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Abstract

Cops and robbers problem has been studied over the decades with many variants and

applications in graph searching problem. In this work, we study a variant of cops and

robbers problem on graphs. In this variant, there are different types of cops and a

minimum number of each type of cops are required to catch a robber. We studied this

model over various random graph models and analyzed the properties using statistical

model checking.

To the best of our knowledge this variant of the cops and robber problem has

not been studied yet. We have used statistical techniques to estimate the probabil-

ity of robber getting caught in different random graph models. We seek to compare

the ease of catching robbers performing random walk on graphs, especially complex

networks. In this work, we report the experiments that yields interesting empirical

results. Through the experiments we have observed that it is easier to catch a robber

in Barabási Albert model than in Erdös-Rényi graph model. We have also experi-

mented with k-Regular graphs and real street networks.

In our work, the model is framed as the multi-agent based system and we have im-

plemented a statistical model checker, SMCA tool which verifies agents based systems

using statistical techniques. SMCA tool can take the model in JAVA programming

language and support Probabilistic - Bounded LTL logic for property specification.
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Chapter 1

Introduction

Most of the systems or phenomenon in the real world are probabilistic in nature be-

cause of the randomness and uncertainty exhibited by the applications. Because of

the criticality in the behavior of such systems, the biggest question that arises is of

the correctness of these systems. Therefore, in today’s world, the systems and ap-

plications need some method and formalism to incorporate the non-determinism and

randomness and assure the users of the correctness.

Model checking of the probabilistic systems has been studied for many years now

but the wide nature of systems have made it difficult to apply model checking tech-

niques to all the systems. In probabilistic model checking, the goal is to model the

system using some well-defined formalism that meets the properties of the system

and to verify the desired properties which are expressed using the appropriate logic.

With the complex and large system, the state explosion problem[1] has been known

to be the biggest obstacle with the numerical model checking. In numerical check-

ing, the system is developed in such a way that the state space consists of all the

states that the system can probably reach with all the possible transitions. Although

numerical model checking can produce the results with higher accuracy the memory

requirements become so large that it becomes almost impossible to verify complex

systems with numerical model checking. For complex systems, it is easy to go wrong

during the process of modeling a system–the model might not faithfully represent the

system. Correct model checking of wrong models of the system is of no use, if not

outright detrimental in the analysis of the system. Over the last decade, to counter

the problem of state explosion various techniques involving statistics about the sys-

tem have been studied. Younes in [2] has compared the use of numerical model

checking and statistical model checking over the stochastic systems and concluded
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that statistical methods have better scaling chances than the numerical ones, though

numerical methods are sure to verify the systems with higher accuracy. In the case

of stochastic systems, modeling generally varies with the way movement of different

entities is modeled in the application. In our work, we have also a technique to model

the movement of different cops and robbers in the graph which will be discussed in

detail in upcoming sections.

In this work, we have focused on the systems that consist of various agents per-

forming a random walk in the system. A random walk is a process of exploring the

graph within the constraints of the connectivity of the graph. We have studied the

properties and behavior of the agents moving across an underlying graph structure.

The movement of the agents is probabilistic based on the stochastic transition prob-

abilities. Throughout this study, we have followed the randomized cops and robbers

example where multiple cops and single robber are performing the random walk on

the graph and we verify the properties through statistical methods. Our study and

experiments are performed on different graph models. We have formalized our model

as the collection of multiple transition systems where every transition system has

their own probability transition matrix to make transitions from one location to an-

other over the graph. The property to be verified on the system is an aggregation

of all the transition systems of all the entities in the network and is verified by the

statistical methods by collecting sample paths of the model. Verification results ob-

tained through statistical model checking are not totally accurate and are bounded

by certain confidence parameters. In our cops and robber example, we estimate the

probability of robber getting caught in the network within the given time bound using

probability estimation technique.

Also, our model can also be seen as the multi-agent system where the agents can

be oblivious to or interacting with each other. Classically in a multi-agent system,

there are various types of agent are present in the network and all the agents keep

moving in the network either interacting with each other or with no interaction per-

forming their respective tasks. In [3], verification of the team formation protocol

through the collaboration of the interacting agents has been studied by forming the

model into a two-player stochastic game. To implement and verify our model in the

context of multi-agent systems, we have studied and verified the problem of epidemic

spreading. In this problem, the population across the different locations in the net-

work have different health status and have a tendency to get the disease through the
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infected people. The transfer of infection is however based on different heuristics and

statistical methods are used to estimate the time and rate of epidemic ending across

the network.

Majorly in this study, we aim to study the cops and robber problem where multiple

cops try to catch the robber moving in the network. Our modeling of cops and robber

problem varies from classical cops and robber in various aspects. In our model, we

have the multi-color cops patrolling in the network. There is a threshold number of

cops required to catch a robber at the same vertex as that of the robber at the same

time. Each cop and robber is modeled as a separate agent which can have their own

rules of movement on the graph. Though every agent in the networks belongs to a

certain type of agent in the model. Through this example, we show that our modeling

each type of agent as the separate entity has provided an easy way to model these

kinds of stochastic systems.

The model discussed in this work can also be used to model other problems which

involve the combination of transition systems and also the agents that interact with

each other thought simulation. Example of such system in several areas like analyses

of epidemics, rumor spreading, broadcast of the messages in the network, social media

analytic. As most of these problems involve the agents walking in the network, we

feel our model is appropriate to be applied to these problems and verify the properties

with statistical model checking.

1.1 Randomized Multi Colored Cops and Robbers

In our model, we have given a different approach to cops and robber problem. Our the-

ory of cops and robber problem differs significantly from the standard game-theoretic

literature. We have considered our model to be fully random where all the cops and

robber perform a random walk in the network. The major points in our modeling of

cops and robber are described as follows :

• Movement of cops and the robber is simultaneous in our model at every time

step, not alternative movements like in standard cops and robber.

