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Abstract

Approximate computing has recently emerged as a promising approach to the energy-efficient design of
digital systems. Approximate computing relies on the ability of many systems and applications to tolerate
some loss of quality or optimality in the computed result for saving energy and performance enhancement.

In image processing, applications impose high energy consumption in loading and accessing the image
data in the memory. Fortunately, most image processing applications can tolerate approximation in process-
ing. The quality of service (QoS) of image processing applications depends upon the human visual system.
The Human Visual system has some limitations like weak peripheral vision and not able to distinguish the
difference between the quality of the original image and processed image when PSNR value is greater than
30 dB. These limitations give us a hint that instead of approximating the entire image we should take the
peripheral part of the image because the human eye has the lower peripheral vision and high center vision
and at the same time processed image has PSNR value greater 30 dB to gain the excellent quality of an im-
age. Leveraging these facts we proposed one approximate computing technique that will save energy without
sacrificing the QoS. We will approximate only the peripheral part of the image, and in the peripheral region,
we change lower bits in each pixel because the contribution of lower bits in a pixel is less compare to higher
order bits in a pixel. The proposed technique will take care of the limitations of the human visual system to
approximate the images.
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Abbreviations

Acronym What (it) Stands For

PSNR . . . . . . . . . . . . Peak Signal to Noise Ratio

SSIM . . . . . . . . . . . . . Structural Similarity

MSB . . . . . . . . . . . . . Most Significant Bit

LSB . . . . . . . . . . . . . . Least Significant Bit

STT-RAM . . . . . . . . Spin Transfer Torque Random Access Memory

SRAM . . . . . . . . . . . . Static Random Access Memory

DRAM . . . . . . . . . . . Dynamic Random Access Memory

HVS . . . . . . . . . . . . . . Human Visual System

AC . . . . . . . . . . . . . . . Approximate Computing

FP . . . . . . . . . . . . . . . . Floating Point

CPU . . . . . . . . . . . . . . Central Processing Unit

MLC . . . . . . . . . . . . . Multi Level Cell

dB . . . . . . . . . . . . . . . . Decibel
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Chapter 1

Introduction

There are many applications where computation accuracy can be traded off to achieve better performance
and energy efficiency. The techniques to accomplish this trade-off is called approximate computing. Approx-
imation computing preferred in many different domains such as machine learning, image processing, and
video processing. Different existing algorithms in these domains have been approximated by programmers
to achieve better performance and save energy because these applications can bear some computational error.
Image processing algorithms are good candidates for the approximation as random variation in results will
not be noticeable by the user. For example, if we manipulate some lower bits in the pixel, then it doesn’t
impact much on overall values of the pixel. Even there is massive scope for approximation in some primitive
data types (that are used to store real value data only) in applications where that much precision is not re-
quired. In image processing applications the quality of service depends upon the human visual system. There
are many algorithms made to approximate the image to gain performance and save energy. These algorithms
are not favorable to the characteristics of the human visual system.

Figure 1.1: Illustration of the Proposed Approximate Storage approach
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Chapter 1. Introduction

(a) Standard image (b) Deficient peripheral image

Figure 1.2: Peripheral vision basic functions

In this paper, we proposed the technique that favors human visual system, i.e., approximate the lower bits
of the pixel. Our solution will divide each pixel into two part. We called them MSB part (contains higher
order bits) and LSB part (contains lower order bits). After that, we count the number of ones in LSB part if
most of the bits in LSB are one then we set one flag bit else (few bits are one) then we reset the flag bit. Keep
this flag bit in tag field so that before accessing the data we read the status of this flag bit. While accessing the
data read MSB as it and for LSB read the state of the flag bit if the flag bit is set then append all ones to MSB
else if the flag bit is reset then append all zeros to MSB. In a broad sense, we can say that we are using the
flag bit at a byte level granularity [1]. The figure 1.1 shows that how original data is processed when reading
the original data based on the status of flag bit corresponding to each pixel.

