∞

x

e−x2/2dx, x ≥ 0. (4.8)

4.4 Asymptotic BER

Theorem 4.4.1. For any point process based VLC, an asymptotic (large N) expres-

sion for BER is given by

Pe = Q

(

RC1

∑N
i=1 EΦ [Vi]

√

EΦ [σ2
0]

)

(4.9)

where [25]

σ2
0 = 2qRMIC1

N
∑

i=1

ViB + 2qIbgI2B +
8πkTk
G

ηAI2B
2 +

16π2kTkΓ

gm
η2A2I3B

3 (4.10)

Proof. See Appendix 4.6.1.

Since EΦ [σ2
0 ] is dependent on EΦ [Vi] , the latter needs to be evaluated to obtain an

expression for Pe in (4.9).

Corollary 4.4.2. For square and circular BPPs, EΦ [Vi] is given by (4.11) and (4.13)

respectively.

Proof. See Appendix 4.6.2.
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Square BPP:

EΦ [Vi] =
Rα

i

B (N − i+ 1, i)
∑N

j=1EΦ

[

rαj
]

N−i
∑

k=0

(

N−i
k

)

(−1)k (R2
i )

k+i

W k+i

×
[

(π)k+i

hm+3 (k + i+ α/2)
2F1

(

m+ 3

2
, k + i+ α/2; k + i+ α/2 + 1;−R

2
i

h2

)

+

∫ π
4

0

2 (π − 4θ) (π − 4θ + 2 sin (2θ))k+i−1

Ricos2(k+i−2)+α−m (θ)
(

√

R2
i + h2cos2 (θ)

)m+3






(4.11)

where

EΦ [rαi ] =
1

B (N − i+ 1, i)

N−i
∑

k=0

(

N−i
k

)

(−1)kR
2(k+i)+α
i

W k+i

[

πk+i

k + i+ α/2

+

∫ π
4

0

2 (π − 4θ) (π − 4θ + 2 sin (2θ))k+i−1

Ri cos2(k+i)+α−1 (θ)
dθ

]

(4.12)

Circular BPP:

EΦ [Vi] =
Rα

c

hm+3B (N − i+ 1, i)
∑N

j=1EΦ

[

rαj
]

×
N−i
∑

k=0

(

N−i
k

)

(−1)k
(

i+ k + α
2

) 2F1

(

m+ 3

2
, i+ k +

α

2
; i+ k +

α

2
+ 1;−R

2
c

h2

)

,

(4.13)

EΦ [rαi ] =
Rα

c

B (N − i+ 1, i)

N−i
∑

k=0

(

N−i
k

)

(−1)k
(

i+ k + α
2

) (4.14)

Table 4.2: Power Allocation and Irradiance Metric

Geometry FΛ (α) α

SquareArray[4] 2.16 0

Square BPP 3.36 3.1

Circular BPP 4.07 1.2
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Figure 4.3: BER for various geometries

4.5 Results

All the physical parameters for the system have been obtained from [11] and Table 6.1.

α = 3.2, 1.2 for square and circular geometries. The asymptotic BER obtained in (4.9)

is plotted for square and circular BPP in Fig. 4.3. The simulations are obtained for

large number of source LEDs for N=50. The asymptotic BER expression is validated

and matches well with the simulation results.

In Fig. 5.3 the asymptotic BER obtained in (4.9) is plotted for different geome-

tries. Analytical expressions are used for the circular BPP. For the square array,

simulation results are available in Fig. 5.3. Fig. 5.3 also shows that for a given BER,

the power requirements for a regular array can be estimated using the asymptotic

BER expression for a stochastic array in (4.9) since the BER curves are not too far

off. For example, for a BER of 10−6, the power requirement for the circular BPP is

7W, whereas the requirement for a regular square array is 5W. Thus, it is reasonable

to consider power consumption by the circular BPP as an upper limit on the actual

power requirement for any array.

Fig. 5.4 shows the simulated BER behavior for all geometries with increasing

number of LEDs. The power consumption is assumed to be 4W. It is obvious from

the figure that after N = 20, the actual BER performance is close to the asymptotic
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BER. Also, the shape of the simulated BER curves for circular and square geometries

is similar. Thus, the closed form BER expression for the asymptotic BER can be

used to estimate the cost of the system in terms of the number of LEDs. However,

as can be seen from Fig. 4.5, a graphical, but intuitive approach is required for this.

4.6 Appendix

4.6.1 Proof for asymptotic BER

Unconditioning (4.7),

Pe = EΦ

[

Q

(

RC1

∑N
i=1 Vi

σ0

)]

(4.15)

Jensens Inequality: If X is a random variable (RV) and f is a convex function,

then [36, (9.1.3)],

f (E [X ]) ≤ E [f (X)] (4.16)

Using (4.16) in (4.15),

Pe ≥ Q

(

EΦ

[

RC1

∑N
i=1 Vi

σ0

])

(4.17)
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Figure 4.5: Simulated BER matches the theoretical asymptotic BER for large N .

since Q (·) is convex.

