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Abstract
The objective of this research work is to develop discriminative representations for human
actions. The motivation stems from the fact that there are many issues encountered while
capturing actions in videos like intra-action variations (due to actors, viewpoints, and dura-
tion), inter-action similarity, background motion, and occlusion of actors. Hence, obtaining
a representation which can address all the variations in the same action while maintaining
discrimination with other actions is a challenging task. In literature, actions have been rep-
resented either using either low-level or high-level features. Low-level features describe
the motion and appearance in small spatio-temporal volumes extracted from a video. Due
to the limited space-time volume used for extracting low-level features, they are not able
to account for viewpoint and actor variations or variable length actions. On the other hand,
high-level features handle variations in actors, viewpoints, and duration but the resulting
representation is often high-dimensional which introduces the curse of dimensionality. In
this thesis, we propose new representations for describing actions by combining the advan-
tages of both low-level and high-level features. Specifically, we investigate various linear
and non-linear decomposition techniques to extract meaningful attributes in both high-level
and low-level features.

In the first approach, the sparsity of high-level feature descriptors is leveraged to build
action-specific dictionaries. Each dictionary retains only the discriminative information
for a particular action and hence reduces inter-action similarity. Then, a sparsity-based
classification method is proposed to classify the low-rank representation of clips obtained
using these dictionaries. We show that this representation based on dictionary learning im-
proves the classification performance across actions. Also, a few of the actions consist of
rapid body deformations that hinder the extraction of local features from body movements.
Hence, we propose to use a dictionary which is trained on convolutional neural network
(CNN) features of the human body in various poses to reliably identify actors from the
background. Particularly, we demonstrate the efficacy of sparse representation in the iden-
tification of the human body under rapid and substantial deformation.

In the first two approaches, sparsity-based representation is developed to improve dis-
criminability using class-specific dictionaries that utilize action labels. However, develop-
ing an unsupervised representation of actions is more beneficial as it can be used to both
recognize similar actions and localize actions. We propose to exploit inter-action similarity
to train a universal attribute model (UAM) in order to learn action attributes (common and
distinct) implicitly across all the actions. Using maximum aposteriori (MAP) adaptation,
a high-dimensional super action-vector (SAV) for each clip is extracted. As this SAV con-
tains redundant attributes of all other actions, we use factor analysis to extract a novel low-
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dimensional action-vector representation for each clip. Action-vectors are shown to sup-
press background motion and highlight actions of interest in both trimmed and untrimmed
clips that contributes to action recognition without the help of any classifiers.

It is observed during our experiments that action-vector cannot effectively discriminate
between actions which are visually similar to each other. Hence, we subject action-vectors
to supervised linear embedding using linear discriminant analysis (LDA) and probabilistic
LDA (PLDA) to enforce discrimination. Particularly, we show that leveraging compli-
mentary information across action-vectors using different local features followed by dis-
criminative embedding provides the best classification performance. Further, we explore
non-linear embedding of action-vectors using Siamese networks especially for fine-grained
action recognition. A visualization of the hidden layer output in Siamese networks shows
its ability to effectively separate visually similar actions. This leads to better classification
performance than linear embedding on fine-grained action recognition.

All of the above approaches are presented on large unconstrained datasets with hun-
dreds of examples per action. However, actions in surveillance videos like snatch thefts are
difficult to model because of the diverse variety of scenarios in which they occur and very
few labeled examples. Hence, we propose to utilize the universal attribute model (UAM)
trained on large action datasets to represent such actions. Specifically, we show that there
are similarities between certain actions in the large datasets with snatch thefts which help
in extracting a representation for snatch thefts using the attributes from the UAM. This
representation is shown to be effective in distinguishing snatch thefts from regular actions
with high accuracy.

In summary, this thesis proposes both supervised and unsupervised approaches for rep-
resenting actions which provide better discrimination than existing representations. The
first approach presents a dictionary learning based sparse representation for effective dis-
crimination of actions. Also, we propose a sparse representation for the human body based
on dictionaries in order to recognize actions with rapid body deformations. In the next
approach, a low-dimensional representation called action-vector for unsupervised action
recognition is presented. Further, linear and non-linear embedding of action-vectors is
proposed for addressing inter-action similarity and fine-grained action recognition, respec-
tively. Finally, we propose a representation for locating snatch thefts among thousands of
regular interactions in surveillance videos.
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Chapter 1

Introduction to action recognition

Human actions range from simple limb movements to complex coordinated movements of
a group of limbs and the body. For instance, throwing a ball is a simple arm movement but
cricket bowling involves the collective movement of legs, arms, and whole body. Due to
these significant variations in what can be termed as an action, there are various definitions
of actions. Recently, Wang et al. [127] have defined actions based on the transformation
it brings to the environment. Using this definition, actions can be grouped into various
categories [58] like: (a) general facial actions - e.g., smile, laugh, and chew, (b) facial
actions with object manipulation - e.g., smoke, eat, and drink, (c) general body movements
- e.g., cartwheel, clap hands, and climb, (d) body movements with object interaction - e.g.,
brush hair, catch, and draw sword, and (e) body movements for human interaction - e.g.,
fencing, and hug. Action recognition is the process of recognizing these different types of
actions in real-world video streams. It lends itself to diverse applications like automated
video indexing of huge online video repositories like YouTube and Vimeo, analyzing video
surveillance systems in public places, human-computer interaction, sports analysis, etc.
With such a diverse range of applications, action recognition is a very important area of
research, and the efficacy of any framework depends on a robust action representation
which can both adequately represent the variations in the same action and discriminate
between similar instances of different actions.

1.1 Human action representation

Any human action can be described based on the detection of human and/or its body parts,
and the subsequent tracking of the detected human/body part. For example, in an action
like “shaking hand”, two person’s arms and hands are detected and tracked to generate a
description of their movement. This description is then compared with patterns in the train-
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ing data to relevant action type. As this process relies heavily on the accuracy of tracking,
videos without a clear view of the action cannot be recognized. This has led to development
of representations which can describe an action in greater detail using the spatio-temporal
semantics of the different events involved in the action. These representations are broadly
categorized as single-layered approaches and hierarchical approaches [1].

1.1.1 Single layered representation

Single layered approaches recognize actions directly from the raw frames of the video
data instead of considering a logical breakdown of actions into primitive sub-actions or
events. The image sequences from videos are regarded as being generated from a specific
class of actions, and thus such approaches basically involve matching the representation
of the videos to the correct action class. Specifically, single-layered approaches recognize
simple actions that can be employed to detect more complex actions using hierarchical
combinations.

1.1.2 Hierarchical representation

Hierarchical approaches recognize events of interest based on simpler sub-actions. Any
high-level action can be decomposed into a sequence of several sub-actions like “hand
shaking” can be understood as a sequence of two hands being extended, merging into a
single object, and two hands being withdrawn. Sub-actions can be further considered as
high-level actions until decomposed into atomic ones. The advantage of hierarchical ap-
proaches is the capability to model the complex structure of human activities and its flex-
ibility for recognizing either individual activities, interaction between humans and/or ob-
jects or group activities. Hierarchical approaches are also related to single layer approaches.
For example, non-hierarchical single layer approaches can be easily utilized for low-level
or atomic action recognition such as gesture detection. Some non-hierarchical single layer
approaches can also be extended to hierarchical models such as extended multi-layered
hidden Markov models (HMM). Construction of HMM models requires features that are
captured in smaller temporal regions and can be sequentially chained to form the entire
action.

1.1.3 Challenges in representing human actions

The representations presented above are designed to counter the challenges in human action
recognition arising due to the diversity in human actions and the unconstrained nature of
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recorded videos. Some of the challenges are inter-action similarity, viewpoint variations,
occlusion, variation in duration, actor-specific variation, background clutter, and camera
motion.

Inter-action similarity

Few actions like spiking a volleyball and smashing with a tennis racket can appear visu-
ally similar as shown in Figure 1.1. With such similarity in their appearance, the features
extracted from the videos of such actions are more challenging to discriminate.

(a) (b)

Figure 1.1: Inter-action similarity between (a) tennis smash and (b) volleyball spiking

Viewpoint variation

In real-life, actions are captured from different viewpoints and camera positions as shown
in Figure 1.2. It can be observed that even though the same action, i.e., cricket batting is
captured from different views, the posture of the person varies considerably in each view.
Further, the action attributes or motion patterns appear different in each view which makes
the task of action recognition even more challenging.

Occlusion

In surveillance videos, it is often difficult to obtain a clear recording of the action of interest
because of the number of people in the field of view. Occlusions can also appear due to
the parts of the actor’s body performing the action being covered by other body parts or
objects. This is particularly challenging as the key body parts acting may not be visible in
the video sequence, and feature extraction from such occluded parts is not possible.

