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Abstract

Deep neural networks have exhibited state-of-the-art performance in many com-

puter vision tasks. However, most of the top-performing convolutional neural net-

works(CNN) are either very wide or deep which makes them memory and computation

intensive. The main motivation of this work is to facilitate the deployment of CNNs

on portable devices with low storage and computation power which can be done with

model compression. We propose a novel method of knowledge distillation which is

a technique for model compression. In knowledge distillation a shallow network is

trained from the softened outputs of the deep teacher network. In this work, knowl-

edge is distilled from multiple deep teacher neural networks to train a shallow student

neural network based on the visualizations produced by the last convolutional layer of

the teacher networks. The shallow student network learns from the teacher network

with the best visual explanations. The student is made to mimic the teacher’s log-

its as well as the localization maps generated by the Grad-CAM(Gradient-weighted

Class Activation Mapping). Grad-CAM takes the last convolutional layer gradients

to generate the localization maps that explains the decisions made by the CNN. The

important regions are illuminated in the localization map which explains the specific

class predictions made by the network. Training the student with visualizations of

the teacher network helps in improving the performance of the student network be-

cause the student mimics the important portions of the image learned by the teacher.

The experiments are performed on CIFAR-10, CIFAR-100 and Imagenet Large Scale

Visual Recognition Challenge 2012 (ILSVRC2012) for the task of image classification.
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Chapter 1

Introduction

1.1 Introduction to deep learning

Deep learning is one sub branch of machine learning which uses artificial neural net-

works for decision making, whose functioning resembles the structure of human brain.

Deep models are called ’deep’ because the hierarchical structure of neural networks

comprises of a lot of hidden layers. Deep learning models have achieved lot of success

over machine learning algorithms in wide variety of applications mainly in NLP and

computer vision tasks. Unlike earlier machine learning algorithms neural networks

build its feature set itself without any supervision from the user but it requires a huge

dataset. The major limitation of deep learning models is it requires lot of training

data and computation power i.e high performing GPUs. Without much training data

it is quite difficult to train the deep model to generalize well. Neural networks uses

the hierarchical function and processes the data non-linearly.

1.1.1 Multi-Layer Neural Network

A simple neural network consists an input layer, hidden layer and output layer of

neurons. As shown in the Figure:1.1 the nodes represents the neurons in the net-

work and neurons are connected in such a way that the output of one neuron is the

input of another neuron in the next layer. The input layer takes the raw training

data and passes it to hidden layers for further computations. There can be multiple

hidden layers but here only one hidden layer is shown. In the input layer x1, x2 ,

x3 represents the training samples and +1 is a bias term ’b’. ’W’ and ’b’ are the

two parameters of the network, where ’W’ refers to the connection weights which are

initialized randomly by the network and are changed as the learning proceeds.
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Figure 1.1: An example of Multi-layer Perceptron

In each layer the neuron value is multiplied with the weights of all the connected

neuron of the previous layer separately and the the value are summed up and passed

through activation function to obtain the output value from the neuron Eq (1.1), this

is called forward propagation step in the neural network. Eq (1.1) shows the output

value of a single neuron from the hidden layer and f is the activation function.

a21 = f(W
(1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3 + b

(1)
1 ) (1.1)

The activation functions are used to introduce non-linearity in the network. Com-

monly used activation functions are: sigmoid, tanh and rectified linear functions

defined in equations (1.2), (1.3) and (1.4).

f(z) =
1

1 + exp(−z)
(1.2)
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f(z) = tanh(z) =
exp(z)− exp(−z)

exp(z) + exp(−z)
(1.3)

f(z) = max(0, x) (1.4)

Backpropagation:

First we perform the forward propagation step in the neural network and compute

the output activation of all the neurons in the network. Then the error is computed

on each output neuron by comparing the desired output with the obtained output

from the network. Then we optimize the overall cost function of the network with

the help of Gradient descent or any other optimization algorithm. After computing

the gradients the weight and bias parameters of the network are updated.

1.1.2 Convolutional Neural Network

Unlike normal neural network convolutional neural network does not have all fully

connected connections between the neurons. It has multiple kind of layers i.e. con-

volution layer, pooling layer and fully connected layer. The normal neural net with

all fully connected connections cannot be used with images of large sizes because it

will result in large number of parameters.

