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Abstract

The ease of fabrication and superior mechanical properties has emerged the new application areas

for short-fibre-reinforced-polymers (SFRP). These SFRP has a new range of performance capabil-

ities and is designed to fill the property gap between polymers and sophisticated continuous-fibre-

reinforced-polymers (CFRP). Increased applications of composite materials have also increased the

need of defects studies and effect of these defects on their mechanical and other properties too.

The most common and much intense defect observed in the composite materials is porosity, the

presence of voids in the matrix phase. The void content is the potentially harmful defect in the

composite materials and can significantly affect the mechanical properties. In case of SFRPs, fibre

end singularity problems are often modelled and studied as fibres as inclusions where the focus is on

finding fracture parameters like stress intensity factor. The present study is devoted to exploring the

effect of void on the fracture properties, in case of SFRPs. This problem is studied for the simplest

form where the voids are modelled for the 2D case, i.e. a circular hole near the fibre. Hence the

problem solved is a rigid line inclusion(indicates fibres) with a hole(indicates 2D voids) embedded

in a matrix-resin. There are two reasons for modelling the fibre as a rigid line inclusion. First is

the thickness of the steel inclusion, that we have used, is very small compared to other specimen

dimensions. Second is the strength of the steel is very high compared to the strength of matrix-resin

which is such true case in SFRP where fibre has more strength than that of the matrix material.

Instead of stress intensity factor, strain intensity factor is used for quantifying the singularities at

the tip of the inclusion because it is more appropriate to use in case of inclusion problems. Further,

the variation of strain intensity factor with respect to three parameters, namely diameter of a hole,

length of line inclusion and the distance between the inclusion and a hole is studied. We have used

a numerical methodology, based on the reciprocal theorem, to calculate the strain intensity factor of

the inclusion in the finite geometry. The input to this method is the actual elasticity solution, which

is obtained using finite element analysis (FEA). Furthermore, these FEA models are validated using

the experimental technique, Digital Photoelasticity, qualitatively and quantitatively as well.
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Chapter 1

Introduction and Literature

Review

1.1 Introduction

1.1.1 Introduction to SFRP

Composite materials are the materials made from two or more materials with different properties

when combined gives a very high strength material compared to its constituent elements. Studies

on composite materials gave us more insight into their fabrication processes, material and behaviour

properties and failures which opened the new applications areas for it. Fibre-reinforced-polymers,

namely composite materials are the trending materials used in structures because of their superior

mechanical, thermal and electrical properties. Among the other properties of composite materials,

the high strength-to-weight and modulus-to-weight properties are the most important properties to

increase its use in structures and aerospace.

Principal constituents of composite materials are reinforcements - fibres which gives strength to

composite materials and the matrix which adheres the reinforcement phases in place and deforms to

distribute the stresses between the constituent reinforcement materials under an applied force. The

performance of composites is estimated by shape, length, orientation, and content of the fibres and

the mechanical properties of the matrix. Composite materials are classified based on aspect ratio

defined as

S =
length of the fibre

diameter of the fibre
=
l

d
. (1.1)

These are mainly classified as continuous-fibre-reinforced-polymers(CFRP) and short-fibre-reinforced-

polymers (SFRP). For SFRP, the aspect ratio ranges from 50 − 500 [1]. CFRP is used, instead of

metallic components, especially in aerospace industries, while the SFRP is used, instead of plane

polymeric material, for electrical, packaging and automotive applications [2].

Composites with shorter fibres with the proper orientation that use glass, ceramic or multi-

purpose fibres can produce considerably higher strength than those that use continuous fibres. Short

fibres are also known for their theoretically higher strength. Also, SFRP is very easy to manufacture

in large quantity, hence eligible for industrial production. In SFRP, both fibre and matrix take the

applied load, and this applied load transfer between the matrix and fibre happens via the fibre-
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Fibers Matrix

Figure 1.1: A typical distribution of fibres embedded in the matrix in SFRP

matrix interface. As a result, SFRP has superior strength and elastic stiffness over the parent

polymeric material [1]. SFRP are now widely used in automobile [3, 4, 5], aerospace and secondary

load bearing structures [6]. As the diameter of fibres is very small, usually in microns, compared

to the diameter, fibres look more like powder to the unassisted eyes. Enhancement in mechanical

properties can be obtained by using a higher aspect ratio in SFRP. But using higher aspect ratio

leads the reduction in failure strain and hardness [7]. In general in SFRP, the fibre orientation and

its spacing are random as shown in fig 1.1. Also, their mechanical properties mainly depend on two

variables, namely a) mean fibre diameter and b) fibre orientation with loading direction. For shorter

fibre length, an increase in mean fibre length increases the strength of SFRP, but for longer fibre

length, there is almost no effect on the strength of SFRP [8]. Furthermore, the decrease in fibre

orientation with loading direction increases the strength of SFRP.

1.1.2 Load transfer mechanism in SFRP

In composite materials, the applied load is shared by both matrix and fibres, though in different

proportion, which makes it high strength and stiff. Also, fibres are immensely surrounded by the

matrix material. Hence when an external load is applied to the composite structure, it acts on the

matrix first and then it gets transferred to the fibres. The load transfer depends on the interface of

matrix and fibres. A part of this load is transferred to the fibre through the fibre end and remaining

transferred to the fibre through their external cylindrical surface by shear mechanism, as illustrated

in the Fig. 1.2. The direct load transfer through fibre end is causing a direct stress σf in the fibre.

As the shear stress, τ , is acting on the cylindrical surface of the fibre, it causes an increase in stress

on one end of the fibre, i.e. (σf + dσf ). This mechanism is called as the shear mechanism. For

the continuous-fibre-reinforced-composites, the load transfer to the fibre end is very low compared

load transfer through fibre’s external cylindrical surface because of the larger the cylindrical surface.

But for the short-fibre-reinforced-composites, the same is not true because of their short length.

Hence most of the load transfer happens through the fibre end which creates a stress concentration.

Therefore, load transfer is important in the SFRP.

Stress concentration at the fibre end is responsible for fibre separation from the matrix or matrix

yielding. Hence, investigators have studied this problem extensively. In these studies, they have

2



σ0

σ0

σf

σf + dσf

τ

τ D

(a) (b)

Figure 1.2: Load transfer to the fibre through matrix. (a) A lamina subjected to the stress σ0, (b)
A zoomed view of load transfer by shear mechanism

often modelled the problems fibres as inclusions embedded in the matrix.

1.1.3 Defects in composite materials

Defects can be inevitably introduced in the composite structures either during the material process-

ing, manufacturing process or in the course of service life. These defects are known to adversely

affect the performance of structural components in some way and also reduces expected performance.

Hence, the size, shape, location and frequency of occurrence of the defects are supposed to be stud-

ied, in order to have the knowledge of defects growth in the expected service environment. This

exercise can set the acceptance and rejection criterion for the manufacturing and in-service defects.

The manufacturing process can introduce a variety of defects as stated in the order of importance

as porosity or presence of voids, foreign body inclusion, incorrect fibre volume fraction, bonding de-

fects, fibre misalignment, ply misalignment, incompletely cured matrix, ply cracking, delaminations,

fibre defects, etc. Incorrect fibre volume fraction happens due to excess or insufficient resin. Its

local variations always happen but a large departure from specifications may be caused by inap-

propriate process conditions. Fibre misalignment can cause the local changes in volume fraction by

preventing ideal packing of fibres. Ply misalignment can be a result of mistakes made in lay-up of

the component plies which can significantly affect the overall stiffness and strength of the laminate.

Delaminations are the planar defects and rarely occur during the manufacturing, but can be pro-

duced by contamination during lay-up and machining. Fibre defects include fibre kinks results of

micro-buckling, broken fibres in the lamina, fibre distribution variance, etc. Fibre defects are one of

the demerits in determining the correct strength. These defects are always present, hence must be

considered as one of the basic material properties.

Porosity can be caused by volatile resin components, incorrect or non-optimal cure parameters

such as duration, temperature, pressure, or vacuum bleeding of resin. Most of these parameters

responsible in some way to entrapping the air to structure component. Porosity levels or voids

3



content can be significant and critical, as they greatly affect mechanical performance parameters,

such as inter-laminar shear stress (ILSS).

Composite materials can be degraded in service by a number of mechanisms and those of most

are prone environment experienced and materials used. This degradation can be caused due to static

overload, impact, fatigue, hygrothermal effects, overheating, lightning strike and creep. The defects

in the order of importance are as follows delaminations, bond failures (fibre-matrix debonding),

cracks (matrix cracking and crazing), the entrance of moisture, fracture or buckling of fibres, failure

of the interface between the fibres and matrix. Delaminations are the most important and most

occurring defects in service life. These are a matrix defect, where in-plane matrix cracks propagate

between plies of a laminate or within a laminate, where cracks run parallel to the fibre direction.

1.1.4 Voids in composite materials

Studies showed that the limitations of manufacturing processes and uneven process parameters af-

fects the properties of composite materials and also induces the defects, such as voids, delaminations,

uneven distribution of resin, and many more. One of the important defects in composite materials is

formation of voids or bubbles which greatly affects the mechanical properties such as inter-laminar

shear stress (ILSS) and also responsible for crack initiation and growth due to void coalescence.

Voids in structures also leads to absorption of moisture which make structure corrosive prone. In

SFRP, voids forms when air entraps-in during compounding and processing stages. Due to existence

of temperature gradient during cooling, the uneven contraction of volume happens. These voids try

to accumulates at the end of the fibre and their content depends on processing conditions, such as

fibre concentration, fibre length, etc., [9]. Void content or void ratio can be calculated as

Void Ratio(e) =
VV
VS

=
VV

VT − VV
, (1.2)

where, VV is volume of voids, VS is volume of solids and VT is volume of bulk material. Voids

formation depends on various parameters. Voids content increases with the resin viscosity [10],

injection and cure temperature of poring resin and vacuum pressure of process [11]. Also, it has

been suggested and then implemented that there should be criterion for minimum percentage of

void contents in the structure. Hence for aerospace structures approximately 1% of void contents in

allowed and for other structures is 3% to 5%. A reduction in void contents from 40% to 10% can

increase the flexural strength by nearly three times and almost doubles the modulus [12].

The methods for determining the void contents are microscopy of which optical and environmental

scanning electron microscopy (ESEM) is the most commonly used, Archimedes density measurement,

micro-computed tomography (micro-CT), etc. [13]. Though we can reduce the void content using

precautions and controlled process parameters but it is almost impossible to avoid it at all. In

manufacturing, various methods are employed to reduce the void contents such as vacuum injection

moulding (VIM) which can reduce void contents to less than 3%. In industry, vacuum bagging

around the laid-up component, and pressure within a pressurized autoclave technique are used [12].
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1.2 Literature Review

The problem of singularity at fibre end is studied extensively by the investigators. A more in-depth

understanding from these investigations is gained on the relationship between the reinforced phases,

viz. fibre, matrix, etc., and their interaction when loaded. Study of microdamages near fibre ends is

important in SFRP, as it directly affects the stiffness and strength of the composites [14]. Hence, in

the literature, bulk investigations are done to quantify these microdamages with various methods.

Studying the inclusion problems are the basic building block for these studies.

Atkinson [15] has provided displacement and stress field solution for ribbon like inclusion us-

ing complex variable approach and also has provided a alternative approach consisting a Fredholm

equation in terms of shear stress on ribbon surface. He has studied both rigid and elastic ribbon

inclusion. Wang et al. [16] has given the elastic stress and displacement fields near the tip of a

rigid line inhomogeneity subjected to an inclined loading using both Eshelby’s equivalent-inclusion

method and complex potential approach of Muskhelishvili [17]. Also he has attempted to quantify

the singularity at the tip of inclusion using various stress intensity factors. Ballarini [18] has pro-

vided the solution for stress intensity factor for the rigid line inclusion subjected to remote loading

in transverse direction to inclusion length using a singular integral and Muskhelishvili’s complex

potential approach. Noselli et. al [19] studied the stress state near the rigid line inclusion using the

photoelasticity technique. To remove dependency on Poisson’s ratio of stress intensity factor, he

defined stress intensity factor in strain term instead of stress term. In similar way, Pratap P et al.

[20] have also suggested that the strain intensity factor (which is defined in terms of strain instead

of stress terms), instead of stress intensity factor, for quantifying the magnitude of singularities at

the tip of the rigid line inclusion using Stroh formulation.

Interaction problems are also useful for quantifying the various failures in SFRP material, because

the composites fracture can be takes place by fibre breakage, matrix cracking and matrix-fibre

interface do-bonding. Ishikawa and Kohno [21] has studied the debonding cracks at the fibre end

by modelling this problems as a square hole and a rigid square inclusion in the infinite plate under

tension loading using conformal mapping and Goursat stress functions. They also determined the

stress singularities and stress intensity factors for Mode I and Mode II deformations. Again, Kohno

and Ishikawa [22] have attempted the same problems, this time they modelled it as a lozenge hole

and a rigid lozenge inclusion in the infinite plate with same loading and same approach. Gdoutos has

studied [23] the propagation of a crack in the presence circular inclusion in an elastic plate subjected

to uniform uniaxial tensile stress perpendicular to the axis of the crack. Li and Chudnovsky [24]

have studied the crack interaction with elastic soft and stiff inclusion using the energy release rate

and stress intensity factor criterion. Natarajan et al.[25] has studied the crack interaction with a

single rigid circular inclusion and with a group of rigid inclusions in an elastic medium, using the

extended finite element method (XFEM). Also they studied, numerically, influence of crack length,

number of inclusions, and geometry of inclusions, on the crack tip stress field. Ayatollahi et al.[26]

has studied, numerically, the effect of crack growth retardation by drilling the holes at crack-tip,

under pure Mode I and Mode II loading conditions. Also the effect of different diameters on fatigue

life is studied for same loading conditions. Thomas et al. [27] has studied circular holes and shrunk

fit inclusion on the stress intensity factor using finite element alternating method (FEAM). This

study is done for loading of Mode I and Mode II separately.

Sulym et al. [28] have studied the effect of circular hole on generalized stress intensity factor
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(GSIF) of thin inclusion in an elastic isotropic medium. The effect is studied for two problems: a

traction-free hole and a constrained hole with a thin inclusion.

1.2.1 Summary

Increased applications of SFRP has increased the need for a deeper investigation into the various

failures and their improvement over it. In case of SFRP, the excessive stresses at fibre can lead

to matrix cracking or fibre-matrix debonding. Hence, the study of stress behaviour at the fibre

end is a serious and important topic in case of SFRP because of the singularities at fibre ends.

Investigators have extensively studied these problems in different approaches. Modelling the fibres

as rigid inclusions become a popular way of solving these problems and hence for these problems

solutions are now available. Furthermore, the interaction problems are also important to investigate

the failures, like fibre breakage, matrix cracking and matrix-fibre interface do-bonding. The work

of Ishikawa and Kohno related to debonding at the fibre ends is notable. The work of Pratap et al.

related to using a strain intensity factor instead of stress intensity factor is used.

1.2.2 Problem Statement

The myriad applications of SFRP have increased the challenges includes the stress behaviours in

the structures where load-bearing components, like fibres, are uneven in length and orientation

with loading direction. Stress behaviour in and at the tip of the fibre is extensively studied by the

investigators. In these models, they have considered the fibres as inclusions and modelled them as

rigid bodies. The study shows that there are singularities present at the tip of fibres. Also, the

imperfections like voids are significant to study especially when there already a singular stress field

is present. Hence the present study deals with the same kind of problem but on a simpler level. In

this study, the interaction of rigid line inclusion and a two-dimensional circular void is being studied.

Hence the problem is modelled as a rigid line inclusion and a hole. To quantify the singularities at

the fibre end, strain intensity factor, Kε
I , is used instead of stress intensity factor. The variation

2w

2b

Hole, φD

θ

r

2L

Line Inclusion
s

u

Figure 1.3: A schematic of the rigid line inclusion with a hole embedded in an infinite elastic matrix
subjected to a loading.
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of strain intensity factor with respect to three parameters, namely diameter of a hole, length of

the inclusion and distance between the inclusion and a hole is planned to study. Fig. 1.3 shows

schematic of rigid line inclusion with a hole embedded in an infinite elastic matrix subjected to a

tensile loading.

In the first phase of the project, numerical investigation for strain intensity factor using com-

mercial analysis software ABAQUS 6.14 is studied. The analysis is carried out in an automated

manner with written ABAQUS Python Scripting. The numerical method used to calculate strain

intensity factor is adopted from Patil P. et al. [20]. These numerical results are to be validated with

Photoelasticity results. The specimens for the photoelasticity experiments have been prepared.

1.3 Scope and motivation

Due to the production process, materials limitations, etc., voids formation is inevitable in the com-

posite materials. In the fabrication process, air entraps in the laminates and unable to move out. Af-

ter completion of the fabrication process, this entrapped air creates voids in composites. Researchers

studied many affecting factors on void formation which includes resin pouring temperature, curing

temperature, vacuum pressure, resin viscosity, etc. These factors also affect the void geometry. Also,

a much study has been devoted to the reduction of void formation. It is also known that the voids

also greatly affect the mechanical properties of composites. A much of the study has been carried

out for studying the effects of voids for continuous-fibre-reinforced-polymers but not for the short-

fibre-reinforced-polymers which have different stress behaviour when loaded, compared to that of

continuous fibre composites. From the literature, we know the that for short fibre composites, there

is singular fields present at fibre ends. The present study is devoted to studying the effects of voids

on the fibre end stress singularity in case of short-fibre-reinforced-polymers.

A numerical model is created in which the problem is modelled for the 2D case. In this 2D

numerical model, fibres are modelled as a rigid line inclusion, and voids are modelled as a hole

embedded in an elastic matrix. To get the elastic stress and strain field for present problem, the

approach of Pratap et al. [20] is adopted. The strain intensity factor, Kε
I , at the tip of rigid

line inclusion is estimated for different configuration of the problem. The strain intensity factor

variation with three geometric parameters is studied, viz. inclusion length, the diameter of the hole

and distance between line inclusion and hole centre. The reciprocal theorem is used to find the strain

intensity factor requires the stress field data which is obtained from finite element analysis(FEA).

Further, this numerical model is validated using the Digital photoelasticity technique. The fringe

contours from FEA has reconstructed using the multi-parameter equation derived for the present

problem. These fringe contours are then compared with that of Photoelasticity experiment. For

strain intensity factor estimation, there are several optical techniques like Moiré interferometry,

speckle interferometry, holographic interferometry, photoelasticity, digital image correlation. But

most of the interferometric techniques are sensitive to vibration. And among these experimental

techniques photoelasticity technique is a sophisticated technique which gives rich field data for

complex geometry and the vibration sensitivity can be removed with some special arrangements of

its optical components.
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1.4 Objectives

• Implementation of Adaptive Quality Guided Algorithm (AQGPU) using ten-step Phase Shift-

ing Technique (PST) to get whole field fringe order data and isoclinic data from digital pho-

toelasticity.

• Implementation of the numerical and experimental methods to estimate the strain intensity

factor for rigid line inclusion and hole problem.

• Development and implementation an over a deterministic linear least square approach to solv-

ing multi-parameter stress field equation for rigid line inclusion problem.

• Study the effect of voids on the stress singularity at the fibre end in case of short-fibre-

reinforced-polymers.

1.5 Thesis layout

Chapter 1 talks about defects in composite materials with the major discussion about voids formation

and its effects material properties. Also, a brief review of literature work on defects studies, use of

digital photoelasticity for fracture studies. This chapter also discusses the problem definition for

this thesis. In the end, scope and motivation and objectives for this work are discussed.

Chapter 2 discusses the implementation of AQGUP algorithm using the ten-step PST to get the

whole field fringe order data and isoclinic data. These algorithms are then verified for the disc under

diametral compression problem.

Chapter 3 discusses the evaluation of strain intensity factor by linear least squares approaches using

digital photoelasticity technique. To use this experimental technique, the multi-parameter stress

field equation for the rigid line inclusion are derived. The specimen preparation and experimentation

procedure is then discussed. Further, the results for the rigid line inclusion and hole problem are

discussed.

Chapter 4 discusses the numerical procedure to estimate the strain intensity factor, Kε
I , for rigid

line inclusion. This method is then extended to estimate strain intensity factor for the rigid line

inclusion and hole problem. Further, the numerical and experimental results for a present problem

are compared quantitatively and qualitatively as well.

Chapter 5 states the conclusion and recommendation for future work.
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Chapter 2

Whole field isochromatic

parameter estimation using digital

photoelasticity

2.1 Introduction

Centuries of research have given us different type experimental techniques for design analysis which

comes handy when verifying and confirming the analytical and numerical results such as holographic

interferometry, Moiré interferometry, electronic-speckle-pattern interferometry, coherent gradient

sensing, the method of caustics, photoelasticity, digital image correlation (DIC). Holography and

other interferometric techniques are very sensitive to vibration and require a coherent light source

and also complex setup. Among these techniques, photoelasticity gives the rich whole field data

even for complex problems, and the setup is simple optical elements.

Photoelasticity is non-contact type, optical and whole field technique for the experimental stress

analysis. Photoelasticity techniques are used for a variety of stress analysis, design and also verifica-

tion of numerical methods such as finite elements or boundary elements. The basic principle of this

technique is when a certain material stressed, the property of birefringence induces in the stressed

components. Many transparent materials exhibit this property. For the transparent materials, trans-

mission photoelasticity can be used, and for non-transparent or opaque materials such as metals,

reflection photoelasticity can be used. Photoelasticity is very popular for the two-dimensional plane

problem but also it can be extended for three-dimensional problems. In early days, it was used to

study stress concentration factor for complex structural shape for both two and three dimensional.