Lemma 4.6.1. Consider random variables X and Y where Y either has no mass at

0 (discrete) or has support [0,∞). Then [37], [38]

E [f (X, Y )] ≈ f (E [X ] ,E [Y ]) (4.18)

Corollary 4.6.1.

E

[

X

Y

]

≈ E [X ]

E [Y ]
(4.19)

E
[

X2
]

≈ (E [X ])2 (4.20)

Since σ0 > 0, using (4.19) and (4.20) in (4.17),

Q

(

EΦ

[

RC1

∑N
i=1 Vi

σ0

])

≈ Q

(

RC1

∑N
i=1 EΦ [Vi]

EΦ [σ0]

)

= Q

(

RC1

∑N
i=1 EΦ [Vi]

√

EΦ [σ2
0]

)

(4.21)
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resulting in

Pe ' Q

(

RC1

∑N
i=1 EΦ [Vi]

√

EΦ [σ2
0]

)

(4.22)

4.6.2 Derivation of EΦ [Vi]

BER Analysis for Square BPP

For a BPP distributed over a square region of area A, the pdf of the distance to the

ith nearest node from the origin is [28]

fri =























2πr
W

(1−p)N−ipi−1

B(N−i+1,i)
0 < r < Ri

2(π−4θ)r
W

(1−q)N−iqi−1

B(N−i+1,i)
Ri < r < Rc

0 Rc < r

(4.23)

where θ = cos−1 (Ri/r), p =
πr2

A
, q = πr2−4r2θ+2r2 sin(2θ)

A
, Ri and Rc are the radii of the

incircle and circumcircle of A.

EΦ [rαi ] =

∫ ∞

−∞
rαfri(r)dr (4.24)

=

∫ Ri

0

rα
2πr

W

(1− p)N−i pi−1

B (N − i+ 1, i)
dr +

∫ Rc

Ri

rα
2 (π − 4θ) r

W

(1− q)N−i qi−1

B (N − i+ 1, i)
dr

= I1 + I2

where

I1 =

∫ Ri

0

rα
2πr

W

(1− p)N−i pi−1

B (N − i+ 1, i)
dr

=
2π

WB (N − i+ 1, i)

N−i
∑

k=0

(

N − i

k

)

(−1)k
( π

W

)k+i−1
∫ Ri

0

r2(k+i+α/2+1/2)dr

=
1

B (N − i+ 1, i)

N−i
∑

k=0

(

N−i
k

)

(−1)k

k + i+ α/2

( π

W

)k+i

R
2(k+i)+α
i

I2 =

∫ Rc

Ri

rα
2 (π − 4θ) r

W

(1− q)N−i qi−1

B (N − i+ 1, i)
dr

=
1

B (N−i+1, i)

N−i
∑

k=0

(

N−i
k

)

(−1)k

W k+i
R

2(k+i)+α−1
i

×
∫ π

4

0

2 (π−4θ) (π−4θ+2 sin (2θ))k+i−1

cos2(k+i)+α−1 (θ)
dθ
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upon substituting Ri = r cos θ. For simplifying the analysis, using the approximation

N
∑

j=1

EΦ

[

rαj
]

≈
N
∑

j=1

rαj

in (4.4),

EΦ [Vi] =
1

∑N
j=1EΦ

[

rαj
]EΦ

[

rα
(√

r2 + h2
)m+3

]

=
J1 + J2

∑N
j=1EΦ

[

rαj
]

where

J1 =

∫ Ri

0

rα
(√

r2 + h2
)m+3

2πr

W

(1− p)N−i pi−1

B (N − i+ 1, i)
dr

=
Rα

i

hm+3B (N − i+ 1, i)

N−i
∑

k=0

(

N − i

k

)

(−1)k
(

πR2
i

W

)k+i ∫ R2
i /h

2

0

t(k+i+α/2)−1

(1 + t)
m+3

2

dt

(4.25)

after some algebra. From [39],

∫ u

0

xµ−1

(1 + βx)ν
dx =

uµ

µ
2F1 (ν, µ; 1 + µ;−βu) [|arg (1 + βu)| < π,Reµ > 0]

Substituting the above in (4.25),

J1 =
hα−(m+3)

B (N−i+1, i)

N−i
∑

k=0

(

N−i
k

)

(−1)k
(

πh2

W

)k+i

× 2F1

(

m+ 3

2
, k+i+

α

2
, k+i+

α

2
+1;−R

2
i

h2

)

Similarly,

J2 =

∫ Rc

Ri

rα+12 (π−4θ)

W
(√

r2+h2
)m+3

(1−q)N−i qi−1

B (N−i+1, i)
dr

=
1

B (N − i+ 1, i)

N−i
∑

k=0

(

N−i
k

)

(−1)k

W k+i
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×
∫ π

4

0

2 (π − 4θ)R
2(k+i)+α−1
i

(cos θ)2(k+i−2)+α−m

(π − 4θ + 2 sin (2θ))k+i−1

(

√

R2
i + h2 cos2 (θ)