The convolution layers shares the parameters as the weights filters are multiplied

with the regions of the input image. If the filter size is 5x5 then the parameters are

shared with that input portion of the image and this reduces the number of parame-

ters in the network. These filters are convolved through the whole image to produce

feature maps. Suppose there are ’n’ filters then the number of feature maps produced

will be ’n’. Mximum number of floating point operation of the network are performed

in convolution layers. When there are many convolution layers in the network the

initial layers learns the general image features like edges, corners etc in the first few

iterations and the image specific features are learned in the later convolution layers

in the last few iterations.

Pooling layer down samples the output from the convolution layer. Pooling layer

reduces the number of parameters of the network by down sampling the size of the

image because if the same dimension image is passed to the full connected layers the
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total number of parameters will increase drastically in the whole network resulting

in over-fitting in the network. The depth of the network remains unchanged after

the pooling operation as it pools across each channel separately. Pooling layer does

not contain any trainable parameters so it does not increase the network parameters.

There are different kind of pooling average pooling, max pooling, mean pooling so

any of these can be used according to the requirements.

Fully connected layer comprises of the maximum number of parameters in the network

since all the neurons in the fully connected layer are connected with all the neurons

in the previous layer. The last fully connected layer has the number of neuron equal

to the number of classes in the dataset and it produces the prediction score for each

class.

1.2 Model Compression

Deep neural networks have exhibited state-of-the-art performance in many computer

vision tasks. But all the top-performing networks have huge number of layers and

parameters so it requires lots of storage and computation power. The neural networks

are made complex and deep to improve the performance of the networks.

Few networks like VGGNet even occupies more then 500MB of storage space and the

number of parameters in VGG16 are 139M and Alexnet 60M. So the neural networks

are considered as both memory and computation intensive. It is difficult to deploy

these networks to deploy on small portable devices which have constraints on storage

and battery power. Neural networks with large number of parameters requires large

number of floating point operations to be performed during its training which in turn

requires a lot of battery power.

Neural networks cannot be used in real life applications because of its complexity. In

order to deploy these networks on mobile devices there is a need of model compression.

In convolutional neural network the full connected layers consists of the maximum

number of parameters and the convolution layers has to perform the maximum num-

ber of floating point operations because of the matrix multiplications. Many methods

have been proposed recently to compress the neural networks. Few methods focus on
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reducing the storage complexity of these models and some of them try to reduce the

number of computations and some of them attempts to achieve network speedup.

Main challenge in deep model compression is to compress the network without drop

in accuracy. There has to be trade off between the compression ratio and the perfor-

mance of the deep network.

There are many compression methods introduced so far which includes, pruning the

redundant connections, quantization of weights, HashedNets, matrix factorization,

designing of compact architectures such as Network in Network architecture and

GoogLenet, binarizing the network weights and activations and training the shallow

networks(Knowledge Distillation).

In this work, we have extended Knowledge Distillation method for compressing the

model. In this method a smaller network is trained from the scratch to perform

the same task as performed by the deep model or the ensemble of models. Teacher-

student framework was first proposed by [1] where the shallow network mimics the

pre-softmax outputs(logits) of the deep network. Knowledge Distillation was pro-

posed by [2] where knowledge is distilled using the softened outputs of the deep

model instead of the pre-softmax outputs. The outputs before the softmax layer are

divided by temperature and then passed throught the softmax function to achieve

softened probabilities. The method in [2] performs better then just using logits[1].

The distilled knowledge is often referred to as ’dark knowledge’.

We extend this knowledge distillation method and propose the idea of training a

shallow network from multiple deep networks and their representations. The training

from teacher network representations helps in improving the quality of student train-

ing since student learns from the important portions of the visualizations which the

teacher network has learned.

1.3 Interpretability of deep learning models

Interpretability is an important factor to understand the predictions given by the neu-

ral network. Neural networks are widely used in the field of NLP and computer vision

so there is a need for transparency in the decisions made by the neural networks in

order to develop trust in their predictions. The top performing neural networks with

veru deep architectures are more complex which makes these networks even harder

to interpret.

Neural networks are like black boxes so its preferred to have reasonable explanations

for its decisions to develop the trust of the users. Interpretability is important when
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deploying the neural networks in some high risk environment where the mistakes made

by the neural network might result in severe consequences. With the explanations

may be we get extra knowledge that in turn helps to improve the performance of a

top performing network and provide insights in the failure of few models.

We used Grad-CAM [3] to interpret the decisions made by the network with the

help of visualizations of the learned representations of the neural network. With the

help of these visualizations it becomes easy to interpret the final predictions of the

model and also the reason of predictions. Grad-CAM generates the localization maps

by computing the gradients from the last convolution layer of the network so this

approach does not require any architectural changes in the network or any kind of

retraining.