Birefringence is the property of the material in which material will have two refractive indices in the

two mutually perpendicular directions. When materials with birefringence property are stressed,

it shows the fringe contours. These fringe contours are related to the principal stress difference in

the plane normal to the propagation of light source. In the early days, the fringe data is obtained

manually which limits its applications. With inventions of the computers, it is possible to do image

processing and to automate the procedure to capture isoclinic and isochromatics. The recent devel-

opments in digital image processing have given birth to a separate branch of photoelasticity called
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Digital Photoelasticity.

This chapter discusses the estimation of a whole field digital photoelastic parameter. Ten-step

phase shifting technique is used for data acquisition in order to minimise the vibration, optical

elements misalignment errors. Further, from this acquired data, wrapped isochromatic data with

ambiguous zones and wrapped isoclinic data with inconsistent zones is obtained. This wrapped

isoclinic data is then unwrapped to get whole field isoclinic data without inconsistent zones using

Adaptive Quality Guided Algorithm (AQGUP). The same algorithm is then applied to get whole

field isochromatic data without ambiguous zones. This algorithm is verified by applying to standard

disc under diametral compression problem.

2.2 Whole field digital photoelastic parameter estimation

In photoelasticity, we get whole field data such as principle stress difference and principal stress

direction orientation. Remember, the upcoming discussion is about two-dimensional photoelasticity,

for three-dimensional photoelasticity some discussion point might be different. In photoelasticity

technique, two type fringe contours can be obtained, namely isochromatics and isoclinic as shown in

fig. 2.1. Isochromatics contours corresponds to principle stress difference and isoclinics corresponds

Figure 2.1: A plane polariscope image of a disk under diametric compression showing both isoclinic
and isochromatic fringe contours.

to principle stress direction. At the particular isochromatic fringe, the principal stress difference is

same throughout the fringe, but the principal stress direction may be different and vice-versa. In the

Fig. 2.1, the isochromatic or fringe order data is varying from zero to one which is discrete. And the

isoclinic fringe in same figure is corresponds to some angle depending upon arrangement of optical

elements. Hence to get whole field data, we generally use different techniques which essentially

requires grabbing more images at certain optical arrangements and then processing them.

The data collection using charge-coupled device (CCD) cameras which records the intensity data

is became simpler. The techniques are broadly classified into spatial domain and frequency domain

methods. Phase-shifting techniques (PST), polarization stepping techniques and load stepping come

under spatial domain methods. Spatial domain methods require the smaller number of images to

be recorded (from three to ten in most cases). Further, they are computationally very fast. Hence,

they are considered for whole field isochromatic parameter estimation.
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2.2.1 Data acquisition in digital photoelasticity

Phase shifting technique is most widely used method to get isoclinic and isochromatic values at each

point in the model domain. In the phase shifting technique, a few images are recorded corresponding

to different angular arrangements of the optical elements used [29]. As each is captured at the

different optical arrangement, hence a phase of contours is shifted, therefore called as phase shifting

technique (PST). There are many techniques to get whole field data from photoelasticity such as

half fringe photoelasticity, three fringe photoelasticity, etc.

Recently, Ramji and Prasath [30] recommended the use of ten-step phase shifting method for

manual polariscope with digital photoelastic applications. It has been verified that using ten-step

gives the isoclinic and isochromatic very greater accuracy as compared to other phase shifting meth-

ods even in the presence of the small optical misalignment. Fig. 2.2 shows the optical element

arrangement for photoelasticity technique. The light source used can be a white light or monochro-

matic light source. When a white light source is a coloured fringe pattern is produced and similarly

when monochromatic light is used a white and dark colour fringe patterns produced.

x

y

Source

Polariser

First Quarter

ζ

θ

η

β

Analyser

Second Quarter

Wave Plate

Specimen

Wave Plate

Light

α

SF

S

F

F

S

Figure 2.2: Generic optical element arrangement for photoelasticity technique set-up.

The orientation angles used with respect horizontal for different optical elements in the above Fig.

2.2 are:

α = Orientation angle of Polariser,

ζ = Orientation angle of First Quarter wave plate,

η = Orientation angle of Second Quarter wave plate,

β = Orientation angle of Analyser and

θ = Orientation angle of principal stress direction.
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Note that the angles, α, ζ, η, β and θ represents orientation of slow axis of the respective optical

element. In the Fig. 2.2, the F and S indicate the fast and slow axis of polarised light respectively.

The quarter-wave plates are used to obtain a phase difference of quarter of the wavelength, λa/4.

But this phase difference obtained by quarter wave plate depends on the wavelength of light source

used, hence for a white light source, the quarter wave plate simply acts as a retarder. Therefore,

these optical elements can be used for only one type of light source.

2.2.2 Ten-step phase shifting technique

Ten-step PST gives the most accurate whole field data than any other technique. Hence we exercise

this technique in our work. For the ten-step PST, the optical arrangements for different optical

elements used are given in Table 2.1. In the above Table 2.1, Ib is surrounding light intensity, Ia is

Table 2.1: Ten-step method: Polariscope arrangements and intensity equations for isoclinic and
isochromatics evaluation

No. α ζ η β Intensity Equation

1. π/2 - - 0 I1 = Ib + Ia sin2( δ2 ) sin2 2θ

2. 5π/8 - - π/8 I2 = Ib + Ia
2 sin2( δ2 )(1− sin 4θ)

3. 3π/4 - - π/4 I3 = Ib + Ia sin2( δ2 ) cos2 2θ

4. 7π/8 - - 3π/8 I4 = Ib + Ia
2 sin2( δ2 )(1 + sin 4θ)

5. π/2 3π/4 π/4 π/2 I5 = Ib + Ia
2 (1 + cos δ)

6. π/2 3π/4 π/4 0 I6 = Ib + Ia
2 (1− cos δ)

7. π/2 3π/4 0 0 I7 = Ib + Ia
2 (1− sin 2θ sin δ)

8. π/2 3π/4 π/4 π/4 I8 = Ib + Ia
2 (1 + cos 2θ sin δ)

9. π/2 π/4 0 0 I9 = Ib + Ia
2 (1 + sin 2θ sin δ)

10. π/2 π/4 3π/4 π/4 I10 = Ib + Ia
2 (1− cos 2θ sin δ)

light intensity of light source, δ is phase retardation through the specimen and θ is principal stress

orientation. The first four optical arrangements are called as Plane Polariscope, where the quarter

wave plates are absent or optically effect made null by putting them align with the other optical

elements, viz. polariser and analyser. In these arrangements, we can see both fringe contours, viz.

isoclinics and isochromatics. The remaining six optical arrangements are called Circular Polariscope,

where quarter wave plates are arranged such a way that the light coming out of first quarter wave

will be circularly polarized light and that of after second quarter wave plate light will be again

plane polarized. In these arrangements, we can see only isochromatics fringe contours. Using above
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different arrangements, the wrapped isoclinic and isochromatic values can be obtained as

θc =
1

4
tan−1

(
I4 − I2
I3 − I1

)
, (2.1)

δc = tan−1
(

(I9 − I7) sin 2θ + (I8 − I10) cos 2θ

I5 − I6

)
. (2.2)

From equation 2.1, one can get the wrapped isoclinic phase map in the range −π/4 to +π/4 with

inconsistent zone and it needs to be unwrapped. Later, the unwrapped isoclinic data is used for

the isochromatic phase map generation as given in equation 2.2. Finally, the wrapped isochromatic

phase map has to be unwrapped for getting the continuous fringe order.

2.3 Unwrapping of isoclinic phasemap

After grabbing the images and getting the wrapped isochromatic and isoclinic data, the next step is

to get the continuous data. Hence, unwrapping of wrapped isoclinic and isochromatic is necessary,

and so it is discussed next. The Fig. 2.3a shows the wrapped isoclinic phasemap with inconsistent

zones for a disc under diametral compression problem and Fig. 2.4 shows the wrapped isochro-

matic phasemap with ambiguous zones for the same problem obtained using the wrapped isoclinic

phasemap. In the above equation 2.2, θ is the isoclinic values at a point, and hence it is necessary

to unwrap the isoclinic first then it to used for the unwrapping of isochromatics. When isoclinics
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Figure 2.3: Isoclinic phasemap for disc under diametric compression (a) wrapped isoclinic phasemap
with inconsistent zone (b) comparison of wrapped isoclinic with analytical obtained values along the
line y/R = 0.8.

phasemap corresponds to only one of the principal stress direction, let’s say, σ1, we get phasemap

without inconsistent zones. And when it corresponds to σ2 for some region and σ1 for another region,

we get inconsistent zones in isoclinic phasemap. We know that the principal stresses, σ1 and σ2,

are always perpendicular to each other. This means there is a jump of π/2 and hence the colour is

jumped from white to black and vice-versa. One such example is shown in Fig. 2.3a where isoclinic
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Figure 2.4: Wrapped isochromatic phasemap with ambiguous zones for disc under diametrical com-
pression.

phasemap corresponds to σ1 except in the inconsistent zone where it corresponds to σ2. The jump of

π/2 happens at the boundary of the inconsistent zone. This is shown in Fig. 2.3b, where π/2 jump

present between wrapped and analytical isoclinics across the blue line shown in Fig. 2.3a. Hence to

get a continuous unwrapped isoclinic, a constant value of π/2 has to add to the isoclinic values in

the inconsistent zone. This process of unwrapping is called phase unwrapping of isoclinic phasemap.

−π4

−π8

0

π
8

π
4

Inconsistent

Zone

(a)

−π2

−π4

0

π
4

π
2

(b)

Figure 2.5: Isoclinic phasemap unwrapping for disc under diametric compression (a) wrapped iso-
clinic phasemap with inconsistent zone and (b) unwrapped isoclinic phasemap.

We know that, in the inconsistent zones, the isoclinics represents the principal direction of the

other principal stress. This happens because the arctangent function returns the principal isoclinic

value in the range −π/4 to +π/4, but physically the isoclinic value must be in the range −π/2 to

+π/2. Hence, one supposed to unwrap the isoclinic phasemap to get them in the range −π/2 to

+π/2 and this can be done by using the Adaptive Quality Guided (AQGUP) Algorithm as described

in [31]. Figure 2.5 shows the wrapped and unwrapped isoclinic phasemaps for disc under diametral

compression.
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2.4 Unwrapping of isochromatics phasemap

From Eqn. 2.2, it clear that one needs to use the isoclinic phasemap to get isochromatic phasemap.

Hence when we use unwrapped isoclinic phasemap data, we get isochromatic phasemap without

ambiguous zones. In the non-ambiguous zone, the black to white colour transition is towards the

loading point, but for an ambiguous zone, this is complete opposite which has transitioned from

black to white towards the loading point. These isochromatic phasemap shows fractional fringes,

and they are in order of −π to +π. Before unwrapping of isochromatic, the obtained isochromatic

phasemap need to convert in the range of 0 to 2π. It can be done as follows

δ =

δc, for δc > 0,

2π + δc, for δc ≤ 0.
(2.3)

The wrapped isochromatic phasemap is then unwrapped in the same manner as that of isoclinic

phasemap. In the start isochromatic unwrapping process, the seed point needs to be selected and

corresponding fringe order has to be given as input. The unwrapped isochromatic phasemap of the

disc under diametral compression is shown in the Fig. 2.6.
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Figure 2.6: Isochromatic phasemap unwrapping for disc under diametric compression (a) wrapped
isochromatic phasemap with seed point and (b) unwrapped Isochromatic phasemap.

2.5 Specimen fabrication and experimental procedure

The disc under diametral compression test is a very standard exercise to get material fringe value

from the photoelasticity experiment. A disc specimen is prepared using simple casting process in

a closed mould. The disc is cast using resin Epofine-221 and hardener Finehard-1842 mixed in the

ratio 100:40 by weight. At first resin and hardener are taken in clean, separate beakers in sufficient

quantity. Heat the resin and hardener in hot water, so the air and moisture in it get evaporated.

After it gets cooled, mix it and stir slowly. While stirring, care should be taken that no air bubbles
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formed and also dust should enter. After complete mixing, keep the mixture at a steady temperature

to cure normally for 48hr. Then check the specimen for any residual stresses using the polariscope.

Then machine the specimen for the required dimensions, for disc its 60mm diameter.

φ 60

All dimensions are in mm

Figure 2.7: Disc specimen for digital photoelasticity experiment

The images are captured using the BASLER monochrome CCD camera which has a spatial

resolution of 1392 × 1040 pixels for different optical arrangements as mentioned in the Table 2.1.

The specimen is loaded using a 10kN Instron Machine.

2.6 Results

2.6.1 Disc under diametrical compression

A disc under diametrical compression is used to exercise the use of AQGUP algorithm and also the

same specimen is used for the estimation of material fringe value, Fσ. A disc specimen is prepared

for photoelasticity experiments as shown in Fig. 2.7. Ten-step images are captured as specified in

the Table 2.1. For the unwrapping, first the quality map is generated and to start the unwrapping of

isoclinic phasemap by AQGUP algorithm, the seed point is selected in the consistent zone as shown

in the Fig. 2.8a. Fig. 2.8b shows the unwrapped isoclinic phasemap obtained using AQGPU.

The wrapped isochromatic phasemap without ambiguous zone is obtained using unwrapped

isoclinic phasemap values as shown in Fig. 2.8c. To ensure the correctness of the isochromatic data,

it is then compared with dark field photoelastic image obtained from polariscope. This image is

obtained using the six numbered optical arrangement specified in the Table. 2.1. This isochromatic

data is ranged from 0 to 1. Hence, to get continuous isochromatic value over the entire domain,

unwrapping of isochromatic phasemap is done using AQGPU. Here, to start the unwrapping of

isochromatic phasemap, a seed point (N = 1) is selected as shown in Fig. 2.8c and corresponding

fringe order is given as input. The unwrapped isochromatic phasemap is shown in Fig. 2.8d.

Further, the unwrapped isoclinic and isochromatic data is compared with analytical data. Fig.

2.9 shows the comparison of isoclinic values with the analytical values along the line y/R = 0.8.

Also in Fig. 2.10 shows the comparison of isochromatic values with the analytical values along the

line y/R = 0.8.
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Figure 2.8: Isoclinic and isochromatic phasemap for disc under diametral compression (a) wrapped
isoclinic phasemap, (b) unwrapped isoclinic phasemap, (c) wrapped isochromatic phasemap (d) dark
field photoelastic image and (e) unwrapped isochromatic phasemap
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Chapter 3

Strain intensity factor estimation

by linear least squares approach

using digital photoelasticity

technique

3.1 Introduction

Defects like, cracks, inclusions, etc., are, in some way, responsible for stress concentration and

magnifies the load locally which initiates cracks and leads to failures. The presence of crack alters

the stress and strain field around the crack-tip. Also similar is the case of rigid line inclusions. In the

fracture studies of crack and line inclusions, the stress intensity factor (SIF) expresses the strength

of singular elastic stress field and also characterise near-tip stress field. The critical value of SIF

decides the initiation of cracks growth and ultimate failure. SIF can be estimated using analytical,

numerical, or experimental techniques. However, the analytical techniques are confined to the simple

configurations and boundary conditions. For complex configurations, SIF needs to be extracted

using either numerical or experimental method. The multi-parameter stress field equations for crack

proposed by Atluri and Kobayashi is the extension of William’s eigen function expansion. An over-

deterministic least squares technique is proposed to evaluate the mixed-mode stress field parameters

using multi-parameter stress field equations by the experimental technique called photoelasticity

[32].

Foreign materials like inclusions locked inside the parent materials during material formation or

manufacturing process which acts as a stress riser and they are different in geometries also. While

studying these defects, inclusions are considered as infinite strength or very high strength materials

compared to parent materials. In case short-fibre-reinforced-polymers (SFRP), fibre length, its

orientation and distribution is not specific. In SFRP, the load is transferred from matrix to fibre,

and this can be done through fibre end and its cylindrical surface. But due to the shorter length,

its cylindrical area is very small, and hence most of the load transfer happens through the fibre end

which creates very high stress concentration at it as the thickness or diameter of the fibre is again

19



very small compared to its length. Hence while solving the problems in SFRP, it is a fundamental

ideology to consider fibres as rigid line inclusions. In the literature, there are solutions available for

rigid line inclusion solved using different methods and techniques. In these researches, the stress

intensity factor is used to predict the strength of the singular elastic stress field. But the stress

intensity factor, in case of inclusion problems, depends on materials properties. Hence, Pratap P et

al. [20] used a strain intensity factor, Kε
I , for defining the strength of the singular stress field and also

characterise near-tip stress field. strain intensity factor is independent of the material properties.

Hence it is more suitable for use.

In past researches, for estimation of fracture parameter such stress intensity factor non-contact

optical methods such as holographic interferometry, Moiré interferometry, electronic-speckle-pattern

interferometry, coherent gradient sensing, the method of caustics, photoelasticity, digital image

correlation (DIC) are used. Holography and other interferometric techniques are very sensitive to

vibration and require a coherent light source and also complex setup. Among these techniques,

photoelasticity gives the rich whole field data even for complex problems, and the setup is simple

optical elements. Hence, photoelasticity technique is exercised here.

In this chapter, the procedure of estimation strain intensity factor using digital photoelasticity

technique is discussed. The fracture parameters such as strain intensity factor are evaluated by

finding coefficients of a curve fitted multi-parameter stress field equation over the experimental

isochromatic data surrounding inclusion-tip. The objective function is defined as the square of

the error between experimental and reconstructed fringe order obtained from the multi-parameter

equation. This objective function is then minimised to get the coefficient values using non-linear

over deterministic technique where an initial guess of the coefficient has to be given. Hence, a

solution is not straight forward and sometimes doesn’t converge easily especially in the case of

mixed mode problems. The extracted coefficients of the multi-parameter equation are related to the

inclusion-tip strain intensity factor parameter. Further, finding the exact location of the inclusion-

tip is not possible using the above approach, and hence it always results in an uncertainty of the

extracted fracture parameters. It is not the fullest extent of use of photoelasticity when we use only

isochromatic data for estimation of strain intensity factor. Therefore, in this work, the availability

pixel-wise isochromatic and isoclinic data has enabled us to convert the non-linear regression problem

into a linear regression problem for unknown coefficients. The linear regression problem is solved

over the chosen grid around crack tip by an over deterministic least square approach. This approach

ensures fast and accurate determination of crack tip fracture parameters including the inclusion-tip

location.

Further, in the chapter, ten-step PST is used to the whole field is isochromatic and isoclinic

phasemap for rigid line inclusion and hole problem. Then, wrapped phasemaps are unwrapped

using adaptive quality-guided phase unwrapping (AQGPU) algorithm [31]. This unwrapped data is

used to find strain intensity factor by solving the multi-parameter stress field equation in an over

deterministic linear least square approach. We studied the rigid line inclusion with a hole problem

subjected tensile loading.

3.1.1 Strain intensity factor

In the literature, for the rigid line inclusion problems, stress intensity factor is used to quantify the

strength of singular stress field near the inclusion-tip. But this stress intensity factor depends on
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the materials properties such as Poisson’s ratio, ν. Hence there is a need for defining the governing

factor which is independent of material properties. We know, the asymptotic stress and strain field

at inclusion tip solutions derived given as [20],

σ11 =
2µε∞11
κ

(
l

2r

)1/2

cos

(
θ

2

)[
1 +

1 + κ

2
− sin

(
θ

2

)
sin

(
3θ

2

)]
, (3.1)

σ22 =
2µε∞11
κ

(
l

2r

)1/2

cos

(
θ

2

)[
1− 1 + κ

2
+ sin

(
θ

2

)
sin

(
3θ

2

)]
, (3.2)

σ12 =
2µε∞11
κ

(
l

2r

)1/2

sin

(
θ

2

)[
1 + κ

2
+ cos

(
θ

2

)
cos

(
3θ

2

)]
, (3.3)

ε11 =
ε∞11
κ

(
l

2r

)1/2

cos

(
θ

2

)[
κ− sin

(
θ

2

)
sin

(
3θ

2

)]
, (3.4)

ε22 = −ε
∞
11

κ

(
l

2r

)1/2

cos

(
θ

2

)[
1− sin

(
θ

2

)
sin

(
3θ

2

)]
, (3.5)

ε12 =
ε∞11
κ

(
l

2r

)1/2

sin

(
θ

2

)[
1 + κ

2
+ cos

(
θ

2

)
cos

(
3θ

2

)]
. (3.6)

We know the stress intensity factor can be defined for this situation as [19],

KI = lim
r→0

σ22(r, θ = 0◦)
√

2πr, (3.7)

which gives the form using above Eqns. 3.3 as,

KI = µε∞11
1− κ
κ

√
πl, (3.8)

where ε∞11 is the applied strain at infinity in 1-direction. From the Eqn. 3.8, we can see that under

the plane strain condition, for incompressibility, i.e. for κ = 1, or ν = 1/2, this equation is not

behaving well. Also, the very definition of stress intensity to be the function of loading condition

and not the material properties is violating here. Hence, on inspecting above equation of the stress

and strain fields, the strain intensity factor instead of stress intensity factor is defined as follows,

Kε
I = lim

r→0
ε11(r, θ = 0◦)

√
2πr, (3.9)

which gives the form using above Eqns. 3.6 as,

Kε
I = ε∞11

√
πl, (3.10)

which is completely independent on material properties. The following salient features can be noted

in the solution as mentioned above. (1) The order of stress singularity for the inclusion tip is the

same as that of a crack tip which is 1/2. (2) The asymptotic stress field is always symmetric and

depends only on the applied normal strain in the direction of the inclusion. This is in contrast to

the asymptotic field near a crack tip, where the stress field can also be antisymmetric due to a mode

II loading. Consequently, for planar loading case, only a single strain intensity factor definition is
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applicable for the inclusion problem. (3) The strain intensity factor is independent of the material

properties of the matrix material.