Variation in duration

As each person acts at his/her own pace, there may be large variations in the recorded
duration of actions. Further, it is highly unlikely that a person will repeat the action at the
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Figure 1.2: Viewpoint variations for cricket batting

Figure 1.3: Variation in the duration of the action classes in UCF101. Adapted from [109].
Best viewed in color.

same speed. Figure 1.3 shows the variation in duration for all the actions in the UCF101
dataset [109]. It can be observed that for many of the actions like punch and shaving beard
have large variations in the duration of the recorded actions. These variations in the rate of
execution are challenging to handle when designing fixed length representations.

Actor-specific variations

Humans have differences in body size, proportion, and posture while performing an action.
For example, one person might move his/her hand above the head when waving, but another
person might just wave from shoulder height. In unconstrained datasets like HMDB51 and
UCF101, such variations are rampant as the videos are curated mainly from YouTube where
a large number of actors perform the same action.
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Background clutter

Background clutter is motion patterns of background objects or persons which distract from
the original action of interest. In such cases, the foreground needs to be reliably segmented,
and the foreground object needs to be tracked. However, due to poor resolution and variable
background motion, such accurate tracking may not always be possible.

Camera motion

Finally, there may be inherent motion in the camera while the action is being shot which
severely affects motion features since erroneous motion patterns are introduced in the
videos. In many cases, feature extraction using background subtraction methods may not
be feasible as these methods are affected by moving cameras. Further, any motion com-
pensation method might erroneously remove motion features that belong to the foreground
object.

1.2 Issues addressed in this thesis

Ambiguities in action recognition are caused by one or more of the above issues. In this
thesis, we explore various ways of building action representations that address one or more
of these issues. Our first approach involves learning dictionaries for each action using
a sparse representation of actions. We show that such dictionaries retain discriminative
information for a particular action and address the issue of inter-action similarity. Further,
training of these dictionaries involves the reconstructing the same action from different
views which resolves viewpoint variations. In the next approach, we propose a tracking
framework for actions where rapid deformations to the human body are encountered. A
hybrid system combining the sparse representation of convolutional neural network (CNN)
features helps in mitigating issues like occlusion, background clutter, and camera motion
while tracking.

The next approach introduces a novel low-dimensional fixed dimensional representa-
tion for variable length actions called action-vector. Action-vectors suppress background
motion by highlighting only the action of interest that is achieved through choosing ac-
tion attributes from a universal attribute model. Action-vectors are shown to be invariant
to actor-specific variations which result in a highly discriminative representation for each
action. To improve inter-action discriminability and additionally improve viewpoint invari-
ance, linear and non-linear embedding of action-vectors is proposed. Finally, we exploit
inter-action similarity to represent snatch thefts from a pre-trained attribute model using a

6



specific subset of attributes. Despite encountering issues like background motion, view-
point and actor variations which are common in surveillance footage, the obtained action-
vectors for snatch thefts are distinguishable from regular actions.

1.3 Organization of the thesis

The thesis is organized as follows. In Chapter 2, we present a review of representation
methods for action recognition and highlight the relevant research issues. The first ap-
proach for action representation using sparsity-based dictionaries is discussed in Chapter
3. In Chapter 4, we exploit sparsity to represent humans in actions with rapid body de-
formations. Then, in Chapter 5, an action attribute modeling based representation is pro-
posed called action-vectors which can discriminate between actions without supervision.
In Chapter 6, we subject action-vectors to linear embedding using linear discriminant anal-
ysis and non-linear embedding using deep Siamese networks to improve discriminability.
The performance of the representations discussed in these chapters is demonstrated on
benchmark unconstrained action datasets, and we extend our purview to highly challeng-
ing surveillance videos in Chapter 7. The performance of action-vector is demonstrated in
recognition of snatch thefts in real surveillance footage collected from the city of Hyder-
abad in India. Finally, in Chapter 8, a summary of the research work carried out as part of
this thesis is presented with directions for future work.
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Chapter 2

Review of representation learning for
action recognition

The challenges in action recognition presented in detail in the previous chapter have been
studied with great interest in the computer vision community. The main challenges en-
countered in action recognition are inter-action similarity, viewpoint variations, occlusion,
variation in duration, actor-specific variation, background clutter, and camera motion. In
literature, both spatial and temporal information have been shown to be important for ac-
tion representation [37]. Broadly, these representations are categorized based on the level
of granularity of the described spatio-temporal volume. The level of granularity gives rise
to representations extracted from either a local or a global context in an action video.

Local features can address issues like camera motion, background clutter, and occlu-
sion because the granular localization of motion and appearance can be used to segregate
the background from the foreground motion patterns. Also, local features can be used to
match short-term patterns between actions which provides more robust recognition even
if the action is partially occluded. However, local features are able to effectively address
actor-specific and duration based variations which are based on the appearance and exe-
cution rate of the actor. As the number of features extracted is strictly dependent on the
length of the video, there is a high mismatch if the duration varies widely for the same
action which is often the case in unconstrained videos. Further, in case of large variations
across actors in terms of body size and posture, the spatio-temporal locations for extraction
of feature change substantially which results in different local features. On the other hand,
global features or holistic representations can deal with actor-specific and duration changes
as the motion patterns are aggregated in fixed-dimensional representation. This aggrega-
tion normalizes the effect of variations in appearance and duration which enhances the
similarity across the same action in unconstrained videos. However, inter-action similarity
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is not suitably addressed by global features because of the inability to highlight minute lo-
cal variations that separate such actions. Also, global features are high dimensional which
introduces the curse of dimensionality while training classifiers on these representations.
Still, challenges like viewpoint variations are difficult to address using representation alone
and classification approaches like support vector machines (SVM) are used to define dis-
criminant surfaces for each action that separates it from other actions. These decision sur-
faces account for dissimilar representations within the same action arising out of viewpoint
differences.

As we have seen, a typical action recognition framework consists of feature extraction,
aggregation, and classification. Through recent advances in deep learning, convolutional
neural network (CNN) based approaches have been used extensively for action recognition.
These CNN architectures perform local feature extraction through the various filters in the
first few layers and combine them to form a global descriptor in the last fully connected
layers [113, 19] which is followed by softmax layer based classification. Hence, a single
deep network can be used to replace the entire framework.

The rest of the chapter is organized as follows. Traditional approaches like local and
aggregation features are discussed in Section 2.1. We describe the various deep architec-
tures for action representation in Section 2.2. Finally, the observations arising from the
literature review are presented in Section 2.3 and the summary is presented in Section 2.4.

2.1 Traditional approaches

The most effective traditional approaches for action recognition use local/low-level/short-
term features. A low-level feature describes a small space-time volume in the entire video.
Typically, action recognition frameworks perform local feature extraction followed by ag-
gregated descriptors of local features.

2.1.1 Local feature extraction

The first local feature for actions in videos was proposed by Laptev [66] in the form of
space-time interest points (STIP). Every STIP feature descriptor is computed using 3D-
Harris corner detectors to discover interest points in the spatio-temporal volume with spatial
variations and non-constant motion. However, camera motion is a recurring problem while
capturing actions and can lead to irrelevant interest points. In [76], such interest points are
discarded using statistical analysis. Further, an interesting observation was presented in
[76] which shows that static features obtained from the background helped in action recog-
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nition. This is because the background (e.g., the table of billiards) can supply contextual
information that aids the action recognition. A related idea was presented in Solmaz et al.
[108] in the form of gist which is a video descriptor computed using discrete 3D discrete
Fourier transform with 68 different Gabor filters placed in different orientations.

Gradient-based representations like the 2D histogram of oriented gradients (HOG) [15]
have been used for objects and shapes within an image based on the distribution of intensity
gradients or edge directions. This idea was extended in [53], where spatio-temporal gradi-
ent variations are captured as a collection of quantized 2D histograms from each frame of
the video to form histograms of oriented 3D gradients (HOG3D). It was shown in [53] that
instead using motion patterns described by optical flow fields lead to better action represen-
tation than spatio-temporal gradients. The histogram of optical flow (HOF) proposed by
Laptev et al. [67] describes the optical flow over a local region as a spatio-temporal descrip-
tor. To compensate for camera motion that unfortunately contributes to erroneous optical
flows, motion boundary histogram (MBH) was introduced in [16]. MBH is computed as
the spatial derivative of optical flow fields.

Local descriptors like HOG3D and 3D scale-invariant feature transform (3DSIFT) [98]
are usually computed in a 3D video volume around interest points which ignore the funda-
mental dynamic structures in the video. Instead, a fluid 3D trajectory tracks the movement
of an interest point more accurately. Especially, human-human actions can be more easily
identified by the relative motion between trajectories [47]. Further, discrepancies due to
camera motion can be compensated from original trajectories by subtraction as shown in
[117].

Improved dense trajectories

Improved dense trajectories (iDT) proposed by Wang et al. [118] describe the absolute
movement, position, and relative movement of a particle within a space-time volume of
size N ×N pixels and L frames aligned with a trajectory as shown in Figure 2.1. To obtain
local structural information, this volume is subdivided into cells of size nh×nw×nt, where
nh, nw, and nt are height, width, and temporal segment lengths, respectively.

