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Abstract

Distributed detection is an important part of many of the applications like wireless sensor networks,

cooperative spectrum sensing in the cognitive radio network. Traditionally optimal non-randomized

hard decision fusion rule under Neyman Pearson(NP) criterion is exponential in complexity. But

recently [4] this was solved using dynamic programming. As mentioned in [4] that decision fusion

problem exhibits semi-monotonic property in a special case. We use this property in our simulations

and eventually apply dynamic programming to solve the problem with further reduced complexity.

Further, we study the effect of using multiple antennas at FC with reduced complexity rule.
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Chapter 1

Introduction

In recent years Distributed detection has been the widely researched topic due to the low cost of

sensors and increased computational capabilities which have probed a great research enthusiasm in

this area[1],[2]. Distributed detection has got vast applications in the wireless sensor network and

Cooperative Spectrum Sensing (CSS) in Cognitive Radio Networks (CRN)[3],[5]. In a CSS scheme,

multiple Secondary Users (SUs) connected via communication links to a fusion centre (FC) collab-

orate to increase the detection performance of the binary hypothesis test to identify the spectrum

hole[6],[7],[8],[9],[10].

The Likelihood Ratio (LR) function of the SUs decisions plays a fundamental role in designing

the optimal fusion rule at the FC[11]. The existence of monotonic sufficient statistic function for the

LR is desirable under Neyman-Pearson(NP) criterion[11],[12]. However, many practical problems

are non- monotonic wherein the optimal fusion rule requires computationally intensive exhaustive

search methods for problems with multi-threshold decision equation.

Under Bayesian criterion, the computation of single threshold for LR test is straightforward when

the apriori probabilities of the hypothesis and the Bayes costs are available. The computational

time probability of error PE using the threshold is logarithmic and linear for monotonic and non-

monotonic problems respectively.

Under Neyman-Pearson criterion, low complexity methods like bisection, gradient descent etc.,

can be used to compute the optimal threshold for problems with monotonic property[13]. However,

the non-monotonic problems require exhaustive search which leads to exponential increase in com-

plexity. The complexity can be reduced by randomized test but this results in randomness in the

decision equation. In[13] it is shown that the optimal solution for non-randomized decision fusion, in

general, can be obtained in polynomial time by using the concepts of dynamic programming [14],[15].

Following [13], in this work, we focus on the (non- randomized) optimal hard decision fusion in the

discrete observation space under Neyman-Pearson criterion[14]. The analysis in chapter 2 is taken

from [4]. The main contributions are:

• We utilize local monotonic property exhibited in special case of non-monotonic decision fusion

problem which reduces the dimensions of the optimal solution space.

• Applying Dynamic programming and Branch and Bound technique to obtain the solution with

further reduced complexity.
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• We provide numerical comparison of the performance (ROC) and the complexity of (i) the pro-

posed variable reduction technique and (ii) the solution of generalized decision fusion problem

(GDFP) presented in [13].

• Further we would like to use the proposed method in performance enhancement of FC under

erroneous channel between SUs and FC with MIMO technique
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Chapter 2

Reduced Complexity Optimal

Hard Decision Fusion under

Neyman-Pearson Criterion

2.1 System model

We consider FC with the parallel network of N distributed SUs. The SUs generate individual local

binary decisions by sensing the spectrum for Primary User (PU) transmission as shown in Figure

2.1. Let ui, denote the local binary decision of ith SU, where 1 ≤ i ≤ N . we define the following

hypothesis

H0 : PU signal absent (2.1)

H1 : PU signal present (2.2)

Thus ui = 0 implies H0 and ui = 1 implies H1. At FC, we receive local decisions as N-

dimenssional observational vector denoted by u. Where u = [u1...uN ]T which results in a discreate

observational space U with cardinality M = 2N . The mth vector in the observation space is repre-

sented as um , m ∈ {0, ...,M − 1}.

Let pdi denote average probability of detection of ith SU. Then pdi = Pr{ui = 1|H1} similarly

pfi denotes average probability of false alarm of ith SU. Then pfi = Pr{ui = 0|H1}.

Assuming the local decisions are independent, the conditional probabilities of um under each

hypothesis is given by

p(um|H1) =

N−1∏
i=0

puidi (1− pdi)
(1−ui) (2.3)

p(um|H0) =

N−1∏
i=0

puifi (1− pfi)
(1−ui) (2.4)

where ui is the ith decision in observation vector um.
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Figure 2.1: System model

2.2 Fusion rule

Let Γ(.) denote the fusion rule of the FC. Let uFC denote global decision determined by FC after

observing U . Therefore uFC = Γ(U),where uFC = 0 implies hypothesis H0 and uFC = 1 implies

hypothesis H1 respectively.