3.2 Multi-parameter equations for rigid line inclusion em-

bedded in an elastic matrix

Multi-parameter stress field equations are the sophisticated equations to calculated fracture param-

eters like stress intensity factor. Also, these equations can be used to find stress intensity factor from

experimental isochromatic and isoclinics data surrounding the crack-tip. Multi-parameter equations

are available for crack problems for mixed mode case, developed by Atluri and Kobayashi which is

simplified solution version of William’s eigen function approach. But for rigid line inclusion, these

equations are not available. Hence herein, we choose to derive the multi-parameter stress field equa-

tion for rigid line inclusion. Later, we use these equations to estimate strain intensity factor for the

inclusion-hole problem.

3.2.1 William’s eigen function approach

William considered a stress function for the singular problems as,

φ = f1(r) f2(θ) = r(λ+1)f(θ), (3.11)

where (r, θ) are the polar coordinates centred at the crack-tip or inclusion-tip and λ is a real integer.

From the observation, negative values of λ are neglected since they produce infinite displacement at

the crack-tip or inclusion-tip and also λ = 0 excluded.

Now, we just need to find the eigen function, φ, which is a solution to the stated problem. But, to

be the correct solution to the problem, the eigen function, φ, has to satisfy the biharmonic equation

in polar coordinates, as

∇2∇2φ =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)(
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2
∂2φ

∂θ2

)
, (3.12)

and the appropriate boundary conditions. Put the Eqn. 3.11 in Eqn. 3.12, we get,

∇2∇2φ =
d4f

dθ4
+ 2(λ2 + 1)

d2f

dθ2
+ (λ2 − 1)2f = 0. (3.13)

In the above Eqn. 3.13, note that λ is the eigen value and f is the eigen function. On solving this

equation for f , we get,

f = f1 + f2, (3.14)

where,

f1 = A cos[(λ− 1)θ] +B cos[(λ+ 1)θ], (3.14a)

f2 = C sin[(λ− 1)θ] +D sin[(λ+ 1)θ]. (3.14b)
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Figure 3.1: A schematic showing rigid line inclusion embedded in an elastic matrix with the origin
at inclusion tip

The Eqn. 3.14a is the symmetric part corresponds to opening mode(Mode I) and the Eqn. 3.14b is

the anti-symmetric part corresponds to sliding mode(Mode II).

Once we know eigen function, φ, we can find stress field using following relations in polar coor-

dinates,

σrr =
1

r

∂φ

∂r
+

1

r2
∂2φ

∂θ2
, (3.15a)

σθθ =
∂2φ

∂r2
, (3.15b)

σrθ =
1

r2
∂φ

∂θ
− 1

r

∂2φ

∂r∂θ
. (3.15c)

3.2.2 Multi-parameter equations for rigid line inclusion

Consider a polar coordinate system (r, θ) and its origin at the tip inclusion as shown in Fig. 3.1.

The problem definition is shown in the Fig. 3.1.

Now, assume a general form of eigen function for a singular problems,

φ = r(λ+1)
{
A cos[(λ− 1)θ] +B cos[(λ+ 1)θ] + C sin[(λ− 1)θ] +D sin[(λ+ 1)θ]

}
. (3.16)

In the above equation 3.16, the first two terms denote symmetric parts of the eigen function, and

last two terms denote anti-symmetric parts of the eigen function. Hence we can write symmetric

and anti-symmetric parts separately as,

φ = φs + φas, (3.17)

and also we can solve them separately.
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Part - I: Symmetric part

Lets consider the symmetric part of Eqn. 3.16, as

φs = r(λ+1)
{
A cos[(λ− 1)θ] +B cos[(λ+ 1)θ]

}
. (3.18)

Using the Eqn. 3.15 and Eqn. 3.18, we get,

σrr = −λr(λ−1)
{
A(λ− 3) cos[(λ− 1)θ] +B(λ+ 1) cos[(λ+ 1)θ]

}
, (3.19a)

σθθ = λ(λ+ 1)r(λ−1)
{
A cos[(λ− 1)θ] +B cos[(λ+ 1)θ]

}
, (3.19b)

σrθ = λr(λ−1)
{
A(λ− 1) sin[(λ− 1)θ] +B(λ+ 1) sin[(λ+ 1)θ]

}
. (3.19c)

Now, to get whole stress field for rigid line inclusion problem, we need to find the constants in the

Eqn. 3.19, which can be done by applying the boundary conditions. Boundary conditions for the

rigid line inclusion problems can be defined in polar coordinates, as,

ur = 0, at θ = ±π, and

uθ = 0, at θ = ±π. (3.20)

Now to apply the boundary conditions, we need displacement field solution for the present problem.

To get displacement field solution corresponding to the specified symmetric eigen function, φs, in

Eqn. 3.18, we use Michell’s solutions, as given below,

2µur = rλ
{
A(κ− λ) cos[(λ− 1)θ]−B(λ+ 1) cos[(λ+ 1)θ]

}
, (3.21)

2µuθ = rλ
{
A(κ+ λ) sin[(λ− 1)θ] +B(λ+ 1) sin[(λ+ 1)θ]

}
(3.22)

Applying the boundary conditions as denoted in Eqn. 3.20, we get,

A(κ− λ) cos[(λ− 1)π]−B(λ+ 1) cos[(λ+ 1)π] = 0

A(κ+ λ) sin[(λ− 1)π] +B(λ+ 1) sin[(λ+ 1)π] = 0.

On using sin and cos identities and simplifying, above equation becomes,

[−A(κ− λ) +B(λ+ 1)] cos(πλ) = 0 (3.23)

[A(κ+ λ) +B(λ+ 1)] sin(πλ) = 0. (3.24)

From Eqn. 3.23, we get values of λ as,

cos(πλ) = 0 ⇒ λ = ±1

2
,±3

2
,±5

2
,±7

2
..., and so on,

Now from Eqn. 3.24, we get relation in constants as,

B = −κ+ λ

λ+ 1
A (3.25)
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Now, from Eqn. 3.24, we get values of λ as,

sin(πλ) = 0 ⇒ λ = 0,±1,±2,±3,±4..., and so on,

Now from Eqn. 3.23, we get relation in constants as,

B =
κ− λ
λ+ 1

A (3.26)

Consider λ = n
2 , where, n is positive integer, and combining the two relations from Eqn. 3.25 and

3.26, we get,

BIn =
(−1)nκ− n

2
n
2 + 1

AIn (3.27)

Now, using Eqn. 3.27, we can write the symmetric stress field solution as,

σrr = −n
2
r

n
2−1AIn

{(n
2
− 3
)

cos
[(n

2
− 1
)
θ
]

+
[
(−1)nκ− n

2

]
cos
[(n

2
+ 1
)
θ
]}
, (3.28a)

σθθ =
n

2
r

n
2−1AIn

{(n
2

+ 1
)

cos
[(n

2
− 1
)
θ
]

+
[
(−1)nκ− n

2

]
cos
[(n

2
+ 1
)
θ
]}
, (3.28b)

σrθ =
n

2
r

n
2−1AIn

{(n
2
− 1
)

sin
[(n

2
− 1
)
θ
]

+
[
(−1)nκ− n

2

]
sin
[(n

2
+ 1
)
θ
]}

(3.28c)

These stress field equations in polar coordinates transformed to cartesian coordinates using following

equations,

σxx =
σrr + σθθ

2
+
σrr − σθθ

2
cos 2θ − σrθ sin 2θ, (3.29a)

σyy =
σrr + σθθ

2
− σrr − σθθ

2
cos 2θ + σrθ sin 2θ, (3.29b)

σxy =
σrr − σθθ

2
sin 2θ + σrθ cos 2θ. (3.29c)

The transformed stress field equations in cartesian coordinates using Eqn. 3.29 are given as,

σxx =
n

2
r

n
2−1AIn

{[
2− (−1)nκ+

n

2

]
cos
[(n

2
− 1
)
θ
]
−
(n

2
− 1
)

cos
[(n

2
− 3
)
θ
]}
, (3.30a)

σyy =
n

2
r

n
2−1AIn

{[
2 + (−1)nκ− n

2

]
cos
[(n

2
− 1
)
θ
]

+
(n

2
− 1
)

cos
[(n

2
− 3
)
θ
]}
, (3.30b)

σxy =
n

2
r

n
2−1AIn

{[
(−1)nκ− n

2

]
sin
[(n

2
− 1
)
θ
]

+
(n

2
− 1
)

sin
[(n

2
− 3
)
θ
]}
. (3.30c)

Part - II: Anti-symmetric part

Now, lets consider the anti-symmetric part of Eqn. 3.16, as

φas = C sin[(λ− 1)θ] +D sin[(λ+ 1)θ] (3.31)

Using Eqn. 3.15 and Eqn. 3.31, we get,

σrr = −λr(λ−1)
{
C(λ− 3) sin[(λ− 1)θ] +D(λ+ 1) sin[(λ+ 1)θ]

}
, (3.32a)

σθθ = λ(λ+ 1)r(λ−1)
{
C sin[(λ− 1)θ] +D sin[(λ+ 1)θ]

}
, (3.32b)

σrθ = −λr(λ−1)
{
C(λ− 1) cos[(λ− 1)θ] +D(λ+ 1) cos[(λ+ 1)θ]

}
(3.32c)
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To get displacement field solution corresponding to the specified anti-symmetric eigen function, φas,

we use Michell’s solutions, as,

2µur = rλ
{
C(κ− λ) sin[(λ− 1)θ]−D(λ+ 1) sin[(λ+ 1)θ]

}
, (3.33)

2µuθ = −rλ
{
C(κ+ λ) cos[(λ− 1)θ] +D(λ+ 1) cos[(λ+ 1)θ]

}
(3.34)

Applying the boundary conditions as denoted in Eqn. 3.20, we get,

C(κ− λ) sin[(λ− 1)π]−D(λ+ 1) sin[(λ+ 1)π] = 0,

−C(κ+ λ) cos[(λ− 1)π]−D(λ+ 1) cos[(λ+ 1)π] = 0.

On using sin and cos identities and simplifying, above equation becomes,

[−C(κ− λ) +D(λ+ 1)] sin(πλ) = 0, (3.35)

[C(κ+ λ) +D(λ+ 1)] cos(πλ) = 0. (3.36)

From Eqn. 3.35, we get values of λ as,

sin(πλ) = 0 ⇒ λ = 0,±1,±2,±3,±4..., and so on.

Now from Eqn. 3.36, we get relation in constants as,

D = −κ+ λ

λ+ 1
C (3.37)

Now, from Eqn. 3.36, we get values of λ as,

cos(πλ) = 0 ⇒ λ = ±1

2
,±3

2
,±5

2
,±7

2
..., and so on.

Now from Eqn. 3.35, we get relation in constants as,

D =
κ− λ
λ+ 1

C (3.38)

Consider λ = n
2 , where, n is positive integer, and combining the two relations from Eqn. 3.37 and

Eqn. 3.38, we get,

DIIn =
(−1)nκ− n

2
n
2 + 1

AIIn (3.39)

Now, using Eqn. 3.39, we can write the anti-symmetric stress field solution as,

σrr = −n
2
r

n
2−1AIIn
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sin
[(n

2
− 1
)
θ
]
−
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n

2

]
sin
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θ
]}
, (3.40a)
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n

2
r

n
2−1AIIn
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2
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)

sin
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2
− 1
)
θ
]
−
[
(−1)nκ+

n

2

]
sin
[(n

2
+ 1
)
θ
]}
, (3.40b)

σrθ = −n
2
r

n
2−1AIIn

{(n
2
− 1
)

cos
[(n

2
− 1
)
θ
]
−
[
(−1)nκ+

n

2

]
cos
[(n

2
+ 1
)
θ
]}

(3.40c)

These stress field equation in polar co-ordinates transformed to cartesian co-ordinates using Eqn.
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3.29, as,

σxx =
n

2
r

n
2−1AIIn
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n
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]
sin
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− 1
)
θ
]
−
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2
− 1
)

sin
[(n

2
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θ
]}
, (3.41a)
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]
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θ
]

+
(n

2
− 1
)
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− 3
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θ
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, (3.41b)

σxy =
n

2
r

n
2−1AIIn
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n

2

]
cos
[(n

2
− 1
)
θ
]
−
(n

2
− 1
)

cos
[(n

2
− 3
)
θ
]}
. (3.41c)

Now the complete multi-parameter stress field solution in the polar coordinates can be obtained

by adding Eqn. 3.28 and Eqn. 3.40, as,

σrr =− n

2
r

n
2−1AIn

{(n
2
− 3
)

cos
[(n

2
− 1
)
θ
]

+
[
(−1)nκ− n

2

]
cos
[(n

2
+ 1
)
θ
]}

− n

2
r

n
2−1AIIn

{(n
2
− 3
)

sin
[(n

2
− 1
)
θ
]
−
[
(−1)nκ+

n

2

]
sin
[(n

2
+ 1
)
θ
]}
, (3.42a)

σθθ =
n

2
r

n
2−1AIn

{(n
2

+ 1
)

cos
[(n

2
− 1
)
θ
]

+
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(−1)nκ− n

2

]
cos
[(n

2
+ 1
)
θ
]}

+

n

2
r

n
2−1AIIn

{(n
2

+ 1
)

sin
[(n

2
− 1
)
θ
]
−
[
(−1)nκ+

n

2

]
sin
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2
+ 1
)
θ
]}
, (3.42b)

σrθ =
n

2
r

n
2−1AIn
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2
− 1
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sin
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2
− 1
)
θ
]

+
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(−1)nκ− n
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]
sin
[(n

2
+ 1
)
θ
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−

n

2
r

n
2−1AIIn

{(n
2
− 1
)

cos
[(n

2
− 1
)
θ
]
−
[
(−1)nκ+

n

2

]
cos
[(n

2
+ 1
)
θ
]}

(3.42c)

Similarly, we can get the transformed stress field equations in cartesian coordinates by adding the

Eqn. 3.30 and Eqn. 3.41, as

σxx =
n

2
r

n
2−1AIn

{[
2− (−1)nκ+

n

2

]
cos
[(n

2
− 1
)
θ
]
−
(n

2
− 1
)

cos
[(n

2
− 3
)
θ
]}

+

n

2
r

n
2−1AIIn

{[
2 + (−1)nκ+

n

2

]
sin
[(n

2
− 1
)
θ
]
−
(n

2
− 1
)

sin
[(n

2
− 3
)
θ
]}
, (3.43a)

σyy =
n

2
r

n
2−1AIn

{[
2 + (−1)nκ− n

2

]
cos
[(n

2
− 1
)
θ
]

+
(n

2
− 1
)

cos
[(n

2
− 3
)
θ
]}

+

n

2
r

n
2−1AIIn

{[
2− (−1)nκ− n

2

]
sin
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2
− 1
)
θ
]

+
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− 1
)

sin
[(n

2
− 3
)
θ
]}
, (3.43b)

σxy =
n

2
r

n
2−1AIn

{[
(−1)nκ− n

2

]
sin
[(n

2
− 1
)
θ
]

+
(n

2
− 1
)

sin
[(n

2
− 3
)
θ
]}

+

n

2
r

n
2−1AIIn

{[
(−1)nκ+

n

2

]
cos
[(n

2
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)
θ
]
−
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2
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)

cos
[(n

2
− 3
)
θ
]}
. (3.43c)

The strain in x direction, εxx, for plain strain condition in the stress term is given as,

εxx =
1 + ν

E

[
(1− ν)σxx − νσyy

]
. (3.44)

We also know the definition of strain intensity factor is given as,

Kε
I = lim

r→0
εxx(θ = 0◦)

√
r. (3.45)

Now, from the Eqn. 3.44 and Eqn. 3.45, we get,

Kε
I = AI1

[
κ(1 + ν)

E

]
. (3.46)

Eqn. 3.46 shows the relation between the strain intensity factor, Kε
I , and the coefficient constants
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in the stress equation for n = 1, viz. AI1. Hence to find strain intensity factor, we need to find AI1.

Because we have the stress field for the inclusion problem from the photoelasticity, hence we can get

the AI1 and so the strain intensity factor. Similarly, we can get Kε
II using

Kε
II = AII1

[
(κ− 1)(1 + ν)

E

]
. (3.47)

3.3 Specimen preparation

The specimen made up of epoxy-resin is prepared using simple casting process for the photoelasticity

experiment. The vertical perpendicular distance between the line inclusion and the hole centre is

s = 20mm. The diameter of the hole and the length of the line inclusion is D = 10mm and

2L = 20mm respectively. The Dimensions of the specimen are 200mm× 110mm× 6mm as shown

in Fig. 3.2. The specimen is made up of resin Epofine-221 and hardener Finehard-1842, supplied by

Fine Finish Organics Pvt. Ltd., India., with the proportion 100 : 40 by weight.

Figure 3.2: A line inclusion with a hole embedded in resin-matrix specimen prepared for photoelas-
ticity experimentation.

3.3.1 Fabrication procedure

The process is a casting process. The mould is prepared as per the size required and cleansed with

isopropylene properly to avoid any dust contamination of the specimen. An inclusion of height less

than 6mm (approximately 5.7mm− 5.8mm), length 20mm and thickness 0.1mm, made up of steel

is prepared, and the surfaces made smoother using fine (P 400) sandpaper to create good contact

with a resin material. With proper precautions and marking, this inclusion has adhered upon one

of the mould plate using an adhering agent like Fevicol.

The specimen is prepared for larger dimensions than required for the experiment to accommodate

the machining allowances. The average density of resin-hardener mixture is 1.13 kg/mm3. Then in

clean and cleansed (with acetone) separate beakers, resin and hardener are taken in required mass

proportion. The beakers are heated in hot water to remove the air entrapped in resin and hardener.
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After cooled down the beakers, the hardener is poured in resin, and then the mixture is stirred it

looks like a homogeneous and wavy-smoke-free. Then the mixture is poured slowly into the mould.

Mould is kept in the furnace at a constant temperature of 60◦C for 48 hours. Afterwards, the

specimen is removed from the furnace and machined using CNC machine, for specified dimensions,

and a hole is drilled of 10mm diameter. Also, to fix the specimen in the fixtures of the testing

machine, five holes of 10mm are drilled on either side (perpendicular to the inclusion length).

Hole

Line Inclusion

2L

2w
15

10

20

2b

10× φ10

φD

s

w

Figure 3.3: A line inclusion with a hole embedded in resin-matrix specimen drawing with dimensions
used for the photoelasticity experimentation.

At last, the specimen must be checked for the residual stresses using the polariscope. Specimen

must be residual stress-free to obtain good and reliable results out of it. Fig. 3.3 shows a specimen

configuration for the photoelasticity experiment to find out strain intensity factor value.

3.4 Photoelastic Experimentation

3.4.1 Ten-step method

Ten-step phase shifting techniques is useful in getting the whole field isoclinic and isochromatic data

[33]. Recently, Ramji and Prasath [34] have done an error study to find out the effectiveness of the

ten-step method and they found it to be very robust against various error source. For the ten-step

PST, the optical arrangements for different optical elements used are given in Table 3.1. In the

above Table 2.1, Ib is surrounding light intensity, Ia is light intensity of light source, δ is phase

retardation through the specimen and θ is principal stress orientation.

The first four optical arrangements are called as plane polariscope because the incident light on

the specimen is plane polarised, where the quarter wave plates are absent or optically effect made

null by putting them align with the other optical elements, viz. polariser and analyser. In these

arrangements, we can see both fringe contours, viz. isoclinics and isochromatics. The remaining six
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Table 3.1: Ten-step method: Polariscope arrangements and intensity equations for isoclinic and
isochromatics evaluation

No. α ζ η β Intensity Equation

1. π/2 - - 0 I1 = Ib + Ia sin2( δ2 ) sin2 2θ

2. 5π/8 - - π/8 I2 = Ib + Ia
2 sin2( δ2 )(1− sin 4θ)

3. 3π/4 - - π/4 I3 = Ib + Ia sin2( δ2 ) cos2 2θ

4. 7π/8 - - 3π/8 I4 = Ib + Ia
2 sin2( δ2 )(1 + sin 4θ)

5. π/2 3π/4 π/4 π/2 I5 = Ib + Ia
2 (1 + cos δ)

6. π/2 3π/4 π/4 0 I6 = Ib + Ia
2 (1− cos δ)

7. π/2 3π/4 0 0 I7 = Ib + Ia
2 (1− sin 2θ sin δ)

8. π/2 3π/4 π/4 π/4 I8 = Ib + Ia
2 (1 + cos 2θ sin δ)

9. π/2 π/4 0 0 I9 = Ib + Ia
2 (1 + sin 2θ sin δ)

10. π/2 π/4 3π/4 π/4 I10 = Ib + Ia
2 (1− cos 2θ sin δ)

optical arrangements are called circular polariscope because the incident light on the specimen is

circularly polarised, where quarter wave plates are arranged such a way that the light coming out of

first quarter wave will be circularly polarized light and that of after second quarter wave plate light

will be again plane polarized. In these arrangements, we can see only isochromatics fringe contours.