• Cops and robbers do not know each other’s position in the network. They can

only see the other player when on the same vertex. Even the position of the

players in the neighbor is not known.
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• The movement of all the cops and the robbers in the network is completely

random. All the players are performing a random walk in the graph and every

player’s movement is independent of any other player in the network.

• As the movement is completely random and independent, both the cops and

the robber move without any strategy in the network. The next move of both

the cops and the robber only depends on the connectivity of the graph from

their current location and nothing else.

• The major difference in our model is the requirement to catch the robber. In

our model, we require 3 cops to catch a single robber at the same time on the

robber’s vertex. In the case of multiple robbers, more than 1 robber can be

caught at the same vertex with the help of same 3 cops at the same time unit.

• Also in our model, we have implemented two different settings of cops and

robbers,

3 colors cops : In this setting of cops and robber, we have 3 colors of cops

moving in the network randomly. To catch the robber, 1 cop of each color is

required at the robber’s vertex at the same time.

1 color cops : In this layout of cops and robber scenario, 3 cops of the same

color are required to catch the robber on the robber’s vertex at the same time.

Fig. 1.1 shows the initial setting of multi-colored cops and robber scenario, there

are 3 different types of cops represented by the colored rectangles and the robber is

using the triangle. The condition to apprehend the robber is the presence of at least

one red cops, one green cop and one blue cop at the robber’s vertex at any time instant.

Fig. 1.2 shows the different possibilities in the multi-color cops scenario at some

time instant. In fig. 1.2a, the robber is not caught even when the two cops are present

at the same location as that of the robber. While in fig. 1.2b, the robber is caught

when all 3 color cops are present the robber’s vertex at the same time.

We start with the description of cops and robber literature in our work in chapter

2, we describe how does our model differ from the existing game-theoretic cops and

robber literature. Overview of the related work with the theoretical background over

statistical model checking is discussed in chapter3. We also talk about the various

techniques for estimating the probability of any property to be true in the system.

We briefly discuss the various graph model used to generate the networks in our

model. Chapter 4 presents our model framework with the architecture details. In this
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Figure 1.2: Different possibilities in multi-colored cops setting

section, we discuss the modeling of the system and specifications of the properties of

the systems to be verified using the SMCA tool. Also, we describe the implementation

details with the discussion over the set of experiments performed on the discussed

model. In chapter 5, we will talk about the result and will conclude our work in

chapter 6 with the future scope of this work.
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Chapter 2

Cops and Robber Literature

The problem of cops and robber as two player pursuit-evasion game was introduced

by Quilliot in [4] in his doctoral thesis and also independently by Nowakowski and

Winkler in [5]. In both of their work, the idea of only one cop was considered. Later

in 1984, Aigner and Fromme in [6] introduced the idea of Cop Number, which is the

minimum number of cops required to catch the robber. Aigner and Fromme in their

work proved that only 3 cops are necessary to catch the robber in planar graphs.

Later the idea of cop number is extensively researched with variations of cops and

robber scenario. Kehagias et. al [7] have studied the problem in which the cops are

chasing a drunk robber i.e., the robber is performing a random walk on the graph.

Moldenhauer et. al [8] have studied about the policies for the robber to escape the

cops in the graph as opposed to the other works where the focus is only giving to

formulate the optimal strategies for the pursuers. In their work, they have found that

a greedy approach is better than all other approaches. Bonato et. al [9] have taken a

different approach and studied the game for distance k cops and robber in which the

cop can catch the robber from k distance. They have studied and proved the bound

of cop number in the terms of the size of the graph.

Studies conducted on Cops and Robber problem are based on the alternate move-

ment of cops and robber while in our model we have considered the simultaneous

movement at every time instant. Also, in our model, both cops and robber have no

pre-decided strategy to move in the graph and the movement is randomly based on

their probability distribution.

In the cops and robber literature, there is a set of cops and a robber moving

a network of nodes or locations. The cops objective is to catch the robber while
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the robber tries to escape the cops, the game ends whenever cops are successful in

catching the robber. Over the years, this game theoretic approach has been studied

widely in many different forms maintaining the core concept behind the literature.

Studies have been conducted with both probabilistic, structural approaches for this

problem. There exist versions of the problem where both cops and robber follow pre-

defined strategies to win the game. The main idea has always been to estimate the

time cops take to catch the robber successfully. A robber is caught when the cop is

present at the same vertex as that of the robber at the same time instant. Although

over the last decade, many studies have been conducted trying to estimate the Cop

Number i.e., the number of cops required to catch the robber, over different types

of graphs, several bounds on cop number have been proved for certain types of graphs.

In this work, we have modified the core concept of traditional cops and robber

game theoretic literature. We have tried to induce more randomness through the

way this game is played. Also, our model of cops and robber does not include any

pre-defined strategy either for cops to catch the robber or for the robber to escape the

cops. We have studied the characteristics and impact of randomness over cops and

robber problem. We also attempt to model this problem as the multi-agent problem

where there can be more than one type of cops present in the graphs. We will first

discuss the background of classical cops and robber literature with different variants

studied in the past and then will briefly discuss the modifications done in our model.

