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Abstract 

 

 

Conventional electronic devices deal with rigidity and hence lack of flexibility and 

stretchablity. A research that is rapidly evolving to develop human friendly flexible 

and stretchable devices for future electronics. A lot of research has been done on 

fabricating sensors and electronic devices using 2D materials having characteristics 

like stretchablity, bendability. These nanomaterials can be used for fabrication of 

photodetectors, temperature, pressure and strain sensors because of their excellent 

electronic, thermal, mechanical and optical properties.  

       The second chapter deals with the demonstration of human integrated electronic devices 

such as RC filters by utilizing flexible capacitor fabricated using few layer MoS2 grown on 

Al foil via hydrothermal method as electrodes and cellulose paper as a dielectric material. 

Advantage of using MoS2 on Al foil is the enhanced capacitance upon strain due to the 

piezoelectric property of few layered MoS2 over monolayer MoS2. Upon application of 

external strain on capacitor the mathematical operations such as differentiation and 

integration are observed for different input signal using RC filter circuits. Such a simple 

technique for fabrication of flexible variable capacitor is a major step ahead in wearable 

electronics having applications in digital electronics and sensors. 

     The 2-D nanomaterials possesses great optical properties so can be used for photo 

detection. The second chapter deals with 2D ZnO/Gr pyro-phototronic diode. Even though 

2D ZnO has been utilized for enhanced self-powered sensing by strain modulation due to its 

piezoelectric property, study on utilizing pyroelectric property of ZnO remains unexplored. 

For pyroelectric nan generator, temperature difference can be triggered by external light 

source which does not disrupt the ZnO structure and also avoids the need for physical 

bending/pressing as in case of piezoelectric nanogenerator. This work represents the first 

demonstration of fabrication of flexible 2D ZnO/Gr pyro-phototronic diode where the pyro 

potential generated in the 2D ZnO due to the NIR illumination adds/subtract with the built-in 

electric field of the heterojunction and modulates the depletion region of the heterojunction 

thereby enabling bias free operation. 
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                            The fourth chapter deals with the application of properties of 2D materials 

such as flexibility and wear ability and further wirelessly transmitting related information to 

distant location. In this work, we demonstrate for the first time, the multifunctionality of MoS2 

grown on Al foil and further integrated onto eraser substrate to develop smart, low cost 

pedometer, gesture communication device and breath sensor by measuring physiological 

parameters such as strain, touch, hydration levels of lungs respectively. The data generated is 

wirelessly transmitted to the smartphone via Bluetooth and analyzed using dedicated android 

applications for individual sensing displays the successful demonstration of such low cost 

multifunctional wireless personal healthcare monitoring system for Internet of Things (IoT) 

applications is a major step ahead in flexible and wearable electronics. 
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Nomenclature 

 DI – Deionized  

MoS2 – Molybdenum disulfide 

IoT – Internet of Things 

ZnS – Zinc sulfide 

V2O5 – Vanadium pentoxide 

PET - polyethylene terephthalate 

PI - Polyimide 

UV – Ultraviolet 

NIR – Near Infrared 

XRD – X-ray diffraction 

XPS – X-ray photoelectron spectroscopy 

PL - photoluminescence spectroscopy 

FESEM – Field Emission Scanning Electron Microscopy 

TEM – Transmission Electron Microscopy 

FTIR – Fourier Transform Infrared Spectroscopy 

IV – current-voltage 

CV – capacitance- voltage 

TMDs - Transition-Metal Dichalcogenide 

RF – Radio frequency 

PCBs – Printed Circuit Boards 

EQE – External quantum efficiency 

CB – Conduction Band 
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VB – Valence Band 

CVD – Chemical Vapor Deposition 

PVD – Physical Vapor Deposition 

Al – Aluminum  

ZnO – Zinc oxide 

Gr – Graphene 

CMOS – Complementary Metal Oxide Semiconductor 

DSO – Digital Storage Oscilloscope 

GF – Gauge Factor 

E-skin – Electronic Skin 
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Chapter 1 

 

Introduction  

 

 

A lot of research has been done on fabricating sensors and electronic devices using 2D 

materials having characteristics like stretchablity, bendability. These nanomaterials can be 

used for fabrication of photodetectors, temperature, pressure and strain sensors because of 

their excellent electronic, thermal, mechanical and optical properties. Interactive electronic 

passive components wherein the properties can be modulated by external stimuli or human 

interaction are of great interest due to their applications in smart wearable, electronic circuits, 

sensors and personal health monitoring. There have been reports to enhance the transport 

properties of electronic devices such as diodes by piezoelectric property which can be further 

utilized as frequency modulator at circuit level. The commercially available electronic passive 

components such as resistors and capacitors are planar and hence thus does not find 

applications in flexible and wearable electronics. Moreover, the values of resistors and 

capacitors are fixed and cannot be modulated, except for variable resistor and capacitor which 

requires numerous complex steps for fabrication. To develop a fully flexible electronic circuit 

all the components should be flexible and can be integrated to substrate of choice. But the use 

of flexible electronic passive components such as capacitors and resistors whose property can 

be modulated by means of external strain by piezoelectric property has not been studied yet. 

Here, we report the fabrication of flexible interactive electronic passive components such as 

resistor and capacitor with MoS2 on Al foil as electrode for capacitor and cellulose paper as 

dielectric. Different lengths of MoS2-Al foil were utilized as resistors. Further, the capacitance 

of the capacitor was varied by external mechanical strain wherein the applied strain not only 

alters the physical dimensions of the capacitor but also induces additional charges on the 

MoS2 electrode due to piezoelectric property thereby enhancing the capacitance. This variable 

capacitor was utilized in frequency modulator wherein different frequencies were generated 

based on the strain applied. Passive RC filters were demonstrated and change in characteristic 

such as gain, phase and time constant of the filters were studied upon application of strain. 
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Further, the fabricated flexible MoS2 capacitor was integrated to human hand and the 

corresponding frequency modulation with hand movement was studied. To best of our 

knowledge, this is the first report of flexible MoS2 film as metal electrode for capacitor and 

utilizing the piezoelectric property of MoS2 for the development of electronic analog circuits 

such as oscillators, frequency modulators and RC filters. 

The 2-D nanomaterials possesses great optical properties so can be used for photo detection. 

With the increasing interest in flexible and wearable electronics research, developing self-

powered external interactive electronic devices has been of great significance. The analog 

signals for driving the electronic devices can only be electrically modulated and there are only 

few reports for external modulation of analog signals using piezo and triboelectricity. But the 

use of Pyroelectricity for external modulation of analog signals and the development of self-

powered devices which can be termed as “Pyrotronic devices” remains unexplored. 

Pyroelectricity depends on polarization of the material which is dependent on temperature 

difference. The temperature difference can be induced by means of heat, light etc. The 

temperature difference across the pyroelectric material leads to decrease in the level of 

spontaneous polarization and thereby decreasing the free charges bound to the material 

surface. The open circuit condition leads to the free charges to remain at the electrode surface 

which generates pyroelectric potential. The short circuit condition allows the current between 

the two polar surfaces of the pyroelectric material. Similarly, reverse electric current flows as 

the temperature difference starts to decrease which increases the level of spontaneous 

polarization.In this work, we demonstrate for the first time the fabrication of Gr/ZnO 

Pyrotronic diode for NIR photodetection and active analog frequency modulator. Pyroelectric 

polarization potential generated in ZnO due to the generation of pyroelectric charges has been 

utilized for the generation of short circuit current which enables bias free photodetection. 

Upon light illumination, pyroelectric polarization induced in ZnO adds/subtracts from barrier 

potential of Graphene/ZnO heterojunction thereby changing the depletion region width and 

the junction capacitance associated with it. This capacitance modulation under light 

illumination was further utilized for frequency modulation in oscillator circuit. To the best of 

our knowledge, this is the first report on the fabrication of flexible Gr/ZnO based Pyrotronic 

diode for self-powered photodetection and frequency modulation with flexible substrate.  

The properties of 2D materials such as flexibility and wear ability can be used for applications 

like pedometer, strain sensor etc. and further wirelessly transmitting related information to 

distant location. Advancements in flexible and wearable electronics have opened up new 

avenues in personal healthcare development that can monitor the individual physiological 
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parameters continuously or at a regular intervals and thus act as reliable indicators in early 

disease diagnostics. These existing technologies in health care however rely mostly on use of 

sophisticated and specialized sensors, instruments and services thereby leading to an increase 

in the overall cost of healthcare. Moreover, to access these facilities, individual need to visit 

hospital and clinics which is not only tedious but also costly. There are recent reports on 

personal health monitoring which utilize physiological parameters of an individual for 

glucose monitoring through tears, human motion monitoring, breath sensing for lung disease 

etc. However, there are few reports which utilizes the low cost sensors for multifunctional 

sensing wherein the data can be wirelessly transmitted to smartphone with a dedicated android 

application for individual sensing. Hence there is an urgent need for constant personal health 

monitoring system with wearable sensors which can monitor parameters such as breath, 

human motion, human steps (pedometer) and the data can be transferred to the smartphone 

for a convenient read-out. In this work we develop a low cost wireless personal monitoring 

system using solution processed MoS2 grown on Al foil as an active sensing element with a 

dedicated android application for multi parameters sensing. The proposed system can be 

utilized as a pedometer for calculating the number of walking/running steps and the calories 

burnt, breath sensor for monitoring breath of an individual, and a hand gesture communication 

sensor for paralyzed patients. Further each system consists of a dedicated android mobile 

application which receives the sensor data wirelessly through Bluetooth and displays the 

information regarding distance travelled, velocity, calories burnt for pedometer module, 

breath count for breath sensor module and action related to a specific gesture for gesture 

communication sensor module.  To the best of author’s knowledge this is the first 

demonstration of MoS2 grown on Al foil for wireless personal healthcare monitoring IoT 

system (pedometer, gesture communication and breath sensing) with dedicated Android 

application for each sensing module. 