Using above different arrangements, the wrapped isoclinic and isochromatic values can be obtained

as

θc =
1

4
tan−1

(
I4 − I2
I3 − I1

)
and (3.48)

δc = tan−1
(

(I9 − I7) sin 2θ + (I8 − I10) cos 2θ

I5 − I6

)
. (3.49)

From equation 3.48, one can get the wrapped isoclinic phase map in the range −π/4 to +π/4 with

inconsistent zone and it needs to be unwrapped. Later, the unwrapped isoclinic data is used for the

isochromatic phase map generation as given in equation 3.49. Finally, the wrapped isochromatic

phase map has to be unwrapped for getting the continuous fringe order.

3.4.2 Experimentation

Fig. 3.4 shows the experimental setup for the transmission photoelasticity used in this study. The

ten-step images are captures using the BASLER monochrome CCD (charged coupled device) camera

for the optical arrangement shown in Table 3.1. The CCD camera has a spatial resolution of 1392 ×
1040 pixels. The specimen is loaded using a 10kN INSTRON 5600 Machine with the proper fixtures.

For the material used for the specimen, fabrication has the materials fringe value of 0.27 N/m-
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m/fringe. The isoclinic and isochromatic data surrounding to inclusion-tip is required for estimation

of the strain intensity factor. The unwrapped isoclinics without inconsistent zones is obtained us-

ing ten-step PST by the AQGUP algorithm. Then using unwrapped isoclinics data, unwrapped

isochromatic data is obtained without any ambiguity zones.

Figure 3.4: Transmission digital photoelasticity experimental setup for strain intensity factor esti-
mation

3.5 Experimental evaluation of Strain intensity factor

In this section, experimental estimation of strain intensity factor for a rigid line inclusion problem

using digital photoelasticity is discussed. The strain intensity factor are evaluated by finding the

coefficients of the multi-parameter stress field equation as shown in Eqns. 3.57. These coefficients

are estimated by fitting the curve of the multi-parameter stress field equation over the experimental

isochromatic data around the inclusion-tip. For this curve fitting a linear least square approach a

adopted as discussed in this section further. For this, we need unwrapped isoclinic and isochromatic

data obtained by AQGUP algorithm using the ten-step method. Using the software interface devel-

oped in the MATLAB, the photoelastic parameters are collected automatically. The extracted data

corresponds to fringe order (N), principal stress difference (θuw) (unwrapped data), the correspond-

ing location of points and inclusion-tip location given by the user via GUI. The data collection area

is annular, and its minimum radius is chosen in such a way that to avoid the plastic region ahead of

the inclusion-tip and three-dimensional stress effect nearer to inclusion-tip. Fig. 3.6a shows a data

collection annular area.

From the stress optics law, the principal stress difference and fringe order are related as,

σ1 − σ2 =
NFσ
h

, (3.50)
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Figure 3.5: Generic optical element arrangement for transmission photoelasticity experimentation.

where, σ1 and σ2 are the principal stresses in 1 and 2 direction respectively, N is the fringe order, Fσ is

the material fringe value and h is the specimen thickness. As we know the whole field isochromatic

or fringe order data, hence we can find the principal stress difference from the Eqn. 3.50. Also

the normal stress difference and shear stress are defined in terms of principal stress difference and

principal stress direction orientation using Mohr’s circle as given below,σx − σyτxy

 =

(σ1 − σ2) cos 2θuw

(σ1−σ2)
2 sin 2θuw

 , (3.51)

where, σx and σy are the principal stresses in x and y direction respectively and θuw is the

unwrapped principal stress direction orientation. Now we know the principal stress difference, (σ1−
σ2), hence we can find the normal stress difference and shear stress from the Eqn. 3.51. Further,

from this stresses information, we can find strain intensity factor using Eqn. 3.43.

3.5.1 Multi-parameter stress field equations

The multi-parameter stress field equations for mixed mode rigid line inclusion are given by the Eqn.

3.42. These stress field equation can be written in general form as,

φ = −
∞∑
n=1

n

2
AInr

n
2−1S −

∞∑
n=1

n

2
AIInr

n
2−1P , (3.52)
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where,

φ =


σx

σy

τxy


, (3.53)

S =



[
2− (−1)nκ+ n

2

]
cos
[(

n
2 − 1

)
θ
]
−
(
n
2 − 1

)
cos
[(

n
2 − 3

)
θ
]

[
2 + (−1)nκ− n

2

]
cos
[(

n
2 − 1

)
θ
]

+
(
n
2 − 1

)
cos
[(

n
2 − 3

)
θ
]

[
(−1)nκ− n

2

]
sin
[(

n
2 − 1

)
θ
]

+
(
n
2 − 1

)
sin
[(

n
2 − 3

)
θ
]


, (3.54)

P =



[
2 + (−1)nκ+ n

2

]
sin
[(

n
2 − 1

)
θ
]
−
(
n
2 − 1

)
sin
[(

n
2 − 3

)
θ
]

[
2− (−1)nκ− n

2

]
sin
[(

n
2 − 1

)
θ
]

+
(
n
2 − 1

)
sin
[(

n
2 − 3

)
θ
]

[
(−1)nκ+ n

2

]
cos
[(

n
2 − 1

)
θ
]
−
(
n
2 − 1

)
cos
[(

n
2 − 3

)
θ
]


, (3.55)

where, σx and σy are the normal stress component along x and y directions respectively, τxy is in

plane shear stress, r and θ are the polar coordinates with origin at the inclusion-tip and n is the

number of parameters. The coefficients AIn and AIIn define inclusion-tip stress field and they are

related to strain intensity factor by Eqn.3.46 and Eqn. 3.47 respectively.

3.5.2 Formulation for linear least square approach

Rewriting the Eqn. 3.52 in general form as we need for further analysis as follows,

σx − σy =

∞∑
n=1

AIn fIn(r, θ)−
∞∑
n=1

AIIn fIIn(r, θ), (3.56)

τxy =

∞∑
n=1

AIn gIn(r, θ)−
∞∑
n=1

AIIn gIIn(r, θ), (3.57)

where,

fIn = nr
n
2−1

{[
− (−1)nκ+

n

2

]
cos
[(n

2
− 1
)
θ
]
−
(n

2
− 1
)

cos
[(n

2
− 3
)
θ
]}
, (3.58)

fIIn = nr
n
2−1

{[
(−1)nκ+

n

2

]
sin
[(n

2
− 1
)
θ
]
−
(n

2
− 1
)

sin
[(n

2
− 3
)
θ
]}
, (3.59)

gIn =
n

2
r

n
2−1

{[
(−1)nκ− n

2

]
sin
[(n

2
− 1
)
θ
]

+
(n

2
− 1
)

sin
[(n

2
− 3
)
θ
]}
, (3.60)

gIIn =
n

2
r

n
2−1

{[
(−1)nκ+

n

2

]
cos
[(n

2
− 1
)
θ
]
−
(n

2
− 1
)

cos
[(n

2
− 3
)
θ
]}
, (3.61)

where, fIn, fIIn, gIn and gIIn are the function of number of parameters, n, and polar co-ordinates

r and θ. We already know that the inclusion-tip location can have great influence on the strain

intensity factor determined, hence inputting the correct inclusion-tip location is considered as an

important task in estimating the strain intensity factor value. But in many cases, it is difficult to

select the inclusion-tip manually from the photoelasticity images as its the spatial resolution is very

low. Hence, there will be always uncertainty in inputting the inclusion-tip location and so will be
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in the strain intensity factor value. Therefore to tackle this problem, we consider the inclusion-tip

location itself an unknown variable to be determined along with the coefficients AIn and AIIn as in

Eqn. 3.56 and Eqn. 3.57.

Now, consider a point (x, y) in the Cartesian coordinate system with the origin at an arbitrary

location. Then the inclusion-tip location is related to r and θ as follows,

r =
√

(x− xc)2 + (y − yc)2, (3.62)

θ = tan−1

(
y − yc
x− xc

)
, (3.63)

where, xc and yc are the inclusion-tip location relative to the arbitrary Cartesian coordinate system.

The Eqn. 3.62 and Eqn. 3.63 enable us to translate the co-ordinate system with respect to the

inclusion-tip location. Due to the computational limitations, the number of parameters , n, in the

multi-parameter stress field equations given by the Eqn. 3.56 and Eqn. 3.57 are limited. For a single

point P , the truncated n parameter equations Eqn. 3.56 and Eqn. 3.57 can be written in a matrix

form as follows,

σx − σyτxy

︸ ︷︷ ︸
σp

=



fI1(rp, θp) gI1(rp, θp)

fI2(rp, θp) gI2(rp, θp)

...
...

fIn(rp, θp) gIn(rp, θp)

−fII1(rp, θp) −gII1(rp, θp)

−fII2(rp, θp) −gII2(rp, θp)

...
...

−fIIn(rp, θp) −gIIn(rp, θp)


︸ ︷︷ ︸

Qp

T

AI1

AI2
...

AIn

AII1

AII2
...

AIIn

︸ ︷︷ ︸
a

. (3.64)

The above equation can be written in simple matrix form as follows,

σp = QT
pa. (3.65)

Now, for m collected data points surrounding to the inclusion-tip, the solution can be written in

matrix form as follows,

σ = Q(xc, yc)a, (3.66)

where, σ = [σT1 ,σ
T
2 , ...σ

T
m] and C = [QT1 ,Q

T
2 , ...Q

T
m]T . Here, σ is the vector consisting of the

experimental values of σx− σy and τxy estimated using the Eqns. 3.51. The matrix C is dependent

on xc and yc which is a rectangular matrix of the order 2m × 2n and a is the vector consisting of

unknown mode I and mode II parameters. Now, the values of xc, yc and a can be estimated using

the minimizing the objective function given as,

J(xc, yc,a) =
1

2

[
σ −C(xc, yc)a

]T [
σ −C(xc, yc)a

]
. (3.67)
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Figure 3.6: Data collection zone and corresponding grid pattern representation. a) schematic repre-
sentation of annular region for data collection for estimation of strain intensity factor in case rigid
line inclusion and a hole problem, b) Schematic representation of square grid pattern used for finding
the exact inclusion-tip location.

The objective function J is non-quadratic for stress in terms of unknown parameters, and it also

depends on the unknown inclusion-tip co-ordinates xc and yc. But when inclusion-tip co-ordinates

xc and yc are known, the objective function J becomes quadratic, and a closed form of a solution

does exist for it. Here, to estimate J both normal stress component difference, σx − σy, and shear

stress, τxy, are considered. If we considered only a normal stress component difference or shear

stress, then we get strain intensity factor value closer to that of actual value, but the reconstructed

fringe contours do not match with the experimental fringe contours. This can also create difficulties

in selection number parameters for multi-parameter stress field equation. The closed form solution

for the unknown vector of parameters (a), where the objective function has a global minimum is as

follows,

a = (CTC)−1CTσ, (3.68)

where (CTC)−1CT is the pseudo inverse of C. Now, to find the minimum values of Jij , we select

the multiple points, xci, ycj , where i = 1, 2, ...p and j = 1, 2, ..., p as shown in Fig. 3.6b, collected

around inclusion-tip region as shown in Fig. 3.6a. Now for every points, we can estimate the

unknown parameters aij using Eqn. 3.68. Now, having known the values of aij for every points, we

estimate the objective function Jij values using the Eqn. 3.67. Out of all selected and data collected

grid points as shown in Fig. 3.6b, for the point produces a minimum value of Jij considered as

inclusion-tip location. Hence we can say, (x∗c , y
∗
c ) = (xci, ycj) and unknown parameters a∗ = aij .

Mathematically, this idea of finding optimal value of strain intensity factor and inclusion-tip location

can represented as follows,

[a∗T x∗Tc y∗Tc ] = arg min[min(Jij)], (3.69)
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where, i = 1, 2, ...p and j = 1, 2, ..., p, xc and yc are the inclusion-tip co-ordinates, xcp and xcp are

the maximum and minimum x co-ordinate values of the square grid, ycp and ycp are the maximum

and minimum y co-ordinate values of the square grid, r1 and r2 are the inner and outer radius of

data collection zone as shown in Fig. 3.6, n is number of unknown parameters (see the Eqn. 3.64).

The algorithm of find the fracture parameters is summarised in the flowchart form as shown in Fig.

3.7

Calibration of
Specimen

Experimentation

Whole field fringe

Automated

Grid selectionEvaluation of mixed

Ten-step phase

Unwrapping

Software

photoelasticity

(Image/Data acquisition)

order evaluation

data collection

shifiting method

Interface

mode fracture
parameter

and inclusion tip
location search

material model
Preparation

Figure 3.7: Flowchart showing various steps involving in the estimation of optimal fracture param-
eters using digital photoelasticity

3.6 Result and discussion

Unwrapping of isochromatic and isoclinic phasemaps is obtained using the AQGUP algorithm using

the ten-step method. Further, the fringe order and isoclinic data are collected near the inclusion-tip

in an annular region using semi-GUI based software developed in MATLAB for digital photoelas-

ticity applications. This collected data is given input to multi-parameter stress field equations for

estimation of optimal fracture parameters, here, strain intensity factor.

3.6.1 Experimental estimation of strain intensity factor for inclusion with

a hole specimen

Strain intensity factor is estimated for the rigid line inclusion with a hole problem using digital

photoelasticity. For the estimation of strain intensity factor, the whole field isoclinic and fringe
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Figure 3.8: Isoclinic and isochromatic phasemaps for rigid line inclusion with a hole problem (a)
wrapped isoclinic phasemap, (b) unwrapped isoclinic phasemap, (c) wrapped isochromatic phasemap
(d) dark field photoelastic image and (e) unwrapped isochromatic phasemap
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order data is needed. For this, ten-step PST is used where ten images are captured with the different

optical arrangement as described in Table. 3.1. Firstly, wrapped isoclinic data is generated, and it

is then unwrapped to get isoclinic data without inconsistent zones using AQGUP algorithm. This

unwrapped isoclinic data is then used to get wrapped isochromatic data and further it is unwrapped

to isochromatic data without ambiguous zones using AQGUP algorithm. This whole procedure of

unwrapping of photoelastic parameters is discussed in detail in Chapter 2.

Figure 3.8a shows the wrapped isoclinic phasemap with inconsistent zones. Then Fig. 3.8b shows

the unwrapped isoclinic phasemap without inconsistent zones. Further, Fig. 3.8c show wrapped

isochromatic phasemap without ambiguous zones obtained using unwrapped isoclinic phasemap. To

check the accuracy, this phasemap is compared with dark field photoelastic fringe contours obtained

from ten-step PST, as shown in Fig. 3.8d. The wrapped isochromatic phasemap is then unwrapped

to get a total fringe order over the entire model domain as shown in Fig. 3.8e.

Using automatic software interface written in MATLAB, the principal stress direction (isoclinic)

data and principal stress difference obtained from fringe order (N) is collected in an annular region

surrounding to the inclusion-tip. Also along with this data, the pixel coordinates of each collected

data points and the approximately selected inclusion-tip location by software interface is recorded.

For the specimen, the material properties are as follows: Young’s modulus, E, is 7.95 MPa, Poisson’s

ratio, ν, is 0.45 and material fringe value, Fσ, is 0.54 N/mm/fringe. This collected data from an

annular region around the inclusion-tip is given as input to the linear least square algorithm as

discussed in Section 3.5.2. Using the algorithm, the coefficients of multi-parameter stress field

equation for rigid line inclusion are estimated. The inclusion-tip, selected using software interface,

acts as an origin for the coordinate system, where a square of 0.4 mm length and mesh-grid of size

0.01 mm is created. Now at each grid point, the strain intensity factor and objective function is

computed. The optimal value of strain intensity factor, Kε
I , is selected such way that the objective

function has a minimum value in the grid. For that grid point, corresponding strain intensity factor

is selected and also the point is considered as inclusion-tip.

x cordinates

y
 c

o
rd

in
a

te
s

�0.8 �0.6 �0.4 �0.2 0
�0.4

�0.3

�0.2

�0.1

0

0.1

0.2

0.3

0.4

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Figure 3.9: Normalised error plot for 7 parameters over the square grid obtained for the experimental
estimation of strain intensity factor for rigid line inclusion with a hole specimen.
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Table 3.2: Strain intensity factor and corresponding coefficients for different number of parameters

Number of
parameters

Kε
I

(
√
mm)

AI1
(mm1/2)

AI2
AI3

(mm−1/2)
AI4

(mm−1)
AI5

(mm−3/2)
AI6

(mm−2)
AI7

(mm−5/2)

1-parameter 0.04446 0.2031

2-parameters 0.02907 0.1328 0.00080

3-parameters 0.03821 0.1746 -0.0048 0.0031

4-parameters 0.03612 0.1650 -0.0066 -0.0009 -0.0022

5-parameters 0.03491 0.1595 -0.0061 -0.0000 0.00539 -0.0003

6-parameters 0.03396 0.1552 -0.0044 -0.0001 0.00388 -0.0022 0.00024

7-parameters 0.3419 -0.1562 -0.0049 -0.0001 0.00006 0.0049 -0.0004 0.00004

This marked region is corresponds to the exact inclusion-tip location. Figure 3.10 show the multi-

parameter stress field curves fitting to that of experimental fringe contours for different number of

parameters. It can be observed that as number parameters are increasing the multi-parameter stress

field contours fitting to that of experimental contours. Figure 3.9 shows the normalized error plot

for 7 parameters with respect to the selected inclusion-tip and the least error zone is marked. The

experimental strain intensity factor, Kε
I , for 7 parameters is found to be 0.03419

√
mm for a rigid

line inclusion with a hole specimen. The corresponding convergence error value, J , is found to be

0.000189 MPa2. The new inclusion-tip location with respect to the manually selected inclusion-tip

location is found to be (-0.26, 0.18) estimated using minimum error algorithm. The strain intensity

factor for a rigid line inclusion with a hole problem is found numerically also as described in the

Chapter 4. It is found to be 0.035024
√

mm. Numerical estimated strain intensity factor values

has got the deviation of 2.42% with respect to the experimental value. The strain intensity factor

is estimated for 1 to 7 parameters. The corresponding Kε
I values and coefficients values are given

in Table. 3.2. For confirming the accuracy of results, the multi-parameter stress field curves (blue

colour) and experimental fringe contours (red colour) are superimposed over each other as shown in

Fig. 3.11. Here, it can be seen that there is good match in the both contours. Furthermore, Fig.

3.12 shows the convergence error, J , plot with respect to the number of parameters, n. Also, Fig.

3.13 shows the strain intensity factor, Kε
I , plot with respect to the number of parameters. It can be

observed that after 5 parameters, the Kε
I deviation is very small and same is the case of convergence

error plot as shown in Fig. 3.12.

3.7 Closure

In this chapter, we have discussed the experimental estimation of strain intensity factor for the rigid

line inclusion with a hole specimen. Firstly, with the definition of strain intensity factor, the multi-
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(f) 6 parameters

Figure 3.10: Multi-parameter stress field curve (blue colour) fitting for different number of parame-
ters with reconstructed experimental fringe contours (red colour)
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Figure 3.11: Multi-parameter stress field contours for 7 parameters (blue colour) and experimental
fringe contours (red colour) are superimposed over each other for rigid line inclusion with a hole
specimen loaded at a load of 100 N.
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Figure 3.12: Convergence error, J , plot with respect to number of parameters, n, for rigid line
inclusion with a hole specimen.

parameter stress field equations for rigid line inclusion embedded in an elastic matrix are derived.

These equations are very when estimating the strain intensity factor experimentally. The photoe-
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Figure 3.13: Variation of the strain intensity factor with respect to increasing number of parameters
for a rigid line inclusion with a hole specimen.

lasticity epoxy specimens are then fabricated for experimentation. Photoelasticity experiments are

performed. To get whole field data, ten-step PST technique is used where ten images are captured

with different optical elements arrangements. Then unwrapping of isoclinic and isochromatics is per-

formed using AGQUP algorithm. The linear least square method approach is adopted for estimating

the strain intensity factor using the multi-parameter stress field equations. This experimental strain

intensity factor value is then compared with that of numerically calculated value. It is found to be

a good match in these values.
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Chapter 4

Numerical Estimation of Strain

Intensity Factor for Rigid Line

Inclusion

4.1 Introduction

Composite materials are favoured materials in the structure due to their superior mechanical proper-

ties. Main constituents of composite materials are the matrix which binds the reinforcement phases

in place and deforming to distribute the stresses among the constituent reinforcement materials

under an applied force and reinforcements-fibres which gives strength to composite materials. The

strength of this material in the fibre direction is very, but strength in the lateral direction is very

low. This problem can be overcome by placing the fibres in the required strength direction. But the

aligning the fibres in the correct direction is a difficult task and also a slight misalignment of fibres

can reduce strength drastically in that direction. In this cases, one can use the laminate which has

in-plane isotropy, and this can be achieved using short-fibre-reinforces-polymers.