2.1 Traditional Cops and Robber

In this section, we briefly describe the traditional version of cops and robber problem

being studied in most the research works. We will also talk about the variants of cops

and robber game theoretic literature. Cops and robber is a pursuit-evasion game

played on a graph G = (V.E), where one or multiple cops initially place themselves

on different nodes of the graph (though there can be more than one cop agent on

the same node) and the robber is also placed initially on a node of the underlying

network. The initial placement of both cops and robber can either be random or

according to a strategy to play the game for upcoming steps. The motive of the

cops is to capture the robber while the robber tries to run away from the cops. The

robber is captured when a cop is present on the same location as that of the robber

at the same time instant. In standard cops and robber theory, cops and robber know

each others location and take turn alternatively to move from one node to another.
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Combination of the moves of both the cops and the robber is considered to be as one

round in the game. Both the cops and the robber can only move to its neighboring

nodes and cannot jump over the nodes. At any time instant, either only the robber

moves or the cops move to some other location. The cops win if they capture the

robber successfully and the robber wins if he can escape the capture for the indefinite

time period. Most of the studies are conducted in the context of cop number where

the motive is to set a bound over the minimum number of cops required to catch a

robber for the specific classes of graphs. So, the standard game is of perfect informa-

tion where both the players know the graph and the positions of each other. Knowing

each other’s position in the graph help both the players to strategize the next move

in order to win the game. Thus this game can be expressed as a sequence of events.

2.1.1 Variants of Cops and Robber Problem

With the core concept of established theory of cops and robber, several variants of

this theory have been studied over the years. A number of variations for this game

are possible in which constraints can be put over the different moves of the players

or the underlying graph can be changed to a specific class of graphs.

1. Distance k cops and robbers

Bonato et. al in [9] have proposed a variant of standard cops and robber game.

In their work, they proposed a structure in which the cops win if any one of

the cops is at most at the distance k from the robber in the graph G. They

showed that there exists a polynomial time algorithm that can determine the

Cop Number, ck for the graph G under the constraint that the number of cops

are fixed and are not dependent on the size of the graphs.

2. Pursuing a fast robber

In [10], authors have modeled a variant of cops and robber problem where the

robber has an advantage of moving faster than the cops in the graph. In a single

move, the robber can traverse r number of edges whereas a cop can only move

by a single edge in one move. In their work, they have proved that computing

ck on a given graph is NP-hard and also shown that for planar graphs the cop

number ck is unbounded if the robber is faster than the cops in the graph.

3. Cops and invisible robber
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Kehagias et. al in [11] has examined a different version of cops and robber

game in which the robber is invisible to the cops until he is captured. The

robber in their game knows of the cops previous moves but not the upcoming

ones. As the cops are unaware of robber’s location, a pre-defined strategy might

not work out all the times and thus the movement of cops can be randomized.

They also study one more variant where the robber is supposed to be drunk

and is performing a random walk. The authors have studied the invisible cost

of drunkenness which they defined as the ratio of expected capture time in a

standard case to that of the drunk robber case.

In [12], a different approach was followed for cops and robber game in which

perfect information is not provided to the cop. They have only focused on

the single cop version of the game. They studied the effect of reducing cop’s

visibility in the graph i.e., the robber can be seen by the cop only when the

distance between them is at most to some threshold. It has been shown that

even with small or no visibility a cop can catch the robber in a cop-win graph,

no matter how far the robber can see. But the reduction in the cop visibility

causes the capture time to increase exponentially. It is also shown that if the

visibility ranges for both the players are same, then a greedy strategy is sufficient

to capture the robber by a single cop.

4. Hunter - Rabbit game

In this version of cops and robber game discussed in [13], a hunter tries to catch

a rabbit on an undirected graph. Both the players are assumed to know the

graph in advance but cannot see each other until they are at the same vertex

i.e., until rabbit is caught by the hunter. The movement of both the players

over the graph is randomized strategies. It has been shown that there can be a

strategy for the hunter such that the expected number of rounds to catch the

rabbit is O(nlogn), where n is the number of vertices in the graph. Also, a

slightly different variation is also studied in which the rabbit has the ability to

jump over the nodes i.e., not necessarily following the edge connectivity in the

graph.

5. Lazy Cop and robber

In [14] an interesting variant of cops and robber has been studied in which the

cops on the graph G are lazy. At every turn of the cops, only one of the cop

change its position and the rest remains on the same vertex as they were before.
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Authors in this work have studied the lazy cop number and for the binomial

random graphs, a bound on lazy cop number is provided.

6. Firefighter

In this problem, fire breaks out at some vertex of the graph and is continuously

spreading to all the neighboring vertices in the graph. The fire can be contained

by the firefighters by putting out the fire at each vertex turn by turn. Studies

conducted in this context estimates the expected number of firefighters required

to contain the fire in the graph and also to try to minimize the number of vertices

burnt. The major difference with the standard cops and robber problem is that

the vertices which are saved by the firefighters cannot be burnt again by the fire

whereas, in cops and robber, both the players can visit the same vertex again

and again. A detailed survey about this problem is discussed in [15].

7. Angel and the devil

This game proposed by Conway in [16] is played on the infinite chess board

by the two players, Angel and the Devil. The angel has the power to move a

maximum of k squares on the board in a single move while the devil places a

block on any one of the squares other than that of the angel. The devil wins

the game if the angel is captured in such a way that it is not possible for him

to move at all in his turn and the angel wins the game if it can move for an

indefinite period.

8. Wall cops and robber

Another variation of the cops and robber game motivated by the angel and the

devil theory was studied in [17]. In this game the cops have a special power to

build a wall over a vertex they move to and the robber cannot move to a vertex

with a wall. The robber can only move the vertices which do not have a wall.

The robber is captured once he is surrounded by the walls. In their study, the

aim is to estimate the Wall Capture Time, the time taken by a single cop to

catch the robber by building walls on the vertices.

For further reading interested readers may refer to [18, 19] in which cops and

robber problem have been explored for different types of graphs and for different

domains and also the open problems related to this theory have been discussed.
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Chapter 3

Background

In this chapter, we will briefly discuss the terms used in the background of this work

for the better understanding of the rest of the chapters. We will start by briefly

discussing transition system and temporal logic and then will describe the technique

of model checking. We will specifically look into the concepts of statistical model

checking and probability estimation. Then we will end the chapter with the discussion

of graph models which are used for the experiments over our model.