Further wirelessly transient electronic system has been developed. With the wireless system 

2-D sensor can be destroyed from distant location using Android mobile and Arduino. 
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Chapter 2 

 

Flexible substrate based few layer 

MoS2 electrode for passive electronic 

Devices. 

Abstract— This work reports the demonstration of human integrated electronic devices such 

as RC filters by utilizing flexible capacitor fabricated using few layer MoS2 grown on Al foil 

via hydrothermal method as electrodes and cellulose paper as a dielectric material. There are 

no reports of MoS2 on flexible substrate being utilized as capacitor electrode and further 

applied human interactive devices. Advantage of using MoS2 on Al foil is the enhanced 

capacitance upon strain due to the piezoelectric property of few layered MoS2 over monolayer 

MoS2. As the applied strain increases, increase in the capacitance was observed which is 

systematically explained by piezoelectric property of MoS2, change in physical dimensions 

and air gap between MoS2-Al foil and cellulose paper. Upon application of external strain the 

mathematical operations such as differentiation and integration are observed for different 

input signal using RC filter circuits. Such a simple technique for fabrication of flexible 

variable capacitor is a major step ahead in wearable electronics having applications in digital 

electronics and sensors. 

 

 

2.1 Introduction 

Interactive electronic passive components wherein the properties can be modulated by 

external stimuli or human interaction are of great interest due to their applications in smart 

wearable, electronic circuits, sensors and personal health monitoring [1]. There have been 

reports to enhance the transport properties of electronic devices such as diodes by 

piezoelectric property which can be further utilized as frequency modulator at circuit level [2-

3]. The commercially available electronic passive components such as resistors and capacitors 
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are planar and hence thus does not find applications in flexible and wearable electronics. 

Moreover, the values of resistors and capacitors are fixed and cannot be modulated, except 

for variable resistor and capacitor which requires numerous complex steps for fabrication. To 

develop a fully flexible electronic circuit all the components should be flexible and can be 

integrated to substrate of choice. But the use of flexible electronic passive components such 

as capacitors and resistors whose property can be modulated by means of external strain by 

piezoelectric property has not been studied yet. 

Molybdenum disulphide (MoS2) is a 2D transition  metal dichalcogenide (TMDC) wherein 

one layer of Mo (Molybdenum) atoms is sandwiched between two layers of S (Sulphur) atoms 

[4]. It is due to the outstanding properties of MoS2 such as mechanically strong, flexible, 

optically transparent which makes it highly studied 2D material after graphene [5]. Further, 

mechanical strain can strongly affect the band structure, carrier effective masses, and 

transport, optical, and magnetic properties of MoS2 via changing the distance between the 

atoms and also the crystal symmetry [6-7]. Recent studies report that MoS2 with odd number 

of layers could produce oscillating piezoelectric voltage [8] and current outputs, expands its 

scope of usage its potential applications in piezotronic and analog applications. There are 

various methods to synthesize MoS2 such as Chemical Vapor  

Deposition (CVD), mechanical exfoliation, chemical exfoliation [9]. However, large area 

growth of MoS2 and direct deposition of MoS2 on flexible substrate using CVD still remains 

a challenge. In addition, CVD process needs intricate post processing steps which leads to 

variation in device to device performance. The exfoliation methods of MoS2 results in small 

yield and also small lateral size which are difficult to integrate in device fabrication [10]. 

Hence there is a need to develop a solution processed method for direct growth of few layer 

MoS2 on different flexible substrates. Hydrothermal solution phase synthesis offers the ability 

to synthesize 2D materials at low temperatures and low cost with distinct morphologies, high 

phase purity, good controllability and rapid growth rates because of the rapid diffusion 

processes [11-12]. There are reports for the growth of MoS2 on different flexible substrate for 

its use in electronic devices such as diodes, FET, sensors and optoelectronics applications [13, 

11]. But the use of MoS2 on flexible substrate as an electrode for capacitor remains 

unexplored.  

Another issue in fabricating flexible electronic components such as capacitor is the deposition 

of dielectric material by means of sputtering or evaporation which requires sophisticated 

cleanroom environment. Cellulose paper has been widely reported as a dielectric material in 

fabrication of paper based electronic devices such as in transistors and a wide variety of 

https://en.wikipedia.org/wiki/Transition_metal_dichalcogenide_monolayers
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sensors [14]. The use of cellulose paper as dielectric not only decreases the complexity of the 

fabrication process but also significantly reduces the overall cost of the device.   

Here, we report the fabrication of flexible interactive electronic passive components such as 

resistor and capacitor with MoS2 on Al foil as electrode for capacitor and cellulose paper as 

dielectric. Different lengths of MoS2-Al foil were utilized as resistors. Further, the capacitance 

of the capacitor was varied by external mechanical strain wherein the applied strain not only 

alters the physical dimensions of the capacitor but also induces additional charges on the 

MoS2 electrode due to piezoelectric property thereby enhancing the capacitance. Passive RC 

filters were demonstrated and change in characteristic such as gain, phase and time constant 

of the filters were studied upon application of strain. To best of our knowledge, this is the first 

report of flexible MoS2 film as metal electrode for capacitor and utilizing the piezoelectric 

property of MoS2 for the development of electronic analog circuits RC filters. 

2.2 Experimental section 

Growth of MoS2 on Al foil:  

Growth of MoS2 on Al foil was performed by process recently reported from our lab. [11] In 

brief, growth of large area MoS2 on Al foil (3 cm x 3cm) was achieved using hydrothermal 

process wherein the seed solution was prepared by mixture of sodium molybdate (10mM) and 

Thiourea (20mM) in deionized (DI) water. The Al foil was dipped in seed solution for 1 hour 

followed by drying at 80°C for 30 minutes. The nutrient solution was prepared by mixing 

sodium molybdate (50mM) and Thiourea (100mM) in DI water. The seed coated Al foil and 

nutrient solution were then transferred to Teflon line autoclave and was maintained at 200°C 

for 20 hours in oven. The autoclave was allowed to naturally cool down and the MoS2 

deposited Al foil was dried at 70°C for 15 minutes.  

 

Fabrication of capacitor 

The as obtained MoS2 grown on Al foil was cut into 1 cm x 1cm and was utilized as metal 

electrode for the capacitor. Cellulose paper (1 cm x 1 cm) was sandwiched between MoS2-Al 

foil followed by wrapping the entire capacitor by polyimide (PI) tape. Copper tape was 

utilized as contacts to connect to the external circuitry. Thickness of the cellulose paper is 180 

microns and that of Al foil is 10.5 microns. Hence the height of the sensor is ~ 201 microns 

(top and bottom Al foil and cellulose paper and excluding the effect of air gap). Schematics 
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showing the synthesis of MoS2 on Al foil and fabrication of capacitor is as shown in figure 1 

 

Figure 1: Schematics showing the synthesis of MoS2 on Al foil and fabrication of capacitor using 

cellulose paper as dielectric 

2.3 Results and discussions 

Flexible electronics aims at fabricating devices wherein the external bending does not affect 

the performance of the device which is excellent wherein the device can be integrated onto 

arbitrary curved surface. There are reports wherein there is no change in the performance of 

monolayer MoS2 devices upon external bending. [15] but there are studies where the external 

stimuli enhance the performance of few layer MoS2 based electronic devices by modulating 

the transport properties which opens up new areas of research which can be termed as 

interactive electronic devices. [16] Hence there is a need for growing few layer MoS2 on 

flexible substrates whose properties can be modulated upon external strain. In this report, 

large area few layered MoS2 was grown hydrothermally on Al foil. 

XRD analysis of MoS2 deposited on Al foil was performed to study the crystal structure of 

the grownMoS2 on Al foil as shown in Figure 2a. The characteristic peaks of Al foil noticed 

at 25°, 35°, 44°, 57° & 61° are the reflections corresponding to (012), (104), (113), (116), 

(122) planes of Al foil as shown in figure 2b. These peaks correspond to alpha-Al2O3 which 

can be ascribed to JCPDS card number 46-1212 [17]. The presence of MoS2 can be confirmed 

by three signature peaks in XRD spectra at 2θ = 17.5° (002), 33° (100), 58° (110) respectively. 

The diffraction peaks of MoS2 are marked with ● symbol corresponds to that of hexagonal 

MoS2 (JCPDS card number. 37-1492) [18]. It can be observed from the XRD pattern that the 

presence of Al peaks suppresses the diffraction peaks of MoS2 thereby reducing the peak 

intensities. 