In SFRP, fibre and matrix share the applied load. Hence they have superior strength and elastic

stiffness compared to parent materials. However, the fibres can leads to singular stress field at the

fibres end. If voids are present in the composite, then this singular stress field can cause void growth,

coalesce and also micro-buckling. Hence it important to study the fibre-matrix interaction in case

of SFRP. Therefore, in the literature, this problem is extensively studied as rigid line inclusion

embedded in an elastic matrix. The defects can of different types, cracks, voids, inclusions or second

phase material, to name a few, which ultimately affects the strength of the structure. These defects

can occur due to second phase particle, debond in composite, fabrication process such as welding,

heat treatment and in-service life due to fatigue crack, environment assisted or creep crack etc.

Many catastrophic structural failures have occurred due to brittle fracture. Voids in the composite

materials are potential defects and have great influence on the mechanical properties. We know that

in SFRP, the singular stress field is present at the fibre end and presence of voids near the fibre end

may increase its intensity. There are two reasons for modelling the fibre as a rigid line inclusion.

First is the thickness of the steel inclusion, that we have used, is very small compared to other
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specimen dimensions. Second is the strength of the steel is very high compared to the strength of

matrix-resin which is such true case in SFRP where fibre has more strength than that of a matrix

material.

In this chapter, the numerical method for the estimation of strain intensity factor is discussed.

In the first, the duality principle along with Stroh formulation is used to obtain the singular stress

field at the inclusion-tip. It is justified that the strain intensity factor is necessary to use to quantify

the singularity which is independent of the material properties of the matrix. In the section 4.2,

the numerical method based on the reciprocal theorem to estimate the strain intensity factor, Kε
I ,

for rigid line inclusion embedded in an elastic matrix using the asymptotic and actual elastic fields

near an inclusion tip is discussed. The actual stress field is obtained using a finite element analysis

in ABAQUS. This numerical model is then verified using the digital photoelasticity technique. The

fringe contours from photoelasticity experiment and numerical method are compared. Further, the

results for the variation of strain intensity factor for three parameters, namely diameter of a hole,

length of line inclusion and the distance between the inclusion and a hole are discussed. In the

section 4.4, closure for this chapter is summarized.

4.2 Numerical estimation of strain intensity factor

For the estimation of strain singularity for arbitrary geometry, herein we have adopted a numerical

framework based on the reciprocal theorem. Following procedure is described in [35, 36, 37]. For

the further analysis, we need the general solution for asymptotic stress field near the inclusion-tip.

We have the standard elasticity solution for rigid line inclusion in the polar coordinates obtained

from symmetric stress function as follows,

σrr = −2µHλrλ−1[(λ− 3) cos((λ− 1)θ)− (κ+ λ) cos((λ+ 1)θ)], (4.1)

σθθ = 2µHλrλ−1[(λ+ 1) cos((λ− 1)θ)− (κ+ λ) cos((λ+ 1)θ)], (4.2)

σrθ = 2µHλrλ−1[(λ− 3) cos((λ− 1)θ)− (κ+ λ) cos((λ+ 1)θ)], (4.3)

εrr = Hλrλ−1[(κ− λ) cos((λ− 1)θ) + (κ+ λ) cos((λ+ 1)θ)], (4.4)

εθθ = Hλrλ−1[(κ+ λ− 2) cos((λ− 1)θ)− (κ+ λ) cos((λ+ 1)θ)], (4.5)

εrθ = Hλrλ−1[(λ− 1) sin((λ− 1)θ)− (κ+ λ) sin((λ+ 1)θ)], (4.6)

ur = Hλrλ[(κ− λ) cos((λ− 1)θ) + (κ+ λ) cos((λ+ 1)θ)], (4.7)

uθ = Hλrλ[(κ+ λ) sin((λ− 1)θ)− (κ+ λ) sin((λ+ 1)θ)], (4.8)

where H is a coefficient depending on the boundary conditions, µ is shear modulus,

λ = ±n
2
, n is an integer, (4.9)

and (r, θ) are polar co-ordinates defined in Fig. 4.1.
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The singular displacement and stress fields near the inclusion-tip can be written as

ui = Hrλgi(λ, θ), (4.10)

σij = 2µHrλ−1fij(λ, θ), (4.11)

θ

r

C1

C3 C2

C4

r1

r2

−→n

Figure 4.1: Counters around the inclusion tip to evaluate area integral.

where [i, j] ∈ [r, θ], fij and gi are known functions of λ and θ deduced from the Eqn. 4.1-4.3

and 4.7-4.8 respectively. Comparing Eqn. 3.4 and 4.4, we can say that H is the strain intensity

factor. The following described procedure of calculating the strain intensity factor is adopted from

Akisanya and Fleck [36] and Carpenter and Byers [37]. We know that the reciprocal theorem in the

form as ∮
C

(σiju
∗
i − σ∗ijui)njdS = 0, (4.12)

where nj is the unit normal to the contour C consists of C1, C2, C3 and C4 segments, whose outer

radius is r2 and the inner radius is r1 as shown in Fig. 4.1. In the above equation (σij , uj) are

the actual stress and displacement fields and (σ∗ij , u
∗
j ) are suitably chosen auxiliary stress and dis-

placement fields that satisfy the boundary conditions. The auxiliary fields are chosen to be the

asymptotic fields with λ∗ = −λ as

ui
∗ = H∗rλ

∗
gi(λ

∗, θ), (4.13)

σ∗ij = 2µH∗rλ
∗−1fij(λ

∗, θ). (4.14)

One can subdivide the contour C into four parts as C1, C2, C3 and C4 as shown in Fig. 4.1. Also,

we can write the Eqn. 4.12 as summation of integrals over the contours C1, C2, C3 and C4. The
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integral in Eqn. 4.12 vanishes over C1 and C3 because of the displacement boundary conditions.

Hence the equation can be rewritten as∫
C2

(σiju
∗
i − σ∗ijui)njdS = −

∫
C4

(σiju
∗
i − σ∗ijui)njdS. (4.15)

For the line integral along the inner contour C2, (σij , uj) is taken to be the asymptotic elastic

fields (in which H is unknown), and for the line integral along the outer contour C4, (σij , uj) are

taken from the actual elasticity solution. First, we consider the integral along the contour C4.

Instead of performing a contour integral we perform as area integral. For this we define a scalar

m ≡ (r2 − r)/(r2 − r1) which is unity on C4 and vanishes on C2. Now we can write,

−
∫
C4

(σiju
∗
i − σ∗ijui)njdS = −

∫
C

m(σiju
∗
i − σ∗ijui)njdS, (4.16)

= −
∫
A

(σiju
∗
i − σ∗ijui)

∂m

∂xj
dA (4.17)

= H∗
∫
A

(
σijr

λ∗
gi(λ

∗, θ)− uirλ
∗−12µfij(λ

∗, θ)

)
∂m

∂xj
dA, (4.18)

where the last quantity is obtained using the divergence theorem. We now consider the line integral

along C2. Substituting asymptotic elastic field and auxiliary field on the left side of the Eqn. 4.15

the line integral becomes∫
C2

(σiju
∗
i − σ∗ijui)njdS = 2µHH∗

∫ π

−π
(fij(λ)gi(λ

∗)− gi(λ)fij(λ
∗))njdθ (4.19)

= c1HH
∗, (4.20)

where

c1 = 2π

∫ π

−π
(fij(λ)gi(λ

∗)− gi(λ)fij(λ
∗))njdθ. (4.21)

The value of c1 can be calculated by performing the numerical integration. Note that c1 is indepen-

dent of r; this is due to choice of λ∗ = −λ. Finally , Eqn. 4.15 can be rewritten using Eqns. 4.18

and 4.20 as

H = − 1

c1

∫
A

(
σijr

λ∗
gi(λ

∗, θ)− uirλ
∗−12µfij(λ

∗, θ)

)
∂m

∂xj
dA. (4.22)

In the above equation, the actual stress fields (σij , uj) are computed using the finite elements,

whereas the auxiliary fields (σ∗ij , u
∗
j ) are calculated by Eqn.4.13. The finite element analysis is

carried out using the commercial analysis software ABAQUS 6.14 [38]. The stress and displacement

field from FEA is given to a script written in MATLAB [39] to estimate the strain intensity factor

using Eqn.4.22. Validation of these finite element analysis model is carried out by comparing the

fringe pattern of surrounding of inclusion tip obtained from the FEA with that of photoelasticity

experiments.

4.3 FEA modelling and results

A rigid line inclusion with a hole embedded in finite matrix is modelled in a ABAQUS 6.14 as shown

in fig. 4.2.
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Figure 4.2: A FEA model of a rigid line inclusion with a hole embedded in a finite matrix for
ABAQUS.

A primary motive of FEA is to get stress field near the tip of the rigid line inclusion as require it

for numerical strain intensity factor estimation. The validation of this model is important because

we model the rigid line inclusion using the constraint that the nodes lying on the inclusion line

deform rigidly. The validation of this numerical model is carried using the experimental technique,

digital photoelasticity.

A 2D plate is modelled with following dimensions: 2w = 200mm and 2b = 100mm with the

dimensions rigid line inclusion length, 2L, the diameter of the hole, D, and distance between rigid

line inclusion and a hole centre, s, are variables, as shown in Fig. 4.2. The plate is discretised using

8-nodded plane strain elements abbreviated as CPE8H in ABAQUS. The quarter-point element is

used to capture square root singularity at the tip of inclusion more accurately. A mesh convergence

study is performed to arrive at the number of circumferential element at the tip of inclusion, as

shown in fig. 4.3. It is found to be 176 elements in the circumferential and 120 along the radial

direction are enough. Figure 4.4 shows generated mesh for the whole model. A dense mesh is used

at the tip of line inclusion because it is a high-stress concentration zone and also it is the area of

interest to us. Away from the inclusion, a coarse mesh is used to reduce the total number of

degrees of freedom. The rigid inclusion is modelled as a rigid line defined by rigid constraint in

ABAQUS. The degrees of freedom in x-direction of the nodes on the boundary edge at x = −w is

arrested. A tensile load of 150 N magnitudes in x-direction on the boundary edge at x = +w is

applied, and these results are then compared qualitatively with photoelastic results. Furthermore,

using the stress obtained from ABAQUS, strain intensity factor is calculated and compared with

that of obtained from photoelasticity experiment.

The dark field isochromatic contours plot is generated using nodal stress field data from the FEA

[40]. A brief description of the fringe plotting algorithm is given in Appendix A. These contours are

then compared with that of experimental contours, and we found a good agreement between them,

as shown in fig. 4.5.
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Figure 4.3: Mesh convergence study for present model for circumferential number of elements.

(a)

(b)

Line Inclusion

Hole

Figure 4.4: A meshed FEA rigid line inclusion with a hole model, (a) whole meshed model showing
line inclusion and hole and (b) a zoomed view of mesh used at the inclusion-tip.

4.3.1 FEA results for strain intensity factor

After validating the FEA model of the present problem using digital photoelasticity technique, the

effect of a hole on the strain singularity at the tip of rigid line inclusion is studied. The variation of
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FEA Photoelasticity

Figure 4.5: Qualitative validation of FEA model using photoelasticity. Left half represents fringe
contour plotted from FEA solution and right half represents experimental dark field photoelastic
fringe contour obtained, for a tensile load of 150 N.

strain intensity factor with respect to three parameters, namely, the diameter of a hole, D, length of

line inclusion, L, and the distance between the line inclusion and a hole, s, as shown in Fig. 4.2, is

investigated. In the FEA model, the degrees of freedom in x-direction of the nodes on the boundary

edge at x = −w is arrested. A tensile load of magnitude 0.1 MPa in x-direction on the boundary

edge at x = +w is applied. In the entire FEA analysis, load, boundary condition, model dimensions,

etc. are kept constant, and only D,L and s are changed. The normalised strain intensity factor

(NSIF) is calculated using the relation,

NSIF =
strain intensity factor with hole

strain intensity factor without hole
. (4.23)

The variation of normalised strain intensity factor is plotted for different configuration and infer-

ences are discussed below. First of all, from Figs. 4.6, 4.7 and 4.8 it is clear that with the presence

of hole the strain intensity factor increases. Fig. 4.6 shows the NSIF variation with respect to the

distance between line inclusion and hole centre, s. To get this plot, we have kept the diameter of

the hole, D = 10 mm and inclusion length, L = 20 mm as constant. As the hole is coming towards

the inclusion NSIF is increasing, but when it nearer to inclusion, the NSIF increase rate is more.

Also as hole moving further its effect is vanishing, hence NSIF is reaching to unity.
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Figure 4.8: Variation of NSIF with respect to the increasing length of line inclusion, L.

Figure 4.7 shows the NSIF variation with respect to the diameter of the hole, D. To get this

plot, we have kept the distance between line inclusion and hole centre, s = 20 mm and inclusion

length, L = 20 mm as constant. For the smaller diameter hole, the increase rate of NSIF is less and

also as the hole diameter is increasing, increase rate of NSIF is also increasing.

Figure 4.8 shows NSIF variation with respect to the length of line inclusion, L. To get this plot,

we have kept the distance between line inclusion and hole centre, s = 20 mm and the diameter of

the hole, D = 10 mm as constant. An important thing to notice here is an increase in NSIF with

respect inclusion length is less compared to that of distance, s, and hole diameter, D. Also, for

the shorter inclusion length, increase rate of NSIF is almost same, but for longer inclusion length

increase is keep on decreasing. This variation is probably because as the inclusion length increases

its side surface area is also increases, and we know that this area is also responsible for the load

transfer from the matrix to the inclusion.

4.4 Closure

Voids in SFRP is studied for a simple 2D case and modelled as rigid line inclusion with a hole.

A strain Instead of stress intensity factor, strain intensity factor is used which independent of

the material properties. Using reciprocal theorem and FEA, strain intensity factor has estimated

numerically rigid line inclusion with a hole. Further, the FEA model is validated using the digital

photoelasticity technique qualitatively and quantitatively, and the comparison is quite good.

Normalized strain intensity factor (NSIF) is defined and its variation with respect to three param-

eters, viz., the distance between line inclusion and hole centre, inclusion length and hole diameter is
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investigated. It is found that presence of the hole always increases the strain intensity factor value.

This can be because of the presence of a hole expose the fibre end singularity to the boundary effect.
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Chapter 5

Conclusions and Recommendations

A rigid line inclusion with a hole embedded in an elastic matrix problem was taken to study. The

primary focus was on finding the effect of presence of a void nearby to fibre end in case of short

fibre composites. Here, the fibres are modelled as rigid line inclusion and void as for its simplest

2D case, hole. Strain intensity factor, which is independent of the matrix material properties and

hence makes it more suitable for inclusion problems, is used for quantifying the singularity at the

inclusion-tip. Using numerical modelling in ABAQUS, the variation of strain intensity factor is

studied for three parameters namely diameter of a hole, length of line inclusion and the distance

between the inclusion and a hole. For simulation purpose, a ABAQUS python scripting is written

as it is very helpful when estimating the stress and other data surrounding to the inclusion-tip. A

numerical methodology is adopted for calculation of strain intensity factor as described by Pratap

P. et. al [20]. Furthermore, the numerical model is validated qualitatively and quantitatively using

the experimental technique, digital photoelasticity.

From numerical study, it is concluded that the presence of a hole nearby to the inclusion-tip

always increases the strain intensity factor. The reason can be stated as follows: as hole can be

considered as traction free boundary, hence the inclusion-tip singularity exposed to the boundary

effect and hence increases the strain intensity factor. Furthermore, the severity of presence of a hole

is also checked. Following points can be highlight from this work:

(a) presence of hole/free boundary near to singularity always increases values of fracture parame-

ter, here strain intensity factor,

(b) as hole comes nearer to the inclusion strain intensity factor increases,

(c) as diameter of the hole increases, the strain intensity factor also increases and for higher

diameter the increase rate also increases and

(d) as inclusion length increases strain intensity factor also increases but for higher length increase

rate reduces. This decrease in increase rate with inclusion length can be reasoned as follows:

as inclusion length increases, inclusion has more side area which can be used during the load

transfer from matrix to inclusion and this reduces stress concentration at the inclusion-tip,

meaning reduces strain intensity factor.
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Appendix

Appendix A: Ten-step PST photoelastic images

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 1: Experimentally recorded phase shifted images of line inclusion with a hole (150 N) corre-
sponding to ten-step phase shifting algorithm as per the sequence given in table 2.1.
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Appendix B: Python script

Python script for ABAQUS modelling for rigid line inclusion with a hole

1 ## A Python Sc r i p t f o r the ABAQUS

2 ## A problem o f A p l a t e with an i n c l u s i o n and a ho le

3 import numpy as np

4 import numpy

5 import os

6 from part import ∗
7 from mate r i a l import ∗
8 from s e c t i o n import ∗
9 from assembly import ∗

10 from step import ∗
11 from i n t e r a c t i o n import ∗
12 from load import ∗
13 from mesh import ∗
14 from opt imiza t i on import ∗
15 from job import ∗
16 from sketch import ∗
17 from v i s u a l i z a t i o n import ∗
18 from connectorBehavior import ∗
19 from abaqusConstants import∗
20 from math import∗
21 import sys

22 from abaqus import ∗
23 from odbAccess import ∗
24 import xyPlot

25 import displayGroupOdbToolset as dgo

26 Mdb( )

27 numpy . s e t p r i n t o p t i o n s ( th r e sho ld=’ nan ’ )

28 path = ”D:\\ Sat i sh \\ numerica l \\ f r i n g e p l o t \\E100”
29 os . chd i r ( path )

30 ### Parameters to be Sp e c i f i e d ###

31 w=100.00; # Hal f Width o f p l a t e

32 b=113 .23/2 .0 ; # Hal f Height i f p l a t e

33 l =10.00; # Hal f I n c l u s i o n l ength

34 r3 =5.00; # Radius o f the ho le

35 s =20.00; # v e r t i c a l d i s t ance b/w i n c l u s i o n and ho le

36 a=s /2

37 dt = 1e−3
38 ###

39 jbname = ’ Inc lu s i onHo l e ’

40 i f ( r3==5.00) and ( s==20.00) :

41 jbname = jbname + ’ L ’ + s t r ( i n t (2∗ l ) )
42 e l i f ( l ==10.00) and ( r3==5.00) :

43 jbname = jbname + ’ s ’ + s t r ( i n t ( s ) )

44 e l i f ( l ==10.00) and ( s==20.00) :
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45 jbname = jbname + ’ D ’ + s t r ( i n t (2∗ r3 ) )
46 pre s su r e =0.15; # app l i ed p r e s su r e

47 dispbv=1; # app l i ed disp lacement

48 alpha=0 ∗ pi /180 ;
49 ka=1.00;

50 E=100; # Youg ’ s modulus

51 nu=0.45; # Poisson ’ s r a t i o

52 r1 =0.001; # Radius o f smal l c i r c l e at t i p o f i n c l u s i o n

53 r2 =1.00; # Radius o f b i gge r c i r c l e at t i p o f i n c l u s i o n

54 c =2.00; # Hal f Width o f square at i n c l u s i o n t i p

55 c5=1.6∗ r3 ; # c5= Hal f Width o f square at ho le

56 m2=10.00; # max Mesh s i z e in x−d i r e c t i o n
57 m3=10.00; # max Mesh s i z e in y−d i r e c t i o n
58 m5=0.001; # Mesh s i z e at smal l c i r c l e

59 m7=0.1; # Mech s i z e surounding to the ho le

60 m1=0.25; # mesh s i z e upto square

61 m4=0.25; # Mesh s i z e on the box

62 m6=0.025; # Mesh s i z e at b ig c i r c l e

63 r t=(r2+c ) /2 ; r t1=s i n ( p i /8) ; r t2=cos ( p i /8) ; r t3=s i n (3∗ pi /8) ;
64 r t4=cos (3∗ pi /8) ;
65 r t5=(r1+r2 ) /2 ; r t6=r1 /2 ; r t7=(r3+c5 ) /2 ; r t8=s i n ( p i /4) ;

66 r t9=cos ( p i /4)

67 myModel=mdb. Model ( ’Model A ’ )

68 mySketch = myModel . Constra inedSketch ( name=’ Sketch A ’ , s h e e tS i z e =400.0)

69 s e s s i o n . journa lOpt ions . s e tVa lues ( replayGeometry=COORDINATE, recoverGeometry=

COORDINATE)

70 mySketch . r e c t ang l e ( po int1=(−w,−b) , po int2=(w, b) )

71 mySketch . Circ leByCenterPer imeter ( c en te r =(0 ,a ) , po int1 =(0 ,a+r3 ) )

72 myPart=myModel . Part (name=’ Part A ’ , d imens i ona l i t y=TWODPLANAR, type=

DEFORMABLEBODY)

73 myPart . BaseShe l l ( sketch=mySketch )

74 ## Mater ia l and cros s−s e c t i o n a s s i gn

75 mdb. models [ ’Model A ’ ] . Mater ia l (name=’Matrix ’ )

76 mdb. models [ ’Model A ’ ] . ma t e r i a l s [ ’ Matrix ’ ] . E l a s t i c ( t ab l e =((E, nu) , ) )

77 mdb. models [ ’Model A ’ ] . HomogeneousSol idSection ( mate r i a l=’Matrix ’ , name=’

matr ixSect ion ’ , t h i c kne s s=None )

78 p1 = mdb. models [ ’Model A ’ ] . par t s [ ’ Part A ’ ]

79 p1 . Set ( f a c e s=p1 . f a c e s . f indAt ( ( (w∗0 .99 , b ∗0 .99 , 0 . 0 ) , ) ) , name=’ Set−1 ’ )
80 p1 . Sect ionAssignment ( o f f s e t =0.0 , o f f s e t F i e l d=’ ’ , o f f s e tType=MIDDLE SURFACE,

r eg i on=p1 . s e t s [ ’ Set−1 ’ ] , sectionName=’ matr ixSect ion ’ , th icknessAss ignment=