Grad-CAM generates class discriminative localization maps which explains the deci-

sion of the network. It is class discriminative since it localizes the target class in the

visualization by illuminating the relevant portions of the target class in the image.

This approach is a generalization of [4] which is also used widely but this requires

changes to the architectures.

6



Chapter 2

Related Work

2.1 Model Compression

There are many methods that have been proposed for model compression so far.

Compressing the pre-trained networks

HashedNets [5] compresses the network by reducing the number of parameters and

for that they have used a low-cost hash function that group the connections in a hash

bucket which shares a single parameter value within one bucket.

[6] reduced the number of bits required to represent each weight and quantized the

parameters so that multiple connections share the same weights. [7] introduced a

method to prune the redundant weights and connections from the network. After

pruning the connection the model is retrained to finetune the remaining weights.

This was extended and quantization and huffman coding was applied to further re-

duce more number of parameters.

[8], [9] used matrix factorization methods to reduce the number of floating point op-

erations in convolution layers and achieve speed-up.

Designing new compact networks

Compact architectures like Network in Network architecture [10], GoogLenet [11] and

Residual-Net [12] are designed. In NIN the fully connected layers are replaced with

global-average pool layer and in ResNets the number of parameters are reduced with

the introduction of 1x1 convolutions.

Binarizing the network

BinaryConnect[13] binarizes the weights of neural network. The real valued weights

are not used during the update but are retained for the computation of the gradients.
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[14] Binarizes both the weights and the activations in neural networks. [15] Approx-

imates the convolution operation by binarizing the weights so the computations are

drastically reduced since the weights are binarized. This method outperforms both

the BinaryConnect and BinaryNet method of binarization.

2.2 Knowledge Distillation

The teacher-student methodology for compression was first proposed by [16] in which

the student network was trained on the artificial data which was labeled by the

ensemble of models. They used three different algorithms to generate the artificial

data for training.

In [1] the student network is trained on the output of the layer before the softmax

layer which is also known as logits. They minimized the squared loss between the

logits and the output of the student network.

The concept of temperature is introduced in [2] that helps in training the student

network with softened outputs and improve its performance as compared to training

with just logits [1]. The logits are divided by the temperature and the the softmax

function is applied to generate the softened probabilities. They have introduced a new

objective function that considers even the true labels to train the student network.

The loss fuction is the weighted combination of cross entropy between the true labels

and the output of the student network and the cross entropy between the softened

probabilities of teacher and student network. The second tern in the loss function is

given more weight then the first term.

FITNETS were proposed by [17] where student is made to mimic the intermediate

representations of the teacher network along with the softened outputs of the teacher

network. These intermediate representations from the teacher acts as hints in the

training of the student network.

In [18] knowledge is distilled as the dot product of features from any two layers

and knowledge is transferred as the flow of information between the layers. They

showed that instead of mimicking the intermediate representations of the teachers as

[17], their method is better in which the flow of information between the layers is

mimicked. [19] distills knowledge to the shallow model using softened outputs and

attention maps. This method is similar to our proposed method but the difference

is the way they are computing the attention maps is different from our method and

we are training the shallow network with multiple teachers but they are using single

teacher.
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Chapter 3

Proposed Methodology

3.1 Review of Knowledge Distillation

In this work, we extend the existing knowledge distillation method for model com-

pression which was proposed by [2]. In this method a shallow neural network called

a student network is trained from the softened outputs of a pre-trained deep neural

network called a teacher network. This was first proposed by [1] in which the shallow

network was made to mimic the logits(output of the layer just before the softmax

layer) of the deep network. They calculate the mean squared loss between the logits

of the teacher and the student network.

Knowledge distillation using softened outputs is observed to perform better then

using logits for the training of student network. The class probabilities are termed

as ’soft-targets’, however these soft targets helps the student in the training process

to converge faster as compared to the hard labels. The student network might not

perform well on the training data with the original hard labels as it does with the

softened labels as the soft-targets contains more information about the classes then

the hard-labels.

The hard labels have zero at all the classes except one place which gives the infor-

mation about one class which is the target class and no other information is available

about the rest of the classes.Soft-targets provides information about all the classes

in the form relative probabilities which helps a lot in fast training of the student

network. The training of the student can be done with the high learning rate if the

entropy in the soft-targets is high because high entropy provides more information

and less variance in the gradients.

If we take an example of dog target class then the cat class might have the relative

probability near to dog class but a car will have very less probability for the dog as

9



Figure 3.1: An example of soft-targets for dog class

target class since the car is not at all similar to the dog class in any way. In the given

Figure 3.1, the logits of the model shows the relative class probabilities for the dog

class. In this example the values of cow, car and truck class is very small and is not

close to the probability value of the dog class.