To analyze the chemical composition and number of layers of MoS2, raman spectroscopy was 

performed for MoS2 grown on Al foil. Two peaks namely E12g which is in plane vibration 
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and A1g which is out of plane vibration are observed for MoS2 wherein the frequency 

difference between the E12g and A1g plane is indicative of the number of layers of MoS2 as 

shown in figure 2b. [19] As the number of the layers change, redshift and bluseshift is 

observed for E12g peak and A1g peak respectively. These shifts with the frequency separation 

is routinely used to identify the number of layers of MoS2. As shown in figure 2b, E12g and 

A1g are observed at 385 cm-1 and 406 cm-1 respectively giving the frequency difference of 21 

cm-1 which suggests that as grown MoS2 on Al foil is trilayer MoS2. [20] Further X-ray 

photoelectron spectroscopy (XPS) was performed of MoS2 grown on Al substrate wherein 

peaks corresponding to both 1T and 2H phase were observed as shown in figure. The 1T and 

2H phases for MoS2 were present at 228.7, 232.1 eV and 229.6 and 232.8 eV, upon 

deconvolution of Mo 3d spectra. Also, the deconvoluted S2p peak for MoS2 on Al foil are 

present at 162 eV and 163 eV corresponding to S 2p3/2 and S 2p1/2 as shown in figure. As 

can be seen from figure, the density of 2H phase is much more than 1T phase illustrating more 

semiconducting and piezoelectric behavior of the as grown MoS2.  

To study the morphology of as grown MoS2 on Al foil, FESEM studies were performed. 

Figure 2c shows the low magnification FESEM image of MoS2 grown on Al foil wherein 

microflower like morphology was observed are due to the self-assembly of individual MoS2 

nanoflakes. Figures 2d shows the high magnification image where individual MoS2 

nanosheets are visible. The growth of MoS2 on Al foil occurs via self-assembly and nucleation 

which is explained in a report recently published by our group [11].  

 

 

 



9 

 

 

Figure 2: a) XRD of MoS2 grown on Al foil b) Raman spectra of MoS2 grown on Al foil c) a) 

Mo 3d b) S2p d) Al 2p spectra of MoS2 grown on Aluminum foil e) low magnification 

FESEM image of MoS2 grown on Al foil f) high magnification FESEM image of MoS2 

showing individual MoS2 nanosheets. 

 

The change in the capacitance of flexible MoS2 capacitor after strain can be attributed to three 

major effects: 1. Change in the physical dimensions of flexible MoS2 capacitor 2. Effect of 

piezoelectric property of MoS2 under strain 3. Effect of air gap between MoS2-Al foil and 

cellulose paper upon strain 

Change in physical dimensions of flexible MoS2 capacitor upon strain 

For a flexible MoS2 capacitor, cellulose paper has been used as dielectric material sandwiched 

between MoS2 grown on Al foil. The dielectric constant of the cellulose paper was calculated 

to be ~ 4.5 which is reported in a recent report from our lab [21]. Copper tape were used as 

contacts to connect the flexible MoS2 capacitor to external circuitry. When certain amount of 
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external mechanical strain was applied on the MoS2 grown Al foil that act as metal plates, 

physical dimensions of the flexible MoS2 capacitor changes which results in the increase in 

the cross section area of the metal plates thereby leading to an increase in the capacitance.  

C =  
ε A

d
 

C = capacitance of the capacitor, A= area of cross section of capacitor, d=distance between 

the two MoS2 plates (thickness of the paper) 

 

Effect of piezoelectric property with strain 

Odd layers of MoS2 possess piezoelectric property which induces the charges on MoS2 grown 

on Al foil when certain external stress is applied. With an odd number of MoS2 atomic layers, 

the inversion symmetry breaks because of the unpaired odd layered MoS2, resulting in 

generation of charge(Q) and piezoelectric polarization [8]. Under a tensile strain, positive 

piezocharges are created at one interface of flexible MoS2 on Al foil, and equivalent negative 

piezocharges were created at the other interface of MoS2-Al foil. Charges developed on MoS2 

grown layers are additive in nature and hence effective charge increases on capacitor. 

     

Q = C V 

Q= charge on the plates of the capacitor, C = capacitance of the capacitor, V = voltage across 

the capacitor 

Therefore at constant voltage operation, with the charge accumulation on the MoS2 based 

capacitor, the net charge (Q) increases thereby resulting in the enhancement of capacitance. 

Hence in flexible MoS2 capacitor, due to the piezoelectric property of MoS2 the net 

capacitance of the flexible MoS2 capacitor further increases. To further verify the generation 

of charges, strain was applied on pristine MoS2-Al foil with copper tapes at contacts and 

voltage was measured using oscilloscope. As the strain was applied, maximum of 2Vpp was 

observed suggesting that MoS2 was capable of generating charges which lead to the increase 

in capacitance. Graph showing the response of the MoS2-Al under strain can be found in 

supplementary information (SI) as figure S1. As the MoS2/Al foil is bent inward cyclically to 

induce the bending strain, corresponding positive voltage peaks can be measured. Bending of 

MoS2/Al foil leads to create a piezoelectric potential gradient in such a way that one of the 
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contacts would induce positive potential and other will induce negative potential. During such 

process, the free external charges are driven to the outside circuitry to balance this potential. 

Similarly, when the strain is released and the MoS2/Al returns to its initial or free-state, the 

piezoelectric potential diminishes and the free charges that have accumulated at both ends of 

MoS2/Al foil generates an opposite potential. The free charges gradually flow back in a 

direction opposite to the accumulation process and hence a negative voltage peak is observed. 

It should be noted that in this case, the MoS2 grown on Al foil have random crystal orientations 

wherein Raman spectroscopy studies reveals the growth of trilayer MoS2. There are recent 

studies on the piezoelectric properties of such few layer solution processed MoS2 with 

enhanced dielectric and energy storage capacity [22-23]. Further study in terms of physical 

explanation is needed to fully understand the piezoelectric voltage generation in such systems. 

In this case, piezoelectric voltage generation upon external strain and increased in the 

capacitance observed after MoS2 growth on Al foil when compared with pristine Al foil is an 

indication of piezoelectricity in MoS2.  

Effect of air gap on strain 

Under unstrained conditions of flexible MoS2 capacitor, small air gap exists between the 

dielectric (cellulose paper) and metal plates (MoS2-Al foil) thereby leading to the formation 

of virtual capacitance with air as dielectric. Hence there are two capacitances involved, one 

with dielectric as air (Ca) and another with dielectric as cellulose paper (Cp) with same area 

of cross section but different air gaps between the MoS2-Al foil and cellulose paper which 

results in the series combination of capacitance. It should be noted that the dielectric value 

of air is less when compared to that of cellulose paper (~ 4.5) and hence the virtual 

capacitance due to air gap would be less when compared to the capacitance due to cellulose 

paper.  Also, there are air pore visible in the cellulose paper which can be verified from the 

FESEM image of the pristine cellulose paper and can be found in supplementary 

information as figure S2. The effect of air pore has been considered while calculating the 

permittivity of the cellulose paper and hence does not add an extra capacitance. Since both 

the virtual capacitors are in series combination, the effective capacitance will decrease in 

unstrained condition and is given by following equation 

ceff =  
𝑐𝑎𝑐𝑃

𝑐𝑎 + 𝑐𝑃
 

Ceff = Effective Capacitance of MoS2 Capacitor, Ca= virtual capacitance due to air gap, Cp = 

capacitance due to cellulose paper 



12 

Upon application of external strain to the flexible MoS2 capacitor, the air gap between the 

cellulose paper and MoS2-Al foil reduces which decreases the virtual capacitance due to the 

air and hence capacitance due to cellulose paper will become dominant. When large strains 

are applied where the air gap becomes null, then effective capacitance will consist of 

capacitance due to cellulose paper (Cp) such that virtual capacitance due to air gap (Ca) 

vanishes.  

To verify the above effect, experiments were performed on pristine Al foil as capacitor 

electrodes and cellulose paper as dielectric. It was observed that Al foil with cellulose paper 

also acts as a capacitor but the capacitance variation upon strain was less when compared to 

MoS2-Al foil. The variation of capacitance with strain is as shown in figure 3d. For Al foil, 

under 2% bending strain, 25% increase in capacitance was observed whereas for MoS2-Al, 

55% increment in the capacitance was observed which suggests that piezoelectric effect is 

dominant in case of MoS2-Al foil. 

To further explore the flexible MoS2 capacitor in different analog circuits it was applied in 

RC filters wherein the C of the RC filter was replaced with flexible MoS2 capacitor. The RC 

filter was tested for both low and high pass filters. Figure 4a shows the circuit diagram of low 

pass filter (LPF) with both R and C are replaced by flexible MoS2 based resistor and capacitor. 

The resistance measured for MoS2 resistor was 5.5 MΩ and capacitance of the flexible MoS2 

capacitor was measured to 5.2 pF. The cutoff frequency measured was 4.5 KHz. LPF circuit 

can be defined as the circuit which allows frequencies below a critical frequency, called the 

cutoff frequency (fco), and attenuates the frequencies above the cutoff frequency. Expressions 

for important parameters of LPF are given as 

The gain of the low pass filter is found by 

 

The cut-off frequency of low pass filter is  

 

The phase difference of low pass filter is 
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𝜙 = − tan−1(2𝜋𝑅𝐶) 

Different inputs were applied to the LPF such as sinusoidal, square and triangular wave and 

their corresponding output were observed to be inverted cosine, triangular and parabolic 

nonlinear wave with some attenuation respectively as shown in the figure 4b, c, d. The 

reactance of a capacitor varies inversely with frequency, while the value of the resistor is 

independent of frequency. At low frequencies the capacitive reactance of the capacitor will 

be very large compared to the resistive value of the resistor. Hence the voltage across the 

flexible MoS2 capacitor will be much larger than the voltage across the flexible MoS2 resistor. 

Thus at low frequency, upto cut off frequency, output of the LPF will be same as the input 

signal. At high frequencies the capacitive reactance of the capacitor will be very low 

compared to the resistive value of the resistor which further decreases as a frequency 

increases. The voltage across the flexible MoS2 capacitor will be much less than the voltage 

across the flexible MoS2 resistor. When the input frequency crosses the cut-off frequency of 

the LPF, the circuit performs the integration of the input wave as seen in figure 4. 