)m+3 dθ

BER analysis for circular BPP

The probability density function (PDF) of the distance of ith nearest LED location

from origin for circular BPP for 0 ≤ r ≤ Rc is given by [28]

fri =
2r

R2
cB(N−i+1, i)

(

r2

R2
c

)i−1(

1− r2

R2
c

)N−i

⇒EΦ[r
α
i ] =

∫ ∞

0

rαfri(r)dr

=

∫ Rc

0

2rα+1

R2
cB (N−i+1, i)

(

r2

R2
c

)i−1(

1− r2

R2
c

)N−i

dr

=
1

B (N − i+ 1, i)

N−i
∑

k=0

(

N − i

k

)

(−1)k
∫ R2

c

0

ti+k+α/2−1

R
2(i+k)
c

dt

=
Rα

c

B (N − i+ 1, i)

N−i
∑

k=0

(

N−i
k

)

(−1)k
(

i+ k + α
2

) (4.26)

through a change of variables and using [39, (3.194)]

EΦ [Vi] =
1

∑N
j=1EΦ

[

rαj
]EΦ

[

rα
(√

r2 + h2
)m+3

]

=
1

∑N
j=1EΦ

[

rαj
]

∫ Rc

0

2r

B (N − i+ 1, i)

N−i
∑

k=0

(

N−i
k

)

(−1)kr2(i+k+α/2−1)

R
2(i+k)
c

(√
r2+h2

)m+3dr

=
1

B (N − i+ 1, i)
∑N

j=1EΦ

[

rαj
]

∫ R2
c/h

2

0

N−i
∑

k=0

(

N−i
k

)

(−1)kh2 (h2t)
(i+k+α/2−1)

R
2(i+k)
c hm+3

(√
1 + t

)m+3 dt

=
1

B (N − i+ 1, i)
∑N

j=1EΦ

[

rαj
]

×
N−i
∑

k=0

(

N − i

k

)

(−1)kh2(i+k+α/2)

hm+3R
2(i+k)
c

∫ R2
c/h

2

0

t(i+k+α/2−1)

(1 + t)(m+3)/2
dt

=
Rα

c h
−(m+3)

B (N−i+1, i)
∑N

j=1EΦ

[

rαj
]

×
N−i
∑

k=0

(

N−i
k

)

(−1)k
(

i+k+ α
2

) 2F1

(

m+3

2
, i+k+

α

2
; i+k+

α

2
+1;−R

2
c

h2

)
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Chapter 5

Asymptotic BER Performance of

Circle-square Geometry in Visible

Light Communication

The asymptotic BER performance of square BPP and circular BPP has been analyzed

in previous chapter. Black spots are the regions where source LEDs cannot be placed

at certain locations because of design restrictions in a room like fans, non-availability

of electrical wiring etc.. Such cases can be modeled by approximating the square BPP

with multiple non-overlapping circles. This process is referred as Circle-square BPP.

In this chapter, the BER performance analysis of circle-square BPP is presented and

compared with square BPP.

5.1 CDF and PDF of distance distribution

In order to derive the asymptotic BER, we need to find the distance distribution of

Circle-square BPP process.

Theorem 5.1.1. The CDF Frn and PDF frn of the distance to the nth neighbor from

origin are

Frn (r) =























0 r < 0

1−
∑n−1

k=0

(

N
k

)

pk (1− p)N−k 0 ≤ r ≤ L
2
+2k

1 r > L
2
+ 2k

(5.1)

frn (r) =
dp

dr

(1− p)N−n pn−1

B (N − n + 1, n)
(5.2)
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where

p =























r2

(L/2)2+4k2
0 < r < L/2

π(L
2 )

2
+4(θAr2+θBk2−dy)
π((L/2)2+4k2)

L/2 < r < L/2 + 2k

1 r > L/2 + 2k

(5.3)

dp

dr
=























2r
(L/2)2+4k2

0 < r < L/2

4(θ′Ar2+2θAr+θ′Bk2−dy′)
π((L/2)2+4k2)

L/2 < r < L/2 + 2k

0 r > L/2 + 2k

(5.4)

and

θA = cos−1
(x

r

)

θB = cos−1

(

d− x

k

)

x =
r2 − k2 + d2

2d
y =

√
r2 − x2

(5.5)

θ′A =
(x− rx′)

r
√
r2 − x2

θ′B =
x′

√

k2 − y2
x′ =

r

d
y′ =

r − xx′√
r2 − x2

(5.6)

Proof. See Appendix 5.4.1

Figure 5.1: Realization of BPP with 10 LEDs
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Table 5.1: Power allocation and irradiance metric

Geometry FΛ (α) α

Sqaure 1.08 0

Square 3.3 3.2

Circumcircle 4.07 1.2

Circle-square 3.27 4

5.2 BER Analysis

An asymptotic (large N) expression for BER for any point process based VLC is

given by 4.9

Pe = Q

(

RC1

∑N
i=1 EΦ [Vi]

√

EΦ [σ2
0]

)

(5.7)

Expressions for EΦ [Vi] and EΦ [σ2
0] need to be evaluated to obtain an expression

for Pe in (4.9). These are evaluated in the following section. The desired expressions

for obtaining Pe for this geometry are given by (see Appendix 5.4.2)

EΦ [rαi ] =

(

L

2
+ 2k

)α

− α

∫ L
2
+2k

0
rα−1Fri(r)dr (5.8)

EΦ [Vi] =
1

∑N
j=1 EΦ

[

rαj

]











(

L
2 + 2k

)α

(

√

(

L
2 + 2k

)2
+ h2

)m+3

−
∫ L

2
+2k

0

rα−1
(

r2(α−m−3)+h2α
)

Fri(r)
(√

r2 + h2
)m+5 dr






.