At first, feature points are densely sampled on a grid spaced by W pixels (set to 5 as
per [117]) in different spatial scales. There are at most eight spatial scales increasing by
a factor of 1/

√
2 and the actual number of scales used depends on the resolution of the

video. Feature points are tracked on each spatial scale separately using dense optical flow.
For each frame It, its dense optical flow field ωt = (ut, vt) is computed w.r.t. the next
frame It+1, where ut and vt are the horizontal and vertical components of the optical flow,
respectively. Given a point Pt = (xt, yt) in frame It, its tracked position in frame It+1 is
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HOG HOF MBH

Figure 2.1: HOG, HOF, and MBH extraction from trajectories. Adapted from [117]. Best
viewed in colour.

smoothed by applying a median filter on ωt:

Pt+1 = (xt+1, yt+1) = (xt, yt) + (K ∗ ωt)|(xt,yt), (2.1)

where K is the median filtering kernel of size 3 × 3 pixels. Once the dense optical flow
field is computed, points can be tracked without additional cost. The points in subsequent
frames are concatenated to form trajectories (Pt, Pt+1, Pt+2, ...). However, if no tracked
point is found in a W ×W neighborhood, a new point is sampled and added to the track-
ing process so that a dense coverage of trajectories is ensured. As trajectories tend to drift
from their initial locations during the tracking process, their length is limited to L frames
to overcome this problem (set to 15 frames as per [117]). Also, trajectories with sudden
large displacements are most likely to be erroneous. Hence, if the consecutive frame dis-
placement > 70 % of the overall displacement of the trajectory, the trajectory is removed.
From each trajectory, the following descriptors are extracted.

• Histogram of gradient (HOG) features localize the particle in the video frame.
HOG has been shown to be excellent human detectors [15] and describe a particle
as a measure of the dominant gradients in its neighborhood. In Figure 2.2, the HOG
features detected for a person in a frame while clapping and walking are shown. In
case of a particle, the HOG features describe the dominant shape of the particle like
the shoulder or hands.

• Histogram of optical flow (HOF) features [10] form the next 96 dimensions which
describe the movement of a particle in subsequent frames in a small neighborhood
(3 × 3 or 5 × 5). Due to the change in scale of the actions a pyramidal approach is
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(a) (b)

Figure 2.2: HOG features calculated on (a) running and (b) clapping. Notice that the
gradients align along the outline of the body.

(a) (b)

Figure 2.3: HOF features calculated on (a) running and (b) hand waving

considered. For instance, in figure 2.3 the optical flow or HOF features are shown
for running and hand waving actions. Note that in case the background is static, as in
this case, HOF portrays the motion signature as in the hand motion for hand waving
and the entire body motion for running.

• Motion boundary histogram (MBH) features are computed in both horizontal and
vertical direction denoted as MBHx and MBHy (96 dimensions each). It quantifies
the relative motion between two particles as shown in Figure 2.4 where MBHy barely
captures the predominantly horizontal movement of running captured by MBHx. The
MBH descriptor separates optical flow into horizontal and vertical directions using
spatial derivatives in each direction separately. This results in distinct orientation
information for each direction which is quantized into histograms, and the magnitude
is used for weighting.
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(a) (b) (c)

Figure 2.4: MBH features on (a) running, (b) in x-direction, and (c) in y-direction

2.1.2 Aggregated descriptors of local features

The biggest challenge in using local features is that the number of features is dictated by
the duration of the clip, leading to varying length patterns. As classifiers like support vector
machines (SVM) require a fixed dimensional representation, a mechanism to represent sets
of local features into fixed-size descriptors is required, and this is fulfilled by aggregation.

Aggregation using bag-of-words

There are many aggregation based frameworks like bag-of-words (BoW), Fisher vector,
and vector of locally aggregated descriptors (VLAD) which have been used predominantly
for action representation [118]. To derive either of the descriptors mentioned above, the
short-term features are clustered using k-means or Gaussian mixture models (GMM). Then,
three different types of global descriptors can be obtained: a) BoW - using the zeroth
order statistics of the clusters, b) VLAD - using the first-order statistics of the clusters,
and c) Fisher vector - using both first and second-order statistics. In [126], a BoW model
was created using HOG and HOF features which were utilized for action classification.
Similarly, Fisher vectors have also been extensively used as a feature for standard classifiers
such as SVM [118] and feed-forward neural networks [17] to perform action recognition.
Notably, Fisher vectors calculated with the motion descriptors such as HOF and MBH
have shown good classification performance on large action datasets[117, 60]. A recent
improvement in VLAD termed as VLAD3 was used to provide a video-based representation
[73] and was shown to perform better than Fisher vector on action datasets. In [42], an
alternative descriptor called a super vector was computed using the maximum aposteriori

(MAP) adaptation of the means of the GMM. However, the resultant super vector is quite
high-dimensional as the GMM contains many mixture components to accommodate all the
actions and is also computationally expensive.
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Aggregation using sequential models

Some aggregation models consider an action as a sequence of features. Gaidon et al. [28]
proposed that each action can be decomposed as a sequence of atomic units called ac-
toms. A histogram of visual features was extracted from each actom, and a sequence of
these features was used to model the action. While an actom is annotated manually dur-
ing training, it is obtained automatically in testing. In another approach [70], actions were
decomposed into actionlets and represented using Markov dependencies between these ac-
tionlets. Although this method can capture long-term dependencies among actionlets, it
requires manual identification of actionlets and explicit modeling. In [133], every action
was divided into a set of events, and the start of each event was associated with a latent
variable. The action detection problem was then posed as quadratic programming (QP)
problem using these latent variables. However, this approach demands precise manual
identification of start and end points of the events, and also requires fixed length represen-
tation of each event for formulating the QP. A similar problem is encountered in temporal
clustering-based methods relying mainly on change detection for identifying and clustering
motion segments [143]. Finally, the methods mentioned above do not model fluid actions
like blowing candles and playing flute where marking the start and end of events within the
action becomes challenging.

Aggregation using dictionary learning and sparse coding

Sparse activation has been observed in the hippocampus where at most one-third of the
neurons get activated for any memory operation [3]. Similarly, in the motor cortex which
is responsible for higher-order motion planning and execution, very few neuron activation
spikes are discovered when performing certain locomotion activities [7]. These two works
show that at higher levels of sensory information processing, the feature representation is
highly sparse. For action recognition, Zhu et al. [148] use sparse coding to aggregate
HOG3D descriptors obtained from uniformly distributed spatio-temporal regions. The fi-
nal video descriptor is found using max-pooling on the sparse codes. The dictionary is
learned using transfer learning from unlabeled video data. Guha and Ward [31] propose
a class-agnostic dictionary for representing all action classes using local motion patterns.
However, due to limitations of such a dictionary in admitting new action classes, class-
specific dictionaries are suggested for better representation.

Inspired by the sparse representation of objects [72] in a low-dimensional space, Sadanand
and Corso [97] propose an action bank, where actions are described based on a large set of
detectors acting as dictionary elements of a high-dimensional action-space. There are 205
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Figure 2.5: Action-bank extraction as adapted from [97]. Best viewed in color.

action templates chosen from different actions in the UCF101 and HMDB51 datasets with
multiple examples of actions with high variability and a single example of actions with
low variability. Each action template having an average spatial resolution of approximately
50×120 pixels and a temporal length of 40−50 frames in the action-bank. Spatio-temporal
volume detectors are applied at three scales (1, 2, and 4) on a video clip. The number of
spatio-temporal descriptors is set to 73 (13 + 23 + 43) that is based on volumetric max-
pooling and considering three levels in the octree. The detectors decompose each input
video using 3D Gaussian third derivative filtering and match the decomposed spatio tem-
poral volumes to the templates in the bank using Bhattacharya distance. This results in
a 14965-dimensional (73 × 205) feature vector for each video clip under consideration as
shown in Figure 2.5.

2.2 Deep features for action recognition

With the ever-growing action datasets and increased computation power at disposal, deep
neural networks like convolutional neural networks (CNN) have been extensively used
for action recognition [49]. Deep architectures are composed of multiple levels of non-
linearities applied on linear combinations of inputs and network weights. Training deep
networks is critical because of the non-convexity of the decision surface and gradient algo-
rithms have been most successful when a large number of annotated examples are available
[34, 56]. Broadly, deep architectures used for action recognition can be categorized as (a)
spatio-temporal networks, (b) multi-stream networks, and (c) generative networks.
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Figure 2.6: Spatiotemporal operations: 2D convolution (blue), 3D convolution on stacks
of frames (red) as in [46], conventional spatial max-pooling (brown), and temporal max-
pooling (yellow) as in [84]. Best viewed in color.

