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Abstract 

The friction stir welds of thick precipitation-hardenable aluminum alloys suffer from reduced joint 

strength due to dissolution/coarsening of the strengthening precipitates. The article portray hybrid pin 

profiled tool that enables sound welds at speeds 7-times faster than a conventional tool (a conical threaded 

tool), without pin breakage. The conical threaded and triangular cross-section in the upper and lower pin 

half-lengths of the hybrid tool facilitate material flow in a downward direction and shear deformation at a 

faster rate, respectively. The paper brings out the process mechanism responsible for the enhanced welding 

speed and mechanical properties obtainable with the hybrid tool through a case of 13-mm thick aluminum 

alloy AA2219-T6. The hybrid tool facilitates a 28% improvement in weld strength by reducing TMAZ 

softening, as evidenced by the microhardness and mechanical properties and supported by microstructural 

investigation and fractography. 
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1.   Introduction 

Many precipitation hardenable aluminum alloys offer good weldability in fusion welding processes but 

suffer from problems such as loss of strength in weld metal or the heat affected zone (HAZ), segregation 

of alloying elements in the fusion zone, and poor weld joint efficiency (Rao et al., 2004). Friction stir 

welding (FSW) –which welds in the solid state – has been proven to be a successful joining process. 

Aerospace components, such as cryogenic fuel tanks, airframes, nose cap shells, and composite wrapped 

high-pressure vessels, are fabricated with high thick (≥7.5mm) friction stir welded aluminum alloys for 

which the conventional tool pin profiles often produce results of unacceptable quality (Perrett et al., 2007). 

High thickness welds have a heterogeneous microstructure because of temperature and deformation 

gradients (Avettand et al., 2015). Alternative means to control thermal gradient, such as the use of backing 

plates with varied thermal diffusivities, have been shown to have a positive impact on mechanical 

properties (Upadhyay and Reynolds, 2013). The joint efficiency of precipitation-strengthened alloy 
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friction stir welds can be improved either by reduction or extraction of heat from the HAZ and thermo-

mechanically affected zone (TMAZ) as quickly as possible (De and Mishra, 2011). For example, an 

increase in tensile strength and a decrease in elongation are observed in underwater friction stir welds 

(Huijie et al., 2010). The reduction of heat by an increase in welding speed causes reduced precipitate 

coarsening in the HAZ, thus leading to a moderately increased joint strength with the fracture location 

shifting towards the TMAZ from the HAZ, as reported by Zhang et al. (2011) and Liu et al. (2011a). 

Increasing the welding speed beyond 200mm/min might result in a top groove defect because of the 

difference between the material flow speed and the tool travel speed (Li and Liu, 2013).  

Most research on friction stir welding of precipitation-hardenable aluminum alloys has focused on 

relatively smaller thicknesses, ranging from 2.5 to 7.5mm. To reduce HAZ softening, it is difficult to use 

alternative methods, such as underwater FSW, in industrial applications because of the large size of the 

airframe structures, the complex tooling and welding fixtures. Thus, there exists a strong urge to establish 

a method to reduce HAZ softening thereby increasing joint strength of these aluminum alloy friction stir 

welds by welding at maximum possible travel speeds, which also increases the industrial production rate. 

Because the tool pin tends to break at higher speeds, welding at faster travel speed remains a concern in 

FSW of aluminum alloys. It is therefore necessary to understand the influence of tool pin profile and FSW 

process parameters on TMAZ/HAZ softening in order to find ways to deal with these issues. A specially 

designed FSW tool  is envisaged that could improve the material flow in the stirred zone and allow welding 

at very high travel speeds, without the formation of groove or void defects, specifically in case of high 

thick aluminum alloy plates. Here, such a hybrid tool is investigated for its capability to produce a sound 

weld at very high travel speeds compared to a conventional conical threaded tool. The findings were also 

corroborated by an investigation of the microstructure and mechanical properties using optical, 

destructive, and non-destructive methods. 

 

2.    Experimental work  

Aluminum alloy AA2219-T6 rolled plates (300 × 100 × 13mm) were friction stir welded in a single pass, 

normal to the rolling direction, with a square butt joint configuration. The chemical composition and 

mechanical properties of the parent metal are presented in Table1.The tool material was hot worked tool 

steel (AISI H13) heat-treated to a hardness of 50 HRc with a chemical composition of C-04, Cr-0.25, Mn-

0.4, Mo-1.35, Si-1, V-1, and Fe-balance (all elements in % wt.). Two types of tools were employed; a 

conventional tool pin with tapered cylindrical threaded configuration (larger and smaller diameters 10 and 

6mm, respectively) and a specially designed hybrid FSW tool with conical threaded and triangular cross-
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sections (Figure 1). The shoulder diameter was maintained constant (27mm) for both tools, thereby 

ensuring that the pin profile is the only major variation between the tools.  