3.1 Transition System

To demonstrate the behavior of the discrete system, a concept of transition system is

used in the field of computation. A transition system basically models the dynamic

behavior of any system in the form of states and transition between those states. It

can be seen as the representation of the processes which are defined by some pre-

decided rules.

A transition system, T is a tuple (S, sinit, Act, P,AP, L) where,

• S is the set of states in T

• sinit is the set of initial states and sinit ⊆ S

• Act is a set of actions

• P ⊆ S X Act X S, is the transition relation

• AP is the set of atomic propositions

• L : S → 2AP is the labelling function
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A transition system can be both finite or infinite. Fig. 3.1 shows a transition system

which generates a binary string. In this system the set {s0, s1, s2, s3} represents the

set of states out of which s0 is the initial state. {0, 1, r, s} is the set of actions,

{restart, stop} is the set of atomic propositions.

Transition systems can also be stochastic i.e., the transition relation, P will be a

stochastic relation and will be defined as follows:

P : SXS → [0, 1]

S0

S2 S3

S1

0
0

1

s

s

r

1

r

r

stop

restart

Figure 3.1: Transition system to generate a binary string

3.2 Temporal Logic

For the better understanding of the model checking and the model developed in our

work, it is important to understand the theory behind the temporal logic which is

used to specify the properties to be verified over the model using model checking

techniques.

Temporal logic is a branch of logic which is concerned with the propositions that have

their values dependent on time. It can be used to represent all the approaches based

on time. This idea of temporal logic was first introduced in 1960 by Arthur Prior and
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then later on expanded by other scientists. We will now look in to into Probabilistic

version of Bounded Linear Temporal Logic (BLTL) which has been used in our work

to specify the properties to be verified on the model.

3.2.1 Linear Temporal Logic (LTL)

LTL was first introduced by Amir Pnueli in [20] for the verification of the programs

based on temporal reasoning. LTL is basically a modal temporal logic that can be

used to specify the paths generated by any system with the time steps. It defines the

infinite sequence of events over any system based on the linear time properties.

φ is an LTL formula which is defined over a set of atomic propositions AP for any

transition system M .

Syntax :

φ :: = T | a | φ1 ∧ φ2 | ¬φ | Xφ | φ1 ∪ φ2

where :

• a is an atomic proposition

• φ, φ1, φ2 are the valid LTL formulas

• X is the next operator

• ∪ is the Until operator

Operators :

For the given LTL formulas φ1 and φ2,

• Xφ1 : It is the next operator which evaluates to true if φ1 holds in the next

state.

• Gφ1 : G is the global operator which states that the formula φ1 is true in all

the future states.

• Fφ1 : It states eventually φ1 i.e., the formula should hold true for some future

state.

• φ1∪φ2 : Until operator which states that the formula φ1 is true for all the states

until the formula φ2 becomes true for some state.
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s0 s1 s2 s4 s5 s6 ……...

Figure 3.2: Example of a trace for a transition system

Semantics :

LTL formula φ is evaluated for the truth value over a trace of the transition system

M . A trace of any transition system is the sequence of states visited in the system in

discrete time steps. Traces can be either finite or infinite. Let us consider an infinite

trace t for M . As shown in Fig. 3.2 is the infinite trace of the transition system.

We always evaluate the LTL formula always on the first state of the trace i.e., s0.

So in a trace, σ : [s0, s1, s2, s3, s4, ....]

σ |= true

σ |= a ⇔ a ε s0

σ |= φ1 ∧ φ2 ⇔ σ |= φ1 and σ |= φ2

σ |= ¬φ ⇔ σ 6= φ

σ |= Xφ ⇔ φ |= s1

σ |= φ1 ∪ φ2 ⇔ ∃j ≥ 0, σ[j...] |= φ2 and σ[i...] |= φ1, 0 ≤ i < j

3.2.2 Probabilistic BLTL

The idea of Bounded LTL (BLTL) was introduced by Kamide in [21]. This logic is

the enhancement of the Linear Temporal Logic (LTL) with the constraints of bounds

in the form of steps or time units. In BLTL, all the temporal operators of LTL i.e.,

(F, G, U) are bounded using the temporal bound. The semantics of BLTL are similar

to the LTL within the restrictions of temporal bound.

Probabilistic BLTL (P-BLTL) is the enhancement of BLTL with the nested prob-

ability operator, that checks whether the probability of the property expressed in

BLTL is more or equal to the given threshold value. So, the basic property to be

checked through P-BLTL will look like this,

Pr ≥ θ [property]

where, property is some Bounded LTL formula to be checked over the traces of

transition system.
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3.3 Model Checking

For the complex systems, it is challenging and important to verify the working of the

system i.e., to check whether the system is behaving as it is supposed to. Verification

of the critical systems, like ATMs, space jets is even more important and difficult

at the same time because the margin of error is negligible in such systems. In this

section, we will briefly discuss the model checking technique that can be used for the

verification of the systems.

Model checking is verification technique based on the model of the system under

verification. Precise modeling of the system in a mathematical manner is utmost

important for the model checking task. The properties of the system under verifi-

cation are to expressed in using some temporal logic discussed in the previous section.

System

System 
Model

Requirements

Property

modelingformal logic

Model Checker

Satisfied Failed Counter 
Example

Error 
location

Figure 3.3: Model Checking Technique

Fig. 3.3 describes the basic technique of model checking. Firstly, the system to

be verified is converted into a model using some modeling specifications like Discrete

Time Markov Chains and then the requirements of the system have to be expressed

using a formal logic which coverts the requirements into property specifications. Now,

the system model and the property specifications are given as the inputs to the soft-

ware tool known as Model Checker. The task of the model checker is to verify the
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property in question over all the possible system scenarios in an ordered manner. If

the property is satisfied in all the system scenarios then model checker will return

satisfied for the property, otherwise failed will be given as the output by the model

checker with the system scenario where the property fails. This failed scenario can

then be used to determine the cause of the error and the same process can be repeated

to verify the property again.