5.3 Results

All the physical parameters for the system have been obtained from [11]. α in (2.14)

is numerically obtained and tabulated in Table 6.3 for different geometries. The

irradiance profile for these geometries is then calculated using α in Table 6.3 and

shown in Fig. 5.2. It is clear from the figure that random geometries can generate

near uniform illumination with appropriate power allocation.

The asymptotic BER obtained in (4.9) for different geometries is plotted in Fig.

5.3 for MI = 0.2. Analytical expressions are used for the circular and circle-square
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Figure 5.2: Irradiance profile with power allocation
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Figure 5.3: BER for various geometries
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Figure 5.4: Simulated BER matches the theoretical asymptotic BER for large N .
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BPPs. For the square BPP, simulation results are available in Fig. 5.3. As expected,

the circle-square geometry mimics the square geometry, both in terms of the SNR

profile as well as the BER.

Fig. 5.4 shows the simulated BER behavior for all geometries with increasing

number of LEDs. It is obvious from the figure that after N = 20, the BER perfor-

mance is close to the asymptotic BER. Also, the shape of the simulated BER curves

for circular and square geometries is similar. Thus, the closed form BER expression

for the asymptotic BER can be used to estimate the cost of the system in terms of

the number of LEDs.

5.4 Appendix

5.4.1 Proof for the CDF of Circle-square BPP

The center of the circle is located at origin and not necessarily coincides with a point

of the process. Observe that if a circle of radius r contains exactly (n− 1) points and

the nth point is located at the circumference, r is the distance to the nth neighbor of

origin. The probability that a circle contains exactly n points is
(

N
n

)

pn (1− p)N−n.

The complementary cumulative distribution function (CCDF) is the probability

that there are less than n points in a circle is given by [28]

F̄rn (r) =

n−1
∑

k=0

(

N

k

)

pk (1− p)N−k (5.9)

where p = A(B(o,r)∩W )
A(W )

, and A (.) area of region, W is the region where points are

distributed, B(o, r) is ball of radius r with center origin.

Calculating p

p = A(B(o,r)∩W )
A(W )

From Fig. 5.1,

A(W ) = π
(

(L/2)2 + 4k2
)

(5.10)
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where k =
(3−2

√
2)L

2
.

From Fig. 5.6,

A (B (o, r) ∩W ) =























πr2 0 < r < L/2

π
(

L
2

)2
+ 4 (θAr

2 + θBk
2 − dy) L/2 < r < L/2 + 2k

π
(

(L/2)2 + 4k2
)

r > L/2 + 2k

(5.11)

where d is distance between the centers of the circles and

θA = cos−1
(x

r

)

θB = cos−1

(

d− x

k

)

x =
r2 − k2 + d2

2d
y =

√
r2 − x2

(5.12)

p =























r2

(L/2)2+4k2
0 < r < L/2

π(L
2 )

2
+4(θAr2+θBk2−dy)
π((L/2)2+4k2)

L/2 < r < L/2 + 2k

1 r > L/2 + 2k

(5.13)

The pdf of the distance function of nth LED is then
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Figure 5.6: CDF of nth nearest neighbor for BPP of N=10 in W.

frn (r) =
−dF̄rn (r)

dr
(5.14)

=
dp

dr

(1− p)N−n pn−1

B (N − n + 1, n)
(5.15)

Calculation of dp
dr

dp

dr
=























2r
(L/2)2+4k2

0 < r < L/2

4(θ′Ar2+2θAr+θ′Bk2−dy′)
π((L/2)2+4k2)

L/2 < r < L/2 + 2k

0 r > L/2 + 2k

(5.16)

θ′A =
(x− rx′)

r
√
r2 − x2

θ′B =
x′

√

k2 − y2
x′ =

r

d
y′ =

r − xx′√
r2 − x2

(5.17)

Using (5.13) and (5.16) in (8.9), PDF is obtained.
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5.4.2 Proof for Circle-square BPP

The expectation of the variable Vi has to be evaluated to derive the probability of

error Pe. The PDF of the distance variable ri is derived in the previous section.