The soft-targets gives information about all the other classes as well which in turn

helps the shallow student model to perform the same task as the deep teacher model

with less number of parameters and computations. The student model is made to

learn not only the finer structure but also the mistakes learned by the teacher model.

As shown in the Figure 3.2, to achieve the softened probability distribution of the

classes in the model temperature of τ > 1 is used in the softmax layer.

The class probabilities are softened to obtain more information because some proba-

bility values are too small i.e. 1e−10 which is approximately close to zero so not much

information can be obtained from these values. The softmax function is modified as

hinton[2]:

pi =
exp( zi

τ
)∑

j exp( zj
τ

)
(3.1)

In the above equation zi are the logits which are converted to probabilities pi by

the softmax function and τ is the temperature used while training. In Hinton[2] the
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temperature values used were : [1,2,5,8,10]. The training process of distilled model can

be improved if the true labels are used along with the soft labels as shown in Hinton[2].

They proposed a loss function which is the weighted combination of the cross entropy

loss of the student output labels with the true labels and the cross entropy loss of the

student softened output with the teacher softened output probability values.

The proposed loss function to be optimized is as follows [2][17]:

LKD(WS) = H(ytrue, PS) + λH(P τ
T , P

τ
S ) (3.2)

where,

PS and PT : output probabilities of the student and teacher network.

ytrue: hard-targets of the student network.

P τ
T and P τ

S : softened output. probabilities of the student and teacher network.

λ: a hyper parameter to balance the weights of the two terms in the loss function.

H: cross-entropy loss function.

PT = softmax(
aT
τ

), PS = softmax(
aS
τ

) (3.3)

In Eq 3.3 the terms aS and aT are the logit outputs before the softmax layer. Student

network is trained at the same temperature as the teacher network and the tempera-

ture is set to 1 after the training is done. The value of λ and τ can be tuned to achieve

the minimum loss value. The preferred value of λ according to our experiments is

either 0.8 or 0.9 because less weight is given to the first term in the loss function.

3.2 Gradient-weighted Class Activation Mapping

(Grad-CAM)

Interpretability of a neural network is important to understand the decisions made

by the network and why those decisions are made. There are many new methods

proposed in the recent times to explain the predictions of the neural network and

make its training process more transparent. Since Grad-CAM [3] can be applied to

large variety of neural networks without any change in the architecture of the network

so we use Grad-CAM for generating visualizations. Interpretability is also important

as it provides insights in the wrong predictions of the neural network.

Grad-CAM uses the gradients information of the final convolution layer of the network
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Figure 3.2: Grad-CAM visualization(heatmap)

and generates the localization map for a particular target class. It can use activations

from any other convolution layer also and generate heatmaps but it considers the last

layer as the network has learned features and the classes are most dicriminative in

the last layer.

Grad-CAM is a class discriminative technique because it confines the target class in

the generated visualizations by highlighting the main regions in the heat map. Figure

3.2 shows an example of image and its localization map generated by Grad-CAM for

the dog target class. It illuminates the important portion in the image that explains

the decision of the network for dog target class. Grad-CAM can even provide relevant

explanations for the some non relevant predictions made by the neural network which

helps in developing trust in the model predictions.

The localization map LGrad−CAMc for a target class ’c’ is obtained as follows:

• First the gradient is computed with respect to the feature maps (Ak) of the

final convolution layer.

ack =
1

Z

∑∑ δyc

δAij
k (3.4)

• To obtain the importance weights of the neuron the gradients computed in the

first step are globally average pooled as in Eq.(3.4).

LGrad−CAMc = ReLU(
∑
k

ackA
k) (3.5)

• These importance weights are multiplied with the feature maps and ReLU ac-

tivation function is applied to this weighted combination as shown in Eq.(3.5).

In the Eq.(3.5). ReLU activation function is applied to consider only the positive

values since the negative values are not of much interest because that will not affect

12



the target class as those values might belong to other classes. If those negative values

are not removed then the localization maps will not be class-discriminative and will

have some unwanted portions in the heat maps from other classes.

3.3 Pipeline of the Proposed Method

In this work, we have implemented the multiple teacher-student framework where a

shallow network is trained from the multiple deep networks. The proposed method is

an extension of existing knowledge-distillation [2] method of model compression(Explained

in Section 3.1). Here, the distilled model is not only trained from the softened out-

puts but also from the visualizations generated by the teacher network. Visualizations

Figure 3.3: Pipeline of the proposed method

plays an important role in training the shallow network because interpretability of a
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Figure 3.4: a)Image b)Heatmap c)Thresholded heatmap (Person)

neural network is important to understand the decisions made by the network and

why those decisions are made. If a network can explain its decisions then it can be

used in wide variety of applications.