 

Figure 4: (a) Circuit Diagram of low pass filter (b) Integration of square wave (c) 

Integration of triangular wave (d) Integration of sinusoidal wave 

Similarly, high pass filter (HPF) was designed by swapping the positions of R and C. It should 

be noted that same value R and C were used for HPF design. HPF may be defined as the 

circuit which passes frequencies above the critical frequency (fco) but rejects the frequencies 

below the critical frequency. Expressions for important parameters of HPF are given as 
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|𝐻𝑛(𝜔)| = |
𝑉𝑜

𝑉𝑠
| =

𝜔𝑅𝐶

√1 + (𝜔𝑅𝐶)2
 

The cut-off frequency of low pass filter is  

 

The phase difference of low pass filter is 

 

𝜙 = 900 − tan−1(2𝜋𝑅𝐶) 

 

To test the circuit, similar inputs were applied to the HPF such as sinusoidal, square wave, 

triangular wave and observed output waveform were cosine, impulse train and square wave 

with attenuation as shown in the figure 5b, c, d respectively. At high frequencies the capacitive 

reactance of the flexible MoS2 capacitor will be very low compared to the resistive value of 

the flexible MoS2 resistor. Thus at high frequency above the cut off frequency output observed 

was same as the input signal. But, at the low frequencies, the capacitive reactance of the 

flexible MoS2 capacitor increases compared to the resistive value of the flexible MoS2 resistor 

which further increases the capacitive reactance as frequency decreases. Hence, voltage 

across the flexible MoS2 capacitor will be much larger than the voltage across the flexible 

MoS2 resistor. Thus at the frequencies lower than the cut off frequencies, HPF circuit 

performs derivative of the input signal as shown in figure 5. 
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Figure 5: High Pass Filters based on flexible MoS2 capacitor (a) Circuit Diagram of high 

pass filter (b) Differentiation of square wave (c) Differentiation of triangular wave (d) 

Differentiation of sinusoidal wave 

Further, to study the effect of strain on the performance of HPF, different strains were applied 

on flexible MoS2 capacitor and the corresponding output were measured. It was observed that 

capacitance of the flexible MoS2 capacitor increases with applied strain. Hence, in case of 

HPF (differentiator) application of strain increases results in increase in the flexible MoS2 

capacitance and thus capacitive reactance in the circuit decreases. As the reactance of the 

flexible MoS2 capacitor decreases, the gain of the HPF circuit increases. Next, cut-off 

frequency is inversely proportional to the capacitance and hence the cut-off frequency of the 

HPF also decreases. Graph showing the values of the cut-off frequency with different strain 

can be found in supplementary information as figure S3. The other parameter of the HPF is 

the phase difference between input and output signal which holds a direct relation with the 

capacitance as discussed in expressions of HPF circuit and hence upon strain, the phase 

difference between the input and output signal decreases. Therefore, upon external 

mechanical strain, the important parameters of the filter circuit such as gain, cut-off frequency 

and phase can be modulated. Further, time charging and discharging constant (τ also increases 

upon application of strain. Figure 6 shows the output of the HPF under different strains for 

square wave input waveform and their corresponding output signal plot. As can be seen from 

figure 6, as applied strain increases, output voltage amplitude increases which increases the 

gain of the HPF. Also the time constant for discharging increases which is due to the 

increment in the capacitance upon strain.  
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Figure 6) Flexible MoS2 based High Pass Filter under strain (a) Differentiation of square 

wave without strain (b) Differentiation of square wave with 1% strain (c) Differentiation of 

square wave with 1.5% strain (d) Differentiation of square wave with 2% strain 

 

There are reports on use of various functional materials for device fabrication wherein 

external strain modulates the transport properties which could then be utilized for 

enhancement of the device performance. Zhang et al., reported the fabrication of MoS2/CuO 

on flexible substrate and strain modulated it for enhancement in photodetector performance 

[16]. Sahatiya et al., fabricated MoS2/CuO on paper substrate and utilized the strain 

modulation for designing oscillator circuit [2]. Zhou et al., reported tribotronic tuning of diode 

for signal modulation [3]. Apart from these, there are various studies which report 

enhancement in transport properties due to external strain modulation [1, 12,24]. But all of 

these reports are based on modulating the capacitance of p-n junction by means of 

complicated cleanroom technology or by solution processed method wherein optimizations 

are needed to form a uniform junction. There are no reports demonstrating MoS2 as electrode 

for capacitor material and enhancing the capacitance simply by means of external strain 

modulation. Cellulose paper was utilized as a dielectric for the fabrication of capacitor which 

avoids the use of sophisticated cleanroom deposition techniques. Overall cost of each 

fabricated capacitor is less than $0.02 and. the prototype can be assembled within 2 min. 
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Moreover, the growth process of MoS2 on Al foil using hydrothermal synthesis is entirely 

scalable and can be utilized for fabricating large area flexible capacitors.  

2.4 Conclusion 

In summary, we report for the first time, MoS2 on Al foil as electrode and cellulose paper as 

dielectric for fabrication of flexible capacitor whose capacitance can be modulated upon 

external mechanical strain and was applied in human integrated electronic passive devices 

such as filters. As the applied strain increases, increase in the capacitance of flexible MoS2 

capacitor was observed. The effect of strain was studied on the filters circuit where the 

important parameters of the filter circuit such as gain, cut-off frequency, phase and time 

constant were monitored upon strain. Such a simple and low cost technique for fabrication of 

flexible and wearable capacitor is a major step ahead in flexible electronics which hold 

tremendous potential applications in field of analog and digital electronics and sensors for 

personal healthcare monitoring.  
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Chapter 3 

Pyro-phototronic nanogenerator based 

on flexible 2D ZnO/graphene 

iheterojunction and its application in 

self-powered Near Infrared 

photodetector and active analog 

frequency modulation 

 

Abstract 

Even though 2D ZnO has been utilized for enhanced self-powered sensing by strain 

modulation due to its piezoelectric property, study on utilizing pyroelectric property of ZnO 

remains unexplored. The piezoelectric property of 2D ZnO works on mechanical strain which 

disrupts the structure of ZnO leading to the failure of device. For pyroelectric nanogenerator, 

temperature difference can be triggered by external light source which does not disrupt the 

ZnO structure and also avoids the need for physical bending/pressing as in case of 

piezoelectric nanogenerator. This work represents the first demonstration of fabrication of 

flexible 2D ZnO/Gr pyro-phototronic diode where the pyro potential generated in the 2D ZnO 

due to the NIR illumination adds/subtract with the built-in electric field of the heterojunction 



21 

and modulates the depletion region of the heterojunction thereby enabling bias free operation. 

Further, the variation in the depletion width of the heterojunction was utilized as a variable 

capacitor in frequency modulator, wherein, with the increasing intensity, frequency of 

oscillations increased from 9.8 MHz to 10.42 MHz. The work presented provides an 

alternative approach for self-powered NIR photodetector and to utilize the same at circuit 

level having potential applications in the fields of optothermal detections, electronic tuning 

circuits etc. 

3.1 Introduction: 

With the increasing interest in flexible and wearable electronics research, developing self-

powered external interactive electronic devices has been of great significance. The analog 

signals for driving the electronic devices can only be electrically modulated and there are only 

few reports for external modulation of analog signals using piezo and triboelectricity. [1-

2]But the use of Pyroelectricity for external modulation of analog signals and the development 

of self-powered devices which can be termed as “Pyrotronic devices” remains unexplored. 

Pyroelectricity depends on polarization of the material which is dependent on temperature 

difference. The temperature difference can be induced by means of heat, light etc. The 

temperature difference across the pyroelectric material leads to decrease in the level of 

spontaneous polarization and thereby decreasing the free charges bound to the material 

surface. [3] The open circuit condition leads to the free charges to remain at the electrode 

surface which generates pyroelectric potential. The short circuit condition allows the current 

between the two polar surfaces of the pyroelectric material. Similarly, reverse electric current 

flows as the temperature difference starts to decrease which increases the level of spontaneous 

polarization. 

ZnO, a widely studied n-type metal oxide possesses peculiar electrical, optical and thermal 

properties which are applied for variety of applications such as field effect transistors, sensors 

and optoelectronics. [4-5] The piezoelectric property of ZnO has been utilized for fabrication 

of nanogenerator for energy harvesting. [6] Although many of the ZnO properties and their 

corresponding applications have been demonstrated but the Pyroelectric property of ZnO 

remains unexplored for applications in self-powered electronic devices. Hence there is a need 

to study the pyroelectric property of ZnO for applications like nanogenerator, self-powered 

photodetectors. 
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 To further expand the scope of application pristine ZnO offers, heterojunction of ZnO have 

been fabricated with Graphene as p type material which forms heterojunction and hence can 

be utilized for variety of electronic and optoelectronic applications. [7] There are reports of 

Gr/ZnO on various flexible substrates such as cellulose paper, eraser, polyimide etc. for 

enhanced photodetection performance using external strain modulation. [8-10] There are 

reports of self-powered Gr/ZnO photodetectors on flexible substrate using piezoelectricity 

property of ZnO. [11-18] But there are no reports of Gr/ZnO self-powered photodetectors 

utilizing the pyroelectric property of ZnO. The piezoelectric property of ZnO works on 

mechanical strain on ZnO which disrupts the structure leading to the failure of device. For 

pyroelectric nanogenerator, temperature difference can be triggered by external light source 

which does not disrupts the ZnO structure and also avoids the need for physical 

bending/pressing the device as in case of piezoelectric nanogenerator. Further, every 

heterojunction exhibits depletion region and junction capacitance. The light induced 

pyroelectric potential will modulate the barrier potential and hence the junction capacitance 

modulates. This modulation of the junction capacitance can be utilized for various analog 

electronic applications such as frequency modulator and oscillator circuits. Even though 

numerous applications of ZnO have been reported, research along pyroelectric property of 

ZnO and utilizing it for analog electronic applications remains unexplored. 