We also extend this approach by understanding the limitations of the human visual system [2]. The human
visual system suffers from low peripheral vision and high center vision. By taking this limitation, we can use
the approximation limited to the outer area of the image instead of the complete picture.

Peripheral vision [3] is a part of the view that occurs only on the side gaze. The figure 1.2 explains how
the human eye sees the standard image when it has deficient peripheral vision. That gives us motivation that
we should approximate the pixel values that are in the outer area of the image because of low peripheral
vision. Actually by approximating only the pixels that are on the outer part of the image we are reducing the
error rate.

Page 3



Chapter 1. Introduction

1.1 Related Research Work

Approximate computing helps us to gain performance and save energy by compromising the computational
accuracy. This trade-off can be extended to increase the hardware lifetime by storing data approximately.
Approximate storage helps us to improve the lifetime of the memory. In this paper [4] the researcher come
up with the technique that will help to extend the lifetime of the memory by using two ways. The first allows
errors in multi-level cells by reducing the number of programming pulses applied to write them. The second
mechanism mitigates wear-out failures and extends memory endurance by mapping approximate data onto
blocks that have exhausted their hardware error correction resources. The approximation can be made at
arithmetic circuits also.

In this paper [5] the researcher explains the approximate arithmetic circuits like approximate full adders,
multiple-bit approximate adders, approximate multipliers, and approximate logic synthesis. Approximate
computing [6] can be used as an error-resilience of programs and users. The perceptual limitations of hu-
mans provide scope for approximate computing in visual and other computing applications. Similarly, many
programs have noncritical portions, and small errors in these do not affect the quality of result significantly.
For example, in [7] researcher note that in a 3D raytracer application, 98% of floating point operations and
91% of data accesses are approximable. Similarly, since the lower-order bits have smaller significance than
the higher-order bits, approximating them may have only a minor impact on quality of result [8, 9, 10, 4].

However, there is an enormous scope of approximation in image data because changing the bits in the
pixel does not make much difference in the quality of the image. In this paper [11], the researchers propose
an approximate image processing scheme that improves system energy efficiency without upsetting image
quality requirement of applications. There design consists of an approximate image storage mechanism that
strives to only write the soft bits in MLC STT-MRAM main memory with small write current and a memory
mode controller that determines the approximation of image data and coordinates across precise/approximate
memory access modes.
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Chapter 1. Introduction

1.2 Thesis Organization

The rest of the thesis is organized as follows:

• In Chapter 2, we highlight the obstacle arises in the completion of our proposed solution and how we
can make our observations more reliable.

• Chapter 3 presents proposed solution and modification in our proposed solution to gain more perfor-
mance.

• Chapter 4 describes experimental results for the completion and justification of the proposed algorithm.

• Finally, Chapter 5 concludes the work done and highlights the future course of research work.
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Chapter 2

Challenges and Opportunities

In our proposed technique, there are many possible combinations for partitioning the pixel into MSB and
LSB. Each partition will introduce some error in the image. The combination which produces the least error
is our desired partition. Finding the partition with least error is the challenging part of our algorithm.

Challenge I: How to find the optimal partition

While dividing the pixel into MSB part and LSB part, we observed that there are many possible combinations
exists like 3 Bits in LSB and 5 Bits in MSB, 4 Bits in LSB and 4 Bits in MSB, 5 Bits in LSB and 3 bits in
MSB, and so on. Each combination inserts some error in the original image. The partition with least error,
we called it Optimal partition value. Finding the optimal partition value is the most challenging part because
it is the heart of our proposed solution. To see the error in the partitions, we initially used mean squared error
[12] but it is not enough for deep inspection of each partition because it is not very well match to perceived
visual quality. To make our observations more reliable for finding the optimal partition we use two other
metrics such as PSNR and SSIM [13]. PNSR and SSIM value is the extension of the human visual system.
These metrics ensure that the quality of partitions we get depends upon the human visual system.