Let PD and PF denote probability of detection and probability of false alarm at FC

that are obtained as

PD =
∑
U∈<1

p(um|H1)

PF =
∑
U∈<1

p(um|H0)

where <0 and <1 are two decision regions in N−Dimensional continous real Space RN , such

that U ⊂ (<0 ∪ <1),<0 ∩ <1 = {} (empty set), um ∈ <0 implies Γ(um) = 0 and um ∈ <1 implies

Γ(um) = 1,∀m. This indicates that an optimal definition of decision regions results in an optimal

fusion rule.

We now formulate the Generalized Decision Fusion Problem (GDFP) as,

max
<1

PD (2.5)

Sub to:PF ≤ α (2.6)

where α is the constrain on PF . Under NP criterion this is a constrained optimization problem for

which the solution is exponential in complexity.

Definition 1 :(0-1 Knapsack Problem (KP)). Given a set of M items, each with a value and
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weight {vm, wm} separately for 1 ≤ m ≤M , pick a subset S, of items with the end goal such that

Max

M∑
m=1

smvm, sub to

M∑
m=1

smwm ≤Wlim

where S is [s1...sM ],sm ∈ {0, 1}, sm = 0 infers the item m is not picked sm = 1 infers it is picked

and Wlim is the aggregate weight confine permitted.

Here the non-randomized hard decision fusion problem is being mapped to the 0-1 Knapsack

problem using (2.5), (2.6), the GDFP can be written as,

Max

M∑
m=1

smPDm , sub to

M∑
m=1

smPFm ≤ α (2.7)

where PDm and PFm are individual objective and constrained parameter of mth observational vector

um.

PDm = p(um|H1)

PFm = p(um|H0)

By Definition 1, (2.7) is a 0-1 KP where vm = PDm , wm = PFm ,Wlim = α.

2.2.1 Dynamic programing

It was notable that the 0-1 KP can be tackled utilizing Dynamic Programming(DP). Since DP works

only on integers so we have to convert PDm , PFm and α to integers. To perfom this operation we

define scaling function as I(a) = br.ac where a real-valued input argument, r scaling factor which

is sufficiently large. Then we define Idm = I(PDm), Ifm = I(PFm) and Iα = I(α) Let V (i, j) is the

maximum value of the set of first i vectors ums that is subject to the constraint that the sum of

the Ifms of the vectors in the set is ≤ j. Value of the original problem corresponds to V (n, Iα) we

calculate V (i, j) for 1 ≤ i ≤M and 0 ≤ j ≤ Iα with formula (2.7).

V (i, j) = max(V (i− 1, j − Ifi) + Idi , V (i− 1, j)) (2.8)

First term in (2.8) corresponds to the case when ith vector is included in the solution and the second

term corresponds to the case when ith vector is not included. To know whether the vectors are

included in the solution here is the step by step procedure of the algorithm.

Algorithm 1 Dynamic Programming

1: set i = n , j = Iα and S = {}
2: while i and j ≥ 0 do
3: if V (i, j) 6= V (i− 1, j) then
4: S = S∪ {ith item}
5: j = j − Ifi
6: i = i− 1
7: else
8: set i = i− 1
9: end if

10: end while

5



By the end of the algorithm all the items in the solution are in the set S.

Now let us try to understand dynamic programing with the help of example

Example: Let us try to fill the Knapsack of capacity W=5 with items mentioned in Table 2.1

Table 2.1: List of items

Items Weights Values
1 2 3
2 3 4
3 4 5
4 5 6

Using equation (2.8) on above data we formulate V (i, j) as shown in table 2.2

Table 2.2: V (i, j)

Weights

values

↓ i, j → 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 0 3 3 3 3
2 0 0 3 4 5 7
3 0 0 3 4 5 7
4 0 0 3 4 5 7

Items that where put in the knapsack are found using Algorithm 1. Finally the items in Knapsack

are S={1,2}.

2.2.2 Branch and Bound

Here is another approach for solving 0-1 KP which uses the state-space-tree which comprises an

initial state, final state and intermediate states[?].

In state space tree each node consist of level,PDm ,PFm and bound. The step by step procedure

of algorithm is given in Algorithm 2.