In this work, we demonstrate for the first time the fabrication of Gr/ZnO Pyrotronic diode for 

NIR photodetection and active analog frequency modulator. Pyroelectric polarization 

potential generated in ZnO due to the generation of pyroelectric charges has been utilized for 

the generation of short circuit current which enables bias free photodetection. Upon light 

illumination, pyroelectric polarization induced in ZnO adds/subtracts from barrier potential 

of Graphene/ZnO heterojunction thereby changing the depletion region width and the junction 

capacitance associated with it. This capacitance modulation under light illumination was 

further utilized for frequency modulation in oscillator circuit. To the best of our knowledge, 

this is the first report on the fabrication of flexible Gr/ZnO based Pyrotronic diode for self-

powered photodetection and frequency modulation with flexible substrate.  

 

3.2 Experimental Section 

Materials and characterization 

Analytical grade chemicals (Zinc acetate dihydrate, hexamethylenetetramine), ITO coated 

PET substrates were purchased from Sigma Aldrich. Graphene (8 nm flake size) was procured 

from Graphene Supermarket, USA. Field Emission Scanning Electron Microscopy (FESEM) 
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analysis was performed by ZEISS Ultra-55 SEM to study morphology. The electrical 

measurements were carried out with Keithley 4200 SCS instrument. Agilent digital storage 

oscilloscope (DSO 3062A) was utilized for the measurement of frequency of oscillation of 

oscillator circuit. NIR source of wavelength 780 nm was utilized for photodetector 

experiments. 

Growth of ZnO on ITO coated PET substrate 

Hydrothermal synthesis was utilized for the growth of ZnO on ITO coated PET substrate. ITO 

coated PET substrate was soaked in seed solution consisting of 1mM of Zinc acetate dihydrate 

[Zn (CCH3O2). (H2O2)2] in 10 mL of propanol for 30 minutes followed by drying at 70°C for 

30 minutes. The seed deposited ITO-PET substrate was then immersed in nutrient solution 

consisting of [Zn (CCH3O2). (H2O2)2] and hexamethylenetetramine (HMTA) in 

1:1concentration. pH of the nutrient solution was adjusted to 10 by dropwise addition of 

NaOH and hydrothermal was performed at 90°C for 6 hours. The obtained ZnO grown on 

ITO-PET substrate was dried at 70°C for 30 minutes.  

Fabrication of Graphene/ZnO heterojunction 

Graphene (12 nm flake size procured from Graphene Supermarket) was dispersed in NMP (2 

wt. %) and was spin coated on masked ZnO grown ITO-PET and dried in hot air at 90 °C for 

1 hour. This was followed by defining contacts on Graphene and ZnO by silver paste. 

Schematics showing the synthesis and the fabrication procedure is as shown in figure 1.  

 

 

 

 

 

 

Figure 1: Graph of responsivity v/s bending cycles demonstrating negligible change in the 

responsivity value 
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Material Voltage Responsivity Ref 

WSe2 2 210 mA/W [R1] 

Ge 3 16 mA/w [R2] 

MoS2/ZnS 1 4.5 µA/W [R3] 

MoS2/V2O5 1 29.4 mA/W [R4] 

Graphene/InAs nanowire Tunable (2-20V) 0.5 mA/W [R5] 

Reduced graphene oxide 1 0.8 A/W [R6] 

Graphene/ZnO 0 26.4 mA/W This work 

 

 

3.3 Results and discussions 

Heterojunction (p-n) fabricated using various functional materials are important units in 

electronics and optoelectronics which finds tremendous applications in Internet of Things 

(IoT) ranging from health monitoring, security, sensors etc. One such potential application is 

photodetector where the heterojunction needs to be reversed biased which is conventionally 

provided by batteries which has issues such as high maintenance cost, limited lifetime and 

environmental issues. Hence there is a need for self-powered flexible photodetectors which 

can operate without the need of any external power supply. Emerging field that is recently 

been explored for self-powered photodetector is pyro-phototronics wherein pyro potential 

generated is utilized for biasing of the photodetector. [3] But pyro potential generated remains 

for short duration of time till the temperature difference becomes constant and hence for 

operation of such self-powered systems time varying field is necessary which can be achieved 

by constantly turning on and off the light source at regular intervals thereby creating a time 

varying electric field. This time varying electric field helps in flow of displacement current 

across the heterojunction which then flows as conduction current through the external circuit. 

Here, ZnO grown on ITO-PET flexible substrate acts as a pyroelectric material wherein the 

Near Infrared (NIR) illumination generates temperature difference. The details regarding the 

growth of 2D ZnO and the fabrication of Graphene/ZnO heterojunction can be found in 

Supplementary Information. Schematic showing the fabrication procedure is as shown in 

figure 2.  
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Figure 2: Schematic of the fabrication procedure for Pyrotronic Gr/ZnO diode. 

To study the morphology of the as grown ZnO on ITO-PET substrate, detailed FESEM 

analysis was performed wherein morphology of the 2D ZnO was studied and confirmed. 

Figure 2a shows the high magnification FESEM image wherein individual 2D ZnO 

nanosheets are observed wherein the size of 2D ZnO was found to be in sub 200 nm as shown 

in figure 2b. The growth of 2D ZnO can be attributed to the addition of NaOH wherein the 

OH- ions are attracted to the (1000) direction of ZnO which is the natural growth direction 

and hinders the growth of ZnO in (1000) plane. This results in the growth of ZnO in other two 

planes leading to the 2D morphology of ZnO as seen in FESEM image in figure 3. Detailed 

explanation of the growth kinetics and the optimized parameters for the growth of 2D ZnO 

on flexible substrate can be found in a recent report from our lab [8]. 

 

 

 

 

 

 

Figure 3: a) High magnification FESEM image demonstrating 2D ZnO Nano flakes 

morphology b) Few layer transparent 2D ZnO. 

To demonstrate the application of the fabricated p-n heterojunction as a self-powered 

photodetector, I-V characteristics were measured in the range of -1V to 1V with silver paste 

as contacts. As seen in figure 3a, the graph indicates rectifying junction formation with turn-
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on voltage of 0.47 V. To further study the transport mechanism of Gr/ZnO heterojunction, 

thermionic emission theory was employed and the ideality factor and barrier height calculated 

was 1.97 and 0.357 eV which is excellent considering the simplicity of the device fabrication. 

Expressions for thermionic emission theory and ideality factor calculation can be expressed 

as 

𝐼 = 𝐼𝑜 exp (
𝑞(𝑉 − 𝐼𝑅)

𝜂𝐾𝑇
) 

 

𝐼𝑜 = 𝐴𝐴∗𝑇2𝑒𝑥𝑝 (
−𝑞Φ𝐵

𝐾𝑇
) , 𝐴∗ =  

4𝜋𝑞𝑚∗𝐾2

ℎ3
 

𝜂 =  
𝑞

𝐾𝑇

𝑑𝑉

𝑑(𝑙𝑛𝐼)
 

Where K is boltzman constant, R is series resistance and q is electronic charge, T is absolute 

temperature, A is junction area and A* is Richardson coefficient which is assumed to be 32 

for ZnO and m* is the effective mass which is 0.27 m0.  ΦB and η are barrier height and 

ideality factor. 

The ideality factor of the fabricated Gr/ZnO heterojunction as found to be greater than 1 which 

can be attributed to the defects introduced in ZnO during the hydrothermal growth, 

inhomogeneous growth as evident from FESEM images [12] and presence of surface states. 

Also, the barrier height of the heterojunction was found to be higher than the work function 

difference between Gr and ZnO which was due to the possible oxidation of Gr which makes 

it more p type thereby increasing the barrier height. Figure 3b shows the IV characteristics of 

the Gr/ZnO under different NIR illuminations wherein increase in current was observed with 

increasing NIR illumination intensity. It should be noted here that increment in the current is 

not due to the pyro potential as when the voltage is swept and the current is measured the rate 

of change of temperature becomes constant which vanishes the pyro potential. Therefore, ZnO 

film experiences constant temperature and hence the current increment is due to the 

temperature increase and not due to pyroelectric potential. Also, NIR illumination was only 

focused on ZnO and not on Graphene. As the intensity of NIR increases, temperature 

experienced by the ZnO film increases and hence current increases. The increment in the 

current is due to the decrease in the fermi level of ZnO which decreases the barrier height 

thereby leading to the increment in current. The schottky barrier height change with different 
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intensities is as shown in figure 4c and as high as 26 meV change in the schottky barrier height 

was observed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: a) I-V characteristics of Pyrotronic diode b)  I-V characteristics of Pyrotronic diode 

under different NIR illuminations c) Change in barrier height under different light 

illumination 

In order to experimentally verify the development of pyroelectric nanogenerator based self-

powered NIR photodetector, Gr/ZnO heterojunction without any external biasing was 

illuminated from ZnO end. Figure 4a shows the corresponding temporal response upon NIR 

illumination wherein as soon as the illumination is turned “ON’”, decrement in the current is 

observed. The decrement in the current can be attributed to the NIR light induced pyro-