2.2.1 Spatio-temporal networks

Each convolutional layer in a CNN utilizes the image structure to reduce the search space
of the network by pooling and weight-sharing as shown in Figure 2.6. Pooling and weight-
sharing also help in achieving scale and spatial invariance. Visualizing the filters of the
first convolutional layer shows that they learn low-level features (e.g., edges) while the
top layers capture high-level semantics [138]. This establishes CNNs as generic feature
extractors which can be used for the spatial description of actions.

The first approach to action recognition using deep networks was proposed by Ji et al.
[46] where spatial convolutional was augmented with temporal information in the form
of 3D convolutional networks. A 3D convolution network uses 3D filters extended along
space and time to extract spatiotemporal information and motion encoded in consecutive
stacks of frames as shown in Figure 2.6. Though the network was provided with supple-
mentary information like optical flow to facilitate the training, a noticeable improvement
in classification accuracy was shown for 3D CNNs over 2D CNNs in [46].

One of the drawbacks of 3D convolutional networks is the rigid temporal structure
which fails to address the variability in duration for the same action. As the network pre-
sented in Ji et al. [46] considers the input of only seven frames, there is no consensus on
the right number of input frames for actions with different speeds. This led to various fu-
sion schemes being investigated for the appropriate amount of temporal information to be
supplied into convolutional networks. In [84], max-pooling in the temporal domain was
found to be preferable. In [49], slow fusion was proposed where a convolutional network
is given several consecutive parts of a video, and these parts are processed by the same
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Figure 2.7: Foveated architecture of Karpathy et al. [49]. Green, red, and blue denote
normalization, spatial-pooling, and convolutional layers, respectively. Best viewed in color.

layers to produce different temporal responses. These responses are then fused in the fully
connected layers to generate a final video descriptor as shown in Figure 2.7. It was also
shown in [49] that using two separate networks, i.e., foveal and context streams are more
beneficial as shown in Figure 2.7. As the foveal stream focuses on the central region of
a frame, the object of interest can be captured in more detail as it often occupies the cen-
tral region. However, this assumption does not hold for surveillance scenarios where the
subject can be anywhere in the frame.

Tran et al.[113] reintroduced 3DCNNs to produce a generic video descriptor called C3D
which could be used for object, scene, and action representation. The feature extraction
network was trained on a large action dataset Sports-1M [49]. It was shown that a network
with homogeneous 3 × 3 × 3 filters performs better than varying the temporal depth of
filters. Temporal flexibility is obtained with 3D pooling layers, and the C3D descriptor is
obtained by averaging the fully connected layers. Varol et al. [114] demonstrated the effect
of 3D convolutions over longer temporal duration by extending the temporal depth of the
input and combining the output of networks with varying temporal duration. Though 3D
convolutions capture both spatio-temporal information at once, the number of parameters
of the network increase substantially. To overcome 3D filters, Sun et al. [111] proposed
the factorization of the 3D filter into a combination of 2D and 1D filters which produced
similar results as slow fusion in [49].

Another class of temporal structures are called recurrent neural networks (RNN) which
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Figure 2.8: Left: The recurrent structure of a RNN/LSTM network. Center: RNN cell
structure as a linear dynamical system. Right: The LSTM cell includes additional gate
controls. Time delay is indicated with a black square. Adapted from [36].

can model variable length sequences. A recurrent neural network models the dynamics
using a feedback loop as shown in Figure 2.8. The typical form of a RNN block accepts an
input signal x(t) ∈ Rd and produces an output z(t) ∈ Rm based on its hidden-state h(t) ∈ Rr

by
h(t) = σ(Wxx

(t) + Whh
(t−1)),

and
z(t) = σ(Wzh

(t)),

where Wx ∈ Rr×d, Wh ∈ Rr×r, and Wz ∈ Rm×r. However, training a RNN is not
easy due to the issue of vanishing (or exploding) gradient [4]. A long short-term memory
(LSTM) cell (Figure 2.8) was proposed in [38] to solve this issue by constraining the states
and outputs of an RNN cell through control gates.

Donahue et al. [20] use LSTMs for end-to-end training of a composite network over
variable length action videos as shown in Figure 2.9. The motion dynamics from a whole
clip are captured using an LSTM where each frame is represented as an output of a CNN.
The resulting structure named long-term recurrent convolutional network (LRCN) has been
shown to be successful not only in recognizing actions but also in captioning images and
videos. With the end-to-end learning and CNN-LSTM convolution, the spatiotemporal re-
ceptive filter parameters are computed in a data-driven fashion. In [124], temporal segment
networks were used to sample entire videos to produce a single feature vector representa-
tion. Though the long-term features can summarize an entire video, it is computationally
expensive to compute such features for very long videos. Especially, in the case of tem-
porally untrimmed videos which contain background movement, obtaining an adequate
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Figure 2.9: LRCN network structure [20]. Each group is a set of convolutional filters
applied to a particular set of feature maps from the previous layer. Adapted from [36].

representation for the desired action is challenging.

2.2.2 Multi-stream networks

Multi-stream networks are inspired by visual perception where the motion of an object and
its location are handled by separate streams of neurons. Simonyan and Zisserman [102]
introduced multi-stream deep convolutional networks for action recognition as shown in
Figure 2.10(a). The input for one of the streams called the spatial stream is raw video
frames while the temporal stream network uses optical flow fields as input. The spatial
stream network is pre-trained on the ILSVRC-2012 image dataset [57] and fine-tuned with
the videos from action datasets. The optical flow fields are stacked (early fusion) at the
input of the temporal stream network and are trained only from the available video data.
The temporal stream is modified to have more than one classification layer where each of
those layers operates on a specific dataset (e.g., one for the HMDB51 and the other for the
UCF-101 dataset). This realizes multi-task learning, as there are common layers shared
between different classification tasks across datasets.

The streams are fused using the softmax scores at a fully connected layer. A softmax
function converts a k-dimensional vector of arbitrary real values to a range of k values
in the range of (0, 1) that add up to 1. In [24], it is shown that fusion at an intermediate
layer improves the performance and reduces the number of parameters as shown in Figure
2.10(b). Notably, fusion at the last convolutional layer produces better classification per-
formance than late fusion in [102]. This alleviates the need for fully connected layers in
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(a) (b)

Figure 2.10: (a) The two-stream network by Simonyan and Zisserman [102] with RGB and
stacked optical-flow frames as inputs. (b) An example of a two stream intermediate fusion
network of Feichtenhofer et al. [24].

both streams and effectively reduces the number of trainable parameters by half.

Traditional descriptors like improved dense trajectories [118] have been used with
multi-stream networks in [123]. The iDT features traced using convolutional feature maps
of the two-stream network are aggregated using the Fisher Vector. Such a combination
yields state-of-the-art performance but not far off from the handcrafted iDT features. This
poses a question on whether the deep networks can capture optical flow dynamics better
than HOF descriptors in iDT.

2.2.3 Generative networks

As the number of videos on the Web keeps on increasing exponentially, it is pertinent to
have a model that can learn in an unsupervised manner as it is impossible to annotate the
vast majority of videos. Such a model is called a generative model, and it has been used for
sequence analysis to predict the future of a sequence. Given a sequence x1,x2, · · · ,xt, a
generative model may be trained to predict the next instance, i.e. xt+1. However, accurate
predictions are only achieved if contents and dynamics of the sequence are modeled faith-
fully. Deep-generative architectures like generative adversarial networks [29] aim to learn
from temporal data in an unsupervised matter.

Particularly for action recognition, generative models need to discover long-term dy-
namics for better representation of actions. Hence, in [110] an LSTM auto-encoder model
was proposed that consists of RNNs as both encoder and decoder [110] which is shown
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Figure 2.11: LSTM auto-encoder model by Srivastava et al. [120]. The internal states
(represented by the circle inside) of the encoder LSTM capture a compressed version of
the input sequence (frames 1,2, and 3). The states after that are copied into two decoder
models, one of which is reconstructive and the other predictive. The decoder LSTM tries
to reconstruct the input frames in the reverse order. The predictive LSTM is trained for
predicting the future frames 4, 5 and 6. The colors on the state markers indicate the infor-
mation from a particular frame. Best viewed in color

in Figure 2.11. The encoder LSTM accepts an input sequence and the states learn both
the appearance and dynamics of the sequence. The states are chosen to be the compact
representation of the input sequence, and the decoder LSTM tries to reconstruct the input
sequence from the compact representation. The LSTM auto-encoder has the added capabil-
ity to predict the future of a sequence. However, training such a model assumes coherence
in subsequent frames of an action video that may not always be present with the sudden
appearance/disappearance of actor body parts as in actions with rapid deformations.