Student is learning from the relevant portions of the image which are learned by

the teacher network so the overall quality of the student training is improved.

Gradient-weighted Class Activation Mapping (Grad-CAM)(Explained in Section 3.2)

is used to generate the visualizations of all the teacher networks. Grad-CAM generates

localization maps which explains the predictions of the target class by illuminating

the significant regions in the localization map. Grad-CAM can be applied to any kind

of neural network as it uses the gradient information in the last convolution layer of

the network to produce the visualizations.

For a particular training sample the student network is trained with that teacher

network which has the best visual explanations. The best teacher network is selected

using the max intersection over union(IOU) value between the ground truth bounding

box of the image and the illuminated regions in the heat map.

The IOU value is used as the metric to test the visualizations learned by the teacher

network. The more the IOU value the better are the visualizations learned by the

teacher network. In Figure (3.6) the IOU with the bounding box appears different

for the two network even if the accuracy of the networks does not vary much.

To compute the IOU the heat maps are thresholded for intensity value i > 0.25

to remove the least illuminated regions. In Figure 3.3, b) represents the image heat

map of the image and c)represents the thresholded heat map. Once the IOU values

are obtained for all the training samples on all the teacher networks, the values are

compared to train the student model with the teacher network that has the maximum

IOU.
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The student network is made to optimize the following loss function:

Lmodified(WS,WT ) = LKD(WS) + βLgc(WS,WT ) (3.6)

The above loss is the weighted combination of standard knowledge distillation loss

defined in Eq.(3.2) and the visualizations loss Lgc defined in Eq.(3.5).

Lgc(WS) = ||LSc (WS)− LTc (WT )||22 (3.7)

β is the tunable parameter to balance the weight given to both the loss functions.

Lc is the term defined in Eq.(3.5).

The student network mimics the heat maps of the teacher network along with the

softened outputs. Eq.(3.7) shows the mean squared loss between the teacher heat

maps and the student heat maps.

3.3.1 Drawback of the proposed method

We have performed experiments for the classification task but the disadvantage of

the above method is that it requires the datasets with bounding boxes to compute

the IOU of the heat map with the ground truth.

Solution to the above problem:

We use a different method in case of datasets without bounding boxes. We intro-

duced a new step in the proposed pipeline to resolve this problem. We have used the

Grad-CAM visualizations to choose the best teacher network instead of computing

IOU.

Figure 3.5: a)Image b)Network1 c)Network2
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We have modified the image using its generated heat map and occluded the part

of the image which was least illuminated in the corresponding heat map of that im-

age as shown in Figure: 3.5. Then the new occluded image is passed again through

the trained model to check the predicted class. If the model still predicts the same

target class as predicted earlier for normal image for the occluded image too with not

much drop in the probability then the visualization produced by the teacher network

is accurate.

Different teacher networks were evaluated with the above method to choose the best

teacher network. The teacher network which has the minimum drop in the proba-

bility score for the occluded image is chosen for that training example to train the

student network. Student network is trained in the similar way as mentioned above

and minimizes the same loss function mentioned in Eq.(3.4). The modification is

done only in choosing the best teacher out of multiple teachers to train the student

network.

3.3.2 Multiple Teacher network visualizations

Comparison between the visualizations of different teacher networks. The visualiza-

tions shows the difference in the learned representations between the two teacher

networks. Even with the slight difference in the accuracy of the models the visualiza-

tions varies for the same training image as shown in the Figure 3.6.

It can be seen from image of the bird in the last row that there is a visible differ-

ence between the IOU of the two networks and the more the IOU the better is the

visualization of the network.
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Figure 3.6: a)Image b)Network1 c)Network1. Images b) and c) shows the visualiza-
tions of the two different networks.
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Chapter 4

Experimental Results

We have evaluated our proposed method on three datasets: CIFAR-10 [20], CIFAR-

100[20] and Imagenet Large Scale Visual Recognition Challenge 2012(ILSVRC2012)[21]

for the task of image classification.

4.1 CIFAR-10

The dataset consists 10 classes of natural images. The images are RGB images of

dimension 32x32. The training data consists of 50,000 images and testing data has

10,000 images. The images are preprocessed and mean is subtracted from images.