Challenge II: How to find the optimal threshold value (number of ones
in LSB to set or reset flag bit)

After dividing the pixel into LSB and MSB then we need the count of the number of ones in LSB based
on this count value flag bit is set or reset. There are many ones possible in the LSB part. If ’m’ bits are
there in LSB part, then there are ’m’ possible count values exits, and each of them injects some error in the
obtained image. Thus, error in the obtained images is introduced by both partition of MSB and LSB and the
count value to set or reset the flag bit. Now our next challenge is to find the best count value to set or reset
flag bit corresponding to optimal partition we called it as the optimal threshold value. The count value has
a significant impact on PSNR value because by changing the LSB part to all ones, or all zeros modify the
decimal equivalent value of the original value. Thus, it also plays a vital role in our observations.
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Chapter 3

Proposed Solution

In processing environment, there are many applications in which some degree of variation or error permitted
in the result of the computation. There are many valuable domains where approximation can significantly
improve application performance, i.e., multimedia processing and gaming.

The baseline to compare any approximation technique for images is the human visual system. Most
of the approximation techniques focus on the quality of the image obtained. However, the final quality of
service depends upon the human visual system. The existing approximation techniques are not examining the
limitation of the human visual system. There are many opportunities to approximate the image by considering
the limitation of the human visual system. By using these limitations, one can approximate the image with the
high-grade quality of service and that quality service is directly proportional to the limitation of the human
visual system.

Peak signal-to-noise ratio often abbreviated PSNR, measured in decibels and computed between two
images. This ratio is frequently used as a quality measurement between the original and a compressed image.
The higher the PSNR, the better the quality of the compressed, or reconstructed image. The human visual
system has one limitation like if the PSNR value of the processed image is greater than 30 dB, then the human
eye cannot distinguish between the original one and processed one. So getting the higher PSNR would not
make much difference in terms visual inspection by Human eye, leveraging these limitations we can process
image faster without sacrificing the quality of the image. Also, the value of lower bits or least significant bits
in pixel does not contribute that much to the quality of service compared to higher bits or most significant bits
in pixels. So If we approximate the lower bits in pixels [5], then it does not impact much compare to higher
bits in pixels. By considering these limitations, we proposed our algorithm to approximate the pixels.

Algo. 1 explains the proposed solution for each pixel. In our algorithm, we divide the pixel or byte into
two parts we call them LSB (Least significant bit) part and MSB (a Most significant bit) part. The MSB part
contains higher order bits whereas LSB part contains lower order bits. The higher order bits contribute more
to the equivalent value in decimal [5, 14, 15]. After dividing the pixel value in MSB and LSB part. We count
the number of ones in LSB part if most of the bits in LSB part are one then we can assume that all the bits in
LSB part are one and set the flag bit corresponding to that pixel [1]. Otherwise (most of the LSB are not one)
we reset the flag bit corresponding to that pixel. Now keep this flag bit in tag field to access it earlier, i.e.,
before reading the actual data. While reading the data, read-only MSB part and for LSB part use the status of
the flag bit. If the flag bit is one, then append ones as the total number of bits in LSB part or if the flag bit is
zero then append zeros as the total number of bits in LSB part. The whole solution depends upon the fact that

7



Chapter 3. Proposed Solution

Algorithm 1 ApproxVision

1: Each pixel has one flag bit associated with it

2: Divide the pixel or byte into two parts MSB and LSB

3: Count the number of bits in LSB part

4: if (Most of the bits in LSB are one) then
5: ‘set‘ flag bit

//* indicates the majority of bits in LSBs are ones so we can assume all bits in LSB are one *//

6: else . very few bits of LSB are ones

7: then ‘reset‘ flag bit

//* indicates the majority of bits in LSB is Zeroes so we can assume all are zeroes *//

8: end if
9: Keep this flag bit in the tag field

10: while reading the data, read MSB as it and for LSB read the status of flag bit if it is one then append all

one to MSB or if it is zero then append all zero to MSB

changing the lower bits in a pixel does not impact much on its decimal equivalent value. To identify whether
the block arrives for the first time in the memory or not we use the dirty bit. Dirty bit helps us to identify that
the block is referred by CPU or not. If the block is referred by CPU, then we do not need to change the flag
bit status. If the block is not referred by CPU, then we need to change the flag bit status. In a broad sense, we
can say that we are using the flag bit at a byte level granularity [1].