FROM SECTION)

81 ## Assembly Module

82 mdb. models [ ’Model A ’ ] . rootAssembly . DatumCsysByDefault (CARTESIAN)

83 mdb. models [ ’Model A ’ ] . rootAssembly . Ins tance ( dependent=ON, name=’ Part A−1 ’ ,
84 part=mdb. models [ ’Model A ’ ] . par t s [ ’ Part A ’ ] )

85 ## Par t i t i on

86 myModel . Constra inedSketch (name=’ Par t i t i onSke t ch ’ , s h e e tS i z e =400)
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87 p2=mdb. models [ ’Model A ’ ] . s k e t che s [ ’ Par t i t i onSke t ch ’ ]

88 # Inc l u s i o n Line

89 p2 . Line ( po int1=(−l ,−a ) , po int2=( l ,−a ) )

90 # Hor i z i n t a l Pa r t i t i on l i n e s near the i n c l u s i o n t i p

91 p2 . Line ( po int1=(−w,−a−c ) , po int2=(w,−a−c ) )
92 p2 . Line ( po int1=(−w,−a+c ) , po int2=(w,−a+c ) )

93 # Ver t i c a l Pa r t i t i on l i n e s near the i n c l u s i o n t i p

94 i f (− l−c )>(−c5 ) :
95 p2 . Line ( po int1=(−l−c ,−b) , po int2=(−l−c , ( a−c5 ) ) )
96 e l s e : p2 . Line ( po int1=(−l−c ,−b) , po int2=(−l−c , b ) )
97 i f (− l+c )>(−c5 ) :
98 p2 . Line ( po int1=(− l+c ,−b) , po int2=(− l+c , ( a−c5 ) ) )
99 e l s e : p2 . Line ( po int1=(− l+c ,−b) , po int2=(− l+c , b) )

100 i f ( l−c )<(c5 ) :

101 p2 . Line ( po int1=( l−c ,−b) , po int2=( l−c , ( a−c5 ) ) )
102 e l s e : p2 . Line ( po int1=( l−c ,−b) , po int2=( l−c , b ) )
103 i f ( l+c )<(c5 ) :

104 p2 . Line ( po int1=( l+c ,−b) , po int2=( l+c , ( a−c5 ) ) )
105 e l s e : p2 . Line ( po int1=( l+c ,−b) , po int2=( l+c , b) )

106 # Hor i zonta l Pa r t i t i on l i n e s near the ho le

107 p2 . Line ( po int1=(−w, (a−c5 ) ) , po int2=(w, ( a−c5 ) ) )
108 p2 . Line ( po int1=(−w, ( a+c5 ) ) , po int2=(w, ( a+c5 ) ) )

109 # Ver t i c a l Pa r t i t i on l i n e s near the ho le

110 i f ((− c5 )>(−l−c ) ) and ((− c5 )<(− l+c ) ) :

111 p2 . Line ( po int1=(−c5 , a−c5 ) , po int2=(−c5 , b) )

112 e l s e : p2 . Line ( po int1=(−c5 ,−b) , po int2=(−c5 , b) )

113 i f ( c5>( l−c ) ) and ( c5<( l+c ) ) :

114 p2 . Line ( po int1=(c5 , a−c5 ) , po int2=(c5 , b) )

115 e l s e : p2 . Line ( po int1=(c5 ,−b) , po int2=(c5 , b) )

116 # Par t i t i on l i n e s at the t i p o f the I n c l u s i o n

117 p2 . Line ( po int1=(−l−c ,−a−c ) , po int2=(− l+c ,−a+c ) )

118 p2 . Line ( po int1=(− l+c ,−a−c ) , po int2=(−l−c ,−a+c ) )

119 p2 . Line ( po int1=(−l−c ,−a ) , po int2=(− l+c ,−a ) )

120 p2 . Line ( po int1=(−l ,−a−c ) , po int2=(−l ,−a+c ) )

121 #

122 p2 . Line ( po int1=( l−c ,−a−c ) , po int2=( l+c ,−a+c ) )

123 p2 . Line ( po int1=( l+c ,−a−c ) , po int2=( l−c ,−a+c ) )

124 p2 . Line ( po int1=( l−c ,−a ) , po int2=( l+c ,−a ) )

125 p2 . Line ( po int1=( l ,−a−c ) , po int2=( l ,−a+c ) )

126 # Pat i t i on l i n e s at Hole

127 p2 . Line ( po int1 =(0.0 , a−c5 ) , po int2 =(0.0 , a+c5 ) )

128 p2 . Line ( po int1=(−c5 , a−c5 ) , po int2=(c5 , a+c5 ) )

129 p2 . Line ( po int1=(c5 , a−c5 ) , po int2=(−c5 , a+c5 ) )

130 # Ci r c l e s

131 p2 . Circ leByCenterPer imeter ( c en t e r=(−l ,−a ) , po int1=(−l ,−a+r1 ) )

132 p2 . Circ leByCenterPer imeter ( c en t e r=(−l ,−a ) , po int1=(−l ,−a+r2 ) )

133 p2 . Circ leByCenterPer imeter ( c en t e r=( l ,−a ) , po int1=( l ,−a+r1 ) )
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134 p2 . Circ leByCenterPer imeter ( c en t e r=( l ,−a ) , po int1=( l ,−a+r2 ) )

135 p1 . Part i t ionFaceBySketch ( f a c e s=p1 . f a c e s . f indAt ( ( (w∗0 .99 , b ∗0 .99 , 0 . 0 ) , ) ) ,

sketch=p2 )

136 de l mdb. models [ ’Model−1 ’ ]
137 ## Mesh Module ##

138 # 1 ##Hor i zonta l l i n e − S ing l e Bias

139 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end2Edges=p1 . edges .

f indAt (((−0.99∗w, b , 0 . 0 ) , ) , ((−0.99∗w, −a−c , 0 . 0 ) , ) , ((−0.99∗w, −a+c ,

0 . 0 ) , ) , ((−0.99∗w, a−c5 , 0 . 0 ) , ) , ((−0.99∗w, a+c5 , 0 . 0 ) , ) ) , end1Edges=p1 .

edges . f indAt (((−0.99∗w, −b , 0 . 0 ) , ) , ) , maxSize=m2, minSize=m1)

140 ##

141 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end1Edges=p1 . edges .

f indAt ( ( ( 0 . 9 9 ∗w, b , 0 . 0 ) , ) , ( ( 0 . 9 9∗w, −a−c , 0 . 0 ) , ) , ( ( 0 . 9 9∗w, −a+c , 0 . 0 ) ,

) , ( ( 0 . 9 9∗w, a−c5 , 0 . 0 ) , ) , ( ( 0 . 9 9∗w, a+c5 , 0 . 0 ) , ) ) , end2Edges=p1 . edges .

f indAt ( ( ( 0 . 9 9 ∗w, −b , 0 . 0 ) , ) , ) , maxSize=m2, minSize=m1)

142 # 2 ## Ver t i c a l l i n e − S ing l e Bias

143 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end2Edges=p1 . edges .

f indAt (((−w, −0.99∗b , 0 . 0 ) , ) , ((− l−c , −0.99∗b , 0 . 0 ) , ) , ((− l+c , −0.99∗b ,

0 . 0 ) , ) , ( ( l−c , −0.99∗b , 0 . 0 ) , ) , ( ( l+c , −0.99∗b , 0 . 0 ) , ) , ((−c5 , −0.99∗b ,

0 . 0 ) , ) , ( ( c5 , −0.99∗b , 0 . 0 ) , ) , ) , end1Edges=p1 . edges . f indAt ( ( (w, −0.99∗b ,

0 . 0 ) , ) , ) , maxSize=m2, minSize=m1)

144 ##

145 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end1Edges=p1 . edges .

f indAt (((−w, 0 .99∗b , 0 . 0 ) , ) , ((− l−c , 0 .99∗b , 0 . 0 ) , ) , ((− l+c , 0 .99∗b ,

0 . 0 ) , ) , ( ( l−c , 0 .99∗b , 0 . 0 ) , ) , ( ( l+c , 0 .99∗b , 0 . 0 ) , ) , ((−c5 , 0 .99∗b ,

0 . 0 ) , ) , ( ( c5 , 0 .99∗b , 0 . 0 ) , ) , ) , end2Edges=p1 . edges . f indAt ( ( (w, 0 .99∗b ,

0 . 0 ) , ) , ) , maxSize=m2, minSize=m1)

146 ### middle o f I n c l u s i o n and Hole − Bias−None

147 ww=p1 . getDi s tance ( en t i t y1=p1 . edges . f indAt ((−0.99∗w,−a+c , 0 . 0 ) , ) , en t i t y2=p1 .

edges . f indAt ((−0.99∗w, a−c5 , 0 . 0 ) , ) )

148 i f (ww>0) :

149 p1 . seedEdgeBySize ( edges=p1 . edges . f indAt (((−w ,a−c5 ∗1 .01 , 0 . 0 ) , ) ,((− l−
c , a−c5 ∗1 .01 , 0 . 0 ) , ) , ((− l+c , a−c5 ∗1 .01 , 0 . 0 ) , ) , ( ( l−c , a−c5
∗1 .01 , 0 . 0 ) , ) , ( ( l+c , a−c5 ∗1 .01 , 0 . 0 ) , ) , ( (w , a−c5 ∗1 .01 , 0 . 0 ) , )

,((− c5 , a−c5 ∗1 .01 , 0 . 0 ) , ) , ( ( c5 , a−c5 ∗1 .01 , 0 . 0 ) , ) , ) , s i z e=m1,

dev ia t i onFacto r =0.1 , c on s t r a i n t=FINER)

150 # Near the Inc lu s i on , Ve r t i c a l l i n e seed ing & s i d e end edges

151 p1 . seedEdgeBySize ( edges=p1 . edges . f indAt (((−w, −a , 0 . 0 ) , ) , ( (w, −a , 0 . 0 ) , ) ,((−
l−c , −a−dt , 0 . 0 ) , ) , ((− l−c , −a+dt , 0 . 0 ) , ) ,((− l+c , −a−dt , 0 . 0 ) , ) ,((− l+c ,

−a+dt , 0 . 0 ) , ) , ( ( l−c , −a−dt , 0 . 0 ) , ) , ( ( l−c , −a+dt , 0 . 0 ) , ) , ( ( l+c , −a−dt
, 0 . 0 ) , ) , ( ( l+c , −a+dt , 0 . 0 ) , ) , ) , s i z e=m4, dev ia t i onFacto r =0.1 ,

c on s t r a i n t=FINER)

152 i f (−c5 )<(− l−c ) :
153 p1 . seedEdgeBySize ( edges=p1 . edges . f indAt (((− c5 , −a , 0 . 0 ) , ) , ) , s i z e=m4,

dev ia t i onFacto r =0.1 , c on s t r a i n t=FINER)

154 p1 . seedEdgeBySize ( edges=p1 . edges . f indAt ( ( ( c5 , −a , 0 . 0 ) , ) , ) , s i z e=m4,

dev ia t i onFacto r =0.1 , c on s t r a i n t=FINER)
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155 # Near the I n c l u s i o n Hor i zonta l l i n e seed ing & s i d e end edges

156 p1 . seedEdgeBySize ( edges=p1 . edges . f indAt (((− l−dt , −a−c , 0 . 0 ) , ) ,((− l−dt , −a+c ,

0 . 0 ) , ) ,((− l+dt , −a−c , 0 . 0 ) , ) , ((− l+dt , −a+c , 0 . 0 ) , ) , ( ( l−dt , −a−c ,
0 . 0 ) , ) , ( ( l−dt , −a+c , 0 . 0 ) , ) , ( ( l+dt , −a−c , 0 . 0 ) , ) , ( ( l+dt , −a+c , 0 . 0 ) , ) ,

((− l−c ∗0 .99 , −b , 0 . 0 ) , ) ,((− l−c ∗0 .99 , b , 0 . 0 ) , ) , ( ( l+c ∗0 .99 , −b , 0 . 0 ) , )

, ( ( l+c ∗0 .99 , b , 0 . 0 ) , ) , ((− l−c ∗0 .99 , a−c5 , 0 . 0 ) , ) ,((− l−c ∗0 .99 , a+c5 ,

0 . 0 ) , ) , ( ( l+c ∗0 .99 , a−c5 , 0 . 0 ) , ) , ( ( l+c ∗0 .99 , a+c5 , 0 . 0 ) , ) , ((− l+c ∗1 .01 ,

−a+c , 0 . 0 ) , ) ,((− l+c ∗1 .01 , −a−c , 0 . 0 ) , ) ,((− l+c ∗1 .01 , −b , 0 . 0 ) , ) ,((− l+c

∗1 .01 , b , 0 . 0 ) , ) , ( ( l−c ∗1 .01 , −a+c , 0 . 0 ) , ) , ( ( l−c ∗1 .01 , −a−c , 0 . 0 ) , )

, ( ( l−c ∗1 .01 , −b , 0 . 0 ) , ) , ( ( l−c ∗1 .01 , b , 0 . 0 ) , ) , ) , s i z e=m4,

dev ia t i onFacto r =0.1 , c on s t r a i n t=FINER)

157 # Near the ho le v e r t i c a l l i n e seed ing

158 p1 . seedEdgeBySize ( edges=p1 . edges . f indAt (((−w, a , 0 . 0 ) , ) , ( (w, a , 0 . 0 ) , ) ,((− c5

, a , 0 . 0 ) , ) , ( ( c5 , a , 0 . 0 ) , ) , ((− l−c , a , 0 . 0 ) , ) ,((− l+c , a , 0 . 0 ) , ) , ( ( l−
c , a , 0 . 0 ) , ) , ( ( l+c , a , 0 . 0 ) , ) , ) , s i z e=m4, dev ia t i onFacto r =0.1 ,

c on s t r a i n t=FINER)

159 # Near the ho le ho r i z on t a l l i n e seed ing

160 p1 . seedEdgeBySize ( edges=p1 . edges . f indAt ( ( ( 0 . 0 , −a−c , 0 . 0 ) , ) , ( ( 0 . 0 , −a+c , 0 . 0 )

, ) , ( ( 0 . 0 , −b , 0 . 0 ) , ) , ( ( 0 . 0 , b , 0 . 0 ) , ) , ((− c5 ∗0 .99 , a−c5 , 0 . 0 ) , ) , ( ( c5

∗0 .99 , a−c5 , 0 . 0 ) , ) ,((− c5 ∗0 .99 , a+c5 , 0 . 0 ) , ) , ( ( c5 ∗0 .99 , a+c5 , 0 . 0 ) , ) ,

( ( dt , a−c5 , 0 . 0 ) , ) ,((−dt , a−c5 , 0 . 0 ) , ) , ) , s i z e=m4, dev ia t i onFacto r =0.1 ,

c on s t r a i n t=FINER)

161 ## 5 f o r i n c l u s i o n c i r c l e

162 # 5−1 For l e f t S ide box

163 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end2Edges=p1 . edges .

f indAt (((− l , −a−c ∗0 .99 , 0 . 0 ) , ) ,((− l+rt , −a−rt , 0 . 0 ) , ) ,((− l−c ∗0 .99 , −a ,
0 . 0 ) , ) ) , end1Edges=p1 . edges . f indAt (((− l−rt , −a+rt , 0 . 0 ) , ) ,((− l , −a+c

∗0 .99 , 0 . 0 ) , ) , ((− l+c ∗0 .99 , −a , 0 . 0 ) , ) , ) , maxSize=m4, minSize=m6)

164 zh1=p1 . edges . f indAt ((− l−rt , −a−rt , 0 . 0 ) , ) . g e tVe r t i c e s ( )

165 sp1=p1 . v e r t i c e s . f indAt ((− l−r2 ∗ rt9 , −a−r2 ∗ rt8 , 0 . 0 ) , ) . index

166 i f zh1 [0]==sp1 :

167 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end1Edges=p1 .

edges . f indAt (((− l−rt , −a−rt , 0 . 0 ) , ) , ) , maxSize=m4, minSize=m6)

168 e l s e :

169 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end2Edges=p1 .

edges . f indAt (((− l−rt , −a−rt , 0 . 0 ) , ) , ) , maxSize=m4, minSize=m6)

170 #

171 zh2=p1 . edges . f indAt ((− l+rt , −a+rt , 0 . 0 ) , ) . g e tVe r t i c e s ( )

172 sp2=p1 . v e r t i c e s . f indAt ((− l+r2 ∗ rt9 , −a+r2 ∗ rt8 , 0 . 0 ) , ) . index

173 i f zh2 [0]==sp2 :

174 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end1Edges=p1 .

edges . f indAt (((− l+rt , −a+rt , 0 . 0 ) , ) , ) , maxSize=m4, minSize=m6)

175 e l s e :

176 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end2Edges=p1 .

edges . f indAt (((− l+rt , −a+rt , 0 . 0 ) , ) , ) , maxSize=m4, minSize=m6)

177 # 5−2 For Right Side box

178 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end2Edges=p1 . edges .
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f indAt ( ( ( l , −a−c ∗0 .99 , 0 . 0 ) , ) , ( ( l+rt , −a−rt , 0 . 0 ) , ) , ( ( l−c ∗0 .99 , −a , 0 . 0 )

, ) ) , end1Edges=p1 . edges . f indAt ( ( ( l−rt , −a+rt , 0 . 0 ) , ) , ( ( l , −a+c ∗0 .99 ,

0 . 0 ) , ) , ( ( l+c ∗0 .99 , −a , 0 . 0 ) , ) , ) , maxSize=m4, minSize=m6)

179 zh3=p1 . edges . f indAt ( ( l−rt , −a−rt , 0 . 0 ) , ) . g e tVe r t i c e s ( )

180 sp3=p1 . v e r t i c e s . f indAt ( ( l−r2 ∗ rt9 , −a−r2 ∗ rt8 , 0 . 0 ) , ) . index

181 i f zh3 [0]==sp3 :

182 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end1Edges=p1 .

edges . f indAt ( ( ( l−rt , −a−rt , 0 . 0 ) , ) , ) , maxSize=m4, minSize=m6)

183 e l s e :

184 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end2Edges=p1 .

edges . f indAt ( ( ( l−rt , −a−rt , 0 . 0 ) , ) , ) , maxSize=m4, minSize=m6)

185 zh4=p1 . edges . f indAt ( ( l+rt , −a+rt , 0 . 0 ) , ) . g e tVe r t i c e s ( )

186 sp4=p1 . v e r t i c e s . f indAt ( ( l+r2 ∗ rt9 , −a+r2 ∗ rt8 , 0 . 0 ) , ) . index

187 i f zh4 [0]==sp4 :

188 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end1Edges=p1 .

edges . f indAt ( ( ( l+rt , −a+rt , 0 . 0 ) , ) , ) , maxSize=m4, minSize=m6)

189 e l s e :

190 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end2Edges=p1 .

edges . f indAt ( ( ( l+rt , −a+rt , 0 . 0 ) , ) , ) , maxSize=m4, minSize=m6)

191 ## 6 f o r b ig c i r c l e

192 # 6−1 Right Side

193 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end2Edges=p1 . edges .

f indAt ( ( ( l , −a−r2 ∗0 .99 , 0 . 0 ) , ) , ( ( l−r2 ∗0 .99 , −a , 0 . 0 ) , ) , ( ( l+r1 , −a−r1 ,

0 . 0 ) , ) , ) , end1Edges=p1 . edges . f indAt ( ( ( l−r1 , −a+r1 , 0 . 0 ) , ) , ( ( l , −a+r2

∗0 .99 , 0 . 0 ) , ) , ( ( l+r2 ∗0 .99 , −a , 0 . 0 ) , ) , ) , maxSize=m6, minSize=m5)

194 #

195 zh5=p1 . edges . f indAt ( ( l−rt5 , −a−rt5 , 0 . 0 ) , ) . g e tVe r t i c e s ( )

196 sp5=p1 . v e r t i c e s . f indAt ( ( l−r1 ∗ rt9 , −a−r1 ∗ rt8 , 0 . 0 ) , ) . index

197 i f zh5 [0]==sp5 :

198 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end1Edges=p1 .

edges . f indAt ( ( ( l−r1 , −a−r1 , 0 . 0 ) , ) , ) , maxSize=m6, minSize=m5)

199 e l s e :

200 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end2Edges=p1 .

edges . f indAt ( ( ( l−r1 , −a−r1 , 0 . 0 ) , ) , ) , maxSize=m6, minSize=m5)

201 #

202 zh6=p1 . edges . f indAt ( ( l+rt5 , −a+rt5 , 0 . 0 ) , ) . g e tVe r t i c e s ( )

203 sp6=p1 . v e r t i c e s . f indAt ( ( l+r1 ∗ rt9 , −a+r1 ∗ rt8 , 0 . 0 ) , ) . index

204 i f zh6 [0]==sp6 :

205 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end1Edges=p1 .

edges . f indAt ( ( ( l+r1 , −a+r1 , 0 . 0 ) , ) , ) , maxSize=m6, minSize=m5)

206 e l s e :

207 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end2Edges=p1 .

edges . f indAt ( ( ( l+r1 , −a+r1 , 0 . 0 ) , ) , ) , maxSize=m6, minSize=m5)

208 # 6−1 L e f t S ide

209 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end2Edges=p1 . edges .