In above algorithm, we have considered algorithm reset u where u is a node. The steps involved

in the algorithm reset u are as follows.

In reset u Bound is a Greedy solution which is used to find the bound on the maximum PDm .

All the mark item form the solution for GDFP.

Now let us try to understand Branch and Bound algorithm with the help of an example

Example: Let us try to fill the Knapsack of capacity W=16 with items mentioned in Table 2.1

Table 2.3: List of example

Items Weights Values
1 3 45
2 5 30
3 9 45
4 5 10
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Algorithm 2 Branch and Bound

1: Sort all vectors in decreasing order of PDm/PFm
2: set Max PD = 0
3: Initalize empty queue, Q.
4: Initialize the root with Node v(level = −1, all else 0)
5: Insert v in Q.
6: while Q is not empty do
7: let v be the poped item from Q
8: reset u
9: if u.PFm < α and u.PDm > Max PD then

10: Max PD = u.PDm
11: end if
12: if u.bound > Max PD then
13: push u into Q
14: end if
15: reset u
16: if u.bound > Max PD then
17: mark u
18: end if
19: end while

Algorithm 3 reset u

u=empty
if v.level 6= (n− 1) then

u.PFm=v.PFm + PFu.level
u.PDm = v.PDm + PDu.level
u.bound = Bound(α, n, PFm , PDm)

end if

Following the step by step procedure mentioned in Algorithm 2, we can come up with the graph

as shown below

In Figure 2.2, by following red coloured line we get the solution. Where xi = 0 indicate ith item

not present in the knapsack, xi = 1 indicate ith item present in the knapsack. And p,w denotes

profit and weight at that particular node respectively and ub denotes the upper bound estimated at

that particular node.

2.2.3 Likelihood ratio test

For GDFP we define likelihood ratio L( um) as follows

L( um) =
p(um|H1)

p(um|H0)
≷ η, (2.9)

threshold η, is the value for which ∑
um:L(um)>η

p(um|H0) = PF . (2.10)

To implement LRT we first calculate L( um) , m ∈ {1, ...M} and sort them in the accending order.

When the likelihood ration L is big, we should accept in H1 region. Let [η,∞) be the accepted
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Figure 2.2: Graph for Branch and Bound Example

region,and η can be obtained by (2.10).

We now focus on further reducing this complexity by showing that the optimum solution x is

confined to a smaller dimensional observation space U ′ in some cases, where |U ′| = 2M
′

and where

M ′ < M . To facilitate this we define a desirable property namely semi-monotonic

2.3 Semi -Monotonic Property

Define a SU-index set (comprising of indices of the SUs) corresponding to an observation vector um

as

S(um) = {i : ui,m = 1,∀i}, (2.11)

Further define another set OV-index set (comprising of indices of the observation vectors) corre-

sponding to an observation vector um as

S(um) = {m′ : S(um) ( S(u′m),∀m′}. (2.12)

Definition 2 :(semi-monotonic) If there exist a subset of the observation vectors on which LR

is monotonic then we call such decision fusion problem as monotonic.

Under a resonable assumption pfi < 0.5 < pdi∀i is semi monotonic. Let us see how

Proof : The simplified form of the LRT of (2.9) is given by [16]

L( um)
xm=1

≷
xm=0

η,
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Here in this case
pdi

1−pdi
> 1,

1−pfi
pfi

> 1, L() therfore always positive ∀i.

As a result, using (2.12) we get

L( um) < L( u′m) ∀m′S(um), (2.13)

And also

p(um|H1) < p(um|H1),∀m′ ∈ S(um), (2.14)

p(um|H0) > p(um|H0),∀m′ ∈ S(um). (2.15)

Figure 2.3 illustrates the semi-monotonic property exhibited by observation vectors for N=4.

The SU-index set S(ut) of the observation vector at the tail of an arbitrary arrow is the subset of

the corresponding SU-index set S(uh) of the vector at the head of that arrow, i.e., S(ut) ( S(uh),

where ut,uh denote the observation vectors at the tail and head of any arbitrary arrow. As an ex-

ample, S([0000]) = {},S([0001]) = {0}2,S([0010]) = {1} etc., and S([0001]) = {3, 5, 7, 9, 11, 13, 15}.
S([1010]) = {10, 13, 14, 15} is illustrated in the figure 2.4 in red coloured boxes.