The figure 1.1 explains how our algorithm works on the stored data. It shows that how original data is
processed when reading the original data based on the status of flag bit corresponding to each pixel. In figure
1.1 we assume two things

1. Some arbitrary plane (let’s say here 3 bits in LSB part and 5 bits in MSB part) to divide the pixel into
MSB part and LSB part.

2. Some arbitrary value to set or reset the flag bit (let’s say here if the number of ones in LSB part is more
than or equal two then we set flag bit else reset the flag bit).

Page 8



Chapter 3. Proposed Solution

3.1 Modification of the proposed solution

The quality of service of our solution depends upon the PNSR value and SSIM. PNSR value is the expansion
of the human visual system. By investigating the performance of the human optical system [2], we come to
know the one limitation which is useful for us to improve the quality of service of our proposed solution, i.e.,
weak peripheral vision.

pixel inside of window

pixel outside of window

pixel
matrix of pixels

Figure 3.1: Growth of window dimensions

Peripheral vision or Side vision is the ability to see objects and movement outside of the direct line of
sight. Peripheral vision is weak in humans (especially at distinguishing detail, color, and shape) because the
density of receptor and ganglion cells in the retina is higher at the center and lowest at the edges. Human eye
suffers from low peripheral vision and high center vision. The figure 1.2 explains how the human eye sees the
standard image (as shown in figure 1.2 (a)). When it has the deficient peripheral vision, its focus on center
part and for an outer part it does not discriminate between color and shape due to this it blurs peripheral part
as shown in figure 2 (b).

In the algorithm 1, we approximate the entire image. However, when human eye sees a picture, it always
focuses on the center of image compare to its peripheral area because the peripheral vision in the human eye
is weak [3]. Using the above fact, we modified our proposed algorithm in such a way that always approximate
the peripheral part of an image instead of the center part of the image. The center part of the image that is not
approximated we call it the center window. The primary focus of human visual system on any image is the
center of the image due to the high center vision and low peripheral vision.

The center window always formed in the center of the image and grows in length and width in both
directions. There are many sizes possible for center window. Figure 3.1 shows the growth of center window
on the 2-dimensional matrix of the pixel, from top to bottom we see that initially, the window contains
limited pixels but as the window grows it covers the maximum portions matrix. If we approximate the pixels
outside of center window using our proposed ApproxVision algorithm, then we can increase the quality of
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Chapter 3. Proposed Solution

the obtained image. Using the above modification, we are improving the quality of the image (or increasing
the PSNR value). The above modification is the built on the limitation of the human visual system.

Page 10



Chapter 4

Experiment

In the algorithm 1, two parameters are still unknown like how many bits in MSB part and LSB part (mention
in step 2) and what is the number of ones to set the flag bit (mention in step 3). To complete the algorithm,
we need to find these two parameters.

4.1 How to find the optimal partition and optimal threshold value

While dividing the pixel into MSB and LSB, we observed that there are many possible combinations exists
like 3 bits in LSB and 5 bits in MSB, 4 bits in LSB and 4 bits in MSB, 5 bits in LSB and 3 bits in MSB,
and so on. Each combination inserts some error in the original image. Finding the partition with least error,
we called it as the Optimal partition value is the most challenging part because it is the heart of our proposed
solution. To see the error in the partitions, initially we used mean squared error [12] but it is not enough for
deep inspection of each partition because it is not very well match to perceived visual quality. To make our
observations more reliable for finding the optimal partition we use two other metrics such as PSNR and SSIM
[13]. These metrics ensure that the quality we get depends upon the human visual system.