potential (Φpy) in the direction of barrier potential (Φb) which cause the depletion region width 

to increase. Therefore, the total electric field inside the heterojunction increases instantly, and 
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the time variation of the electric field leads to the flow of electrons thereby producing 

displacement current in the heterojunction which flows as short circuit output current through 

the external circuit as shown in figure 5d. After some time, the temperature difference 

becomes constant and hence current increases to its initial value. When the NIR illumination 

is turned off, increment in the current is observed which was due to the reverse pyro-potential 

generated in the direction opposite to that of barrier potential. Therefore, the depletion width 

shrinks and hence the total electric field inside the heterojunction decreases instantly, and the 

time variation of the electric field leads to the flow of electrons thereby producing 

displacement current in the heterojunction which flows as a short circuit output current 

through external circuit as shown in figure 5e. The same procedure was repeated for 6 times 

and similar response was observed. Figure 5b shows one such cycle representing the fall and 

rise of current on turning “ON” and “OFF” the NIR illumination. Rise time, defined as the 

time taken by the sensor to reach from 10% to 90% of its maximum value, was calculated to 

be 90 ms and the fall time was calculated to be 78 ms. The slow transient after the pyro peak 

current is reached can be attributed to the decrease in the temperature gradient (dT/dt) value 

which slows down the current response.  When the NIR illumination is switched “ON” the 

temperature gradient (dT/dt) value is high i.e. the rate of change of temperature with time is 

high and hence a fast response was achieved, but as the NIR illumination is turned “ON” for 

a longer period, the temperature gradient (dT/dt) eventually becomes less and temperature 

eventually become constant and hence there is a slow response observed. It is clear that the 

decrease and increment of current occurs at zero bias due to the time varying field generated 

due to the repeated NIR illumination and hence hold tremendous potential as self-powered 

NIR photodetector. It should be noted here that there is no generation of photo carriers unlike 

in most of the conventional photodetectors, wherein the illumination leads to the 

photogenerated carriers which transport to the metal contact thereby increasing/decreasing 

the current. Herein, the current variation due to the NIR illumination occurs due to the pyro-

potential generation which modulates the depletion region and not due to the photogenerated 

carriers. Also, graphene is known to respond to NIR illumination and generate photogenerated 

carriers [13], but in this case, NIR illumination was focused only on ZnO and hence Gr cannot 

generate the photogenerated carriers. This was done so as to avoid the accumulation of charge 

carriers inside the Gr as the work function of Gr is less than the electron affinity of ZnO which 

does not allow the photogenerated carriers from Gr to transport to ZnO. Hence photogenerated 

charge carriers would be trapped in Gr which would lead to the failure of device.  
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Responsivity is an important figure of merit of the photodetector and is given by the measure 

of the photocurrent generated per unit power of incident light area and is given by  

𝑅𝜆 =  
𝐼𝜆

𝑃𝜆 × 𝐴
 

Where 𝐼𝜆 is the different of the photocurrent and dark current is, 𝑃𝜆 is the intensity of the light 

illumination and A is the area of the device. The responsivity calculated for the fabricated 

device was found to be 2.64 mW/cm2. Further, to test the reliability and robustness of the 

fabricated device, bending cycles studies were performed where the device was bend and 

bought to its initial position for 500 cycles and then responsivity values were measured. There 

was a small change in the values of responsivity observed at various bending cycles which 

can be attributed to the defects introduced during hydrothermal growth of 2D ZnO which 

upon bending results in the permanent deformations which affects the responsivity values.  
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Figure 5: a) Temporal response of Pyrotronic diode under time varying NIR illumination b) 

One cycle of temporal response of Pyrotronic diode under time varying NIR illumination 

showing rise time of 90 msec c,d,e) Schematics showing the transport mechanism with and 

without illumination of Pyrotronic diode. 
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To further demonstrate the potential application of the fabricated heterojunction which can 

modulate the depletion width upon NIR illumination, it was utilized as a variable capacitor 

whose capacitance can be modulated upon NIR illumination in developing frequency 

modulator circuit. Schematic of the frequency modulator circuit is as shown in figure 5a. It 

consists of an amplifier circuit having coupling capacitances, bypass capacitances, biasing 

resistors and transistor (BC547) and feedback LC resonant circuit. The frequency of 

oscillation was observed in digital oscilloscope. The feedback capacitor was replaced by 

Gr/ZnO heterojunction. The frequency of oscillation of LC resonant circuit is given by, 

𝑓 =  
1

2𝜋√𝐿𝐶
 

To obtain the sustained oscillation, gain of the amplifier was adjusted. Gr/ZnO heterojunction 

forms a barrier potential or depletion region which can act as a capacitor. Under no 

illumination, frequency of oscillation was found to be 9.8 MHz. Figure 5b shows the graph 

of different frequencies generation upon illumination intensity of 1.81 mW/cm2and it was 

observed that both frequency and Vpeak-peak modulates. This can be attributed to the 

modulation of the depletion region width upon NIR illumination. Upon NIR illumination from 

ZnO side, pyro-potential generated sums up with barrier potential and hence the depletion 

region width increases which decreases the junction capacitance and hence frequency of 

oscillation increases. As the temperature difference becomes constant, pyro potential vanishes 

and the frequency of oscillations retains its initial value. As soon as the NIR illumination is 

turned “OFF”, pyro-potential is induced in opposite direction and hence the depletion region 

width decreases which increases the capacitance and decreases the frequency of oscillation. 

Hence time varying NIR illumination can be utilized for frequency modulation. Figure 5c 

shows the graph of maximum frequency of oscillation achieved upon turning “ON” the 

illumination of different NIR intensities suggesting that as the illumination intensity increases 

the maximum frequency of oscillation increases. Further, peak to peak voltage (Vpp) of the 

oscillation was monitored and it was found that upon turning “ON” the illumination, the Vpp 

of the oscillation also increases with increase in the illumination intensity. This can be 

attributed to the addition of both pyro and barrier potential which increases the Vpp of the 

oscillation. Figure 5d shows the graph of Vpp and maximum Fosc under different NIR 

illumination intensities. It should be noted that the frequency of light modulation was not in 

MHz. The change in the frequency of oscillations depends upon the change in the capacitance 

value of the pyrotronic diode and hence when light was repeatedly turned “ON” and “OFF” 

the pyro potential generated increases the width of the depletion region and hence the 
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capacitance decreases. This decrease in the capacitance leads to the increase in the frequency 

of oscillations.  Also, the measurements were not performed for different wavelengths of NIR 

region because the reason for choosing NIR illumination was to induce temperature 

difference. However, to induce temperature difference, different intensities at 780 nm 

wavelength were utilized for measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: a) Schematic of frequency modulator circuit with Pyrotronic diode as capacitor b) 

Frequency modulation response under 1.81 mW/cm2 NIR illumination intensity c) Frequency 

modulation with different intensities showing only ON state frequencies d) Graph showing 

the variation of frequency of oscillation and Vpeak-peak with different NIR intensities. 

The phenomena of pyro-potential generation and the modulation of the depletion region and 

further utilizing it for frequency modulator can be better understood by energy band diagram 

of the Gr/ZnO Pyrotronic diode as shown in figure 7. The work function of Gr is 4.365 eV 
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[14] and the electron affinity of ZnO is 4.3 eV [8] and the bandgap of ZnO is 2.8 eV. The 

reason for barrier height value to be different from the theoretical values can be attributed to 

the oxidation of Gr in ambient atmosphere. Upon turning “ON” the NIR illumination from 

ZnO side, pyro-potential is generated which is in same direction to that of barrier potential 

and hence the effective barrier height increases as shown in figure 7. The pyro-potential is a 

function of time and hence when the temperature difference becomes constant, the pyro-

potential vanishes since the potential observed by the heterojunction would only be barrier 

potential. Upon turning off the NIR illumination, reverse pyro-potential is generated which is 

in opposite direction to that of barrier potential and the effective barrier height decreases. 

Eventually the temperature difference becomes constant and hence the reverse pyro-potential 

vanishes and again the potential observed by the heterojunction would only be barrier 

potential. Moreover, heterojunction possess junction capacitance whose value depends upon 

the width of the depletion region and modulation of depletion region width would also 

modulate the junction capacitance of the heterojunction which could be applied for realizing 

various analog circuits.  
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Figure 7: Energy band diagram of Pyrotronic diode with and without NIR illumination 

There are various reports on self-powered photodetectors based on functional materials that 

are based on techniques such as piezoelectricity, photovoltaics, and recently studied 

triboelectricity. [15-16] More recently, a different technique that is recently being studied is 

pyroelectricity. There are reports on pyroelectricity being explored for its use in self-powered 

photodetectors. Wang et al., utilized ZnO for light induced pyroelectric effect as ultraviolet 

sensing which increased the performance of photodetector in terms of rise time and 

detectivity. [3] Wang et al., reported light induced pyroelectric nanogenerator for self-

powered infrared sensing [17]. Table showing the comparative performance of the fabricated 

photodetector in terms of responsivity can be found in SI as table S1. But the use of such 

heterojunctions for the development of real time analog circuits such as oscillator and 

frequency modulators still remains unexplored and is important in interactive flexible and 

wearable electronic applications. In this paper we report the fabrication of flexible Pyrotronic 

diode using Gr/ZnO on an ITO coated PET substrate which was utilized as a variable capacitor 
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in frequency modulator circuit. The fabrication cost is considerably less compared to 

cleanroom fabricated devices due to the solution processed technique. The synthesis strategy 

allows for large area growth and can be extended to any many other functional materials of 

choice. This low cost, large area fabrication of flexible Gr/ZnO Pyrotronic diode is a novel 

concept that finds numerous applications in biomedical, optothermal detections and in 

developing interactive analog electronic devices. 