 

Table 1. Chemical composition and mechanical properties of base material. 

 

 

Figure 1. FSW Tool pin profiles (a) Conical threaded (b) Hybrid 

The thermal cycles were recorded during the welding. Schematic drawings showing the 

experimental setup and positioning of the thermocouples are shown in Figure 2a and 2b, respectively. The 

thermocouples were positioned approximately 1mm away from the TMAZ on both the advancing and 

retreating sides of the weld joint. During the pilot experiments, the tools were tested at different welding 

speeds. The conventional tool pin was broken (shown in Figure 3) while welding with a travel speed of 

60mm/min and tool rotation speed of 500rpm. Tool breakage was considered whenever the tool pin was 

broken during the welding at any location along the joint line. A broken tool pin can be noticed as a white 

spot in X-ray radiographs (Figure 3b). The hybrid tool was employed to weld with travel speeds starting 

from 40mm/min at an interval of 60mm/min. The tool pin was broken at a 340mm/min travel speed (shown 

as a white spot in the radiograph of Figure 4b). Three of each tool type were tested. Images of the FSW 

tools after tool pin breakage are shown in Figures 3c and 4c.  

 

Figure 2. (a) A schematic sketch of welding experimental setup (b) Macrostructure of weld joint 

cross section depicting pre-drilled holes for positioning thermocouples close to TMAZ. 

Base Material 
Chemical composition Tensile properties Hardness 

(Hv) %Cu %Si %V %Zn %Ti %Fe UTS (MPa) 0.2%YS (MPa) %El. 

AA2219-T6 5.83 0.03 0.08 0.054 0.04 0.1 443 338 10 139 
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Figure 3. (a) Top appearance (b) X-ray radiograph of FSW joint made by conical threaded tool at 

a travel speed of 60mm/min (c) conical threaded tools after pin breakage 

 

 

Figure 4. (a) Top appearance (b) X-ray radiograph of FSW joint made by hybrid tool at a travel 

speed of 340mm/min (c) hybrid tools after pin breakage 

The final experiments were conducted with welding parameters, as given in Table 2. A constant 

tool rotation speed of 500rpm is maintained all through the experimentation. The weld joints were visually 

inspected and further subjected to non-destructive X-ray radiography and dye penetrant tests. The sound 

FSW joints were sectioned perpendicular to the welding direction for microstructural examination by 

optical microscopy. The weld macrostructures of the transverse weld cross section were examined under 

an optical metallurgical microscope after conventional metallographic sample preparation techniques and 

after etching with Keller’s reagent. The composition of intermetallic compounds was analyzed using 

energy-dispersive spectroscopy (EDS). The electron backscattered diffraction (EBSD) measurements 

were done using a scanning electron microscope (SEM).The grain size measurements were done using the 

line intercept method. 

Table 2. Friction stir welding parameters used in experimentation 

S.No FSW tool Rotation Speed (rpm) Travel Speed (mm/min) Observations 

    1 Conical  

threaded  

500 40 Joint quality is good 

2 500 60 Tool pin is broken 

3  

 

Hybrid 

500 40 Joint quality is good 

4 500 100 Joint quality is good 

5 500 160 Joint quality is good 

6 500 220 Joint quality is good 

7 500 280 Joint quality is good 

8 500 340 Tool pin is broken 
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The microhardness was measured at a 100gf load covering various zones of weldments and base 

materials across the mid-thickness of the transverse weld cross section at an interval of 0.25mm. The 

transverse tensile test was conducted according to the standard ASTM E8. The room temperature tensile 

properties of three specimens for each experiment were evaluated in the as-welded condition with a 

crosshead speed of 1mm/min. To understand the mode of failure and to test for the presence of any 

intermetallic compound particles on these fracture surfaces, the fractured surfaces of the tensile test 

specimens were examined under an SEM at an accelerating voltage of 20 kV.  

 

3.     Results and discussion 

3.1     Temperature profiles during welding 

The temperature versus time plots recorded at a location close to the TMAZ are shown in Figure 5. The 

two temperature profiles correspond to the weld joints produced using the conical threaded and hybrid 

tools at travel speeds of 40 and 280 mm/min, respectively. For the conical threaded tools, the curve slopes 

during the heating and cooling phases are close to equal because the residence time of the tool increases 

due to low welding speed. For the weld produced by the hybrid tool, the slope of the curve is steeper 

during heating than during cooling. Compared to the conventional tool, the hybrid tool produces a higher 

heating rate and takes a longer time for the dissipation of heat to the adjacent base metal. The peak 

temperature measured during welding with the conical threaded tool is close to 350°C, while that of the 

hybrid tool was 250°C, which welded at faster travel speeds. Peak temperatures close to these values are 

reported by Xu et al. (2009a). Thermal history affected the microstructures and properties of welds, as will 

be explained later. 