Data-augmentation is done to improve the performance of the teacher network. The

images are flipped randomly along the horizontal axes. The images are also shifted

randomly along both the horizontal and vertical axes.

Teacher Networks:

We have used three teacher networks to evaluate our proposed method.

Network-in-Network(NIN) [10], Wide Residual Network(WRN) [22] and VGGNet

[23].

WRN-28-8 is used where the network depth is 28 and widening factor is k = 8. We

have modified the VGG16 architecture and included batch normalization layers in the

network to improve its performance on CIFAR-10. For each of the teacher network

different kind of data augmentation is done to achieve state-of-the-art performance

on the dataset. In Table 4.1 the number of parameters and accuray is stated for all

the three teacher networks.

Student Network:
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Table 4.1: Results on CIFAR-10

Models No. of params(Million) Accuracy(%)
Teacher network1 13M 89.93
Teacher network2 23M 91.90
Teacher network3 14M 93.35
Student network original 9M 80.01
Student network(proposed method) 9M 80.33

Table 4.2: Accuracy of the student network when trained from NIN

Models Accuracy(%)
Teacher network1 89.93
Student network original 80.01
Student network trained from NIN 80.07

ResNet-18 [12] is used as the student network. The student network is trained on the

softened outputs and localization maps from all the three teachers as explained in

Section 3.3. The accuracy of the student network when trained on the original labels

is 80.01% and when student network is trained from multiple teacher networks and

optimize the loss function mentioned in Eq.(3.6) the accuracy increases by +0.32%.

While training temperature τ is set to 2 and λ is set to 0.4(Eq 3.2) and β is set to

0.5(Eq 3.6).

4.1.1 Analysis Of Knowledge Distillation from

Multiple teachers

The accuracy of the student network in Tables 4.2, 4.3 and 4.4 shows the promise of

the proposed method because when student network is trained from a single teacher

network the accuracy achieved is less then the accuracy of the network trained from

multiple teacher networks as shown in Table 4.1.

When student is trained from teacher1 i.e. NIN the accuracy achieved is 80.07(%)

as shown in Table 4.2 which is better then the accuracy of the student model when its

trained on the hard-targets but its less then 80.33(%) which is the accuracy achieved

by the student with our proposed method.

The accuracy of the student when trained from other two teacher networks separately

is 80.11(%) and 80.14(%) which is also less then the student accuracy achieved with
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Table 4.3: Accuracy of the student network when trained from WRN

Models Accuracy(%)
Teacher network2 91.90
Student network original 80.01
Student network trained from WRN 80.11

Table 4.4: Accuracy of the student network when trained from VGGNet

Models Accuracy(%)
Teacher network3 93.35
Student network original 80.01
Student network trained from VGG 80.14

our proposed method.

4.2 CIFAR-100

The dataset consists 100 classes of natural images. The images are RGB images of

dimension 32x32. The training data consists of 50,000 images and testing data has

10,000 images. The images are preprocessed and mean is subtracted from images.

Data-augmentation is done to improve the performance of the teacher network. The

images are rotated randomly along the horizontal axes. The images are also shifted

randomly along both the horizontal and vertical axes. We have used three teacher

networks to evaluate our proposed method.

Table 4.5: Results on CIFAR-100

Models No. of params(Million) Accuracy(%)
Teacher network1 55M 71.12
Teacher network2 36M 73.56
Teacher network3 1M 70.49
Student network original 9M 60.20
Student network(proposed method) 9M 60.82

Teacher networks:

We have used three teacher networks to evaluate our proposed method. Wide Resid-
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ual Network(WRN-40-10) [22], WRN-28-10[22] and Densely Connected Convolutional

Networks(DenseNets) [24].

Student network:

ResNet-18 is used as the student network. The student network is trained on the

softened outputs and localization maps from all the three teachers as explained in

Section 3.3. The accuracy of the student network when trained on the original labels

is 60.20% and when student network is trained from multiple teacher networks and

optimize the loss function mentioned in Eq.(3.6) the accuracy increases by +0.62%.

While training temperature τ is set to 2 and λ is set to 0.4(Eq 3.2) and β is set to

0.5(Eq 3.6).

Compression in terms of storage and training complexity

As shown in Table 4.5 and 4.1 the number of parameters of all the three teacher net-

works are approximately 3-5x greater as compared to the student network parameters

which results in compression in terms of storage. The student network is a shallow

network as compared to the deep network so the training complexity is less as com-

pared to the teacher networks. The training of the student is done for less number of

iterations as compared to original student network trained on hard-targets.