Figure 2.3: Semi-monotonic property by observation vectors for N=4

From (2.14) and (2.15) it can be noted that, if xm = 1 in an optimal fusion rule x , then

x′m = 1,∀m′ ∈ S(um), (2.16)

Lemma: If xm = 1 in an optimal fusion rule, then the corresponding system probability of false

9



Figure 2.4: S([1010]) = {10, 13, 14, 15}

alarm denoted by PF (xm = 1) is

PF (xm = 1) ≥
∏

i∈S(um)

pfi , (2.17)

Proof : Using (2.16), we have

PF (xm = 1) ≥ p(um|H0) + p(u′m|H0),∀m′ ∈ S(um), (2.18)

Expanding and simplifying the LHS of (2.18) using (2.4), we get

PF (xm = 1) ≥
∏

i∈S(um)

pfi . (2.19)

2.4 Variable Reduction in GDFP

we now define a reduced set of observation vector space U ′ as

U ′ = {um :
∏

i∈S(um)

pfi ≤ α,∀m},

and reduced dimension M ′ = |U ′|. Note that,

• those observation vectors um that result in the system false alarm PF (xm = 1) to exceed the
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specified constraint value α, are not included in the reduced observation space U ′.

• those observation vectors um that result in the system false alarm PF (xm = 1) to exceed the

specified con- straint value α, are not included in the reduced observa- tion space U ′.

• the feasible fusion solutions are now confined to the space U ′.

• the feasible fusion solutions are now confined to the space U ′ .

• the boolean variables xm corresponding to the um not in the space U ′ , can now be fixed to

xm = 0 (namely fixed-variable).

• to obtain the optimal x* , we now need to search the optimum value of only the remaining

free-variables.

Using (2.7) the reduced variable GDFP is now defined as

Max
∑

um∈U ′
smPDm , sub to

∑
um∈U ′

smPFm ≤ α, sm ∈ {0, 1}. (2.20)

The proposed DP-based solution can now be applied to (2.20) to obtain the optimal value of the free-

variables in x. In the following section we present the numerical results that confirm the correctness

of the proposed solution and the reduced dimension M ′ obtained for different N and α.
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Chapter 3

Numerical Results
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Figure 3.1: Receiver operating characteristic

To show the effectiveness of the proposed algorithm, as an example we have considered individual

SUs following probability of false alarm pfi ∈ U [0.2, 0.4] and probability of detection pdi ∈ U [0.6, 0.8]

where U is uniform distribution. Figure 3.1 shows that the DP and BB algorithms display the same

solution but LRT shows a sub-optimal solution when compaired with DP and BB. This graph was

plotted by considering 0.001 < α < 1 and averaged the curves with 25 iteration. Figure 3.2 shows

time complexity of the algorithms with α = 0.05 and averaged the curves over 1000 iteration. In the

implementaion of DP we have used scaling factor r = 106. In DP (2.7) requires M ∗Iα mathematical

operation and to know the vector included in the solution requires M operations. Hence order of

complexity for DP is O(M ∗ Iα). In BB Greedy approach helps us to check particular node can

give us a better solution or not, this minimizes the number of nodes that we need to travel. But

in the worst case scenario, we have to travel all the nodes which makes order of complexity for BB
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O(2M ). In LRT, Sorting likelihood by Merge sort algorithm requires O(M ∗ log(M)) operations and

(2.10) in worst condition requires M operation. Therefore, the overall complexity for LRT will be

O(M ∗ log(M)).In reduced variable approach, we try to decrease the number of vectors that given

to DP or BB to solve GDFP problem which in return decrease the time taken to solve the problem

as compared to when DP or BB are given with all the vectors.
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Chapter 4

Performance improvement with

Reduced Complexity Optimal

Hard Decision Fusion under NP

Criterion

Distributed detection in Cognitive radio network is used to detect the presence of the primary

user with the help of geographically diversly spread Secondary users (SUs). This SUs collect the

necessary information and send it to Fusion centre where the further processing takes place and a

better decision is made about the presence of the Primary user [20],[21],[22]. In general, the channel

between SUs and FC is assumed to be noise free and fading free but in real life, it is not the same.

When channel between SUs and FC is considered to be a wireless channel then the channel will

definitely undergo fading and the system model would be as shown in Figure 4.1.

Figure 4.1: Realistic model of the system
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Each SUs send a local decision ui ∈ {0, 1} over an erroneous channel to FC with bit probability

error pei∀i. The channel between SUs and FC can be modelled as a binary symmetric channel[18].