 

Figure 5. The temperatures versus time plots recorded during welding near TMAZ. 

3.2    Surface appearance and microstructure 

Tool design and weld pitch (i.e., travel speed/ rotation speed) control the surface appearance, material 

flow, and heat input, and thereby the quality of a friction stir weld joint. Figure 6 shows the appearance 
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of the weld joint top surfaces produced using the two tool types under different welding parameters. The 

top surface of the weld joints looks clean, without any surface defect. The weld produced by the conical 

threaded tool with lower travel speed, and thus lower weld pitch, has no ripple formation, which could be 

due to excessive welding heat and stirring of the shoulder on the top surface as it remained for a relatively 

long time at any location. The joint made by the hybrid tool contains uniformly spaced ripples on the top 

surface. This is because of the higher travel speed and mechanical shanking effect imparted by the tool 

shoulder.  

 

Figure 6. Top weld surfaces - (a) Conical threaded (parameers-500rpm, 40mm/min) (b) hybrid 

tool (parameters-500rpm, 280mm/min) 

 

The influence of tool pin profile on stirring in the weld nugget can be observed in the 

macrostructures (Figure 7). The macrostructure of the weld made by the conical threaded tool pin at 

500rpm and 40mm/min (Figure 7a) has a pot-like nugget zone (NZ) surrounded by TMAZ spreading 

through the complete thickness. The width of the TMAZ gradually reduces in thickness from top to 

bottom. The width of the nugget zone in the weld made by the hybrid tool is smaller than that of the 

conical threaded tool. When the travel speed was increased using the hybrid tool (Figure 7b–f), a defect-

free joint is achieved with a gradually reducing width of nugget zone and a proportionate reduction in the 

width of the TMAZ.  

 

Figure 7.Weld macrostructures produced with (a) conical threaded tool at 40 mm/min and (b-f) 

hybrid tool at 40, 100,160, 220,280 mm/min, respectively 

At the weld travel speed of 280 mm/min (Figure 7f), the hybrid tool produces a minimal width of the 

nugget zone. The increased travel speeds allowed by the use of the hybrid tool enhance the weld pitch 
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ratio, which in turn reduces the widths of the nugget zone and TMAZ. These findings establish the efficacy 

of a hybrid tool in producing welds with uniform macrostructure at very high travel speeds. 

 

3.3    Microstructural Analysis   

The microstructures of the different zones of the weld made by the conical threaded tool pin are shown in 

Figure 8. The weld produces two onion rings formed in the nugget zone, one at the bottom and the other 

at the top. The onion ring formed at the bottom of the nugget zone is due to the material flow around the 

threaded tool pin during stirring so that the nugget looks like a pot. While the onion ring at the top has an 

elliptical shape that could be because the shoulder driven flow dominates the pin driven flow just below 

the shoulder. The nugget zones at the top, middle, and bottom (Figure 8b–d) possess a fine equiaxed grain 

structure that is formed due to the dynamic recrystallization that occurs during friction stirring. The grain 

size in the nugget zone reduces from 20µm at the top (Figure 8b) to 10µm at the bottom (Figure 8d), as 

shown in Figure 9.This variation in grain size could be due to the difference in the rate of plastic 

deformation and gradient in temperature experienced by the different zones during stir welding.  

 

Figure 8 (a) Microstructures of weld produced with welding parameters 500rpm, 40mm/min using 

conical threaded tool. Stir zone at top (b), at middle (c), at bottom (d). TMAZ at top (e), at middle 

(f), at bottom (g). 

The top of the nugget zone is exposed to a higher degree of heating and the larger centrifugal force due to 

the close contact with the tool shoulder, which further results in grain growth after dynamic 

recrystallization. The bottom of the nugget zone is in contact with the backing plate that acts as a heat 

sink. The bottom zone experiences shorter weld thermal cycles and lower peak temperatures, which slows 

the grain growth, resulting in smaller grain size at the bottom of nugget zone. These observations are in 

line with the findings of Xu et al. (2013).  

 



 

8 

 

 

Figure 9. Electron back scattered diffraction images and corresponding column charts of grain 

size versus area fraction of nugget zone for conical threaded tool, top (a)&(d), middle (b)&(e), 

bottom (c)&(f). 