After dividing the pixel into LSB and MSB, we need the count of the number of ones in LSB based on
this count value flag bit is set or reset. There are many count values possible to set or reset the flag bit. If
’m’ bits are there in LSB part, then there are ’m’ possible count values exits, and each of them injects some
error in the obtained image. The error in the processed images is introduced by both partition of MSB and
LSB and the count value to set or reset the flag bit. Now our next challenge is to find the count value to set or
reset flag bit corresponding to optimal partition for which the error is minimum, we called it as the optimal
threshold value.

There are many possible combinations for MSB and LSB exists like 1 bit in LSB & 7 bits in MSB, 2 bits
in LSB & 6 bits in MSB, 3 bits in LSB & 5 bits in MSB, and so on. Out of them, some combinations are not
meaningful in the sense that the number of bits in LSB part is very less, e.g., 1 bit in LSB & 7 bits in MSB and
2 bits in LSB & 6 bits in MSB and our goal is to save the energy in LSB part. Due to this, we discard some of
the combinations of MSB part and LSB part. The count of the number of ones in LSB part to set the flag bit
is at least more than 50% of LSB part because it reduces the error rate in the obtained image and also it will
simplify the math, without changing the result significantly. By considering that the count value is at least
50%, we discard some combinations of the count value. Thus, we have limited number of combinations of
partitions and threshold value, i.e., only 14 combinations. Table 4.1 shows various combinations of partitions
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Chapter 4. Experiment

Table 4.1: Combinations of partition and threshold value on one byte

Sr. No. Combination Name

1 3 Bits in LSB Threshold is 1 Bits
2 3 Bits in LSB Threshold is 2 Bits
3 4 Bits in LSB Threshold is 2 Bits
4 4 Bits in LSB Threshold is 3 Bits
5 5 Bits in LSB Threshold is 2 Bits
6 5 Bits in LSB Threshold is 3 Bits
7 5 Bits in LSB Threshold is 4 Bits
8 6 Bits in LSB Threshold is 3 Bits
9 6 Bits in LSB Threshold is 4 Bits
10 6 Bits in LSB Threshold is 5 Bits
11 7 Bits in LSB Threshold is 3 Bits
12 7 Bits in LSB Threshold is 4 Bits
13 7 Bits in LSB Threshold is 5 Bits
14 7 Bits in LSB Threshold is 6 Bits

and threshold value on one byte (or pixel).
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Figure 4.1: PSNR value for each combination of partition and threshold

To find the optimal partition of MSB part and LSB part and the optimal threshold value, we take images
from a new General-100 dataset [16] that contains 100 bmp format images (with no compression). The size
of the newly introduced 100 images ranges from 710×704 (large) to 131×112 (small). They are all of the
good quality with clear edges but fewer smooth regions (e.g., sky and ocean), thus are very suitable for our
experiment. Figure 4.1 shows various combinations of partitions and threshold value and their PSNR value
on some images of General-100 dataset. Each point on the x-axis represents one combination of MSB and
LSB part with different threshold values. Table 4.1 explains the combination corresponding to the point on
the x-axis. Its serial number represents the point on the x-axis. The physical change in the quality of the
image can be visualized in figure 4.2 for different combinations.

We see from figure 4.1 that the combination 5 bits in MSB and 3 Bits in LSB with threshold value more
than or equal to 2 bit will give good PSNR value in all images. We also observe from figure 4.1 and figure 4.2