 

3.4 Conclusion 

In summary, this work represents the first demonstration for fabrication of Pyrotronic diode 

and its application in self-powered NIR photodetector and active analog frequency 

modulation. Ideality factor and barrier height calculated for Pyrotronic diode was found to be 

1.97 and 0.357 eV which is excellent considering the simplicity of the device fabrication. 

Upon light illumination, maximum barrier height change of 27 meV was observed which 

increased the depletion region width which results in the decrease in the junction capacitance. 

This variation in junction capacitance upon light illumination was further utilized for analog 

frequency modulator wherein frequency change from 9.8 MHz to 10.42 MHz was observed. 

This simple, cost-effective fabrication of Pyrotronic diode is a major step ahead in the 

development of self-powered devices which can be used for interactive electronic devices 

having potential applications in the field of optothermal imaging, optoelectronics and sensors.  

Acknowledgement 

The authors acknowledge the financial assistance from Defense Research and Development 

Organization (DRDO), India Grant ERIP/ER/RIC/2015-6/10/M/01/1660 and seed grant, IIT 

Hyderabad. 

3.5 References 

1. Sahatiya, P., & Badhulika, S. Fabrication of a solution-processed, highly flexible few 

layer MoS 2 (n)–CuO (p) piezotronic diode on a paper substrate for an active analog 

frequency modulator and enhanced broadband photodetector. Journal of Materials 

Chemistry C, 2017. 

2. Zhou, T., Yang, Z. W., Pang, Y., Xu, L., Zhang, C., & Wang, Z. L. Tribotronic tuning 

diode for active analog signal modulation. ACS Nano, 2016, 11(1), 882-888. 



36 

3. Wang, Z., Yu, R., Pan, C., Li, Z., Yang, J., Yi, F., & Wang, Z. L. Light-induced 

pyroelectric effect as an effective approach for ultrafast ultraviolet 

nanosensing. Nature Communications, 2015, 6, 8401.  

4. Sahatiya, P., & Badhulika, S. One-step in situ synthesis of single aligned graphene–

ZnO nanofiber for UV sensing. RSC Advances, 2015, 5(100), 82481-82487. 

5. Veerla, R. S., Sahatiya, P., & Badhulika, S. Direct writing of ZnO pencil on paper 

based flexible UV photodetector and disposable Photoresponsive Uric Acid 

sensor. Journal of Materials Chemistry C, 2017, 5, 10231-10240 

6. Wang, Z. L., &Song, J.  Piezoelectric nanogenerators based on zinc oxide nanowire 

arrays. Science, 2006, 312(5771), 242-246. 

7. Dang, V. Q., Trung, T. Q., Kim, D. I., Duy, L. T., Hwang, B. U., Lee, D. W., & Lee, 

N. E. Ultrahigh responsivity in graphene–ZnO nanorod hybrid UV 

photodetector. Small, 2015, 11(25), 3054-3065. 

8. Sahatiya, P., Jones, S. S., Gomathi, P. T., & Badhulika, S. Flexible substrate based 

2D ZnO (n)/graphene (p) rectifying junction as enhanced broadband photodetector 

using strain modulation. 2D Materials, 2017, 4(2), 025053 

9. Hwang, J. O., Lee, D. H., Kim, J. Y., Han, T. H., Kim, B. H., Park, M., & Kim, S. O. 

Vertical ZnO nanowires/graphene hybrids for transparent and flexible field 

emission. Journal of Materials Chemistry, 2011, 21(10), 3432-3437. 

10. Chung, K., Lee, C. H., & Yi, G. C. Transferable GaN layers grown on ZnO-coated 

graphene layers for optoelectronic devices. Science, 2010, 330(6004), 655-657. 

11. Zhang, F., Niu, S., Guo, W., Zhu, G., Liu, Y., Zhang, X., & Wang, Z. L. Piezo-

phototronic effect enhanced visible/UV photodetector of a carbon-fiber/ZnO-CdS 

double-shell microwire. ACS Nano, 2013, 7(5), 4537-4544. 

12. Zhou, J., Gu, Y., Fei, P., Mai, W., Gao, Y., Yang, R., & Wang, Z. L. Flexible 

piezotronic strain sensor. Nano Letters, 2008, 8(9), 3035-3040. 

13. Sahatiya, P., Puttapati, S. K., Srikanth, V. V., & Badhulika, S. Graphene-based 

wearable temperature sensor and infrared photodetector on a flexible polyimide 

substrate. Flexible and Printed Electronics, 2016, 1(2), 025006. 

14. Shi, Y., Kim, K. K., Reina, A., Hofmann, M., Li, L. J., & Kong, J. Work function 

engineering of graphene electrode via chemical doping. ACS Nano, 2010, 4(5), 2689-

2694. 

15. Zhang, C., Zhang, L. M., Tang, W., Han, C. B., & Wang, Z. L. Tribotronic logic 

circuits and basic operations. Advanced Materials, 2015, 27(23), 3533-3540. 



37 

16. Wu, W., Wei, Y., & Wang, Z. L.Strain‐Gated Piezotronic Logic 

Nanodevices. Advanced Materials, 2010, 22(42), 4711-4715. 

17. Wang, X., Dai, Y., Liu, R., He, X., Li, S., &Wang, Z. L. Light-Triggered Pyroelectric 

Nanogenerator Based on a pn-Junction for Self-Powered Near-Infrared 

Photosensing. ACS Nano, 2017, 11(8), 8339-8345. 

18. Sahatiya, P., Shinde, A., & Badhulika, S. (2018). Pyro-phototronic nanogenerator 

based on flexible 2D ZnO/graphene heterojunction and its application in self-powered 

Near Infrared photodetector and active analog frequency 

modulation. Nanotechnology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 

 

 

Chapter 4 

Wireless smartphone assisted personal 

healthcare monitoring system using MoS2 

based flexible, wearable and ultra-low 

cost multifunctional sensor 

 

 

Abstract— Flexible, wearable, multifunctional sensors that can quantify electrical signals 

generated by human activities are of great importance in personal healthcare monitoring for 

Internet of Things (IoT) applications. In this report, we demonstrate for the first time, the 

multifunctionality of MoS2 grown on Al foil and further integrated onto eraser substrate to 

develop smart, low cost pedometer, gesture communication device and breath sensor by 

measuring physiological parameters such as strain, touch, hydration levels of lungs 

respectively. The data generated is wirelessly transmitted to the smartphone via Bluetooth and 

analysed using dedicated android applications for individual sensing displays. For pedometer, 

the fabricated sensor was integrated onto the knee which could then calculate the steps taken, 

distance covered, speed and the calories burnt by the individual. Gesture communication helps 

the deaf/dumb/paralyzed individuals to communicate with external environment using finger 

movements. Breath sensing allows for the early detection of lung diseases by monitoring the 

hydration levels of the lungs and further the piezotronic effect of MoS2 on breath sensing was 

systematically studied where 56.8% increase in the response was observed under 16% strain. 

The sensing mechanism for each stimulus is explained via modulation in the charge transport 

properties for each stimuli. The sensor exhibited excellent durability where the device 

performance was found to be stable even after continuous 500 bending cycles. The successful 

demonstration of such low cost multifunctional wireless personal healthcare monitoring 
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system for Internet of Things (IoT) applications is a major step ahead in flexible and wearable 

electronics. 

 

4.1 Introduction 

Advancements in flexible and wearable electronics have opened up new avenues in personal 

healthcare development that can monitor the individual physiological parameters 

continuously or at a regular intervals and thus act as reliable indicators in early disease 

diagnostics [1-2]. These existing technologies in health care however rely mostly on use of 

sophisticated and specialized sensors, instruments and services thereby leading to an increase 

in the overall cost of healthcare. Moreover, to access these facilities, individual need to visit 

hospital and clinics which is not only tedious but also costly. There are recent reports on 

personal health monitoring which utilize physiological parameters of an individual for 

glucose monitoring through tears, human motion monitoring, breath sensing for lung disease 

etc [3-5]. However, there are few reports which utilizes the low cost sensors for 

multifunctional sensing wherein the data can be wirelessly transmitted to smartphone with a 

dedicated android application for individual sensing [6]. Hence there is an urgent need for 

constant personal health monitoring system with wearable sensors which can monitor 

parameters such as breath, human motion, human steps (pedometer) and the data can be 

transferred to the smartphone for a convenient read-out.  

To fabricate multifunctional sensor, functional nanomaterials are utilized as active elements 

which respond to different chemical stimuli thereby leading to the overlap of the sensor data. 

To address this, various frontend processing algorithms such as principal component analysis 

and pattern recognition have been applied to the sensing data but these often lead to unreliable 

data [7-8]. Moreover, there is always a question on reliability and accuracy of the 

multifunctional sensor because of the utilization of the same sensor for different applications. 

Hence, flexible, ultra-low cost sensors are the ideal choice wherein different sensors can be 

fabricated with the same functional nanomaterial for individual sensing with an ability to 

transfer the sensing data to smartphone with a dedicated android application.  