Considering SUs decisions to be conditionally independent then we have

p(u|H1) =

N−1∏
i=0

(pedi)
ui(1− pedi)

(1−ui), (4.1)

p(u|H0) =

N−1∏
i=0

(pefi)
ui(1− pefi)

(1−ui), (4.2)

where pedi = (1− pei)(pdi) + (pei)(1− pdi) and pefi = (1− pei)(pfi) + (pei)(1− pfi).

4.1 Maximal Ratio Combing

The effect of fading over channel can be overcome using spatial diversity. where we use multiple

antennas at transmitter or receiver or even both. Here we use multiple antennas at FC and single

antenna at individual SUs as shown in Figure 4.2. A common architecture followed in a distributed

Figure 4.2: Multiple antennas at FC

detection system is parallel access channel(PAC) i.e the SUs are assigned an orthogonal channel for

transmission. Here we are using the same technique to get information from the individual SUs.

Since single SU is transmitting at a time we can consider single antenna transmitter and multiple

antenna receiver system. For this kind of system Maximal ratio combining (MRC) can be used as a

receiver.

Let us see now how MRC works. signal received from SU at FC will be of the ȳ = h̄x+ n̄ where

ȳ =

[
y1

y2

]
, h̄ =

[
h1

h2

]
, n̄ =

[
n1

n2

]
.

Instantaneous bit-energy to noise ratio at ith receiver with hi channel is given by

γ =
||h̄2|| ∗ Eb

N0
,

considering hi∀i to be independent identically Rayleigh distributed random variable then the term

||h̄2|| become chi-squared random variable with two degrees of freedom. Therefore the pdf of effective

15



bit energy-to-noise ratio γ can be written as

pdf (γ) =
1

(N − 1)!(Eb/N0)N
γN−1e

−γ
(Eb/N0) ,

probability of error or BER for maximal ratio combining can be expressed as[23]

peMRC =

∫ ∞
0

1

2
erfc(

√
γ)pdf (γ)

peMRC =

∫ ∞
0

1

2
erfc(

√
γ)

1

(N − 1)!(Eb/N0)N
γN−1e

−γ
(Eb/N0)

which can be rewritten as

peMRC = PN ∗
N−1∑
k=0

(
N − 1 + k

k

)
(1− P )k, (4.3)

where

P =
1

2
− 1

2
(1 +

1

Eb/N0
)−1/2.

4.2 Alamouti code

In the literature most of the times there has been a study of using the spatial diversity between SU

and FC. Now we would like to explore the space and time diversity between the SUs and FC. This

can be done with the help of space-time block codes. Space-time block codes used in MIMO system

to transmit the multiple copies of the same data over the erroneous channel. These codes combine

all the received data in an optimal manner to extract the better information when compared to what

could have been obtained by receiving only one data observation.

Space-time block codes use both space and time diversity which enables them to achieve signifi-

cant gain. In Space-time block codes the data is encoded before transmission and sent on multiple

antennas and also spread over time. One of the elegant methods to implement space-time block

codes is MIMO Alamouti code or simply called as Alamouti code[19].

Alamouti scheme is differential space-time block code which means receiver does not need to

know the channel state information to decode the data.

4.3 2x1 Alamouti Code

Alamouti code with two transmitters and one receive antenna is shown in figure 4.3. The encoded

symbols transmitted over two antennas at first and second time slots is as follows

Tx1 Tx2

Time T x1 x2

Time T+t −x∗2 x∗1

16



where x1 and x2 are modulated symbols. Let y1and y2 be two received symbols at first and second

time slot then we have [
y1

y∗2

]
=

[
h1 h2

h∗2 −h∗1

][
x1

x2

]
+

[
n1

n2

]
(4.4)

Figure 4.3: 2x1 Alamouti scheme

and h1 is the channel from first transmit antenna to receive antenna, h2 is the channel from

second transmit antenna to receive antenna, and n1 , n2 are the noise at time slot 1 and time slot

2. Further,

ȳ = c̄1x1 + c̄2x2 + n̄ (4.5)

where

c̄1 =

[
h1

h∗2

]
, c̄2 =

[
h2

−h∗1

]
since c̄1,c̄2 are orthogonal,alamouti code is also known as orthogonal space time code. After the

simplification of (4.5) we get
c̄1
H

||c̄1||
y = ||c̄1||x+ ñ (4.6)

Therefore the SNR of 2x1 alamouti can be written as

SNR =
||h̄2|| ∗ Eb

2 ∗N0
(4.7)

we know hi∀i to be independent identically Rayleigh distributed random variable then the term

||h̄2|| becomes chi-squared random variable with two degrees of freedom. similar to that of MRC

probability of error or bit-error of 2x1 Alamouti scheme can be derived as

peAlamouti2x1 = P 2
Alamouti[1 + 2(1− PAlamouti)] (4.8)

where

PAlamouti =
1

2
− 1

2
(1 +

2

Eb/N0
)−1/2

4.4 2x2 Alamouti Code

In this scheme we use two transmit and two receive antenna as shown in Figure 4.4.