The TMAZ (Figure 8e–g) is a transition region between the nugget zone and the HAZ. The TMAZ 

experiences both stirring-assisted mechanical working and severe weld thermal cycles that result in a 

heavily deformed grain structure and associated grain growth. It is evident from Figure 8a that there exists 

a large variation in the width of the TMAZ throughout the thickness (from top to bottom). The TMAZ 

under shoulder (Figure 8e) is wider at the shoulder and induces extra heat and centrifugal force during 

stirring. The TMAZ is narrowest at the bottom of the nugget zone (Figure 8g) as the deformation and heat 

generated by the tool pin is comparatively smaller in this zone. 

The microstructures of the weld made using the hybrid tool pin (at 500 rpm and 280 mm/min) are 

shown in Figure 10. The macrostructure shows two distinct regions in the nugget zone. One region is close 

to the tool shoulder, which shows dynamically recrystallized grains in an elliptical shape (Figure 10a). 

The threaded portion touching the tool shoulder is responsible for the formation of this region. From close 

to the mid-thickness to the bottom of the nugget zone, striations are visible, indicating the severe plastic 

deformation caused by the triangular profile of the bottom part of tool pin. The TMAZ is smaller in welds 

made by the hybrid tool than those made by the conical threaded tool. A larger TMAZ is detected -from 

the top surface to mid-thickness of weld nugget - where the majority of stirring is caused due to the rotation 

and frictional heating created by the tool shoulder and the threaded portion of the hybrid tool pin. From 

mid-thickness to the bottom of the nugget zone, the TMAZ is almost negligible, which could be due to 

the localized shear deformation induced by the triangular edges of the hybrid tool pin. 
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Figure10. (a) Microstructures of weld produced with welding parameters 500rpm, 280mm/min using 

hybrid tool pin. Stir zone at top (b), at middle (c), at bottom (d). TMAZ at top (e), at middle (f), at bottom 

(g). 

The microstructure shown in Figure 10e depicts coarser and elongated grains in the TMAZ that 

are produced because of the heat imparted by the tool shoulder during rotation. The TMAZ region is 

formed due to the shoulder driven flow, and the width of this zone is relatively large. Figures 10f and 10g 

show the microstructures of the interface between the TMAZ and the nugget zone at mid-thickness and at 

the bottom of the nugget zone respectively. In both of these zones, there is a drastic change in the grain 

size between the TMAZ and nugget zones. The TMAZ is comprised of elongated grains in the direction 

of metalworking caused by tool pin rotation and associated plastic deformation, which is similar to as 

indicated by Xu et al. (2009b); whereas the grain size in the nugget zone is small, measuring just a few 

microns. The macrostructure depicts the reduced width of the nugget zone compared to that produced by 

a conical threaded tool pin. The increase in tool travel speed and weld pitch, thereby reducing the residence 

time of the tool at any point along the weld joint, is the reason for this reduction in nugget size. The grain 

size in the nugget zone is reduced from the top (10µm) to the bottom (3µm) (Figure 11).The grain size in 

the nugget zone is relatively small when using the hybrid tool (Figure 11) compared to the conical threaded 

tool (Figure 9). The variation in grain size and the corresponding electron backscattered diffraction images 

of the TMAZs of the welds made by conical threaded and hybrid tools are shown in Figure 12. 
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Figure 11. Electron back scattered diffraction images and corresponding column charts of grain 

size versus area fraction of the nugget zone for hybrid tool, top (a)&(d), middle (b)&(e), bottom 

(c)&(f). 

 

Figure 12. Electron back scattered diffraction images and corresponding column plots for grain 

size versus area fraction of TMAZs of welds made by conical threaded tool (a) & (c), hybrid tool 

(b) & (d). 

The maximum grain size in the TMAZ of a hybrid tool produced weld was 60µm with an area 

fraction of 0.24, while the same values for the weld made by the conical threaded tool were 72µm and 

0.37, respectively. It is evident from Figures 9, 11, and 12 that the grain size in all of the zones of the 

welds made by the hybrid tool is smaller than for those welds produced by the conical threaded tool. This 
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can be attributed to the faster weld travel speeds and the resulting higher weld pitch possible with a hybrid 

tool compared to the conical threaded tool. Moreover, the grain size is reduced from top to bottom within 

the nugget zone for all of the welds made by either of the tools. The microstructural changes are associated 

with phase changes, as discussed next.  