EΦ [rαi ] =

∫ L
2
+2k

0

rαdFri (r) (5.18)

By Stieltjes integral,

EΦ [rαi ] = rαFri (r)|
L
2
+2k

0 − α

∫ L
2
+2k

0

rα−1Fri(r)dr

=

(

L

2
+ 2k

)α

− α

∫ L
2
+2k

0

rα−1Fri(r)dr

Averaging Vi over the point process, we obtain

EΦ [Vi] =
1

∑N
j=1EΦ

[

rαj
]

∫ ∞

0

rαdFri(r)
(√

r2 + h2
)m+3

=
1

∑N
j=1EΦ

[

rαj
]





rα
(√

r2 + h2
)m+3Fri (r)

∣

∣

∣

∣

∣

L
2
+2k

0

−
∫ L

2
+2k

0

rα−1 (r2 (α−m− 3) + h2α)Fri(r)
(√

r2 + h2
)m+5 dr

]

=
1

∑N
j=1EΦ

[

rαj
]











(

L
2
+ 2k

)α

(

√

(

L
2
+ 2k

)2
+ h2

)m+3

−
∫ L

2
+2k

0

rα−1 (r2 (α−m− 3) + h2α)Fri(r)
(√

r2 + h2
)m+5 dr

]

.
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Chapter 6

Optimum Power Allocation for

Uniform Illuminance in Visible

Light Communication

In existing VLC systems, uniform illumination is obtained by finding higher order

partial derivatives of the received power at a point close to origin and equating to

zero [1, 2]. This ensures uniformity only in the neighbourhood of origin. Similar

approach has been used to obtain optimum spacing between LEDs in square array

and optimum radii in case of circular arrays [3,4]. Local search algorithm is employed

to find the optimum location of the LEDs [23]. The solution is obtained by iterative

process and may not be optimum if the time bound is elapsed.

In chapter 4, we presented our earlier work, where light sources are modeled using

stochastic geometry by locating them randomly in an indoor environment, generating

average uniform illumination with appropriate power allocation. While a binomial

point process (BPP) based stochastic model is a powerful tool for resource alloca-

tion for VLC, it is useful to consider power allocation for a VLC based on a single

realization of a stochastic point process. Here, a Matern type II hard-core point

process (HCPP) is desirable, since it accounts for minimum separation between any

two LEDs for better coverage. This allows the realizations of the point process to be

more uniformly distributed than BPP. The solution to this problem is presented in

this chapter.

We have established that an appropriate power allocation to a random arrange-

ment of the source LEDs in BPP results in uniform illuminance in an average sense.

The optimal distribution of the power across the light sources for uniform illuminance

for a single realisation of a point process is an important problem in a VLC. This is

42



addressed in this chapter.

6.1 Problem Definition

For uniform illumination, it is important that the mean Λ be large and the variance

var(Λ) be small. Since the output of the photo-detector is an electrical signal which is

affected by noise, it is important to consider the SNR Λj while computing the quality

factor FΛ.Since the SNR at the receiver is proportional to square of received power

(or received power) in low transmit power regime (high transmit power), the power

allocation for uniform illuminance also results in uniform SNR.

For the uniform illuminance in VLC system, the power received at any photo

detector on the receiver plane should be same. Since the photo detectors can be

located at any point in the plane, the variance of the received power is considered as

a objective function to be minimized

min
Pti

E

[

(

Prj − E
[

Prj

])2
]

(6.1)

This can be formulated as an optimization problem.

6.2 Optimum Power Allocation

Lemma 6.2.1. The objective function in (6.1) is expressed in quadratic form as

min
x

1

2
xTPx

subject to Gx � 0

Ax = P

(6.2)

where G = diag(−1, · · · ,−1), x = [Pt1 , · · · , PtN ]
T , A = [1, · · · , 1], the matrix P is

given by

P =









β11 · · · β1N
...

. . .
...

βN1 · · · βNN









(6.3)
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Table 6.1: Simulation parameters

Parameters Symbol Configuration

Room size L× B ×D 5m× 5m× 3m

Hieght of receiver plane hr 0.85m

LED semiangle φ 1
2

60o

and elements βuv are

βuv =











2
∑K

p=1 H
2
up

K
− 2(

∑K
p=1 Hup)

2

K2 , u = v

2
∑K

p=1 HupHvp

K
− 2(

∑K
p=1 Hup)(

∑K
p=1 Hvp)

K2 , u 6= v
(6.4)

Proof. See Appendix 6.4.1

The cost function in (6.2) is convex iff P is positive-definite [40]. Since the variance

of received power xTPx > 0 ∀ x ∈ R
N
+ , P is positive-definite. Since the linear

functions are both convex and concave, all the constraints are convex. Thus the

optimization problem in (6.2) yields a quadratic and convex optimization problem. It

can be numerically solved using quadratic programming (QP) through the solvers.qp

command using CVXOPT solver in Python .

6.3 Results

All the physical parameters for the system have been obtained from [11] and Table

6.1.

The values of α = 1.1, 1.2, 3.1, 1.6 of heuristic power allocation for Square, Cir-

cle Square, BPP and HCPP geometries respectively are obtained by golden section

search algorithm. The variance and quality factor for different power allocation in

different geometries have been tabulated in 6.2 and 6.3. It can be seen that the

optimum solution obtained by solving (6.2) gives the minimum variance and better

quality factor. The circle square geometry in [21] gives best quality factor, because of

considering sub-optimal location of LEDs. All results indicate that more the LEDs

are distributed, more uniformity can be achieved with optimum power allocation.