It is important to note here that the modeling of the system should be accurate

and the model should demonstrate the design of the system precisely. Also, the

formal specification of the property should also express the requirements of the system

strictly. Any inaccuracy in either the model or the requirement of the system can

result in unexpected results. Model checker just reads the model and verifies the

property over that model in a brute force manner. Also whenever the model checking

over a complex and large system is done, the state space can become so large that it

may not be possible to store the state spaces in available memory of the system.

3.3.1 Probabilistic Model Checking

There are a lot of probabilistic systems in the real world scenario which exhibits non-

deterministic and probabilistic behavior. To model such systems, probabilistic models

such as discrete time Markov chains (DTMCs) are used. Probabilistic Model Checking

(PMC) is an adaption of the actual model checking technique which is used to verify

the models which have the stochastic behavior. This is one of the famous techniques

to model and to verify the real world applications. As the inputs for standard model

checking technique, it also takes the model of the system in question and the property

specification expressed in some probabilistic temporal logic like PCTL (Probabilistic

Computation Tree Logic) as the inputs and verify the properties of the system. The

transitions in the model of the system are based on the probability expressed in the

transition matrix of the model.

For further reading on model checking, readers may refer to chapter 1 and 10 of the

book [22].

3.3.2 Statistical Model Checking

Model checking of stochastic systems can be done either using numerical or statistical

techniques. While numerical model checking algorithms generate the exact probabil-

ity of a property being true in a given system, they often do it at the cost of time and
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memory needed. For the large and complex systems, use of numerical model checking

causes state explosion problem and although the results generated are accurate but

the time is taken to verify the system is too large.

Statistical model checking, on the other hand, requires lesser time and memory

for the computation but generates results with some confidence parameter. Statis-

tical model checking is based on simulating finitely many executions of the system

and using various statistical techniques to infer whether a property is satisfied or not.

Also, these execution paths or traces generated through the simulations can be used

to estimate the probability of the property being satisfied in the system. Seminal

work done on statistical model checking can be found in [23, 24, 25, 26]. Authors

in [27, 28, 29] survey the recent advancements in the area of statistical model checking.

There are mainly two techniques used in statistical model checking viz. Hypothesis

Testing and Estimation methods. Hypothesis testing is used to verify whether the

probability of a property being true crosses the required threshold probability or not.

Estimation methods, on the contrary, estimate the probability of the given property

to be true.

Hypothesis Testing

In hypothesis testing, a hypothesis H : p ≥ θ is tested against K : p < θ where

p is the probability of any formula φ being satisfied by the model. As discussed

above, the results produced by this technique are not exact but the likelihood of

error happening can be bounded using the parameters α and β. These parameters

determine the strength of the test and limit the error probability, the probability of

accepting K when H holds is bounded by α and is called Type-I error. Similarly,

the probability of accepting H when K holds is bounded by β and is called Type-II

error. In the ideal case, we would like to have a really low probability for Type-I

and Type-II error but the nature of these errors makes it impossible to do that. To

resolve this issue, an indifference region (p0, p1), where p0 ≥ p1 is introduced. Now

the hypothesis H0 : p ≥ p0 is tested against H1 : p ≤ p1. If the value obtained is

between p0andp1, then it lies in the indifference region and we are not sure which

hypothesis is accepted. We will now look at the two methods for hypothesis testing

proposed by Younes in [25].

Single Sampling Plan (SSP) : In this method, for n simulations of the model,

the value is accumulated and it crosses a constant c then H0 is accepted, otherwise
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H1 is accepted. The difficult task in this method is to find the values of n and c such

that the error bounds are also low and also the testing does not take too long. There

are some techniques proposed by Younes to find the optimal values of n and c in [25].

Sequential Ratio Probability Test (SPRT) : In SSP the sample size, n is fixed

and the individual observation is not taken into account. In SPRT , two numbers a1

and a2 are chosen and with every observation the ratio p1m
p0m

is calculated and if the

ratio is greater then a1, then H0 is accepted, or if the ratio is less than equal to a2,

then H1 is accepted, otherwise the next sample is drawn for the model. So, in this,

there is no fixed number of samples and it is decided with each sample whether the

next sample is required or not.

Estimation Methods

Hypothesis testing methods only check whether the hypothesis is accepted or not

within the specified error bounds. But to estimate the probability of the property be-

ing satisfied in the model, estimation methods are used which based on the simulations

drawn from the model estimates the probability. In [30], the author has discussed an

approach based on approximate model checking. Based on the Chernoff-Hoeffding,

a lower bound for the number of samples, N required to estimate the probability is

derived.

N ≥
ln(2

δ
)

2ε2
(3.1)

where δ is the confidence parameter and ε is the approximation parameter.

Once we get the value of N , the number of samples required of the system, we keep

the count of samples in which the property is satisfied and the ratio of samples in

which the property is satisfied to the total number of samples gives the probability

of property being true in the system within the approximation bounds.

A detailed discussion of these techniques can be found in [30, 25].

3.4 Random Graph Models

In this section, we briefly describe the graph models used in the experiments run on

our model.
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3.4.1 k-Regular Graphs

The graph with the same degree for all its vertices is known as the regular graph.

If the degree for all the vertices is k, then the regular graph is called the k-Regular

graph and is denoted by GK . Now there are various possibilities of k-regular graph for

any number of nodes, n. So for n nodes and a certain value of K, randomly a graph

is picked from all possibilities of the k-regular graphs for n nodes and is denoted as

G(n,K).

A regular graph can be both directed as well as undirected but in case of directed

graphs, a strict condition should be satisfied where the out degree and in degree of

all the nodes has to be equal.

3.4.2 Erdös-Rényi (ER) Model

This model is used for the generation of the random graphs, named after Paul Erdös

and Alfréd Rényi. It has two closely related models to generate the network.