In this work we develop a low cost wireless personal monitoring system using solution 

processed MoS2 grown on Al foil as an active sensing element with a dedicated android 

application for multi parameters sensing. The proposed system can be utilized as a pedometer 

for calculating the number of walking/running steps and the calories burnt, breath sensor for 
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monitoring breath of an individual, and a hand gesture communication sensor for paralyzed 

patients. Further each system consists of a dedicated android mobile application which 

receives the sensor data wirelessly through Bluetooth and displays the information regarding 

distance travelled, velocity, calories burnt for pedometer module, breath count for breath 

sensor module and action related to a specific gesture for gesture communication sensor 

module.  To the best of author’s knowledge this is the first demonstration of MoS2 grown on 

Al foil for wireless personal healthcare monitoring IoT system (pedometer, gesture 

communication and breath sensing) with dedicated Android application for each sensing 

module.  

 

4.2 Results and discussions 

Pedometer                

A pedometer is an electronic device that counts steps taken by an individual by detecting 

the motion of the individual hands or knees. This can be further utilized for the calculation of 

the distance travelled, velocity and calories burnt. Even though there are numerous Android 

applications that have been developed for fitness monitoring [13-14], these applications work 

without the integration of a sensor and demands the user to continuously update the 

information.  Moreover, without the use of a dedicated sensor, the data from the application 

is not reliable which results in the falsified data. Hence there is a need to develop sensor with 

a dedicated Android application where the data from the sensor can be continuously 

transmitted wirelessly to the smartphone. . Further, the measurements were also performed 

by measuring the response through the Arduino board and transmitting the data wirelessly via 

Bluetooth to smartphone. Figure 2e shows the digital images of the Android application that 

was developed for MoS2/Al foil based pedometer which displays the distance travelled, 

velocity and calories burnt.  

Gesture Recognition 

Motivated by the response of MoS2/Al to strain variations, the fabricated sensor was further 

utilized as a gesture sensor which will be of immense benefit to paralyzed/dumb subjects in 

communicating with the outside world. Traditional human machine interactions (HMI) 

include hand operation, speech input etc. whereas bioelectric signals include 

electroencephalogram (EEG), electromyogram (EMG) and electrooculogram (EOG) which 

are non-invasive and have the advantage of hands free communication [15-16]. But such 

https://en.wikipedia.org/wiki/Motion_(physics)
https://en.wikipedia.org/wiki/Hip_(anatomy)
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signals require sophisticated instrumentation and dedicated skilled labour for its operation 

which not only increases the cost of the system but also increases the complexity and the 

dependency of the patient on various external factors. Further low signal to noise ratio limits 

the use of such systems in real time. Deaf and dumb people face difficulties in communicating 

for availing daily necessary things such as food, communicating for different needs etc. Hence 

there is an urgent need to develop gesture sensor which is wirelessly connected to the 

smartphone with a dedicated android application which takes cares not only of the daily needs 

of such patients but also helps to communicate easily with the other people. The 

corresponding selection is wirelessly transmitted to the other individuals (doctor, family etc.) 

and the necessary action can be taken. Figure 3b shows the response of the sensor integrated 

onto human finger and its corresponding movement. As the finger is bent inwards, tensile 

strain is developed on eraser which gets transferred to MoS2/Al foil thereby changing the 

resistance of the MoS2/Al foil. The mechanism for the change in resistance of MoS2/Al upon 

bending is based on tunneling resistance change similar to pedometer sensing as explained in 

previous section. 

Breath Sensing                         

Point of care devices have become an integral part of human life because of their ability to 

detect several vital body parameters and early stages of diseases [17-18]. There have been 

reports on monitoring of blood pressure, glucose levels and pregnancy etc. whose sensing 

data can be wirelessly transmitted to the smartphone [19-20]. Human breath is another such 

metric whose sensing/analysis can lead to the detection of early stages of several diseases. 

The humidity sensing of MoS2/Cu2S and its further utilization as breath sensing to monitor 

the hydration levels of the lungs was recently reported by our lab [6]. But still there is a lot of 

scope for the exploration of breath sensing for detection of various lung disease and hence 

there is an urgent need for wireless breath monitoring/sensing system. Odd layer of MoS2 are 

known to exhibit piezoelectric behavior because of the non-centrosymmetric alignment of Mo 

and S atoms [21]. There have been reports to enhance the sensitivity of the sensor by utilizing 

the piezo property of MoS2 [22], percentage of relative humidity [6]. whereas current level of 

the sensor tries to reach initial value during the inhalation. 12 breath counts per 30 second 

were observed under normal breath conditions which is a sign of a healthy individual. To test 

the repeatability of the fabricated sensor, the individual was asked to breath and then move 

away from the sensor and this cycle was repeated for 6 times. The sensor was able to detect 

the modulation in breath shown in figure 4b. Further, the individual was asked to run 
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continuously for 20 minutes and was asked to relax for a minute so as to stabilize the breath 

pattern and then breath sensing measurements were performed.  

                      The sensing mechanism for pristine MoS2 under breath sensing can be 

explained as the resistance modulation upon subject’s breath modulation due to the absorption 

of water molecules on MoS2/Al in exhaled breath. Exhaled breath contains water molecules 

(moisture) and the amount of moisture depends on the hydration level of the lungs. Upon 

exhalation, the water molecules which are electron donating in nature get adsorbed on MoS2 

(n type), thereby increasing the majority charge carriers in MoS2 which increases the current 

level of MoS2. During inhalation, the water molecules desorb from the surface of MoS2 and 

hence the current level decreases and tries to retain its initial values. It should be noted that 

due to the slow desorption process, the current level does not regain entirely its initial value, 

but is not critical as the number of peaks corresponds to the number of breath counts. The 

same concept can be explained using energy band diagram of MoS2 where there is a 

downward bending at the MoS2/metal interface upon adsorption of water molecule during 

thereby allowing the easy flow of electrons towards the metal contact which increases the 

current. 

 

Wireless integration of sensor  

The fabricated MoS2/Al on eraser was interfaced with Arduino microcontroller and further 

the data received was transmitted to the smartphone wirelessly via Bluetooth. The dedicated 

android application was developed wherein individual modules were utilized for each sensing 

such as breath, gesture and pedometer. Figure 5a displays the schematic of the circuit diagram 

of the interfacing of MoS2/Al sensor with Arduino Uno board and wireless transmission to 

the smartphone via a Bluetooth. Simple resistance divider circuit was utilized for measuring 

the resistance of the sensor. Bluetooth module (HC-05) which uses easy serial port protocol 

for transparent wireless serial connection setup was utilized to transmit the data from Arduino 

to smartphone wirelessly. An android application was developed for receiving the sensor’s 

real time data and to display related results about breath, gesture and pedometer on the 

smartphone. Figure 5b shows the frontend display of the android application which consists 

of three modules namely Pedometer, Hand Gesture and Breath sensing. The user can select 

the dedicated module and perform the corresponding sensing. Figure 5 c, d e shows the 

corresponding real time sensor data acquired by the smartphone for pedometer, gesture and 
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breath sensing respectively. The data was acquired and monitored on frontend of the android 

application by continuously varying the respective stimuli.  

 

 

 

Figure 5: a) Schematic of the circuit diagram utilized for the integration of MoS2/Al sensor 

with Arduino microcontroller, Digital snapshot of b) front screen of the Android application 

developed for personal healthcare monitoring c) for pedometer module d) gesture 

communication module and e) breath sensing module 

 

There are few reports for smartphone based point of care diagnostic of early disease using 

various stimuli such as glucose, sweat, saliva etc. Bhattacharjee et al., demonstrated wireless 

breath sensor which detects the humidity of the lungs [23]. Dang et al., reported the novel 

graphite-polyurethane composite for wireless system for pH monitoring [24]. Kakehi et al., 

developed wireless glucose monitoring system which could be operated stably for 3 days [25]. 

Pu et al., developed self-powered triboelectric gesture sensor based on the eyes movement 
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[26]. All these reports however focus on individual sensing and thus are limited in their scope 

of applications which is crucial for IoT applications. There are existing reports on 

multifunctional sensors which use the same fabricated sensor for individual sensing and apply 

complicated frontend processing which often results in unreliable data. Moreover, the 

fabrication techniques employed for these sensors are sophisticated which makes the overall 

cost of production unfit for developing affordable flexible and wearable IoT systems. Further, 

the utilization of the same sensor for sensing different entities always results in falsified data. 

There are no reports on multifunctional sensing utilizing dedicated sensor and android 

application for each sensing. In this report, we demonstrate the fabrication of wireless 

multifunctional sensor which could be utilized as pedometer, gesture communication and 

breath sensor for diagnosing various disease. The cost of each sensor is ~ $0.015 and hence 

allows the user to utilize dedicated sensor for individual sensing. 

4.3 Conclusion 

In summary, we demonstrate the use of MoS2 grown on Al foil and integrated onto eraser 

substrate for its utilization as personal healthcare monitoring (pedometer, gesture 

communication and breath sensor) for IoT applications. The sensor was integrated with 

Arduino microcontroller wherein the sensor data was wirelessly transmitted to the 

smartphone. Dedicated android application was developed for pedometer, gesture 

communication and breath sensor wherein the pedometer module provides information about 

the distance travelled, speed and the calories burnt. The gesture communication modules helps 

the deaf/dumb/paralyzed individuals to communicate with the external world using the hand 

finger movements. Breath sensor module provides information regarding breath pattern which 

could be further utilized for many personal healthcare applications. Further, the piezotronic 

effect of MoS2 under external strain of 16% on the breath sensing performance was studied 

which results in 56.89 % enhanced sensing when compared to breath sensing performance of 

unstrained MoS2. The successful development of such multifunctional, user friendly wireless 

sensors are a major step ahead in flexible and wearable IoT applications such as personal 

healthcare monitoring.   
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