2.3 Observations from the review

The entire review of representation learning for action recognition presents two diverse set
of approaches - traditional and deep learning based. Within traditional approaches, aggre-
gated descriptors using sparse representations were shown to be effective for representing
actions as the subspace of human actions is sparse because of the limited degrees of free-
dom of human limbs. In order to apply sparse representation, existing approaches use local
features extracted using sparse sampling in constrained settings. Instead, we hypothesize
that there is inherent sparsity in high-level aggregate descriptors which can be exploited
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directly to obtain sparse representations. In Chapter 3, we propose a sparse representation
based approach for obtaining discriminative dictionaries for different action classes. The
final classification is also based on the sparsest representation of a aggregated descriptor
given a action-specific dictionary.

Many of the recognition approaches presented in the review like [46] rely on human
body representation for extraction of local features. In many actions, due to rapid body
deformations, identification of humans becomes challenging which results in erroneous
recognition of actions. In Chapter 4, a sparse representation based approach is presented to
describe the different postures of the human body. We show that with such a representation,
the identification of the human body under rapid and heavy deformation is much more
reliable that CNN based representations.

In our review, most of the observed traditional and deep learning based approaches em-
ploy a classification technique to recognize the actions. However, real-world video data is
not annotated and obtaining manual annotations is both expensive and unfeasible. Hence,
we propose an unsupervised approach for representing and recognizing actions. We build a
universal attribute model for learning the atomic motion patterns across actions implicitly.
An implicit model is essential because an explicit breakdown of actions into its attributes is
subjective and unreliable because of no strict definition of action attributes. Finally, we ob-
tain a fixed-dimensional action-vector for a varying length action clip which contains only
the attributes of the action in the clip. Action-vectors are also low-dimensional and address
the curse of dimensionality that is demonstrated by most of the aggregate descriptors.

2.4 Summary

In this chapter, the existing literature on the representation of actions was reviewed covering
both traditional and deep representations. Most traditional representations were based on
aggregated descriptors of local features that holistically describe actions. However, such
representations are high-dimensional which introduces the curse of dimensionality when
training classification algorithms like support vector machines. Further, deep representa-
tions rely on supervised training that requires a large number of labeled examples. In this
thesis, we propose low-dimensional representation that can identify subtle differences in
actions with minimal or no supervision. Notably, we show that such representations have
more discriminative ability than the existing representations as only the unique informa-
tion is retained in the proposed representations. Finally, we show that even in challenging
scenarios like surveillance video footage, the proposed representations can easily identify
anomalous actions.

22



Chapter 3

Sparsity inducing dictionaries for action
recognition

The aggregated representations discussed in the last chapter were high-dimensional and in
this chapter, a linear decomposition method for low-dimensional embedding is explored.
Specifically, we design a sparse dictionary based representation which highlights discrimi-
native information about various action classes. Actions are composed of limb movements
and limbs have limited degrees of freedom which means that limb movements cover a
sparse subspace of the total space of movements possible. This leads us to conclusion that
global representation of actions which capture all movements for a particular action should
be effectively sparse. In order to extract this sparsity but retain the essential information
that is unique to each action, a reconstruction mechanism like dictionary is used. Any
input representation can be built using the sparse linear combination of dictionary atoms.
However, such dictionaries can be learned only from the data and this process is termed as
dictionary learning.

Dictionaries have been previously used in literature for action classification. In [91],
information maximization was used for building discriminative dictionaries. These dictio-
naries were used to represent action attributes to classify images representing human ac-
tions. Sparse modeling for motion analysis was proposed by Castrodad et al. [9] where us-
ing highly redundant features, a two-level pipeline was built to distinguish human actions.
In [31], three different dictionary were trained - shared (one dictionary for all classes),
class-specific, and concatenated (class-specific dictionaries concatenated to form a single
dictionary). It was found that class-specific dictionaries perform better on average than the
shared and concatenated types. In [33], a sparse dictionary was constructed in an on-line
manner for each incoming frame. In case of normal activity, consequent frames are related
to each other and dictionary update is minimal. However, any abnormal activity would
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cause a major change in the dictionary. A new descriptor known as locally weighted word
context was introduced in [121] which is a context-aware spatio-temporal descriptor. A
sparse dictionary based on the descriptor was constructed using the joint L2,1-norm where
each action category share similar atoms in the dictionary.

In [87], feature encoding methods like vector quantization (VQ), Fisher vector (FV),
locality-constrained linear coding (LLC) and soft assignment (SA) were evaluated in the
context of sparse coding. Fisher vector was found to be the most suitable representation to
form sparse dictionaries using improved dense trajectory (iDT) features [117] on HMDB51
and UCF101 datasets. Lu et al. [77] proposed a new sparse coding scheme in which
optimized local pooling was used to form discriminative dictionaries. A multilevel branch-
and-bound approach was developed to achieve action localization on videos. This extensive
review of sparsity-based dictionary learning methods for action recognition showed that
dictionaries can be effectively used for action classification. In [88], the dictionary learning
phase and feature encoding phase (e.g. fisher vector with GMM) were studied separately
for action recognition. Various features like spatio-temporal interest points (STIP), cuboids,
and iDT were used to construct discriminative dictionaries. These dictionaries were formed
using GMM, k-means, orthogonal matching pursuit, and sparse coding. They found that
the efficacy of dictionaries was not dependant on different feature encoding techniques.
In [129], the authors proposed a representation for action recognition based on high-order
statistics of the interaction among regions of interest in actions called action-gons. These
action-gons were extracted using iDT features and served as discriminative dictionaries.
Hence, it can be observed from the literature that dictionaries are able to provide a robust
representation of actions on different kinds of features.

The rest of the chapter is organized as follows. The framework for action representation
based on dictionary learning is detailed in Section 3.1. In Section 3.2, experimental results
are presented for sparse representation on various benchmark datasets which is followed
by the summary in Section 3.3.

3.1 Action recognition based on sparse representation us-
ing dictionary learning

In this section, a detailed discussion of the proposed method is presented. The classification
scheme in typical dictionary learning consists of two phases - dictionary construction from
training examples (training) and sparsity based evaluation of test clip (testing). The de-
tailed block diagram of the proposed approach is given in Figure 3.1. In the training phase,
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Figure 3.1: Flowchart of the proposed approach

features are extracted from the videos of each action class and dictionaries are constructed
using online dictionary learning (ODL). Then, these dictionaries are concatenated to form
a single dictionary and each atom in this concatenated dictionary is labelled based on its
corresponding class dictionary. In the testing phase, feature descriptors are extracted from
a test clip and its sparse representation is calculated using orthogonal matching pursuit
(OMP) based on the concatenated dictionary. Finally, the sparse representation is seg-
mented into class specific sparse vectors corresponding to the labels of the atoms in the
concatenated dictionary. The L1-norm for each of these sparse vectors is calculated and the
one with the highest L1-norm is considered as the sparsest representation for the test clip.
The test clip is then assigned to the action class corresponding to this sparse vector.
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3.1.1 Exploring suitable features for sparsification

Action bank features are useful for semantic representation of videos proposed by Sadanand
and Corso [96]. A single feature vector is obtained for an entire video clip which is much
larger (14965 × 1) as compared to the number of video clips per class in any of the stan-
dard datasets (≈ 100). The resultant matrix is a low-rank rectangular matrix (14965× 100)
which gives rise to an under-complete dictionary learning setting. From Figure 3.2, it can
be observed that the action bank features follow a Laplacian distribution with most of the
feature values being zero. This shows that action bank features are indeed suitable for spar-
sification using dictionaries and in this work, we explore sparsity-inducing dictionaries to
achieve a discriminative representation of human actions.

normalized feature value

n
u

m
b

e
r 

o
f 

fe
a
tu

re
s

Figure 3.2: Histogram of action bank features for all classes of HMDB51 dataset.

3.1.2 Dictionary based representation

The aim of dictionary learning is to extract a sparse formulation for a set of dense features
while retaining the information contained in the feature. Given a set of n m-dimensional
features Y = {yi}ni=1, the K-SVD based dictionary learning method [2] finds an optimal
dictionary Dm×k consisting of k atoms and a sparse matrix Xk×n which best represents the
features, as follows:

arg min
D,X
‖Y −DX‖2

F (3.1)
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subject to
‖xi‖0 ≤ τ for i = 1, · · · , n, (3.2)

where xi represents ith column of the sparse matrix X , Y is the matrix whose columns
are yi, τ is the sparsity parameter which is empirically determined (0.3 in our experiments),
and ‖.‖F denotes the Fröbenius norm. The K-SVD algorithm alternates between sparse
coding (finding X) and dictionary update (finding D) steps.