 

3.4    Distribution of θ- particles 

The optical microstructure of the as-received base material of the AA2219 aluminum alloy in the T6 

condition is shown in Figure 13. The base material consists of typically elongated grains measuring 

approximately to 2 to 3mm with θ (CuAl2) particles spread across the whole matrix. The precipitation 

sequence, as mentioned by Li and Schen (2011) in a supersaturated solid solution of theAA2219 aluminum 

alloy, is described in Equation 1: 

𝛼 →  𝛼 + 𝐺𝑃 𝑧𝑜𝑛𝑒𝑠  →   𝛼 + 𝜃" →  𝛼 + 𝜃′ →  𝛼 + 𝜃      (1) 

where α is a solid solution of Cu in the Al matrix, and GP zones are Guinier-Preston zones. 

 

 

Figure13. Typical optical microstructure of AA2219 aluminum alloy base material 

After precipitation-hardening or aging, the alloy attains a higher strength due to the impediment 

of dislocations by𝜃" and 𝜃′ precipitates. The 𝜃-particle is anintermetallic compound (CuAl2) thatremains 

incoherent to the α-matrix. The distribution of θ-particles (CuAl2) across the nugget zone and the TMAZ 

of welds produced by the conical threaded and hybrid tools are shown in Figures 14 and 15, respectively. 

The chemical composition of the θ-particles (CuAl2) corresponding to the zone in Figure 14(d) was 

confirmed by EDAX data (Figure14e).  
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Figure14. Scanning electron micrographs of weld made by conical threaded tool (a) & (b) 

interface between TMAZ and NZ at low and high magnifications respectively, (c) & (d) zones 

marked in (b) at high magnification, arrows indicate direction of material flow in NZ, (e) EDAX 

results of θ-particles shown in (d) 

 

 

Figure15.Scanning electron micrographs of weld made by hybrid tool (a) interface between 

TMAZ and NZ at low magnification, (b) & (c) zones marked in (a) at high magnification, (d) NZ 

close to interface on retreating side, arrows indicate direction of material flow in NZ. 

 

For the nugget zone produced by the conical threaded tool, the size (~ 3µm) and population of θ-

particles are much less, than the size (~ 10µm) of particles in the nugget zone made by the hybrid tool. As 



 

13 

 

the conical threaded tool traversed with a slow speed, the residence time of the tool at a particular location 

is high and the prior existing particles fragmented into tiny particles due to their interaction with the tool. 

Cao and Kou (2005) also reported that the θ-particles defragmented and agglomerated in the nugget zone 

near the locations close to the pin surface. While the hybrid tool can traverse with high speed and the 

material is detached due to shear at the vertical edges of triangular portion, the fragmentation of θ-particles 

within the nugget zone is limited, and the particles follow the material flow direction as indicated by 

arrows in Figure 15. Xu et al. (2009b) reported that the size of the θ-particles in the nugget zone increased 

with increasing travel speed. The bands (as shown in Figure 15d) are noticed in the nugget zone of the 

hybrid tool where the dark bands are more populated with θ-particles while the bright bands are observed 

to possess a lesser number of θ-particles. A similar observation is reported by and Li and Schen (2011).  

 

3.5    Microhardness  

The comparative distribution of micro-hardness at a mid-thickness across the transverse cross section of 

weld joints produced with both conventional conical threaded tool (at 40mm/min) and hybrid tool (at 

280mm/min), in an as-welded condition, is shown in Figure16. The hardness is influenced by the type of 

tool employed during the friction stir welding. The variation in hardness, in case of welds made by both 

the tools, clearly indicates the softening in the TMAZ and nugget zones due to the exposure to the severe 

heat input during welding. The hardness of the base material is measured as 139-145Hv. Similar TMAZ 

softening was reported by Liu et al.(2011b), Zhang et al. (2012), and Reddy et al. (2009). 

 

Figure16. Micro-hardness distribution in conventional conical threaded tool and hybrid tool 

 

Relatively lower hardness values are obtained in all zones of the weld joint made by the conical threaded 

tool compared to those produced using the hybrid tool. This is due to the increase in hardness with 

decreasing grain size, which is consistent with the Hall-Petch relationship. The hardness in the nugget 

zone of the weld made by the conical threaded tool was 75–80 Hv, while that of the weld realized with 
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the hybrid tool was 86–93 Hv. The lower hardness values corresponding to the weld of the conical 

threaded tool are attributed to the coarser grain size compared to that of weld made by the hybrid tool. 