In Fig. 6.1 the SNR profiles of different geometries for equal and optimum power

allocation schemes are plotted. Note that SNR profile of HCPP is for one realization of

the point process. In Fig. 6.2 the optimal allocation of total transmit power P = 2W

across 16 source LEDs distributed according to HCPP is shown. It was observed that
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Table 6.2: Variance of Received Power

Geometry Equal Power Heuristic[25] Optimum

SquareArray 6.4414e-15 6.5287e-16 6.3785e-16

Circle Square 3.0134e-15 1.1267e-15 8.0382e-16

BPP 2.5589e-14 5.4944e-15 2.7167e-15

HCPP (16LEDs) 6.9160e-13 1.9802e-13 3.3046e-14

HCPP (13LEDs) 4.4503e-13 1.5460e-13 3.3027e-14

Table 6.3: Quality factor

Geometry Equal Power Heuristic[25] Optimum

SquareArray 1.24 3.30 3.28

Circle Square 3.79 4.48 5.06

BPP 1.27 2.80 3.49

HCPP (16LEDs) 1.16 1.92 4.26

HCPP (13LEDs) 1.39 2.10 4.26
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Figure 6.1: SNR profiles for different geometries.
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Figure 6.2: Optimal distribution of total transmit power across source LEDs and
their SNR profiles.
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(a) HCPP with intensity N=32 and threshold
0.0027

(b) HCPP with intensity N=200 and thresh-
old 0.017
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(c) SNR profile of the above realization result-
ing in quality factor FΛ = 6.29
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(d) SNR profile of the above realization re-
sulting in quality factor FΛ = 11.35

Figure 6.3: Optimal distribution of total transmit power across source LEDs and
their SNR profiles.

3 source LEDs marked red in Fig. 6.2a have insignificant transmit power compared

to others. Hence, these LEDs are taken out of geometry in Fig. 6.2b keeping others

at the same location. The optimum power allocation for these remaining 13 LEDs

obtained once again through solvers still preserves uniform illuminance. This can

be seen from Table 6.2 and 6.3, the variance and the quality factor of the HCPP

model realization with 13 source LEDs is close to the realization with 16 LEDs, thus

reducing the cost of the system.

In Fig. 6.3 the source LEDs are distributed according to HCPP with intensity of

32 and 200. The LEDs are taken out of geometry in Fig. 6.3a and Fig. 6.3b, in case

the transmitted power is less than threshold. It is observed from Fig. 6.2a, Fig. 6.3a

and Fig. 6.3b that the uniformity and the quality factor are improved for the same
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Figure 6.4: Performance of HCPP model with intensity N = 200.

Table 6.4: Quality factor

Intensity of HCPP
Transmit power
threshold

Number of LEDs
remaining for realization

Quality factor

16 0 16 4.26

32 2.7e-3 16 6.29

200 1.7e-2 16 11.34

1.6e-2 17 14.02
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number of LEDs. This improvement can be attributed to optimum location of LEDs.

In Fig. 6.4 the quality factor and number of source LEDs are plotted with respect

to the transmit power threshold. It can be seen that the quality factor saturates as

the number of source LEDs increases. For a ideal VLC system, the high quality factor

should be achieved with the less number of source LEDs. Hence, there is a trade-off

between the number of LEDs and the quality factor. For example, at threshold value

of 0.016 the quality factor is 14.02 and close to the saturated value. The number of

LEDs required for obtaining that quality factor is 17. Thus, the performance curves

in Fig. 6.4 can be used to estimate the cost of the VLC system in terms of the number

of LEDs.

6.4 Appendix

6.4.1 Formulation of optimization problem

Cost function

The first term in (6.1) is expressed in terms of transmit power as

E

[

(

Prj

)2
]

= E





(

N
∑

i=1

HijPti

)2


 (From (2.7))

= E

[

N
∑

i=1

H2
ijP

2
ti
+ 2

N
∑

i=1

N
∑

q=i+1

HijHqjPtiPtq

]

=

∑K
j=1

∑N
i=1H

2
ijP

2
ti

K
+

∑K
j=1 2

∑N
i=1

∑N
q=i+1HijHqjPtiPtq

K

=

∑N
i=1 µiiP

2
ti
+ 2

∑N
i=1

∑N
q=i+1 µiqPtiPtq

K
(6.5)

where µiq =

K
∑

j=1

HijHqj .