4.3 Imagenet

Experiments are performed on 100 classes of the dataset out of the 1000 classes. The

dataset contains natural images with a total of 52,272 training samples and 1000

testing samples, each of which is a 224x224 RGB image. No preprocessing is done on

the data.

Table 4.6: Results on Imagenet

Models No. of params(Million) Accuracy(%)
Teacher network1 136M 73.16
Teacher network2 140M 74.21
Teacher network3 42M 77.59
Student network original 9M 65.06
Student network(proposed method) 9M 65.73
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Teacher Networks:

We have used three teacher networks to evaluate our proposed method.The teacher

networks used are: VGG-16, VGG-19 and Resnet-101.

Student network:

ResNet-18 is used as the student network. The student network is trained on the

softened outputs and localization maps from all the three teachers as explained in

Section 3.3. The accuracy of the student network when trained on the original labels

is 65.06% and when student network is trained from multiple teacher networks and

optimize the loss function mentioned in Eq.(3.6) the accuracy increases by +0.67%.

While training temperature τ is set to 2 and λ is set to 0.4(Eq 3.2) and β is set to

0.5(Eq 3.6).

4.3.1 Analysis Of Knowledge Distillation from

Multiple teachers

We performed experiments on Tiny ImageNet dataset [21] to analyze the differ-

ence between the student performance in case of both multiple teachers and single

teacher. The dataset consists of 200 classes. The images are RGB images of dimen-

sion 64x64. Each class consists of 500 training images and 50 validation images. The

training data consists of total 100,000 images and validation data of 10,000 images.

Table 4.7: Results on Tiny ImageNet

Models Accuracy(%)
Teacher network1(VGG16) 72.57
Teacher network2(VGG19) 75.63
Student network original 66.09
Student network trained from VGG16 67.92
Student network trained from VGG19 68.01
Student network trained from both VGG16+VGG19 68.28

Two teacher networks are trained on this dataset i.e. VGG16 and VGG19 and ResNet-

18 is trained as the student network. In Table 4.7 the accuracy of the student model

trained without knowledge distillation is 66.09%. When the student model is trained

with single teacher network the accuracy achieved is 67.92% and 68.01% for the two
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teacher networks which is less then the accuracy achieved from training the student

network with multiple teacher networks.

4.4 Analysis on CIFAR-10

4.4.1 Effect of λ and β

Experiments are performed to find the best values of λ and β in Eq (3.2) and (3.6).

Values of λ and β are varied at temperature τ = 2. The best accuracy value is

obtained for λ = 0.4 and β = 0.5 by giving equal weights to the cross-entropy loss of

the softened outputs of the teacher and student network and the means square loss

of the localization maps of the teacher and student network.

Table 4.8: Effect of λ and β on Accuracy

λ β Accuracy(%)

0.7 0.2 78.92
0.4 0.5 80.33
0.5 0.4 79.47
0.4 0.4 80.27
0.6 0.2 80.15
0.5 0.2 80.01
0.3 0.3 79.87

4.4.2 Effect of Temperature

Another analysis was done by varying the temperature τ with the two values of :

λ = 0.4 and β = 0.4 and λ = 0.4 and β = 0.5

Table 4.9: Effect of temperature on Accuracy when λ = 0.4 and β = 0.4

Temperature(τ) 1 2 3 4 5 6 7 8 9 10
Accuracy(%) 79.78 80.27 80.09 79.67 79.44 79.75 79.41 79.92 79.96 79.88
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Figure 4.1: Effect of temperature

Table 4.10: Effect of temperature on Accuracy when λ = 0.4 and β = 0.5

Temperature(τ) 1 2 3 4 5 6 7 8 9 10
Accuracy(%) 78.73 80.33 79.93 79.27 79.73 79.21 79.48 79.84 79.1 78.46

As can be seen in Figure 4.1 the plot between temperature and accuracy is plotted

to study the effect of temperature in distilling knowledge. The network performs the

best at temperature τ = 2. To analyze the effect in detail we plotted for the two set

of parameters. Best results have been obtained on values λ = 0.4 and β = 0.4 for the

student network but we have plotted for values λ = 0.4 and β = 0.5 to get a clear

idea of the best chosen temperature value. For both the set of values the maximum

accuracy is achieved for temperature τ = 2.
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Chapter 5

Conclusions

In this work, we have discussed a multiple teacher-student framework for model com-

pression which is an extension of existing knowledge-distillation method. We explored

this compression method further since this method focuses on reducing the storage

and training time complexity. Most of the compression methods proposed earlier

focus only in reducing the storage complexity of the models as discussed in Chapter

2. Learning from multiple teachers and their visualizations helped the shallow stu-

dent model to perform better than the basic knowledge-distillation method. We used

Grad-CAM to generate the visualizations because it can be applied wide number of

neural networks without any change in the architecture of the networks. Also it is

class discriminative and localizes the target class by highlighting the important re-

gions of the target class.