The lowest hardness value (67Hv) was detected in the TMAZ of the weld with the conical threaded tool, 

and the width of the minimum hardness zone was approximately 5mm.The reduction in the hardness of 

TMAZ is attributed to the coarsening of precipitates (θ') due to the prolonged exposure to weld thermal 

cycles [also reported by Huijie et al. (2010) and Zhang et al. (2012)]; temperature beyond 200°C for more 

than 15s, as shown in Figure 5. In case of the weld produced with the hybrid tool, the minimum hardness 

is measured near the interface of the retreating side of the TMAZ and nugget zone, and the hardness 

increases while moving from the nugget line to the base metal. The width of the TMAZ is negligible in 

the weld joint produced by the hybrid tool because the peak temperature and exposure time are much less 

(Figure 5). The hybrid tool was capable of welding at high travels speed due to improved material flow in 

the nugget zone. This led to lowering heat input and peak temperatures in TMAZ. 

 

3.6    Tensile properties 

The tool pin profile and the welding parameters have a pronounced effect on the mechanical properties 

(Table 3) and fractured locations of friction stir weld joints (Figure 17).Typical engineering stress-strain 

plots are shown in Figure 18. The ultimate tensile strength and yield strengths of the weld made by the 

hybrid tool at 280mm/min speed were higher than for the weld made by the conical threaded tool. The 

tensile strengths of the welds made by both of the tools at a 40mm/min travel speed are almost equal, 

having a failure in the TMAZ, which further demonstrates that the travel speed and weld pitch have major 

impacts on the mechanical properties of the weld joint. The friction stir weld produced by the conical 

threaded tool fractured in the TMAZ, in the advancing side, and had a higher degree of softening due to 

the coarsening of precipitates, while the welds made by the hybrid tool fractured close to the nugget and 

the TMAZ interface near the retreating side, which was also reported by Ramanjaneyulu et al. (2013). The 

work of Chen et al. (2009) also reports tensile fracture in the TMAZ of the friction stir weld of theAA2219 

alloy. TMAZ softening during welding is reduced considerably by using the hybrid tool. The grain size in 

the TMAZ of the hybrid tool-produced weld joint at 280mm/min is considerably smaller than that made 

by the conical threaded tool. The hardness distribution (Figure16) in the weld made by the hybrid tool at 

280mm/min clearly indicates that the nugget zone interface at the retreating side has a lower hardness than 

the advancing side. It is found that the width of the TMAZ under the shoulder is wider on the retreating 

side than the advancing side, which might have initiated the fracture in the TMAZ under the hybrid tool 

shoulder, which might then have propagated to the nugget zone interface at the bottom. The reduced 

strength and percent elongation for the welds of the conical threaded tool are attributed to the presence of 
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coarsened and agglomerated θ-particles in the TMAZ. Figure 19 shows scanning electron micrographs 

indicating the presence of coarsened and cracked θ-particles near the fracture surface of the weld made by 

the conical threaded tool. The presence of coarser θ-particles reduces the strength due to partial depletion 

of the major alloying element (Cu) from the surrounding α-matrix (Li and Schen, 2011).The presence of 

a high population of θ-particles in the TMA, which are incoherent to the matrix, leads to a inferior percent 

elongation/ductility for the welds made by the conical threaded tool compared to those made by the hybrid 

tool (Figure19). 

 

Table 3. Comparison of tensile properties of FSW joints made by both the tools 

Tool pin 

profile 

Rotation  

speed (rpm) 

Travel speed 

(mm/min) 

UTS 

(MPa) 

YS 

(MPa) 

Elongation 

(%) 
Failure Location 

Conventional 500 40 295±2.2 144±4.3 9.1±0.6 TMAZ - advancing side 

Hybrid 500 40 294±0.9 145±1.3 7.4±0.4 TMAZ - retreating side 

Hybrid 500 280 335±10 185±5 5.3±0.25 TMAZ & NZ Interface - retreating side 

 

 

Figure 17. Macrographs of Fractured tensile test specimens of weld produced by (a) conical 

threaded tool at 500rpm and 40mm/min, (b) hybrid tool at 500rpm and 280mm/min, (c) & (d) 

high magnification microstructure at fracture shown in (a) & (b) respectively (e) hybrid tool at 

500rpm and 40mm/min 
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Figure 18.  Typical Stress-strain plots of base material and welds 

 

 

Figure 19. Scanning electron micrographs showing the presence of coarsened and cracked θ-

particles near the fracture surface of weld made by the conical threaded tool. 