Similarly, the second term is expressed as

(

E
[

Prj

])2
=

(

∑K
j=1 Prj

K

)2

=

(

∑K
j=1

∑N
i=1HijPti

K

)2
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=

(

∑N
i=1 γiPti

K

)2

where γi =
K
∑

j=1

Hij

=

∑N
i=1γ

2
i P

2
ti
+2
∑N

i=1

∑N
p=i+1γiγpPtiPtp

K2
. (6.6)

Using (6.6) and (6.5) in (6.1), variance is represented in matrix form as

var
(

Prj

)

=

∑N
i=1 µiiP

2
ti
+ 2

∑N
i=1

∑N
q=i+1 µiqPtiPtq

K

−
∑N

i=1 γ
2
i P

2
ti
+ 2

∑N
i=1

∑N
p=i+1 γiγpPtiPtp

K2

=
N
∑

i=1

µii

K
− γ2i
K2

P 2
ti
+ 2

N
∑

i=1

N
∑

q=i+1

µiq

K
− γiγp

K2
PtiPtq

=
1

2

N
∑

i=1







2
∑K

j=1H
2
ij

K
−

2
(

∑K
j=1Hij

)2

K2






P 2
ti

+ 2

N
∑

u=1

N
∑

v=i+1

(

2
∑K

j=1HujHvj

K
−
2
(

∑K
j=1Huj

)(

∑K
j=1Hvj

)

K2



PtuPtv

=
1

2

[

Pt1 , · · · , PtN

]









β11 · · · β1N
...

. . .
...

βN1 · · · βNN

















Pt1
...

PtN









=
1

2
xTPx. (6.7)

Constraints

1. The total power of the LEDs is P watts, which is distributed across the source

LEDs.

N
∑

i=1

Pti = P

⇒ Ax = P

where A = [1, · · · , 1].

2. The power of each source LED is always non-negative.

−Pti ≤ 0 ∀ i ∈ 1, · · · , N
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which can be expressed in matrix form as

⇒ Gx � 0

where G = diag(−1, · · · ,−1).
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Chapter 7

Conclusion

In this dissertation, it was shown that distributed LED sources that do not follow a

locational pattern can be modeled using a BPP with appropriate power allocation, to

achieve uniform illumination. This makes it extremely useful in practical applications

like visible light communication where the source geometry is likely to be random.

Though sub-optimal, the proposed heuristic for power allocation is much simpler,

resulting in reduced computational cost, when compared to existing optimal power

allocation schemes.

An approximate closed form expression for the asymptotic BER has been ob-

tained for a square and a circular BPP. This expression was used to assess system

performance with respect to the source power as well as the number of LEDs. This

allows for estimating the cost of the system in terms of these two parameters which

has significant application in the design of practical VLC systems.

The optimization of power allocation to source LEDs for uniform illumination

in VLC is addressed in this thesis. The problem was formulated as a quadratic

optimization problem and resolved numerically using CVXOPT solver. Numerical

results demonstrate that the uniform illumination can be achieved even when all light

sources are distributed randomly, in contrast with the existing fixed geometries like

circular and square arrays. It was observed that HCPP model can preserve uniformity
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with less number of LEDs compared to other geometries, thus reducing the cost of

the system.

Thus a VLC system can be designed using the estimated number of LEDs, with

intuitive LED arrangement and the power requirement for an appropriate BER, and

inclusion of optimum power allocation ensuring uniform SNR.

7.1 Future Research

• As the immediate extension to the work, the performance of VLC in terms

of BER when HCPP is used for modeling the LED arrangement would be a

challenging problem. The distribution of nearest neighbor for HCPP is existing

in the literature. In order to solve this, we have to find the distribution of nth

LED from the origin.

• People have considered localization of LEDs for uniform illuminance [1–4, 12].

We have looked at power allocation of LEDs irrespective of their location. It

would be interesting to optimize the location and power allocation jointly.

• There are few practical challenges like Non-line of sight (NLOS), modulation

techniques, channel equalization, that are not considered in this dissertation.

Building a VLC and experimental results helps in better understanding of these

challenges.
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Chapter 8

Mathematical Contributions of the

Thesis

Some of the interesting mathematical results obtained during the course of this thesis

are presented here in this chapter. These theorems are relevant to stochastic geometry

and are likely to be useful for research in this field of applied mathematics.

8.1 Distance distributions of square BPP

Theorem 8.1.1. The cumulative distribution function (CDF) of the distance to the

nth neighbor from any location (x,y) is

Frn (r) =
πr2 −

∑4
i=1U (r − dEi

)Z1(r, dEi
) +

∑4
i=1U (r − dVi

)Z2(r, βi, γi, dVi
)

L2
(8.1)

where

Z1(z, a) =
z2

2

(

cos−1
(a

z

)

− sin
(

2cos−1
(a

z

)))

(8.2)

Z2(z, βi, γi, dVi
) =

1

2

(

z2 (θ − sin (θ)) + βiγi
)

(8.3)

and θ = cos−1

(

d2Vi
+r2−β2

i

2dVi r

)

+ cos−1

(

d2Vi
+r2−γ2

i

2dVir

)

dEi
is the distance of the edges from point (x, y), dVi

is the distance of the vertices

from point (x, y) and L is the side of the Square regionW where points are distributed.

Proof. The center of the circle a i.e. (x,y) is located at random and not necessarily

coincides with a point of the process. Observe that if a circle of radius r contains
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Table 8.1: Distance parameters
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exactly (n − 1) points and the nth point is located at the circumference, r is the

distance to the nth neighbor of a. The probability that a circle contains exactly n

points is
(

N
n

)

pn (1− p)N−n

The complementary cumulative distribution function (CCDF) is the probability

that there are less than n points in a circle is given by [28]

F̄rn (r) =
n−1
∑

k=0

(

N

k

)

pk (1− p)N−k (8.4)

where p = g(r)
A(W )

= p = A(B(o,r)∩W )
A(W )

, and A (.) area of region, W is the region where

points are distributed, B (a, r) is ball of radius r with center a.