Page 12



Chapter 4. Experiment

(a) Original Image (b) 3 Bits in LSB and
Threshold is 1 Bit

(c) 3 Bits in LSB and
Threshold is 2 Bits

(d) 4 Bits in LSB and
Threshold is 2 Bits

(e) 4 Bits in LSB and
Threshold is 3 Bits

(f) 5 Bits in LSB and
Threshold is 2 Bits

(g) 5 Bits in LSB and
Threshold is 3 Bits

(h) 5 Bits in LSB and
Threshold is 4 Bits

(i) 6 Bits in LSB and
Threshold is 3 Bits

(j) 6 Bits in LSB and
Threshold is 4 Bits

(k) 6 Bits in LSB and
Threshold is 5 Bits

(l) 7 Bits in LSB and
Threshold is 3 Bits

(m) 7 Bits in LSB and
Threshold is 4 Bits

(n) 7 Bits in LSB and
Threshold is 5 Bits

(o) 7 Bits in LSB and
Threshold is 6 Bits

Figure 4.2: Image Quality for different partitions with different threshold value

that the count value to set or reset the flag bit has a significant impact on PSNR value. Thus, it also plays a
vital role in our observations. The PSNR value in all images for the combination 5 bits in MSB and 3 Bits in
LSB with threshold value more than or equal to 2 bit is magnificent than 34 dB which is our desired purpose
because, beyond 34 dB of PSNR value, human image eye cannot distinguish between the original one and
modified one. Thus, we can conclude that the optimal partition to divide the pixel into MSB and LSB is 5
bits in MSB and 3 bits in LSB, and the optimal threshold value is set or reset flag bit is when the number of
ones in LSB is more than or equal to 2.
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Chapter 4. Experiment

4.2 Approximate only on the peripheral part

In the above approach, we approximate the entire image. However, when human eye sees a picture, it always
focuses on the center of image compare to its peripheral area because the peripheral vision in the human eye
is weak. Using the above fact, we modified our proposed algorithm like always approximate the peripheral
part of an image instead of the center part of the image. Now one obvious question arises:

what is the size of the center part of the image?

In the search for a suitable size of the center portion of the image. We define a quality of service on an
image dimension with some general rules that apply to all images. We call center part of the image that is
not approximate as the center window. Due to the weak peripheral vision in the human eye, we approximate
entire image except for the center window of the image.

The window or center window always formed in the center of the image and grows in length and width in
both directions as shown in figure 3.1. Thus the dimensions of the center window are the multiple of 4. There
are many sizes possible for the center window. However, in the broad sense, there are only two variations
possible for the center window these are maximum center window and minimum center window.

Maximum Center Window:

When the image dimensions are not same, i.e., heterogeneous, then the dimensions of the center window are
nearly equal to the dimension of the image which is smaller. If the smaller dimension is not the multiple of
4, then the nearest multiple of 4 is considered and which is less than the smaller dimension of the image.
Sometimes the center window covers the entire image if the dimensions of the image are same and are
multiple of 4. That is the reason we called it the maximum center window.

Minimum Center Window:

When the image dimensions are not same, then the center window is nearly equivalent to the smaller di-
mension of the image. By consider the size of the center window roughly equal to the size of the smaller
dimension of the image and try to shrink the window size in the same way it grows and make it multiple of
4. Then the size of the center window becomes minimum. We call it the minimum center window. However,
there are furthermore possibilities to shrink the window size but the size becomes tiny and center window
contains very less number of pixels.

On our dataset, the size of the maximum center window varies from image to image and covers the
maximum of 99% on some images and minimum of 67% on some images. And the size of the minimum
center window covers the maximum of 7% on some images and minimum of 3% on some images. Thus, it
is useless if we pick the maximum window size for our algorithm because sometimes it generates the same
image with minor changes in some pixels. Therefore we are using the minimum center window approach for
our algorithm.

After completing our algorithm with modifications, we are ready to run it on an entire General-100
dataset. Figure 4.3 (a) and 4.3 (b) shows the obtained PSNR value by using the minimum center window. The
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Chapter 4. Experiment
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Figure 4.3: ApproxVision with Minimum Center Window

value on the top of bar graph represents the obtained PSNR value, value on y-axis represent the minimum
center window size and the value on x-axis represent the image serial number. We observe that the PSNR
value in all images is more than 40 dB which is quite high for the human eye to distinguish between the
quality of the original image and the obtained image (from our algorithm with modification).
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Chapter 4. Experiment