3.7    Fractography 

The scanning electron microscope (SEM) images of the fractured surfaces of the tensile test specimens 

made using the conical threaded tool and hybrid tool are shown in Figures 20 and 21, respectively. More 

θ-particles with larger size can be seen in the fractographs that belong to the conical threaded tool (Figures 

20b and d) compared to those made by the hybrid tool (Figures 21b and d).  The θ-particles were embedded 

between the ductile dimples, which is similar to the observations of Xu et al. (2009b, 2013). Under the 

tensile loading conditions, the θ-particles are sheared in cleavage fracture mode, while the surrounding 

matrix deforms sufficiently, as evidenced by the dimpled features. As the θ-particles are incoherent to the 

matrix, they do not deform in line with the surrounding matrix. The presence of a greater population of 

larger-sized and cracked θ-particles in the TMAZ of the weld made by the conical threaded tool results in 
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reduced strength and a lesser percent elongation compared to welds produced with the hybrid tool. Cao 

and Kou (2005) and Li and Schen (2011) reported similar observations in friction stir welds of  AA2219 

aluminum alloy.  

 

 

Figure 20. SEM images of fractured surface of tensile test specimen of weld made by conical 

threaded tool at 500rpm and 40mm/min (a) whole fracture surface at low magnification (b), (c) 

and (d) high magnification fractographs of zones as indicated in (a) &(b) 

 

Figure21. SEM images of a fractured surface of tensile test specimen of weld made by hybrid tool 

at 500rpm and 280mm/min (a) whole fracture surface at low magnification (b), (c) & (d) high 

magnification fractographs of zones as indicated in (a) & (c), respectively. 

 

3.8    Identifying the mechanism responsible for the improved efficacy of the hybrid tool 

A schematic of the FSW process parameters, resulting forces, and torque acting on the tool is given in 

Figure 22. At any moment in time during the FSW process, three directional forces and one unidirectional 

torque act on the tool because of plasticized material flow around the tool pin. As the tool traverses in the 
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welding direction, it encounters the un-deformed base material near the leading edge, which produces a 

compressive force that acts on the tool pin. The plasticized base material travels around the tool pin from 

the advancing side to the retreating side and is forged by the tilted tool shoulder at the back of the tool. 

The resultant force (Fx) acting on the tool pin in the direction of welding is the combined effect of un-

deformed base material at the leading edge and forged plasticized material at the rear of the tool. Similarly, 

the resultant force acting on the tool pin in the transverse direction to the welding direction due to the 

movement of plasticized weld material is designated as Fy. The force in the direction of the tool axis due 

to the rotation and forging of plasticized material (Fz) and torque (T) is also exerted on the tool about the 

tool axis. All of the forces and torque are measured with the inbuilt force monitoring system in the FSW 

machine. Average torque, forces acting on the tool, and heat generated during the welding process were 

calculated and are given in Table 4. 

The heat input was calculated using Equation 2 [Pew et al., 2007]: 

Heat input in J/mm, 𝑄 = η
2𝛱𝑁𝛵

ν
        (2) 

where T= torque in N-m, N= tool rotation speed in rpm, ν= travel speed in mm/min, and η = thermal 

efficiency of the FSW process. 

Thermal efficiency (η) may be considered as 0.9 for the case of friction stir welding of aluminum alloys 

using an FSW tool made of steel (Dickerson et al., 2003). 

 

Figure 22. (a) A schematic of FSW process, resulting forces, and torque acting on the tool (b) 

torque about tool axis, (c) force along tool axis, (d) force along welding direction observed, while 

welding with conical threaded tool at 500rpm & 40mm/min and hybrid tool at 500rpm & 

280mm/min 
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Table 4. Average torque, forces acting on the tool and heat input during the welding process 

S.No Type of tool & welding 

parameters 

Torque  

( N-m) 

Force along tool 

axis (Fz) in N 

Force along X-axis 

(Fx) in N 

Heat input     

( kJ/mm) 

1 Conical threaded tool 

(500rpm-40mm/min) 

60 15201 980 4.24 

2 Hybrid tool (500rpm-

280mm/min) 

130 78835 12116 1.31 

 

Figure 22b and c show the comparative variation of measured torque, for both tools, different 

forces act on the tools with respect to the position of the tool in the welding direction. It is evident from 

Figure 22c and d that the steady-state regime is reached after welding a length of 20mm. All of the forces 

and torque acting on the hybrid tool are greater than those acting on the conical threaded tool. The effective 

heat input introduced by the hybrid tool during the welding process is less than that of the conical threaded 

tool. The hybrid tool produces higher rate of heat generation than the conventional tool which increases 

material flow in the nugget zone and a higher weld pitch. This demonstrates the greater efficacy of the 

hybrid tool in transferring deformation forces to the workpiece material relative to the conical threaded 

tool. The conventional conical threaded tool cannot withstand a travel speed of more than 40mm/min (i.e., 

it cannot transfer the load to the workpiece and breaks). The hybrid tool could reach a speed of up to 

280mm/min. The design of hybrid tool facilitates an effective utilization of deformation heat (i.e., the 

TMAZ is smaller, and the joint efficiency is higher, as discussed earlier). 