On-line dictionary learning (ODL) is an on-line version of k-SVD algorithm proposed
by Mairal et al. [81]. The sparse stage in ODL is a Cholesky-based implementation of
LARS-lasso algorithm which is similar to k-SVD (equation 3.1) but with a different spar-
sity constraint based on the L1-norm of x as given in equation 3.3. The sparse vector for
the tth incoming feature, yt is found using the optimization function :

arg min
D,X
‖Y −DX‖2

2 + λ‖xt‖1 (3.3)

In the dictionary update stage, to avoid tuning the learning rate, block coordinate descent is
used. It learns one example at a time giving the on-line nature similar to on-line stochastic
approximation algorithms. This feature is particularly useful for large datasets. The dic-
tionary Dt after incorporating the tth example, is calculated with respect to the previous
dictionary Dt−1 as :

arg min
D∈C

1

t

t∑
i=1

1

2
‖Y −Dt−1Xt−1‖2

2 + λ‖xi‖1, (3.4)

where C determines the action classes to be trained for.

3.1.3 Sparsity based classification

Suppose we have N classes, C1, C2, ..., CN consisting of K1, K2, . . . , KN number of train-
ing features, respectively. The features belonging to the same class Ci lie approximately
close to each other in a low-dimensional subspace [132]. Let b be a input feature belong-
ing to the pth class, then it is represented as a linear combination of the training samples
belonging to class p:

b = Dpxp, (3.5)

where Dp is a m×Kp dictionary whose columns are the training samples in the pth class
and xp is a sparse vector for the same class.

In the classification process, the sparse vector xj is found for the test feature bj using
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the dictionaries of training samples D = [D1, . . . ,DN ] by solving the following optimiza-
tion problem:

arg min
x

1

2
‖bj −Dxj‖2

2 (3.6)

subject to
‖xj‖1 ≤ T (3.7)

and

î = arg max
i
‖δi(xj)‖1, i = 1, · · · , N (3.8)

where δi is a characteristic function that selects the coefficients for class Ci, T represents
the sparsity threshold. A test clip bj is assigned to class Ci if the absolute sum of sparsity
coefficients associated with the ith dictionary is maximum among other classes. This crite-
ria was chosen instead of counting the number of non-zero coefficients as it was found to be
better at classification. The reason for using sparsity as classification is that while forming
a dictionary for a class, we admit the sparsest representation of features belonging to that
class. So, if a test feature belongs to a certain class, it should ideally admit the sparsest
representation with respect to that class dictionary and no other.

3.2 Experimental results

In this section, we present the performance of dictionary learning based sparse representa-
tion and evaluate the same for different types of feature descriptors. Further, the optimal
dictionary size is determined with respect to classification accuracy for each dataset consid-
ered for evaluation. This is followed by a thorough analysis of the dictionary learning clas-
sification performance on each action class. Finally, a comparison of the proposed sparse
representation is presented with state-of-the-art approaches on the benchmark datasets.

3.2.1 Datasets

For evaluation of dictionary based representation, we consider two large action datasets -
HMDB51 and UCF50.

HMDB51

The HMDB51 dataset is a very large human action dataset containing 51 action categories,
with at least 101 clips for each category. The dataset includes a total of 6,766 video
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Figure 3.3: Sample actions from HMDB51 dataset

clips (approximately 18 hours) extracted from movies, the Prelinger archive, YouTube and
Google videos. Such a variety of sources which have contributed to this database make it
very realistic and challenging. Three distinct training and testing splits have been selected
from the dataset as provided in [58], with 70 training and 30 testing clips for each category.
Some of the sample actions are shown in Figure 3.3.

UCF50

The UCF50 dataset was introduced in [92], consists of 50 sport action categories and all the
videos (approximately 17 hours) denoting the actions were collected from YouTube. The
dataset consists of more than 100 video clips for each category and gives plenty of variety
in terms of camera motion, object appearance and pose, object scale, viewpoint, cluttered
background, illumination conditions, etc. The official train/test splits are available at [109]
and were used in this work to maintain comparability with the previous literature on these
datasets.

3.2.2 Evaluation on different feature descriptors

Different feature descriptors like three dimensional scale invariant feature transform (3D-
SIFT) [98], action-gons [129], and others are considered for establishing the robustness
of sparse representation. Table 3.1 presents a comparison of classification performance
among various features used for learning dictionaries on the HMDB51 dataset. As reported
in Table 3.1, the best classification performance of 22.08% was obtained for 3D-SIFT fea-
tures with a dictionary of size 80. Other features previously used for building dictionaries
include IDT features[88] and action-gons[129]. All these representations are based on

29



spatio-temporal interest points but yield lower performance than action bank. Low-level
features capture the entire motion profile in a small spatio-temporal window which makes
it highly dense. This means that dictionaries constructed from such features lose signif-
icant information during the process of sparsification. However, for sparse features like
action-bank that are sparse, the process of construction of dictionaries is not sparse. This
explains the effectiveness of dictionaries in representing such features. In the rest of the
experiments, we consider only action-bank features for demonstrating the performance of
dictionary learning.

Table 3.1: Performance comparison of sparsity-based dictionaries using different features
on the HMDB51 action dataset

Feature Accuracy (%)
3D-SIFT 22.08

Action-gons [129] 58
Improved dense trajectory [88] 59.7

Action Bank 99.87

3.2.3 Classification Performance vs. Dictionary Size

The primary objective of dictionary learning is reconstruction. However, over-fitted dictio-
naries with perfect reconstruction are not desirable as variability in test examples cannot
be handled effectively leading to more mis-classification. Table 3.2 gives the variation of
recognition accuracy in terms of dictionary size for HMDB51 and UCF50 datasets. For
HMDB51, the maximum performance is noted for dictionary size of 100 with sparsity
(lambda value in SPAMS toolbox) set at 2, after which the performance degrades with in-
crease in the dictionary size. In case of UCF50, best classification accuracy is obtained for
dictionary size of 120 with sparsity set at 8 after which it degrades sharply. The reason
for this decline in performance is that action bank features can be compressed with great
effect till the point where all the discriminating characteristics remain. Beyond that point,
increasing dictionary size leads to loss of information. This behavior is consistent across
datasets and smaller dictionary sizes can produce a fair idea on the average overall clas-
sification performance. The only parameter to be tuned is sparsity. It also must be noted
that optimal dictionary size is based on the objective at hand and the number of exam-
ples available for each class. In our case, the optimal dictionary size is reached where the
reconstruction error is relatively low while maintaining high discrimination.
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Table 3.2: Effect of dictionary size on performance (in %)
Dictionary Size HMDB51 UCF50

60 92.33 51.6
80 98.11 60

100 99.87 63.9
120 99.51 72.46
140 98.23 69.6
160 97.56 69.6

3.2.4 Visualization of dictionaries

Dictionaries constructed for sample classes of HMDB51 and UCF50 are presented in Fig-
ures 3.4 & 3.5, respectively. The variability in actions of HMDB51 in terms of body
movement, posture, and overall appearance is adequately captured in the dictionaries. It
is clearly evident that the dictionaries formed for the classes of HMDB51 are indeed dis-
tinct from one another. This illustrates that features belonging to different classes do not
share a sparse neighbourhood. These distinct dictionaries contribute to better classification
performance of dictionaries on the HMDB51 dataset. On the other hand, the dictionaries
constructed for few of the classes of UCF50 bear strong similarities. The dictionaries corre-
sponding to classes such as “javelin throw", “jumping jack", “kayaking", “playing guitar",
“nunchunks", “pole vault", “pull ups" and “volleyball spiking" are quite similar making it
hard to discriminate these classes with sparsity-inducing dictionaries which contributes to
lower classification performance on the UCF50 dataset as can be seen in Table 3.4.

In Figure 3.6, the confusion matrix of the UCF50 dataset is presented. Pole vault is
mis-classified as kayaking and biking is mis-classified as juggling balls. Similarly, walking

with dog is confused to be tennis swing. These confusions are due to the fact that their
representative dictionaries are almost identical as shown in Figure 3.5. Also, the confusion
matrix for HMDB51 dataset for the best performing dictionary of size 100 is presented in
Figure 3.7.