G(n,m) : In this model, from the collection of all the graphs, a graph is chosen

uniformly at random with n nodes and m edges.

G(n,p) : In this model, each edge is included with a probability p. Inclusion of every

edge in the graph is independent of any other edge.

Approximately in both the models, expected number of edges are same.

3.4.3 Barabási Albert (BA) Model

This model is used for the generation of random scale-free networks, named after

Albert-László Barabási and Réka Albert. The preferential attachment mechanism,

which is the process of distributing things among entities based on what they already

have, is used for the generation of the network.

Generation of the network starts with the connected graph of initial m nodes. Now,

nodes are added to the graph one at a time and each new node is connected to n

(≤m) existing nodes. The probability of an edge from a new node to an existing node

depends on the number of edges existing node already have. Formally,

pi =
ki∑
j kj

, (3.2)

where ki is the degree of node i and denominator denotes the sum of the degree of all

the existing nodes.
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BA model is considered to represent the real networks in a better way than the ER

model generated networks.

3.4.4 Street Network

We have also run some experiments for the real street networks in our cops and robber

setting. To generate the street network, we have used a Python library OSMnx.

Through this library, we can easily generate and visualize the complex real street

networks in the form of graphs. Latitude and longitude information is used to generate

the networks. For further reading about the OSMnx library and other functions

available, readers may refer to [31].
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Chapter 4

Framework

In this chapter, we will discuss the details of our model framework. Firstly, we will

give the theoretical details of our model and then will give the implementation details

of our modeling.

4.1 Theoretical Framework

4.1.1 Problem Statement

Given

1. a directed graph

2. an initial placement of nr robbers and nb blue cops, nw white cops and ng green

cops on the vertices of the graph

3. transition functions defining the movement of the cops and robbers on the graph

and,

4. capturing condition i.e., how many cops of each color are needed to be there on

the same vertex as that of the robber for capture, cg, cw, and cb.

Find:

1. What is the probability that all the robbers are caught within k steps?

2. What is the cop number to ensure capture within k steps?
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Figure 4.1: Architectural Framework of SMCA Tool

4.1.2 SMCA Tool

Statistical Model Checker for Agent based systems (SMCA) tool implements our

model for the group of agents performing the random walk in the network. Agent

based modeling of the real world systems has been gaining popularity over the past

few years. In our modeling of cops and robbers game, we have presented the multi-

colored cops as the different types of agents and the robber as the other type of agent.

Now in our example, collectively 3 types of cops agent are trying to capture the robber

agent.

Fig. 4.1 shows the architectural framework for SMCA tool which is consists of several

different components. We briefly describes the component of the tool as follows:

1. System Model: This component of the tool takes input from the user in the

form of the JAVA code which tells the model on how the various agents move

in the network in every time step. This is given as input by the user in the

pre-described format of the tool and can be changed as per the requirements of

the user based on their system.
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2. Property Specification: It specifies the property user wants to check over the

modeling of the system and is given as the input in the pre-defined format by

the user. This specification should basically define on what parameter should be

checked over all the simulations of the model for all the agents in the network.

3. Simulator: It is one of the important components of SMCA tool which simu-

lates the given model for the modeling of the system given by the user and the

property specification also provided by the user as the inputs to the simulator.

It simulates the system for the required number of samples based on the bound

over errors and provides the output in the form of estimated probability.

4. Statistical Techniques: This component has options for the statistical tech-

niques to be applied to estimate the probability of the property being satisfied

in the model with the given constraints. This component takes into account all

the simulations and produces the result in the form of estimated probability.

In the next section, we will further describe the implementation details of SMCA tool

for agent based modeling with our setting of cops and robbers.

4.2 Implementation Details

The total number of agents is denoted by n and indexed by i. An agent is described

completely by a tuple of variables vi = 〈v1,v2, . . .vk〉i. Each variable has an associ-

ated domain from which it takes values. An assignment of values to these variables

is called a valuation. There is a type associated with every agent.

The instantaneous description at time t of an agent i is given by the valuation

of each of the variables at that instant: vi(t) = 〈vi1, vi2, . . . vik〉i(t). We denote the

set of all possible tuples (valuations) by S. We now define the input format to the

simulator generator. This input essentially describes the model:

Tj : nj : MRj : initj, 1 ≤ j ≤ k, where

Tj is the name of the type of agent, nj is the number of agents of type Tj, MRj :

S → S and initj is a function that assigns an initial valuation vi for each agent of

type Tj.

Therefore the modeling segment of the input file would look like, for example:

M:

T1 : 100 : MR1 : init1

T2 : 50 : MR2 : init2
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Examples of procedures MR and init will be detailed in the next sections. Con-

structing a PBLTL input formula involves first defining atomic propositions of the

form x ∼ ν.

The tool provides functions that can be used to construct atomic propositions.

The functions that are currently supported are:

Type[i]: returns the Type of agent i.

Vl[i](t): returns vil(t)–the value of the lth variable of agent i at the tth time step.

A(l, y, t): returns a list of all agents that have the value of their lth variable equal to

y at time instant t.

The tool supports construction of atomic propositions of the following type:∑
i∈I
∑

k∈K
∑

t∈T Vk[i](t) ∼ ν for some ν ∈ R.

The sets I, K, and T are populated through user-defined procedures:

populateI, to populate the set I of agent indices.

populateK, to populate the set K of agent variables.

populateT to populate the set T of time indices.

Atomic propositions can then be combined in accordance with the syntax to ob-

tain larger and more complex PBLTL queries.