With the help of Grad-CAM the best teacher network is selected for a particu-

lar training sample helping the training of student network. We presented two

different approaches to select the best teacher network for dataset with bounding

boxes and without bounding boxes. We evaluated the proposed method on three

datasets: CIFAR-10, CIFAR-100 and Imagenet Large Scale Visual Recognition Chal-

lenge 2012(ILSVRC2012).

We have performed an analysis on CIFAR-10 and Tiny ImageNet dataset to show

that the student performs better when its trained from multiple teachers compared

to training from single teacher and the results are shown for student network trained

on each teacher network separately. The experimental results shows the improvement

in the performance of student network trained with our proposed method. We per-

formed analysis on CIFAR-10 to see the effect of temperature on accuracy and the

effect of varying weights of tunable parameters λ = and β = on accuracy.

25



References

[1] J. Ba and R. Caruana. Do Deep Nets Really Need to be Deep? In Z. Ghahramani,

M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, eds., Advances in

Neural Information Processing Systems 27, 2654–2662. Curran Associates, Inc.,

2014.

[2] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network.

arXiv preprint arXiv:1503.02531 .

[3] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Ba-

tra. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based

Localization. ArXiv e-prints .

[4] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep

features for discriminative localization. In Computer Vision and Pattern Recog-

nition (CVPR), 2016 IEEE Conference on. IEEE, 2016 2921–2929.

[5] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen. Compressing

Neural Networks with the Hashing Trick. In Proceedings of the 32Nd Interna-

tional Conference on International Conference on Machine Learning - Volume

37, ICML’15. JMLR.org, 2015 2285–2294.

[6] Y. Gong, L. Liu, M. Yang, and L. Bourdev. Compressing Deep Convolutional

Networks using Vector Quantization. ArXiv e-prints .

[7] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning Both Weights and Con-

nections for Efficient Neural Networks. In Proceedings of the 28th International

Conference on Neural Information Processing Systems - Volume 1, NIPS’15. MIT

Press, Cambridge, MA, USA, 2015 1135–1143.

[8] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky. Speeding-

up Convolutional Neural Networks Using Fine-tuned CP-Decomposition. ArXiv

e-prints .

26



[9] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus. Exploiting Linear

Structure Within Convolutional Networks for Efficient Evaluation. ArXiv e-

prints .

[10] M. Lin, Q. Chen, and S. Yan. Network In Network. ArXiv e-prints .

[11] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the in-

ception architecture for computer vision. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. 2016 2818–2826.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recog-

nition. ArXiv e-prints .

[13] M. Courbariaux, Y. Bengio, and J.-P. David. BinaryConnect: Training Deep

Neural Networks with binary weights during propagations. ArXiv e-prints .

[14] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized

Neural Networks: Training Deep Neural Networks with Weights and Activations

Constrained to +1 or -1. ArXiv e-prints .

[15] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. XNOR-Net: ImageNet

Classification Using Binary Convolutional Neural Networks. ArXiv e-prints .

[16] C. Bucilu, R. Caruana, and A. Niculescu-Mizil. Model compression. In Proceed-

ings of the 12th ACM SIGKDD international conference on Knowledge discovery

and data mining. ACM, 2006 535–541.

[17] A. Romero, N. Ballas, S. Ebrahimi Kahou, A. Chassang, C. Gatta, and Y. Ben-

gio. FitNets: Hints for Thin Deep Nets. ArXiv e-prints .

[18] J. Yim, D. Joo, J. Bae, and J. Kim. A gift from knowledge distillation: Fast opti-

mization, network minimization and transfer learning. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). 2017 .

[19] S. Zagoruyko and N. Komodakis. Paying More Attention to Attention: Improv-

ing the Performance of Convolutional Neural Networks via Attention Transfer.

ArXiv e-prints .

[20] A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images .

[21] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A

Large-Scale Hierarchical Image Database. In CVPR09. 2009 .

27



[22] S. Zagoruyko and N. Komodakis. Wide Residual Networks. ArXiv e-prints .

[23] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-

Scale Image Recognition. ArXiv e-prints .

[24] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely Connected

Convolutional Networks. ArXiv e-prints .

28