8.1.1 Calculating g(r)

g(r) = A (B (o, r) ∩W ) (8.5)

A = A1−A2− A3 + A4 (8.6)

Finding the distribution from any random point is same as finding the distribution

of its projection in the first quadrant. Also, the distribution from random point (x, y)

is same as from (y, x) because of symmetry.

WLOG, y > x, the general expression for g(r) is expressed as

πr2 −
4
∑

i=1

U (r − dEi
)Z1(r, dEi

) +

4
∑

i=1

U (r − dVi
)Z2(r, βi, γi, dVi

) (8.7)

The pdf of the distance function of nth LED from (x, y) is then

frn (r) =
−dF̄rn (r)

dr
(8.8)
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g(r) = B(0, r) ∩A

=
dp

dr

(1− p)N−n pn−1

B (N − n + 1, n)
(8.9)

where dp
dr

= g′(r)
A(W )

8.2 Approximations in stochastic geometry

A commonly encountered integral in the coverage analysis using stochastic geometry

based approach, as in [41] [42], is

∫ ∞

0

e−V t−Ut
α
2 t

n
2 dt . (8.10)

For approximating (8.10), we present the following theorem.

Theorem 8.2.1. For α > 2, U > 0, and V > 0,

∫ ∞

0

e−V t−Ut
α
2 t

n
2 dt ≈ 1

V
n+2
2

[

γ

(

n/2 + 1,
V

U2/α
x1

)
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+ c

{

γ

(

n/2 + 1,
V

U2/α
x2

)

− γ

(

n/2 + 1,
V

U2/α
x1

)}

+
U2/α

V
m

{

γ

(

n/2 + 2,
V

U2/α
x2

)

− γ

(

n/2 + 2,
V

U2/α
x1

)}]

, (8.11)

where, m = −α
2

(

1− 2
α

)1− 2
α e−(1−

2
α), c = α

2
e−(1− 2

α
), x1 = 1−c

m
, x2 = −c

m
, and γ (·, ·) is

the lower incomplete gamma function [39, 8.350].

Proof. The expression in (8.11) can be simplified to

∫ ∞

0

e−Utα/2

e−V tt
n
2 dt =

1

U
n+2
α

∫ ∞

0

e−y
α
2 e

− V

U2/α
y
yn/2dy . (8.12)

It is difficult to obtain an exact closed form solution for (8.12) for arbitrary α. From

Fig. 8.2, it can be seen that f(x) = e−xα/2
is monotonically decreasing w.r.t. x,

f(x) ∈ (0, 1] ∀x ≥ 0, and has a single point of inflection. Hence, for f(x) = e−xα/2
a
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Figure 8.2: Piece-wise linear approximation

piece-wise linear approximation (PLA) is given by

e−xα/2 ≈















1 x ≤ x1 ,

mx+ c x1 < x < x2 ,

0 x2 ≤ x ,

(8.13)

where, m, x1, x2, and c are unknown constants. To obtain m, we calculate the point

of inflection of f(x) denoted by x0 as follows,

d2(e−xα/2
)

dx2

∣

∣

∣

∣

∣

x=x0

= 0 ⇒ x0 =

(

1− 2

α

)
2
α

. (8.14)

Using (8.14), the slope at x0, i.e., m is given by

m =





d
(

e−x
α
2

)

dx





x=x0

= −α
2

(

1− 2

α

)1− 2
α

e−(1−
2
α) . (8.15)
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From (8.13), we have

1 = mx1 + c , (8.16)

0 = mx2 + c ,

e−x
α/2
0 = mx0 + c ,

for x equal to x1, x2, and x0, respectively. The three linear equations in (8.16) can

be jointly solved to obtain x1, x2, and c as given in (8.11).

Substituting the approximation (8.13) in (8.12), we get

1

U
n+2
α

[
∫ x1

0

yn/2e
− V

U2/α
y
dy +

∫ x2

x1

(my + c)yn/2e
− V

U2/α
y

]

dy ,

which with transformation of variable results in

1

V
n+2
2

[

∫ V

U2/α
x1

0

xn/2e−xdx+c

∫ V

U2/α
x2

V

U2/α
x1

xn/2e−xdx+
U2/α

V
m

∫ V

U2/α
x2

V

U2/α
x1

xn/2+1e−xdx

]

,

and using definition of lower incomplete gamma function [39, 8.350] results in (8.11).

This completes the proof of Theorem 8.2.1.

This result has been applied in the area of heterogeneous networks using stochas-

tic geometry techniques. We derive closed-form approximations of coverage proba-

bility and average rate in a downlink K-tier heterogeneous network in the presence

of Nakagami-m fading and noise [43]. This approach is very simple with reduced

time-complexity and provides accurate results.
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