3.2.5 Comparison with state-of-the-art

A summary of the classification performance of previous approaches in literature applied
on HMDB51 is presented in Table 3.3. It can be observed that single frame based fea-
tures like HOG/HOF[59], C2[59] , motion interchange patterns [54] demonstrate high mis-
classification as they do not consider temporal context while describing action. On the
other hand, trajectory features [134], [119], [129] which consider multiple frames to pro-
vide temporal description of the motion perform better than single frame based features.
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Table 3.3: Comparison of classification performance on the HMDB51 action dataset

Method Feature Accuracy (%)
Single-frame based feature

Kuehne et al. [59] HOG/HOF 20.20
Kuehne et al. [59] C2 23.18

Kliper-Gross et al. [54] Motion Interchange Patterns 29.17
Multiple-frame based feature

Solmaz et al. [108] Frequency based
29.20

3D spatio-temporal features
Jiang et al. [47] Trajectory on motion

40.70
reference points

Srivastava et al. [110] RNN with LSTM 44.1
Wang et al. [119] Dense trajectory 44.75
Wu et al. [134] Dense trajectory-aligned 49.46
Liu et al. [75] Multiple features 49.95
Lan et al. [64] Local handcrafted features 52.4
Park et al. [86] Multiple CNNs 54.9

Wang et al. [119] IDT 57.20
Wang et al. [129] Action-gons +

58
Sparse Dictionaries

Sun et al. [111] Factorized Spatio-Temporal CNNs 59.1
Simonyan et al. [103] Two stream CNNs 59.4

Wang et al. [125] Temporal Pyramid Pooling
59.7

based CNN
Peng et al. [88] IDT + Sparse Dictionaries 59.7
Lan et al. [61] Space-time Extended Descriptor 62.1
Lan et al. [62] Long short term motion 63.7

Sadanand et al. [96] Action bank 26.90

Proposed approach Action bank + 99.87
Sparse Dictionaries

Action bank is also one such representation which uses a spatio-temporal volume across
multiple frames but performs slightly better than single frame based features. However,
representing action bank features in terms of sparsity-inducing dictionaries improves the
performance significantly as shown in Table 3.3. It can be noticed that a similar dictionary
transformation of improved dense trajectory features [88] betters the performance only
slightly (57.2 to 59.7%). This shows the suitability of action bank features for sparse dic-
tionary based representation. Further, it is also evident from Table 3.3 that the proposed
method demonstrates significantly higher classification accuracy than CNN and CNN based
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RNN networks presented in [111], [125], [86], [110] and [103].
In Table 3.4, we present the performance of the proposed method on the UCF50 dataset.

It can be see the dictionaries constructed from action bank features perform reasonably
well as compared to state-of-the-art but not as well as action bank features. This shows that
original features are more discriminative than the sparsity-inducing dictionaries. Further,
it also illustrates that applying sparsity constraints while constructing dictionaries may not
always lead to better discriminative representation.

Table 3.4: Classification performance on the UCF50 dataset

Method Accuracy (%)
Kliper-Gross et al. [54] 72.60

Solmaz et al. [108] 73.70
Reddy and Shah [92] 76.90
Todorovic et al. [112] 81.03

Sadanand et al. [96] (Action bank) 76.40
Proposed approach 72.46

3.3 Summary

The main goal of this chapter was to explore the sparsity of feature descriptors to develop
a discriminative representation for actions. We showed that using dictionary learning, such
a sparse representation could be obtained which could easily distinguish actions in datasets
with large number of classes. When applied to different existing feature descriptors, it was
found that action-bank features that describe the entire video clip using a single descriptor
are the most suitable candidates for building dictionaries. By exploring the inherent spar-
sity of action-bank features, dictionary based sparse representation was shown to correctly
classify almost all test examples in the HMDB51 dataset. Finally, we showed comparable
or better performance than the existing state-of-the-art approaches on benchmark datasets.
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Chapter 4

Recognition of actions with rapid body
deformations using sparse
representation

In the last chapter, dictionary learning was used for the sparse representation of actions in
order to achieve better discriminability. This was shown to be effective as actions com-
prise of human movements which have limited degrees of freedom and hence span a sparse
subspace [26]. Similarly, structural sparsity has been used to represent different objects,
including humans, for continuous tracking [141, 32, 79]. Especially, human body represen-
tation is the backbone for many approaches like [46] which rely on human body represen-
tation for extraction of local features. However, when the human body is highly contorted
and the videos are low-resolution, body representation using pose estimation is difficult. In
this chapter, we leverage sparsity to represent and identify the human body under rapid and
heavy deformation.

Athletes perform complex movements during actions like platform diving, somersault-

ing etc. which cause their bodies to contort in poses which are difficult to recognize. These
movements also make continuous tracking a challenge during such sporting events. Fur-
ther, as athletes can appear at any position in the frame in any pose, the issue of tracking
is more complicated than pedestrian tracking [78]. Previous attempts at human tracking
involve algorithms that are built by considering a certain shape estimate of the human body
[85]. Such trackers require a clear foreground shape model of the object being tracked
which is hard to obtain in the case of high deformations and volatile background motion.
An alternative suggested in literature is the use of part-based models to track the differ-
ent parts of the body which are then used for human tracking [25, 140]. While using such
methods has shown to improve the accuracy of tracking, the requirements include 1) a large
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(a) cliff-diving

(b) platform-diving

(c) pole-vaulting

Figure 4.1: Scenarios depicting highly articulated motion leading to complex poses. Best
viewed in color.

number of examples with manual annotation, and 2) dependency estimation between the
various parts in the form of conditional random fields (CRF) or graph structures. In the
case of highly deformed poses, as presented in Figure 4.1, dependency estimation between
parts is seldom reliable as most of the body parts are either occluded [21] or do not follow
the normal dependency structure [137, 136]. Also, it can be observed from Figure 4.1 that
the entire body of the athlete is so tiny that locating and annotating parts automatically is
quite challenging. Further, a massive change in body posture can be seen in consecutive
images (each frame from left to right is 5 frames apart) for each action presented in Figure
4.1.

From these works, we hypothesize that as all human poses (highly deformed or other-
wise) are structurally sparse. This motivates us to create a sparse representation from all
the poses of the human body in the form of a dictionary which can be used later for on-line
tracking. Notably, this dictionary is also shown to recognize the body of an athlete from the
unstructured background in most of the scenarios. Figure 4.2 gives the description of the
proposed hybrid framework. For training the dictionary, candidate samples are generated
offline from a proposal generator based on the ground-truth available for training images.
A convolutional neural network (CNN) modelled on the multi-domain convolutional neu-
ral network (MDNet) [83] (discussed in detail in Section 4.2) using pre-trained weights is
then used for extraction of features which is used for training a dictionary with a sparsity
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constraint. During testing, the first frame is supplied with the ground truth which initializes
the tracker. The CNN tracker which is adapted for human target detection is used along
with the dictionary verification for final target detection in each frame.

Candidate
proposal 
generator

Candidate
proposal 
generator

Shared layers of
online CNN tracker

Trained 
dictionary 

fc5  features of candidate patches

New target 
groundtruth

Sparsity score for 
each candidate 

region

Model training

Model testing

Score < Threshold

Sparsity 
score in 
human 
range

Sparsity score
for each patch

Sparsity score
in human range

no

yes

reject 
patch

Sparsity based
dictionary
training

Figure 4.2: Dictionary-CNN hybrid framework for human tracking

The rest of the chapter is organized as follows. In Section 4.1, a brief review of human
body representation is presented and the proposed framework based on sparse representa-
tion is discussed in Section 4.2. This is followed by experimental results and comparison
with state-of-the-art approaches in Section 4.3 and the summary is presented in Section 4.4.

4.1 Review of human body representation

The representation of human body is critical in deduce the action from videos. Especially,
recognizing the human body under rapid deformations is key to understanding the action
being performed. This is why several diverse approaches have been tried out at both feature
extraction and feature association levels for faithful representation and spatial localization.
At the feature level, representations ranging from low-level hand-coded features such as
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edge and contour detection methods to high-level domain specific features like joint lo-
cations, optical flows, depth maps, textures, colour blobs, multi-voxel data, and multiple
image silhouettes, have been extensively exploited for building pose estimation based lo-
calization frameworks.

At the feature association level, most of the pose estimation approaches can be grouped
into three broad categories, mapping functions [52], search strategies [101] and part-
based models [99]. Most approaches that come under the first two categories use search
strategies and mapping functions in an attempt to estimate all human body articulation
parameters simultaneously. As the articulated motion becomes complicated, its description
requires high dimensional representation which incurs the curse of dimensionality. Part-
based models address this issue by following a bottom-up approach wherein a candidate’s
loosely connected body parts are detected at first, and all possible configurations of detected
parts are inferred at a later stage leading to the low-dimensional representation of complex
articulated motion.

A slightly different methodology is followed in [74], where human pose localization
is formulated as a joint estimation problem. The modules of foreground segmentation and
pose estimation used are a part of a cyclic feedback system. Segmentation supplies a mask
for the foreground to a sequential Bayesian filter for pose localization. The localization
module, in turn, provides a map of foreground response for the segmentation block. Opti-
mal foreground estimation and pose localization is achieved when the recursive interactions
between the two modules reach a steady state causing no significant corrections in either.
In [139], a two-stage tree-based optimization is used to build a part-based model where
body parts are defined as either associated or abstract. Abstract body parts are used in this
model which include not only the loosely connected parts but also the possible constraints
between symmetric parts of a given human pose. An association tree built for this model
imposes spatio-temporal constraints between body parts in two adjacent frames by generat-
ing optimal tracklets from the abstract body parts. Although these human pose localization
models perform well to some extent, complex articulated motion poses challenges like the
inability to assign tracklets during extremely deformed states of the human body.