 

Figure 23. Width of TMAZ produced by (a) conical threaded tool at 40mm/min (b) hybrid tool at 

280mm/min. 

In case of polygonal tool pin profiles, the ratio of pin volume (static volume) to the swept volume 

(dynamic volume), as reported by Ramanjaneyulu et al. (2014) and Elangovan and Balasubramanian 

(2008), determines the extent of plastic deformation in the base material around the tool pin. The same 

ratio influences the rate of heat generation through plastic deformation. The heat generated in case of a 

conical threaded pin is exclusively through friction between the tool and adjacent base material so that it 
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takes a considerably longer time for the generation of heat, as well as the conduction of heat to the 

undeformed or the unaffected base material. The TMAZ, which is sandwiched between the HAZ and the 

nugget zone, remains for relatively long durations and experiences higher peak temperatures when using 

the conventional tool than the hybrid tool. Because of this, as shown in Figure 23, the TMAZ produced 

by the conical threaded tool is wider than that of the hybrid tool. Therefore, the hybrid tool experiences 

and is able to withstand higher levels of torque and forces than the conical threaded tool. In the case of 

the weld produced by the conical threaded tool, the material flow is in line with the earlier reported analysis 

and material flow models reported by Elangovan et al. (2008), Ramanjaneyulu et al. (2014), and Mehta et 

al. (2015). As the tool rotates and traverses along the welding seam, a newly undeformed material first 

comes into contact with the tool shoulder at the advancing side and flows around the tool pin towards the 

bottom of the retreating side of the joint. After reaching the bottom of the joint, the velocity of the material 

flow does not reach zero, but the material backflows from the bottom surface of the joint supported by the 

backup plate. In this manner, the material flow currents encircle the axis of the weld joint, and onion rings 

are formed as the tool traverses ahead. In case of the hybrid tool, the material starts moving from the 

advancing side under the shoulder and moves downwards across the tool pin towards the retreating side.  

The material flows downwards until the end of the threaded portion of the tool and is deformed 

rapidly by the flat edges of the triangular part of the tool due to the rapid rate of heat generation. The 

threaded portion of the hybrid tool (just below the tool shoulder) results in an onion ring. The shoulder-

driven material flow currents influence this onion ring formation. As a result, elliptically shaped onion 

rings are formed on top of the nugget zone. The triangular portion of the tool leads to the displacement of 

material by detachment near the sharp edges of the tool, and finally, the detached material undergoes 

relative lesser deformation and consolidates at the back of the tool. Due to this phenomenon, as well as 

the high tool travel speed, a vertical banded structure (Figure 23) can be detected in the part of the nugget 

zone formed by the triangular tool pin profile. This combined macrostructure, depicting both elliptical 

onion rings and vertical banded structure, is clearly visible in Figure 10a. Ultimately, it is the tool pin 

profile, in combination with FSW process parameters, which affects the heat generation and mass 

transport of the process. Thermal and mass transport is one of the essential aspects that govern the quality, 

final microstructures and mechanical properties of weld. 

 

4.    Conclusions 

1. A hybrid tool pin geometry is employed for welding thick AA 2219-T6 aluminum alloy to control 

material flow, the rate of heat generation and, thereby, to maximize the travel speed and weld pitch. The 
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operating window of the friction stir welding parameters is widened with the use of a hybrid tool for the 

tested thickness of AA2219 –T6 aluminum alloy.  

2. By microstructural examination, for both of the tested tools, varied grain sizes are detected in the 

nugget zones throughout the thickness of the weld joints. Coarser grain size was detected in the part of 

the nugget zone close to the shoulder, while the bottom section had a smaller grain size. 

3. Compared to the welds produced by the hybrid tool, the TMAZ of welds made by    the conical 

threaded tool are coarser and have deformed grains with the presence of large and agglomerated θ-

particles. The increased travel speed employed while welding with the hybrid tool results in limited 

defragmentation of the θ-particles in the nugget zone.  

4. The welds made by the conical threaded tool have inferior mechanical properties than welds made 

by the hybrid tool. This is because of coarsening or dissolution of θ'-precipitates and coarsening or 

agglomeration of θ-particles in TMAZ, which result from prevailing higher peak temperatures and 

prolonged exposure times at high temperature. 

5. The specially designed hybrid tool pin profile has potential to produce friction stir welds with 

enhanced mechanical properties relative to conventional conical threaded tools. Welding with higher 

travel speeds by using a hybrid tool results in superior mechanical properties that are the cumulative effect 

of lower peak temperatures and faster cooling rates in the TMAZ. 
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