The encoded symbols transmitted over two antennas at first and second time slot is as follows

Tx1 Tx2

Time T x1 x2

Time T+t −x∗2 x∗1

17



Figure 4.4: 2x2 Alamouti scheme

where x1 and x2 are modulated symbols.

At the receiver during first time slot and second time we receive the symbols as follows[
y11

y12

]
=

[
h11 h12

h21 h22

][
x1

x2

]
+

[
n11

n12

]
, (4.9)

[
y21

y22

]
=

[
h11 h12

h21 h22

][
−x∗2
x∗1

]
+

[
n21

n22

]
, (4.10)

where y11,y12,y21 and y22 represent antenna 1 at first time slot, by antenna 1 at second time slot, by

antenna 2 at first time slot, and by antenna 2 at second time slot. hij denotes the channel coefficient

of ith receiver and jth transmitter. And

[
n11

n12

]
recevier noise at antenna 1 and antenna 2 during

time slot 1 and

[
n21

n22

]
recevier noise at antenna 1 and antenna 2 during time slot 2. combing both

time slots we get 
y11

y12

y∗21

y∗22

 =


h11 h12

h21 h22

h∗12 −h∗11
h∗22 −h∗21


[
x1

x2

]
+


n11

n12

n21

n22

 (4.11)

from equation(4.11)we define H matrix as

H =


h11 h12

h21 h22

h∗12 −h∗11
h∗22 −h∗21

 (4.12)

using pseudo inverse of a matrix H we can estimate the transmitted symbol as

[
x̂1

x̂2

]
= (HHH)−1HH


y11

y12

y∗21

y∗22

 (4.13)

To calculate BER or Probability of error from equation (4.12) which will be similar to calculation of

18



probability of error for MRC with four receiver with slight modification[23]. Finally the probability

of error for 2x2 alamouti code given as follows

peAlamouti2x1 = P 4
Alamouti[1 + 4(1− PAlamouti) + 10(1− PAlamouti)2 + 20(1− PAlamouti)3] (4.14)

where

PAlamouti =
1

2
− 1

2
(1 +

2

Eb/N0
)−1/2.

19



Chapter 5

Numerical Results

The Figure 5.1 shows how Probability of detection(Pd) varies with respect to Signal to Noise Ra-

tio(SNR) by using the SNR enhancement methods that have been discussed in the previous chapter

at FC to improve the reception quality of data that is sent by SUs over the erroneous channel.

To plot this graph we have considered individual SUs with following probability of false alarm

pfi ∈ U [0.2, 0.4] and probability of detection pdi ∈ U [0.6, 0.8] where U is uniform distribution.With

allowed total Probability of false alarm α = 0.1. For number of SUs n=5,7 and 11.
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Figure 5.1: Pd vs SNR

For Rayleigh fading channel without using any performance enhancement methods we have

considered probability of error pe = 1
2

(
1 −

√
SNR

2+SNR

)
.We have used MRC at FC with 2,3 and 4

receive antennas and single transmit antenna at SU and using() for probability of error. Whereas for

alamouti scheme of performance enhancement we have considered two cases. In the first case with

20



2 transmit antenna and 1 receive antenna and second case uses 2 transmit and 2 receive antenna.

And use (4.8) and (4.14) as probability of error equations.

The above mentioned methods are helpful in improving the data vectors received at FC and the

Global decision making is done by variable reduction with dynamic programming to solve GDFP

problem.
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Chapter 6

Conclusion

We have utilized the semi-monotonic property exhibited in a special case of decision fusion problem to

decrease the dimensions in the feasible solution space. Eventually, we apply dynamic programming

to solve the problem with further reduced complexity. Further, we have seen the effect of using

multiple antennas schemes such as MRC and Alamouti code at FC with reduced complexity rule.
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