f indAt (((− l , −a−r2 ∗0 .99 , 0 . 0 ) , ) , ((− l−r2 ∗0 .99 , −a , 0 . 0 ) , ) ,((− l+r1 , −a−r1
, 0 . 0 ) , ) , ) , end1Edges=p1 . edges . f indAt (((− l−r1 , −a+r1 , 0 . 0 ) , ) , ((− l ,
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−a+r2 ∗0 .99 , 0 . 0 ) , ) ,((− l+r2 ∗0 .99 , −a , 0 . 0 ) , ) , ) , maxSize=m6, minSize=m5)

210 #

211 zh5=p1 . edges . f indAt ((− l−rt5 , −a−rt5 , 0 . 0 ) , ) . g e tVe r t i c e s ( )

212 sp5=p1 . v e r t i c e s . f indAt ((− l−r1 ∗ rt9 , −a−r1 ∗ rt8 , 0 . 0 ) , ) . index

213 i f zh5 [0]==sp5 :

214 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end1Edges=p1 .

edges . f indAt (((− l−r1 , −a−r1 , 0 . 0 ) , ) , ) , maxSize=m6, minSize=m5)

215 e l s e :

216 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end2Edges=p1 .

edges . f indAt (((− l−r1 , −a−r1 , 0 . 0 ) , ) , ) , maxSize=m6, minSize=m5)

217 #

218 zh6=p1 . edges . f indAt ((− l+rt5 , −a+rt5 , 0 . 0 ) , ) . g e tVe r t i c e s ( )

219 sp6=p1 . v e r t i c e s . f indAt ((− l+r1 ∗ rt9 , −a+r1 ∗ rt8 , 0 . 0 ) , ) . index

220 i f zh6 [0]==sp6 :

221 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end1Edges=p1 .

edges . f indAt (((− l+r1 , −a+r1 , 0 . 0 ) , ) , ) , maxSize=m6, minSize=m5)

222 e l s e :

223 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end2Edges=p1 .

edges . f indAt (((− l+r1 , −a+r1 , 0 . 0 ) , ) , ) , maxSize=m6, minSize=m5)

224 ### 7 f o r smal l c i r c l e − 1 element

225 # 7−1 L e f t S ide

226 p1 . seedEdgeByNumber ( edges=p1 . edges . f indAt (((− l , −a−r1 ∗0 .99 , 0 . 0 ) , ) ,((− l−r1 /2 ,
−a+r1 /2 , 0 . 0 ) , ) , ((− l+r1 /2 , −a+r1 /2 , 0 . 0 ) , ) ,((− l−r1 ∗0 .99 , −a , 0 . 0 ) , )

,((− l−r1 /2 , −a−r1 /2 , 0 . 0 ) , ) ,((− l , −a+r1 ∗0 .01 , 0 . 0 ) , ) , ((− l+r1 /2 , −a−r1
/2 , 0 . 0 ) , ) ,((− l+r1 ∗0 .99 , −a , 0 . 0 ) , ) ) , number=1, c on s t r a i n t=FINER)

227 # 7−2 Right Side

228 p1 . seedEdgeByNumber ( edges=p1 . edges . f indAt ( ( ( l , −a−r1 ∗0 .99 , 0 . 0 ) , ) , ( ( l−r1 /2 , −
a+r1 /2 , 0 . 0 ) , ) , ( ( l+r1 /2 , −a+r1 /2 , 0 . 0 ) , ) , ( ( l−r1 ∗0 .99 , −a , 0 . 0 ) , ) , ( ( l−
r1 /2 , −a−r1 /2 , 0 . 0 ) , ) , ( ( l , −a+r1 ∗0 .01 , 0 . 0 ) , ) , ( ( l+r1 /2 , −a−r1 /2 , 0 . 0 ) ,

) , ( ( l+r1 ∗0 .99 , −a , 0 . 0 ) , ) ) , number=1, c on s t r a i n t=FINER)

229 ## 8 hole

230 # 8

231 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end2Edges=p1 . edges .

f indAt ( ( ( 0 . 0 , a−r3 ∗1 .01 , 0 . 0 ) , ) , ((− r3 , a−r3 , 0 . 0 ) , ) , ( ( r3 , a−r3 , 0 . 0 ) , )

) , end1Edges=p1 . edges . f indAt (((− r3 , a+r3 , 0 . 0 ) , ) , ( ( r3 , a+r3 , 0 . 0 ) , )

, ( ( 0 . 0 , a+r3 ∗1 .01 , 0 . 0 ) , ) ) , maxSize=m1, minSize=m7)

232 #

233 zh9=p1 . edges . f indAt ( ( rt7 , a−rt7 , 0 . 0 ) , ) . g e tVe r t i c e s ( )

234 sp9=p1 . v e r t i c e s . f indAt ( ( r3 ∗ rt9 , a−r3 ∗ rt8 , 0 . 0 ) , ) . index

235 i f zh9 [0]==sp9 :

236 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end1Edges=p1 .

edges . f indAt ( ( ( rt7 , a−rt7 , 0 . 0 ) , ) , ) , maxSize=m1, minSize=m7)

237 e l s e :

238 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end2Edges=p1 .

edges . f indAt ( ( ( rt7 , a−rt7 , 0 . 0 ) , ) , ) , maxSize=m1, minSize=m7)

239 #

240 zh11=p1 . edges . f indAt ((− rt7 , a+rt7 , 0 . 0 ) , ) . g e tVe r t i c e s ( )
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241 sp11=p1 . v e r t i c e s . f indAt ((− r3 ∗ rt9 , a+r3 ∗ rt8 , 0 . 0 ) , ) . index

242 i f zh11 [0]==sp11 :

243 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end1Edges=p1 .

edges . f indAt (((− rt7 , a+rt7 , 0 . 0 ) , ) , ) , maxSize=m1, minSize=m7)

244 e l s e :

245 p1 . seedEdgeByBias ( biasMethod=SINGLE, c on s t r a i n t=FINER, end2Edges=p1 .

edges . f indAt (((− rt7 , a+rt7 , 0 . 0 ) , ) , ) , maxSize=m1, minSize=m7)

246 ## dependent OFF

247 mdb. models [ ’Model A ’ ] . rootAssembly . Ins tance ( dependent=OFF, name=’ Part A−1 ’ ,
part=mdb. models [ ’Model A ’ ] . par t s [ ’ Part A ’ ] )

248 p3=mdb. models [ ’Model A ’ ] . rootAssembly . r eg ene ra t e ( )

249 p3=mdb. models [ ’Model A ’ ] . rootAssembly

250 ## Set f o r I n c l u s i on

251 p3 . Set ( edges=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . edges . f indAt ( ( ( − l+r1 ∗0.99 ,−a , 0 . 0 ) , ) ,

( ( − l+r1 ∗1.01 ,−a , 0 . 0 ) , ) , ( ( − l+r2 ∗1.01 ,−a , 0 . 0 ) , ) , ( ( l−r1 ∗0.99 ,−a , 0 . 0 ) ,

) , ( ( l−r1 ∗1.01 ,−a , 0 . 0 ) , ) , ( ( l−r2 ∗1.01 ,−a , 0 . 0 ) , ) , ( ( l−c ∗1.01 ,−a , 0 . 0 )

, ) , ( ( − l+c ∗1.01 ,−a , 0 . 0 ) , ) , ( ( 0 . 0 , −a , 0 . 0 ) , ) , ) , name=’ I n c l u s i o n ’ )

252 ## Def in ing the Crack

253 ## #1 L e f t s i d e crack

254 p3 . eng inee r ingFea tu r e s . Contour Integra l ( col lapsedElementAtTip=DUPLICATE NODES,

crackFront=p3 . s e t s [ ’ I n c l u s i o n ’ ] , crackTip=Region ( v e r t i c e s=p3 . i n s t an c e s [ ’

Part A−1 ’ ] . v e r t i c e s . f indAt (((− l , −a , 0 . 0 ) , ) , ) ) , extens ionDirect ionMethod

=Q VECTORS, midNodePosition =0.25 , name=’ CrackLeft ’ , qVectors=((p3 .

i n s t an c e s [ ’ Part A−1 ’ ] . v e r t i c e s . f indAt ((− l , −a , 0 . 0 ) , ) , p3 . i n s t an c e s [ ’ Part

A−1 ’ ] . v e r t i c e s . f indAt ((− l−c , −a , 0 . 0 ) , ) ) , ) , symmetric=ON)

255 ## #2 Righ t Side crack

256 p3 . eng inee r ingFea tu r e s . Contour Integra l ( col lapsedElementAtTip=DUPLICATE NODES,

crackFront=p3 . s e t s [ ’ I n c l u s i o n ’ ] , crackTip=Region ( v e r t i c e s=p3 . i n s t an c e s [ ’

Part A−1 ’ ] . v e r t i c e s . f indAt ( ( ( l , −a , 0 . 0 ) , ) , ) ) , extens ionDirect ionMethod=

Q VECTORS, midNodePosition =0.25 , name=’ CrackRight ’ , qVectors=((p3 .

i n s t an c e s [ ’ Part A−1 ’ ] . v e r t i c e s . f indAt ( ( l , −a , 0 . 0 ) , ) , p3 . i n s t an c e s [ ’ Part

A−1 ’ ] . v e r t i c e s . f indAt ( ( l+c , −a , 0 . 0 ) , ) ) , ) , symmetric=ON)

257 ## Assign Mesh Control ##

258 p3 . setMeshControls ( r e g i on s=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . f a c e s . f indAt (((−0.99∗w,

−0.99∗b , 0 . 0 ) , ) , ((−0.99∗w, 0 .99∗b , 0 . 0 ) , ) , ((−0.99∗w, −a , 0 . 0 ) , )

, ((−0.99∗w, a , 0 . 0 ) , ) , ( ( 0 . 9 9∗w, −0.99∗b , 0 . 0 ) , ) , ( ( 0 . 9 9∗w, 0 .99∗b , 0 . 0 ) ,

) , ( ( 0 . 9 9∗w, −a , 0 . 0 ) , ) , ( ( 0 . 9 9∗w, a , 0 . 0 ) , ) ,((− l−c ∗0 .99 , −0.99∗b , 0 . 0 ) ,

) , ( ( l+c ∗0 .99 , −0.99∗b , 0 . 0 ) , ) , ( ( 0 . 0 , −0.99∗b , 0 . 0 ) , ) , ( ( 0 . 0 , 0 .99∗b ,

0 . 0 ) , ) , ( ( 0 . 0 , −a−dt , 0 . 0 ) , ) , ( ( 0 . 0 , −a+dt , 0 . 0 ) , ) , ) , elemShape=QUAD,

technique=STRUCTURED)

259 i f (ww!=0) :

260 p3 . setMeshControls ( r e g i on s=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . f a c e s . f indAt

(((−0.99∗w, a−c5 ∗1 .01 , 0 . 0 ) , ) , ( ( 0 . 9 9∗w, a−c5 ∗1 .01 , 0 . 0 ) , ) , ((− l ,

a−c5 ∗1 .01 , 0 . 0 ) , ) , ( ( l , a−c5 ∗1 .01 , 0 . 0 ) , ) ,((− l+c ∗1 .01 , a−c5
∗1 .01 , 0 . 0 ) , ) , ( ( l−c ∗1 .01 , a−c5 ∗1 .01 , 0 . 0 ) , ) , ( ( 0 . 0 , a−c5 ∗1 .01 ,

0 . 0 ) , ) , ) , elemShape=QUAD, technique=STRUCTURED)

261 #
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262 i f ((− c5 )>(−l−c ) ) :
263 p3 . setMeshControls ( r e g i on s=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . f a c e s . f indAt (((− l−

c ∗0 .99 , 0 .99∗b , 0 . 0 ) , ) ,((− l−c ∗0 .99 , a , 0 . 0 ) , ) , ) , elemShape=QUAD,

technique=STRUCTURED)

264 #

265 i f ( c5<( l+c ) ) :

266 p3 . setMeshControls ( r e g i on s=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . f a c e s . f indAt ( ( ( l+c

∗0 .99 , 0 .99∗b , 0 . 0 ) , ) , ( ( l+c ∗0 .99 , a , 0 . 0 ) , ) , ) , elemShape=QUAD,

technique=STRUCTURED)

267 #

268 i f (− l+c )<(−c5 ) :
269 p3 . setMeshControls ( r e g i on s=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . f a c e s . f indAt (((− l+

c ∗1 .01 , −0.99∗b , 0 . 0 ) , ) ,((− l+c ∗1 .01 , 0 .99∗b , 0 . 0 ) , ) , ((− l+c

∗1 .01 , a , 0 . 0 ) , ) ,((− l+c ∗1 .01 , 0 . 0 , 0 . 0 ) , ) ,((− l+c ∗1 .01 , −a−dt ,
0 . 0 ) , ) , ((− l+c ∗1 .01 , −a+dt , 0 . 0 ) , ) , ) , elemShape=QUAD, technique=

STRUCTURED)

270 #

271 i f ( l−c )>(c5 ) :

272 p3 . setMeshControls ( r e g i on s=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . f a c e s . f indAt ( ( ( l−c
∗1 .01 , −0.99∗b , 0 . 0 ) , ) , ( ( l−c ∗1 .01 , 0 .99∗b , 0 . 0 ) , ) , ( ( l−c ∗1 .01 , a ,

0 . 0 ) , ) , ( ( l−c ∗1 .01 , 0 . 0 , 0 . 0 ) , ) , ( ( l−c ∗1 .01 , −a−dt , 0 . 0 ) , ) , ( ( l

−c ∗1 .01 , −a+dt , 0 . 0 ) , ) , ) , elemShape=QUAD, technique=

STRUCTURED)

273 #

274 i f ((− c5 )<(−l−c ) ) :
275 p3 . setMeshControls ( r e g i on s=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . f a c e s . f indAt (((− c5

+dt , a−c5 ∗1 .01 , 0 . 0 ) , ) ,((− c5+dt , −a , 0 . 0 ) , ) , ((− c5+dt , −a−c
∗1 .01 , 0 . 0 ) , ) , ) , elemShape=QUAD, technique=STRUCTURED)

276 #

277 i f ( c5>( l+c ) ) :

278 p3 . setMeshControls ( r e g i on s=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . f a c e s . f indAt ( ( ( c5−
dt , a−c5 ∗1 .01 , 0 . 0 ) , ) , ( ( c5−dt , −a , 0 . 0 ) , ) , ( ( c5−dt , −a−c ∗1 .01 ,

0 . 0 ) , ) , ) , elemShape=QUAD, technique=STRUCTURED)

279 # Lef t Side Box except inner smal l c i r c l e

280 p3 . setMeshControls ( r e g i on s=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . f a c e s . f indAt (((− l+r t ∗ rt2 ,

−a+r t ∗ rt1 , 0 . 0 ) , ) ,((− l−r t ∗ rt2 , −a+r t ∗ rt1 , 0 . 0 ) , ) , ((− l−r t ∗ rt2 , −a−r t ∗ rt1 ,

0 . 0 ) , ) ,((− l+r t ∗ rt2 , −a−r t ∗ rt1 , 0 . 0 ) , ) ,((− l+r t ∗ rt4 , −a+r t ∗ rt3 , 0 . 0 ) , ) , ((− l

−r t ∗ rt4 , −a+r t ∗ rt3 , 0 . 0 ) , ) ,((− l−r t ∗ rt4 , −a−r t ∗ rt3 , 0 . 0 ) , ) ,((− l+r t ∗ rt4 , −a−
r t ∗ rt3 , 0 . 0 ) , ) , ((− l+r t5 ∗ rt2 , −a+rt5 ∗ rt1 , 0 . 0 ) , ) ,((− l−r t5 ∗ rt2 , −a+rt5 ∗ rt1 ,

0 . 0 ) , ) ,((− l−r t5 ∗ rt2 , −a−r t5 ∗ rt1 , 0 . 0 ) , ) , ((− l+r t5 ∗ rt2 , −a−r t5 ∗ rt1 , 0 . 0 ) , )

,((− l+r t5 ∗ rt4 , −a+rt5 ∗ rt3 , 0 . 0 ) , ) ,((− l−r t5 ∗ rt4 , −a+rt5 ∗ rt3 , 0 . 0 ) , ) ,

((− l−r t5 ∗ rt4 , −a−r t5 ∗ rt3 , 0 . 0 ) , ) ,((− l+r t5 ∗ rt4 , −a−r t5 ∗ rt3 , 0 . 0 ) , ) ) ,

elemShape=QUAD, technique=SWEEP)

281 # Right Box except inner smal l c i r c l e

282 p3 . setMeshControls ( r e g i on s=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . f a c e s . f indAt ( ( ( l+r t ∗ rt2 , −
a+r t ∗ rt1 , 0 . 0 ) , ) , ( ( l−r t ∗ rt2 , −a+r t ∗ rt1 , 0 . 0 ) , ) , ( ( l−r t ∗ rt2 , −a−r t ∗ rt1 ,

0 . 0 ) , ) , ( ( l+r t ∗ rt2 , −a−r t ∗ rt1 , 0 . 0 ) , ) , ( ( l+r t ∗ rt4 , −a+r t ∗ rt3 , 0 . 0 ) , ) , ( ( l−r t
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∗ rt4 , −a+r t ∗ rt3 , 0 . 0 ) , ) , ( ( l−r t ∗ rt4 , −a−r t ∗ rt3 , 0 . 0 ) , ) , ( ( l+r t ∗ rt4 , −a−r t ∗
rt3 , 0 . 0 ) , ) , ( ( l+r t5 ∗ rt2 , −a+rt5 ∗ rt1 , 0 . 0 ) , ) , ( ( l−r t5 ∗ rt2 , −a+rt5 ∗ rt1 , 0 . 0 )

, ) , ( ( l−r t5 ∗ rt2 , −a−r t5 ∗ rt1 , 0 . 0 ) , ) , ( ( l+r t5 ∗ rt2 , −a−r t5 ∗ rt1 , 0 . 0 ) , ) , ( ( l+

r t5 ∗ rt4 , −a+rt5 ∗ rt3 , 0 . 0 ) , ) , ( ( l−r t5 ∗ rt4 , −a+rt5 ∗ rt3 , 0 . 0 ) , ) , ( ( l−r t5 ∗ rt4 ,

−a−r t5 ∗ rt3 , 0 . 0 ) , ) , ( ( l+r t5 ∗ rt4 , −a−r t5 ∗ rt3 , 0 . 0 ) , ) ) , elemShape=QUAD,

technique=SWEEP)

283 # For Le f t s i d e Inner Small C i r c l e

284 p3 . setMeshControls ( r e g i on s=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . f a c e s . f indAt (((− l+r t6 ∗ rt2 ,

−a+rt6 ∗ rt1 , 0 . 0 ) , ) ,((− l−r t6 ∗ rt2 , −a+rt6 ∗ rt1 , 0 . 0 ) , ) , ((− l−r t6 ∗ rt2 , −a
−r t6 ∗ rt1 , 0 . 0 ) , ) ,((− l+r t6 ∗ rt2 , −a−r t6 ∗ rt1 , 0 . 0 ) , ) ,((− l+r t6 ∗ rt4 , −a+rt6 ∗ rt3
, 0 . 0 ) , ) , ((− l−r t6 ∗ rt4 , −a+rt6 ∗ rt3 , 0 . 0 ) , ) ,((− l−r t6 ∗ rt4 , −a−r t6 ∗ rt3 ,

0 . 0 ) , ) ,((− l+r t6 ∗ rt4 , −a−r t6 ∗ rt3 , 0 . 0 ) , ) ) , elemShape=QUADDOMINATED,

technique=SWEEP)

285 # For Right s i d e Inner Small C i r c l e

286 p3 . setMeshControls ( r e g i on s=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . f a c e s . f indAt ( ( ( l+r t6 ∗ rt2 ,

−a+rt6 ∗ rt1 , 0 . 0 ) , ) , ( ( l−r t6 ∗ rt2 , −a+rt6 ∗ rt1 , 0 . 0 ) , ) , ( ( l−r t6 ∗ rt2 , −a−r t6 ∗
rt1 , 0 . 0 ) , ) , ( ( l+r t6 ∗ rt2 , −a−r t6 ∗ rt1 , 0 . 0 ) , ) , ( ( l+r t6 ∗ rt4 , −a+rt6 ∗ rt3 , 0 . 0 )

, ) , ( ( l−r t6 ∗ rt4 , −a+rt6 ∗ rt3 , 0 . 0 ) , ) , ( ( l−r t6 ∗ rt4 , −a−r t6 ∗ rt3 , 0 . 0 ) , ) , ( ( l+

r t6 ∗ rt4 , −a−r t6 ∗ rt3 , 0 . 0 ) , ) ) , elemShape=QUADDOMINATED, technique=SWEEP)

287 # In the Square box surrounded to the ho le

288 p3 . setMeshControls ( r e g i on s=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . f a c e s . f indAt ( ( ( r t7 ∗ rt4 , a+

rt7 ∗ rt3 , 0 . 0 ) , ) ,((− r t7 ∗ rt4 , a+rt7 ∗ rt3 , 0 . 0 ) , ) , ( ( r t7 ∗ rt4 , a−r t7 ∗ rt3 , 0 . 0 )

, ) ,((− r t7 ∗ rt4 , a−r t7 ∗ rt3 , 0 . 0 ) , ) ,((− rt7 , a , 0 . 0 ) , ) , ( ( rt7 , a , 0 . 0 ) , ) , ) ,

elemShape=QUAD, technique=SWEEP)