To summarize, the query segment of the input file would look like, for example:

Q:

A1 : populateI1 : populateK1 : populateT1;

A2 : populateI2 : populateK2 : populateT2;

Pr≥0.3(A1UA2)

PopulateJ(t):

V1[Robber](t)

J ← {x}
PopulateI(t): (1 type cops)

for all i 6= Robber

if V1[i] == x

then I ← I ∪ i.
PopulateI(t): (3 type cops)

for all i 6= Robber

if V1[i] == x

then I ← I ∪ i.
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I ← distinct type(I)

A1 : {populateI(t) : populateJ(t)} ≥ 3

Pr≥θ(True U A1)

where, k is the number of simulation time steps, isCaught is the atomic proposi-

tion in our cops and robber model that represents the condition where the robber is

captured.
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Chapter 5

Results

In this chapter, we describe the experiments and discuss the results we achieved on

different random graph models. We describe the results based on the different graph

models and across all the experiments cops and robbers are performing a random

walk in the graph.

5.1 k-Regular Graphs

For the k-Regular graphs, our experiments were mainly based on the changing the

value of k across the graphs and to analyze how our model and statistical model

checking methods would respond to that. We have performed two different set of

experiments for the k-Regular graphs wherein one set we took 5 robbers performing

a random walk in the network and in the other set number of robbers are 10. The

number of nodes across all the experiments is set to 500 and the number of cops in the

network is set to 300. In 3 colors cops setting, at least one of each color is required at

robber’s vertex at the same time to capture the robber whereas in 1 color cop setting

3 of the same color are required. More than 1 robber can be captured at the same

vertex in a single time unit.

Query : For k-Regular graphs, we estimate the probability of all the robbers

getting caught within the given time bound. Time bound is taken as 150 across all

the experiments on k-Regular graphs. Formally the query can be expressed as follows:

Pr≥θ
[
TRUE ∪≤k allCaught

]
where, θ is the estimated probability for the property to be true in the system, k
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is the time bound with in which the property will be verified and allCaught is an

atomic proposition described in the model.

5.1.1 5 robbers

In this experiment, we considered 5 robbers moving in the network trying to escape the

cops indefinitely and estimated the probability of all the robbers getting caught with

in the specific time bound. We experimented with two variants of cops described

above as the 3 color cops and 1 color cop. Table 5.1 shows the probability values

obtained for different values of K in k-Regular graphs.

The interesting observation through this experiment is that the probability value of

K values 3 colors cops 1 color cop
50 0.0738 0.8473
100 0.0754 0.8539
150 0.0727 0.8507
200 0.0722 0.8535

Table 5.1: Probabilities for different values of K for 5 robbers

robber getting caught is almost unaffected with the changing K values which tells us

the the probability of all the robber getting caught does not depend on how dense

the graph is. Moreover, as expected the probability values in case of 1 color cop are

higher than for 3 color cops because in 3 color cops scenario we need the combination

of 3 different colored cops at the same vertex as that of robber to catch him which is

less likely to happen than the 3 same color cops being present at same vertex in case

of 1 color cops.

5.1.2 10 robbers

In this experiment, 10 robbers are considered to be performing the random walk in

the graph. The idea of this experiment is to verify the results for previous experiments

with 5 robbers and also to see how the probability values for the property checked

changes with the increase in the number of robbers in the network.

Table 5.2 shows the probability estimation results for 10 robbers experiment. It

is clear from the results that the probability values does not depend too much on the

value of K in k-Regular graphs, rather it depends on the number of cops chasing the

robbers. Also, as expected with the increase in the number of robbers in the network,
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K values 3 colors cops 1 color cops
50 0.0057 0.7194
100 0.0062 0.7249
150 0.0054 0.7253
200 0.0057 0.7217

Table 5.2: Probabilities for different values of K for 10 robbers

it has become difficult to catch all the robbers with in the given time bound.

The results obtained for the experiments on k-Regular graphs shows that the value

of K does not have a pronounced effect on the probability of robber getting caught.

This also agrees with the result that Cooper et al [32] derived for single colored cops.

5.2 ER Model & BA Model

The set of experiments performed on ER model and BA model networks are same.

So, in this section we will first describe the set of experiments done and then will

discuss the results of all the experiments for both the graph models.

Query :

Pr≥θ
[
TRUE ∪≤k isCaught

]
where θ is the estimated probability for the property to be true in the system, k is

the time bound within which property will be verified and isCaught is an atomic

proposition described in the model.

5.2.1 Varying the number of cops

In this experiment, we wish to analyze the impact of changing the number of cops

performing random walks in the network. In this experiment, only one robber is

walking randomly in the network. Both the cops and the robber are unaware of each

other’s positions. The objective here is to estimate the probability of robber getting

caught within the given time bound. This experiment has been conducted for both

the variants i.e., 3 color cops and 1 color cops. As discussed in the previous chapter,

to capture the robber in 3 color cops scenario we need at least 1 cop of each color to

be the same vertex as that of the robber at the same time whereas in 1 color cops

scenario 3 cops are required to capture the robber on the same vertex as that of the
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robber at the same time instant. Nodes in the network are 500 and the number of

edges in the network is 61,915 for both the graph models. The number of cops in

the network varies from 60 to 420 in this experiment and the time bound is fixed to

150 in all the runs of this experiment. The number of cops is evenly distributed in

3 color cops layout i.e., the number of cops of each type is equal whereas, in 1 color

cops scheme, all the cops are of the same color.
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Figure 5.1: Estimated probability varying the number of cops

Fig. 5.1 shows the comparison of the estimated probability in this experiment for

both the graph models. As seen from the results, the probability of robber getting

caught increases with the increase in the number of cops as with more cops in the

network it has become difficult for the robber to escape the capture. Also as intu-

itively expected, estimated probability values for 1 color cops scenario are more than

the 3 colors cops scenario because the condition to capture the robber is stricter in 3

color cops scheme.

The interesting observation, however, is the difference in the probability values be-
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tween the ER model and the BA model. Values acquired for BA model are quite

higher than for ER model which shows the effect of the graph structure on the prob-

ability values of the robber getting captured.