4.3 Summary

Table 4.2 summarizes our experimental evaluations. The proposed algorithm (ApproxVision) with 3 bits in
LSB and 5 bits in MSB as optimal partition (first row in Table 4.2) and greater than or equal to 2 bits in LSB
as optimal threshold (second row in Table 4.2) and minimum center window (third row in Table 4.2), would
be the best choice to achieve a high-quality image. The technique is useful regarding approximate storage
also. However, regarding the quality of the image with more opportunity to approximate more pixels, the
proposed algorithm with the minimum center window is the most excellent decision (last row in Table 4.2),
which can cover 7% (maximum) portion of the entire image that is not altered.

Table 4.2: Summary of experimental evaluations

Experiment Name Result

Partition of MSB and LSB
(optimal) 3 Bits in LSB and 5 Bits in MSB

Threshold value in LSB
(optimal) >= 2 Bits in LSB

Minimum Center Window
(Size) Minimum 2% and Maximum 6%

Maximum Center Window
(Size) Minimum 48% and Maximum 99%

Quality Obtained
(PSNR value in dB) Minimum 40.16 (dB) and Maximum 43.91 (dB)
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this paper, we proposed an algorithm (ApproxVision) for approximating the image to save energy without
sacrificing the quality of the image. The usage is not limited to save energy, however it can also be useful
for approximate storage of data. The proposed algorithm ApproxVision exploits the limitations of the human
visual system. It uses the two limitations of the human visual system to approximate the image. First, lower
bits in the pixel does not contribute much to the value of the pixel and second, human eye suffers from weak
peripheral vision and strong center vision. The algorithm needs some parameters like the partition of MSB
part and LSB part, threshold value in LSB part, and center window size for completion. These parameters
can be determined by the heuristic way only with some general mathematics and probability.

The proposed algorithm ApproxVision with 3 bits in LSB and 5 bits in MSB as optimal partition (first
row in Table 4.2) and greater than or equal to 2 bits in LSB as optimal threshold (second row in Table 4.2)
and minimum center window (third row in Table 4.2), would be the best choice to achieve a high-quality
image. Experimental results show that the maximum quality of image we get is 43.91 dB and minimum
quality of image we get is 40.16 dB, both maximum and minimum quality we get is very high. All the pixels
are changed accept some pixels in the center part. The pixels that are not changed is almost 7% of the image.
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Chapter 5. Conclusion and Future Work

Table 5.1: ApproxVision on Primitive Data-type

Data-type Original Value 50% of MSB and 50% of LSB 75% of MSB and 25% of LSB

Float 6.880524635 6.875 6.880493164
Double 6.88052456664526 6.88052368164062 6.8805245666299

5.2 Future Work

The proposed algorithm ApproxVision is applied to image data only. The purpose of ApproxVision is to
approximate the data and approximate storage of data for saving the energy. Some primitive data type requires
large memory requirement like float and double, and also consume lots of energy while processing. These
data types are used to store real value data. However, between two real values there exist infinite numbers
of real values. Thus, these data type used some already existing approximation algorithm [17] to store the
precision.

We can also approximate the value stored in the data type by using our proposed algorithm ApproxVi-
sion. But our approach also reduces some precision. To get the glance of how a float or double value is
change by using the ApproxVision algorithm. To apply our algorithm we developed a pintool on top of PIN
[18], a widely used dynamic binary instrumentation framework developed by Intel. The pintool models our
ApproxVision algorithm on the basic data-types. Table 5.1 shows how original value is changed based on the
different combinations of MSB part and LSB part (threshold is fixed, i.e., set flag bit if the number of ones
is more than or equal to 50% of the LSB part). Here some combinations are left to explore. The validation
of approximate value is application dependent. Applications that exhaustively use real value are the perfect
candidate to check the validation of approximate value. By using our approximation algorithm (ApproxVi-
sion) in primitive data type, we can save energy for at least one byte which will be beneficial for applications
which mostly use real values [19].
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