289 ## se t AREA

290 # p3 . Set ( f a c e s=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . f a c e s . f indAt (((− l+r t5 ∗ rt2 , −a+rt5 ∗ rt1 ,

0 . 0 ) , ) , ((− l−r t5 ∗ rt2 , −a+rt5 ∗ rt1 , 0 . 0 ) , ) ,((− l−r t5 ∗ rt2 , −a−r t5 ∗ rt1 , 0 . 0 ) , )

, ((− l+r t5 ∗ rt2 , −a−r t5 ∗ rt1 , 0 . 0 ) , ) ,((− l+r t5 ∗ rt4 , −a+rt5 ∗ rt3 , 0 . 0 ) , ) ,((− l−
r t5 ∗ rt4 , −a+rt5 ∗ rt3 , 0 . 0 ) , ) , ((− l−r t5 ∗ rt4 , −a−r t5 ∗ rt3 , 0 . 0 ) , ) ,((− l+r t5 ∗ rt4
, −a−r t5 ∗ rt3 , 0 . 0 ) , ) ) , name=’Area ’ )

291 p3 . Set ( f a c e s=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . f a c e s . f indAt ( ( ( l+r t5 ∗ rt2 , −a+rt5 ∗ rt1 ,

0 . 0 ) , ) , ( ( l−r t5 ∗ rt2 , −a+rt5 ∗ rt1 , 0 . 0 ) , ) , ( ( l−r t5 ∗ rt2 , −a−r t5 ∗ rt1 , 0 . 0 ) , ) ,

( ( l+r t5 ∗ rt2 , −a−r t5 ∗ rt1 , 0 . 0 ) , ) , ( ( l+r t5 ∗ rt4 , −a+rt5 ∗ rt3 , 0 . 0 ) , ) , ( ( l−r t5 ∗
rt4 , −a+rt5 ∗ rt3 , 0 . 0 ) , ) , ( ( l−r t5 ∗ rt4 , −a−r t5 ∗ rt3 , 0 . 0 ) , ) , ( ( l+r t5 ∗ rt4 , −a−
r t5 ∗ rt3 , 0 . 0 ) , ) ) , name=’Area ’ )

292 ## Generating the Mesh

293 p3 . generateMesh ( r e g i on s=(p3 . i n s t an c e s [ ’ Part A−1 ’ ] , ) )

294 p3 . r egene ra t e ( )

295 p3 . setElementType ( elemTypes=(ElemType ( elemCode=CPE8H, e lemLibrary=STANDARD) ,

ElemType ( elemCode=CPE6H, e lemLibrary=STANDARD) ) , r e g i on s=(p3 . i n s t an c e s [ ’

Part A−1 ’ ] . f a c e s . getByBoundingBox (−1.01∗w, −1.01∗w, −100, w

∗1 .01 , b ∗1 .01 , 100) , ) )

296 ### Creat ing S t a t i c General Step ###

297 mdb. models [ ’Model A ’ ] . S ta t i cS t ep (name=’ Step−1 ’ , p rev ious=’ I n i t i a l ’ )

298 p3 . Set (name=’Node−A’ , nodes=(p3 . i n s t an c e s [ ’ Part A−1 ’ ] . nodes .
getByBoundingSphere ( c ent e r =(( l , −a , 0) ) , r ad iu s=dt ) , ) )

299 p3 . Set (name=’Node−B ’ , nodes=(p3 . i n s t an c e s [ ’ Part A−1 ’ ] . nodes .
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getByBoundingSphere ( c ent e r=((− l , −a , 0) ) , r ad iu s=dt ) , ) )

300 xya=p3 . s e t s [ ’Node−A’ ] . nodes [ 0 ] . c oo rd ina t e s

301 xyb=p3 . s e t s [ ’Node−B ’ ] . nodes [ 0 ] . c oo rd ina t e s

302 l a=p3 . s e t s [ ’Node−A’ ] . nodes [ 0 ] . l a b e l

303 ## Spec i f y i ng I n c l u s i o n ##

304 ## Reference po int

305 RP1=p3 . ReferencePoint ( po int =(0.0 , −a , 0 . 0 ) )

306 mdb. models [ ’Model A ’ ] . RigidBody (name=’ Constra int−1 ’ , pinRegion=p3 . s e t s [ ’

I n c l u s i o n ’ ] , refPointAtCOM=ON, re fPo intReg ion=Region ( r e f e r en c ePo i n t s=(p3 .

r e f e r en c ePo i n t s [RP1 . id ] , ) ) )

307 ## Set f o r BC

308 p3 . Set ( edges=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . edges . f indAt (((−w, −0.99∗b , 0 . 0 ) , ) ,((−w
, 0 .99∗b , 0 . 0 ) , ) , ((−w, a , 0 . 0 ) , ) ,((−w, −a , 0 . 0 ) , ) ,((−w, a−c5 ∗1 .01 ,

0 . 0 ) , ) , ) , name=’ SetLeftBC ’ )

309 #

310 p3 . Set ( edges=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . edges . f indAt ( ( (w, −0.99∗b , 0 . 0 ) , ) , ( (w,

0 .99∗b , 0 . 0 ) , ) , ( (w, a , 0 . 0 ) , ) , ( (w, −a , 0 . 0 ) , ) , ( (w, a−c5 ∗1 .01 , 0 . 0 ) , )

, ) , name=’ SetRightBC ’ )

311 #

312 p3 . Set ( v e r t i c e s=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . v e r t i c e s . f indAt (((−w, −b , 0 . 0 ) , ) , ) ,

name=’ SetLLConr ’ )

313 ## Applying BC

314 mdb. models [ ’Model A ’ ] . DisplacementBC ( amplitude=UNSET, createStepName=’ Step−1 ’ ,
d i s t r ibut i onType=UNIFORM, fieldName=’ ’ , f i x e d=OFF, l o ca lCsy s=None , name=’

BC−LeftSd ’ , r eg i on=p3 . s e t s [ ’ SetLeftBC ’ ] , u1=0.0 , u2=UNSET, ur3=UNSET)

315 #

316 # mdb. models [ ’ Model A ’ ] . DisplacementBC ( amplitude=UNSET, createStepName=’Step

−1 ’ , d i s t r ibut i onType=UNIFORM, fieldName= ’ ’ , f i x e d=OFF, l o ca lCsy s=None ,

name= ’BC−RightSd ’ , r eg i on=p3 . s e t s [ ’ SetRightBC ’ ] , u1=dispbv , u2=UNSET, ur3

=UNSET)

317 #

318 mdb. models [ ’Model A ’ ] . DisplacementBC ( amplitude=UNSET, createStepName=’ Step−1 ’ ,
d i s t r ibut i onType=UNIFORM, fieldName=’ ’ , f i x e d=OFF, l o ca lCsy s=None , name=’

BC−LLpt ’ , r eg i on=p3 . s e t s [ ’ SetLLConr ’ ] , u1=UNSET, u2=0.0 , ur3=UNSET)

319 ## Applying Pressure ##

320 # cr ea t i n g Sur face to apply p r e s su r e

321 # p3 . Sur face (name=’SurfLoadLeft ’ , s ide1Edges=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . edges .

f indAt (((−w, −0.99∗b , 0 . 0 ) , ) ,((−w, 0 .99∗b , 0 . 0 ) , ) ,((−w, a , 0 . 0 ) , ) ,((−w,

−a , 0 . 0 ) , ) , ((−w, a−c5 ∗1 .01 , 0 . 0 ) , ) , ) )

322 p3 . Sur face (name=’SLR ’ , s ide1Edges=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . edges . f indAt ( ( (w,

−0.99∗b , 0 . 0 ) , ) , ( (w, 0 .99∗b , 0 . 0 ) , ) , ( (w, a , 0 . 0 ) , ) , ( (w, −a , 0 . 0 ) , ) , ( (w

, a−c5 ∗1 .01 , 0 . 0 ) , ) , ) )

323 # # Giving pr e s su r e

324 # mdb. models [ ’ Model A ’ ] . Pres sure ( amplitude=UNSET, createStepName=’Step−1 ’ ,

d i s t r ibut i onType=UNIFORM, f i e l d = ’ ’ , magnitude=−pressure , name=’LoadLeft ’ ,

r eg i on=p3 . i n s t an c e s [ ’ Part A−1 ’ ] . s u r f a c e s [ ’ SurfLoadLeft ’ ] )

325 mdb. models [ ’Model A ’ ] . Pres sure ( amplitude=UNSET, createStepName=’ Step−1 ’ ,
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d i s t r ibut i onType=UNIFORM, f i e l d=’ ’ , magnitude=−pressure , name=’Load−1 ’ ,
r eg i on= p3 . s u r f a c e s [ ’SLR ’ ] )

326 # mdb. models [ ’ Model A ’ ] . Pres sure ( amplitude=UNSET, createStepName=’Step−1 ’ ,

d i s t r ibut i onType=UNIFORM, f i e l d = ’ ’ , magnitude=−pressure , name=’Load−1 ’ ,

r eg i on=mdb. models [ ’ Model A ’ ] . rootAssembly . s u r f a c e s [ ’ Surf −1 ’ ] )

327 ## Creat ing the Job ##

328 mdb. Job (name=jbname , model=’Model A ’ , d e s c r i p t i o n=’ ’ , type=ANALYSIS, queue=’ ’ ,

waitHours=0, waitMinutes=0, atTime=’ ’ , echoPr int=OFF, contac tPr in t=OFF,

modelPrint=OFF, h i s t o r yPr i n t=OFF, s c ra t ch=’ ’ , userSubrout ine=’ ’ , numCpus

=1, memory=90, memoryUnits=PERCENTAGE, getMemoryFromAnalysis=ON,

e x p l i c i t P r e c i s i o n=SINGLE, nodalOutputPrec i s ion=SINGLE, mult iprocess ingMode

=DEFAULT)

329 ## Submitting the Job

330 mdb. jobs [ jbname ] . submit ( cons i s tencyCheck ing=OFF)

331 mdb. jobs [ jbname ] . waitForCompletion ( )

332 ## POST PROCESSING ##

333 jname = jbname

334 odbname= jname+’ . odb ’

335 odb = openOdb(odbname)

336 assembly = odb . rootAssembly

337 nodes=odb . rootAssembly . i n s t an c e s [ ’ Part A−1 ’ ] . nodes
338 e lements=odb . rootAssembly . i n s t an c e s [ ’ Part A−1 ’ ] . e lements

339 nelm = len ( e lements )

340 nnod = len ( nodes )

341 s e s s i o n . v iewports [ ’ Viewport : 1 ’ ] . s e tVa lues ( d i sp layedObject=odb )

342 path = s e s s i o n . Path (name=’ path ’ , type=POINT LIST , exp r e s s i on =(( l , −s /2 , 0 . 0 ) , (

l +10, −s /2 , 0 . 0 ) ) )

343 data = s e s s i o n . XYDataFromPath(name=’ data ’ ,

344 path=path ,

345 i n c l u d e I n t e r s e c t i o n s=True ,

346 shape=UNDEFORMED,

347 labelType=TRUE DISTANCE,

348 va r i ab l e=( ’S ’ ,INTEGRATION POINT, ( (COMPONENT, ’ S11 ’ ) , ) , ) )

349 dataS11 = numpy . z e ro s ( shape=(0 ,2) )

350 temp = numpy . z e ro s ( shape=(2) )

351 f o r va lue in range (0 , l en ( data ) ) :

352 temp [ 0 ] = data [ va lue ] [ 0 ]

353 temp [ 1 ] = data [ va lue ] [ 1 ]

354 dataS11=numpy . vstack ( ( dataS11 , temp) )

355 data = s e s s i o n . XYDataFromPath(name=’ data ’ ,

356 path=path ,

357 i n c l u d e I n t e r s e c t i o n s=True ,

358 shape=UNDEFORMED,

359 labelType=TRUE DISTANCE,

360 va r i ab l e=( ’S ’ ,INTEGRATION POINT, ( (COMPONENT, ’ S22 ’ ) , ) , ) )

361 dataS22 = numpy . z e ro s ( shape=(0 ,2) )

362 temp = numpy . z e ro s ( shape=(2) )
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363 f o r va lue in range (0 , l en ( data ) ) :

364 temp [ 0 ] = data [ va lue ] [ 0 ]

365 temp [ 1 ] = data [ va lue ] [ 1 ]

366 dataS22=numpy . vstack ( ( dataS22 , temp) )

367 data = s e s s i o n . XYDataFromPath(name=’ data ’ ,

368 path=path ,

369 i n c l u d e I n t e r s e c t i o n s=True ,

370 shape=UNDEFORMED,

371 labelType=TRUE DISTANCE,

372 va r i ab l e=( ’S ’ ,INTEGRATION POINT, ( (COMPONENT, ’ S12 ’ ) , ) , ) )

373 dataS12 = numpy . z e ro s ( shape=(0 ,2) )

374 temp = numpy . z e ro s ( shape=(2) )

375 f o r va lue in range (0 , l en ( data ) ) :

376 temp [ 0 ] = data [ va lue ] [ 0 ]

377 temp [ 1 ] = data [ va lue ] [ 1 ]

378 dataS12=numpy . vstack ( ( dataS12 , temp) )

379 numpy . savetxt ( jname+’ dataS11 . dat ’ , dataS11 , fmt=’%15.7 e %15.7 e ’ )

380 numpy . savetxt ( jname+’ dataS22 . dat ’ , dataS22 , fmt=’%15.7 e %15.7 e ’ )

381 numpy . savetxt ( jname+’ dataS12 . dat ’ , dataS12 , fmt=’%15.7 e %15.7 e ’ )

382 myl i s t =[ ]

383 f o r inode in range (0 , nnod ) :

384 myl i s t . append ( nodes [ inode ] . c oo rd ina t e s )

385 x= numpy . array ( myl i s t )

386 myl i s t =[ ]

387 d i s p b i g = odb . s t ep s [ ’ Step−1 ’ ] . frames [ 1 ] . f i e l dOutput s [ ’U ’ ]

388 f o r inode in range (0 , nnod ) :

389 myl i s t . append ( d i s p b i g . va lue s [ inode ] . data )

390 i f inode==la −1:
391 aaa=l i s t ( d i s p b i g . va lue s [ inode ] . data )

392 di sp= numpy . array ( myl i s t )

393 myl i s t =[ ]

394 f o r i e l ement in range (0 , nelm ) :

395 i f l en ( e lements [ i e l ement ] . c onne c t i v i t y ) == 8 :

396 ab=l i s t ( e lements [ i e l ement ] . c onne c t i v i t y )

397 ab . i n s e r t (0 , e lements [ i e l ement ] . l a b e l )

398 myl i s t . append ( ab )

399 e l s e :

400 a=[0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ]

401 a . i n s e r t (0 , e lements [ i e l ement ] . l a b e l )

402 myl i s t . append ( a )

403 i con= numpy . array ( my l i s t )

404 n e l s e t s = len ( odb . rootAssembly . e l ementSets [ ’AREA’ ] . e lements [ 0 ] )

405 myl i s t =[ ]

406 e l s e t b i g = odb . rootAssembly . e l ementSets [ ’AREA’ ]

407 f o r i in range (0 , n e l s e t s ) :

408 myl i s t . append ( e l s e t b i g . e lements [ 0 ] [ i ] . l a b e l )

409 e l s e t= numpy . array ( my l i s t )
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410 i i n t p =0;

411 ngp=9;

412 s t r e s s b i g = odb . s t ep s [ ’ Step−1 ’ ] . frames [ 1 ] . f i e l dOutput s [ ’S ’ ]

413 s t r a i n b i g = odb . s t ep s [ ’ Step−1 ’ ] . frames [ 1 ] . f i e l dOutput s [ ’E ’ ]

414 s t r e s s = numpy . z e ro s ( shape=(0 ,5) )

415 s t r a i n = numpy . z e r o s ( shape=(0 ,5) )

416 temp = numpy . z e ro s ( shape=(5) )

417 f o r i e l ement in e l s e t :

418 #pr in t i e l ement

419 f o r i i n t p in range (0 , 9 ) :

420 index=( ie lement −1)∗ngp+i i n t p

421 #index=( ie l ement ) ∗ngp+i i n t p

422 temp [ 0 ] = ie l ement

423 temp [ 1 ] = i i n t p+1

424 temp [ 2 ] = s t r e s s b i g . va lue s [ index ] . data [ 0 ]

425 temp [ 3 ] = s t r e s s b i g . va lue s [ index ] . data [ 1 ]

426 temp [ 4 ] = s t r e s s b i g . va lue s [ index ] . data [ 3 ]

427 s t r e s s=numpy . vstack ( ( s t r e s s , temp) )

428 temp [ 0 ] = ie l ement

429 temp [ 1 ] = i i n t p+1

430 temp [ 2 ] = s t r a i n b i g . va lue s [ index ] . data [ 0 ]

431 temp [ 3 ] = s t r a i n b i g . va lue s [ index ] . data [ 1 ]

432 temp [ 4 ] = s t r a i n b i g . va lue s [ index ] . data [ 3 ]

433 s t r a i n=numpy . vstack ( ( s t r a in , temp) )

434 data=l i s t ( range (0 , 13 ) )

435 prtc=nodes [ la −1] . c oo rd ina t e s

436 data [0 ]= l ; data [1 ]= r1 ; data [2 ]= r2 ; data [3 ]= alpha ; data [4 ]=E; data [5 ]=nu ; data

[6 ]= pre s su r e ;

437 data [7 ]= l a ; data [8 ]= prtc [ 0 ] ; data [9 ]= prtc [ 1 ] ; data [10]= aaa [ 0 ] ;

438 data [11]= aaa [ 1 ] ; data [12]= ka

439 data= numpy . array ( data )

440 numpy . savetxt ( jname+’ data . dat ’ , data )

441 numpy . savetxt ( jname+’ x . dat ’ , x )

442 numpy . savetxt ( jname+’ i c on . dat ’ , icon , fmt=’%8i ’ )

443 numpy . savetxt ( jname+’ d i s p . dat ’ , d i sp )

444 numpy . savetxt ( jname+’ s t r e s s . dat ’ , s t r e s s , fmt=’%8i %8i %15.7 e %15.7 e %15.7 e ’ )

445 numpy . savetxt ( jname+’ s t r a i n . dat ’ , s t r a in , fmt=’%8i %8i %15.7 e %15.7 e %15.7 e ’ )

446 odb . c l o s e ( )
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Appendix C: Plotting fringe Contours from FEA results

To validate our finite element analysis results with photoelastic results, we reconstruct the fringe

contours using the nodal stress data, connectivity data and xy data from the FEA results. This

method is adopted from the work of Ramesh et al. [40]. The optical technique, photoelasticity, gives

the whole field fringe contours corresponding to the principal stress difference and principal stress

orientation. These fringe order and the principal stress are related by the relation

(σ1 − σ2) =
NFσ
t

, (1)

where, σ1, and σ2 are the principal stresses in 1 and 2 direction, Fσ is the material fringe values

which is fixed for a material and t is the specimen thickness. This relation is applied at a point in

the problem domain. In general, Eqn.1 can be represented as

ψ = NK, (2)

where, N is the fringe order and K is the factor calculated for particular experiment. So the fringe

order at a point can be calculated by ψ/K. For the plotting of fringe contours, initially the fringe

order is calculated from stress data directly. Also, if the node is common to many elements, then

the stress can be averaged,

σi =
1

n

n∑
j=1

σji (3)

To plot the fringe contours i.e. to use the relation Eqn. 1 , firstly find the principal stress difference

(σ1− σ2) at the each nodes from the σx, σy and τxy stress values, as we have nodal stress data from

FEA results. Then we can calculate the fringe order as

Ni =
(σ1 − σ2)it

Fσ
. (4)

But to plot fringe contours, we still need the fringe order values at the intermediate point, so that

validation with photoelastic results will be precise. To do so with new scheme, instead of solving the

non-linear equation, here a each element in the domain is scanned discretely, for which the plot has

to be made, a field variable is calculated. A check is done, to find out whether this fringe value is

integer or not. If so, then this point is plotted. The quality of the plot is depends upon the scanning

interval. For our results, the scanning interval is fixed to be 0.01mm to get good quality plot. For

each point of interest within the element, the global co-ordinates and the fringe order are calculated,

using the shape function as the interpolation functions as

xg = N1x1 +N2x2 + ...+N8x8

yg = N1y1 +N2y2 + ...+N8y8 (5)

frng = N1frn1 +N2frn2 + ...+N8frn8,

where, xi and yi are nodal co-ordinates of the element, xg and yg are the global co-ordinates of the

point of interest, N1, N2, ..., N8 are the shape functions for interpolation, frn1, frn2, ..., frn8 are the

known fringe order values of elemental nodes and frng is fringe order values of the point of interest
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Figure 2: The element in natural coordinate system (a) fringe contour (b) scanning interval.

being scanned. Fringes in the fringe contours plot appears as broad bands. Hence to get this effect,

we plot the points whose fringe value lie in the range N ± e rather than just N . Generally, the value

of the e is of the order 0.1. Hence, when plotting the fringe contours 1,2,3,..., etc., it satisfies the

following condition:

abs((frn)− round(frn)) 6 0.1 (6)

and for the fringe contours 0.5,1.5,2.5,..., etc., it satisfies the following condition:

abs((frn+ 0.5)− round(frn+ 0.5)) 6 0.1 (7)
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