5.2.2 Varying the time bound

In this experiment, we analyze the impact of the time bound specified to check the

property over the cops and robbers model. We change the time bound value in this

experiment to see whether the time bound specified plays a significant role on the

probability of capturing the robber. This experiment is also run for both 3 colors

cops and 1 color cops scheme in both the graph models. The number of nodes in the

graphs is fixed to 500 with 61,915 edges in the network. The number of cops is set to

300 for all the simulations in this experiment. In 3 colors cops layout, 300 cops are

evenly divided for each color i.e., 100 cops if each color while in 1 color cops scheme,

all 300 cops are of the same color. Value of the time bound in this analysis varies

from 30 to 210.
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Figure 5.2: Estimated probability varying the time bound value
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The results of this experiment are shown in Fig. 5.2 which clearly indicates that

with the increase in the value of time bound, probability of capturing the robber

increases, but for the higher time bound values probability tends to be very close to

1.0 which shows that with high time bound limit in the experiments, it is becoming

difficult for the robber to escape the capture indefinitely even when the cops are

performing random walks in the graph. Also as observed in the experiment with

varying number of cops, in this experiment also the probability values for BA model

are significantly higher than the probability estimated for ER model, thus it again

proves that capturing of the robber definitely depends on the topology of the network.

Also, as expected the probability of robber getting caught is higher in 1 color cops

setting.

5.2.3 Varying the number of edges in the network

Through this experiment, we analyze whether the size of the network where the

robber and cops are executing their random walks, have any effect on the chances

of the robber getting captured. Thus in this analysis, we vary the number of edges

in the network and estimate the probability of apprehending the robber within the

specified time bound. The time bound value is specified as 150 for all the simulations

in this experiment. The number of cops in this experiment is fixed to 300 which are

divided equally in 3 colors cops setting whereas all 300 are of the same color in 1 color

cops setting.

Fig. 5.3 demonstrates the results of the probability estimation by varying the

size of the network in our model. Against our intuition, it can be observed from the

results that changing the size of the network does not have a major effect on the

probability of apprehending the robber in the network generated through ER model.

Although for 3 color cops setting in BA model, the probability decreases after a point

if the size of the graph is increased, but 1 color cops setting, estimated probability

almost remains same. This experiment also shows that in BA model it is more likely

to catch the robber than in ER model and also that it is easier to catch the robber

in 1 color cops setting.

5.2.4 Multiple cops & multiple robbers

In this experiment, we have considered more than 1 robber in the graph for ER and

BA models and observe the probability estimation values for them. The objective

here is to estimate the probability all the robber getting captured by the cops within
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Figure 5.3: Estimated probability varying the number of edges in the network

the specified bounded time. This experiment has only been done for 3 color cops

setting with 300 total number of cops. Each color cops are 100 in color and to catch

a single robber we need at least one of each color on the robber’s vertex at the same

time vertex. More than 1 robber can be caught at the same vertex in a single time

unit.

No. of Robbers ER Model BA Model
5 0.072 0.72
10 0.0034 0.529
20 0.0 0.2834
30 0.0 0.1454
40 0.0 0.0731
50 0.0 0.0456

Table 5.3: Estimated probability for multiple robbers in ER and BA graph models

Table 5.3 shows the values of probability estimation of capturing all the robbers

in the network. It can be observed from the results that in ER model when the
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Figure 5.4: Graph for street network

number of robbers crosses a certain number, probability of capturing becomes 0, In

BA model networks, the probability value decreases as the number of robber increases

but is still significantly higher than ER model. Thus, this again shows that BA model

offers better chances of capturing the robber in cops and robber scenario.

5.3 Street Network

In this section we will discuss the results of the experiments run on the real street

network generated through OSMnx library. For this experiment we have used the

graph of a location in San Francisco, U. S. A., fig. 5.4 shows the graph we have used

for the experiment on the street network.

This street graph has 654 nodes and 1400 edges. Some edges in the network are

unidirectional and others are bidirectional. Our motive here is to estimate the cop

number, i.e., the minimum number of cops required to catch the robber surely within

the given time limit.

Number Cops required to catch robber Estimated Cop Number
1 182
2 762
3 1385

Table 5.4: Estimated Cop Number

Table 5.4 shows the estimated Cop Number in the street network considered for
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simulations when different number of cops are required at the robber’s location at

the same time instant to catch the robber.
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Chapter 6

Conclusion

In this work, we have studied a variation of cops and robber problem where multi-

colored are performing random walks in the network and aim to apprehend the robber

in the network. In our work, we have studied our model on various random graph

models and analyzed the effect of changing different parameters in the network. We

have used statistical model checking methods to estimate the probability of all the

robbers getting captured within the given specified time limit. As discussed in our

results, it is clear that it is easier to catch the robbers in BA graph model than ER

model. Also, in random k-Regular graphs, the chances of catching the robber does

not really depend on the K value of the graphs.

6.1 Future Scope

We believe that it would be interesting to investigate the cops and robbers problem

with more complex cop/robber behavior using statistical model checking. The tech-

nique will prove particularly useful when obtaining closed form solutions is difficult,

and complex queries have to be asked of the system. To that end, we are in the

process of building a statistical model checker optimized for generic versions of the

cops and robbers problem.

35



References

[1] M. Kot. The state explosion problem. Retrieved May 18, (2003) 2015.

[2] H. L. Younes, M. Kwiatkowska, G. Norman, and D. Parker. Numerical vs.

statistical probabilistic model checking. International Journal on Software Tools

for Technology Transfer 8, (2006) 216–228.

[3] T. Chen, M. Kwiatkowska, D. Parker, and A. Simaitis. Verifying team forma-

tion protocols with probabilistic model checking. In International Workshop on

Computational Logic in Multi-Agent Systems. Springer, 2011 190–207.

[4] A. Quilliot. Problemes de jeux, de point fixe, de connectivité et de représentation
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