Delving further into feature representation, sparsity has been extensively used for trans-
forming features into sparse representations that enhance recognition performance. The
inherent structural sparsity associated with human body motion and highly discriminatory
property of sparse features hint at the potential of sparse representation in building a robust
human pose localization framework. In [106], the structural sparsity of articulated motion
of the human body is explored for pose localization by using a probabilistic observation
model like the particle filter. However, using the particle filter in a sparsity framework
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causes real-time performance issues. To address this challenge, an interest point based rep-
resentation i.e. a Harris corner detector is applied on all candidate proposal image patches,
and a sparsity-based dictionary is trained on the resultant interest point feature descrip-
tors [115]. Though this model handles partial occlusions and scale variances, the limited
effectiveness of hand-crafted features limits the performance of sparse representations on
highly deformed targets.

Apart from human-specific representations, some approaches have been proposed to
track any moving object which can be adapted to the context at hand. Such a framework is
MUlti-Store Tracker (MUSTer) [40] where a visual tracker based on short-term and long-
term memory model is developed with low-level hand-coded features. An extension can be
seen as the multi-domain convolutional neural networks (MDNet) [83], where the update
mechanism has been retained but in combination with CNN features. The representation
power of CNN features allows MDNet to have better tracking performance than MUSTer.
Its architecture consists of two kinds of CNN layers, shared layers (3 convolutional and 2
fully connected) and domain specific-layers (binary classifier), to extract relevant features
hierarchically for tracking. The convolutional layer weights are derived from the VGG-16
network [105]. The reason for not using more number of convolutional layers for feature
extraction is that spatial information gets diluted as the network depth increases [39]. The
next three layers of the network are fully connected layers. Among these fully connected
layers, the first two i.e. fc4 and fc5, are shared layers whereas fc6 is a binary classifier.
During the offline training phase of the CNN tracker, the weight update takes place only
in the fc4 and fc5 layers which are common to entire domain space i.e. all training video
sequences. The fc6 layer is made to vary from one domain to the other. This is shown to
be immune to several issues like the unconstrained motion of the target, illumination, and
scale variances.

4.2 Dictionary-CNN hybrid approach for human body rep-
resentation

The proposed framework integrates dictionary based representation into an on-line CNN
architecture. To motivate the use of the dictionary, we first explain the process of represen-
tation by the CNN architecture. The various layers involved in this architecture are depicted
in Figure 4.3.

Given a new test frame sequence, and the ground truth of the first frame of the sequence,
a predefined overlap threshold is used to separate candidate proposals into positive and
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Figure 4.3: CNN architecture adapted from [83]. The input size of 107 × 107 is designed
to obtain 3 × 3 feature maps in conv3: 107 = 75 (receptive field) + 2 × 16 (stride). The
convolution layers obtained from VGG-16 [105] are not updated. The fully connected
layers are learned originally from training videos and shared across videos. The binary
classifier is trained from the first frame of the testing video. The fully connected layers and
binary classifier are updated when target score drops below the threshold. The red and blue
bounding boxes denote positive and negative samples, respectively.

negative samples. The samples are obtained using Gaussian sampling around the provided
ground truth. The two classes of samples are then balanced by the number of examples
and used to fine-tune fc4, fc5 and fc6 layer weights. From the second frame on-wards,
fine-tuning is performed at regular intervals (5 frames) or if the mean value of the binary
classification score for the target at the fc6 layer drops below a predefined threshold (gen-
erally 0.5), whichever happens first. The drop in score indicates the potential failure of
the network in estimating the target. Whenever this failure takes place, positive candidate
samples that are stored for a short period (5 frames) are used to fine-tune fully connected
layers of the tracker. This is called as a short-term update. Apart from the short-term up-
dates, long-term updates are performed at regular frame intervals (100 frames) by using the
positive samples collected for a long time-period.

The performance of this on-line CNN architecture on a typical low-resolution video of
cliff-diving is shown in Figure 4.4. It is observed that the performance degrades as the
target’s shape deforms rapidly and CNN output score becomes highly negative. Invoking
either long-term or short-term updates does not help in this case as the deformed target
is not contained in either the long-term or short-term memory and hence cannot generate
suitable positive candidate proposals. To resolve this issue, we use sparsity to verify the
process of candidate proposal selection.
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Figure 4.4: fc6 scores of MDNet [83] with the tracker output (in yellow) for few of the
frames. Green represents the ground truth. Best viewed in color.

4.2.1 Dictionary construction

The dictionary trained in this work is based on human body image patches in different
poses. During training, the mean and standard deviation of sparsity scores of features ob-
tained from human patches are noted. In testing, a patch is classified as human if the spar-
sity score (of its extracted feature) lies within one standard deviation of the training mean
for human patches. The number of dictionary atoms k is determined empirically. As we
want to minimize the use of manual annotation, a candidate proposal generator is adopted
on available ground truths of humans available [116] for HMDB51 [58] and UCF50 [92]
to generate a large number of positive samples. The training proposals are generated only
from the videos in the official training split available for these two datasets. To demonstrate
the performance of sparsity, we choose two features, a) histogram of gradients (HoG) that
has been popular for human identification and b) CNN features extracted from the fc5
layer of the on-line CNN tracker. Both these features are extracted offline on the positive
samples generated from the videos mentioned above.

The sparsity scores for human (in red) and non-human patches (in blue) obtained from
the dictionaries learned from HOG, and CNN features (fc5 layer features) of human patches
are shown in Figure 4.5. The patches whose scores are presented are unseen by the dic-
tionary as they are obtained from the testing videos according to the official training split
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(a) HoG features

(b) CNN features

Figure 4.5: Sparsity scores of human patches (in red) and non-human patches (in blue)
obtained from dictionaries trained using (a) HoG and (b) CNN features for the 3 classes :
cliff-diving, platform-diving, and pole-vaulting. Best viewed in color.

available for UCF50 and HMDB51 datasets. The scores for human and non-human patches
are almost identical in case of HoG features which are obtained from a dictionary trained
only on human patches. On the other hand, a clear distinction can be seen in the case of
CNN features which demonstrates that learning the dictionaries on CNN features is more
effective for human representation than HoG features. Further, it should also be noted that
during testing, the dictionary trained on CNN features can recognize all poses. This not
only demonstrates that the human body is indeed structurally sparse in complex poses but
also the same dictionary atoms can be used to represent any human pose, whether normal
or highly contorted.
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4.2.2 Dictionary based representation

The trained dictionary is transferred to an on-line representation network for testing new
sequences as described in Algorithm 2. For the short-term updates, the fc5 features of the
stored positive samples are sent to the dictionary D to obtain sparsity scores using l1-lasso.
Here, l1-lasso is used to minimize the sum of squared errors for each example yi, i.e.

min ‖yi −Dxi‖2
2 (4.1)

subject to
‖xi‖1 ≤ s, (4.2)

where s is the upper bound on ‖xi‖1 which is set to the maximum l1-norm obtained for
negative (non-human) samples on trained dictionary D so that sparsity scores of all patches
(human or non-human) can be considered during testing. Then, only if the sparsity score
of a particular proposal agrees with the training threshold (within one standard deviation
of mean sparsity score obtained for human patches during training), it is used for fine-
tuning. The sparsity threshold ρ (= 0.2) and the CNN score threshold γ (= 0.6) were
determined empirically based on the videos used for training. The output of the CNN
tracker is mostly incorrect during any drastic appearance change in the tracked body, and
as the short-term updates accumulate, the tracker moves way from the human subject. The
dictionary check ensures that such negative proposals are always pruned at the earliest, and
the short-term updates always provide reliability in localization. Long-term updates are
called when the mean fc6 scores remain continuously below the threshold for many frame
sequences. Such updates can sometimes cure the CNN architecture from going astray
during tracking, but they require storing a lot of positive samples which increases update
time. Further, a lot of wrong short-term updates can cause the long-term update to betray
its objective. Dictionaries save computation time as long-term updates are infrequently
invoked, and the quality of short-term updates is improved which aids the long-term updates
as well. This is discussed in detail in Section 4.3.3.

4.3 Experimental results

This section explains the dataset used for evaluation, compares the performance of the
proposed tracker with the state-of-the-art approaches, and visually demonstrates the result
of the proposed approach across various rapid body deformation scenarios.
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Algorithm 1: Training of CNN architecture
Input : Frame sequence

Pre-trained weights from first 3 convolution layers of VGG-Net
Ground truths of the targets

1 while frame sequence is not empty do
2 if current frame is the first frame then
3 Initialize fc4, fc5, fc6 weights randomly
4 end
5 Generate positive and negative candidate proposals around target
6 for all candidate proposals do
7 Perform target versus background binary classification
8 end
9 Fine-tune fc4,fc5 and fc6 weight vectors based on errors generated from

positive samples
10 Remove current frame from frame sequence
11 end

4.3.1 Dataset

As the degree of deformation varies in different contexts, we chose platform-diving and
cliff-diving from UCF50 [92] and dive from HMDB51. Also, these actions contain som-
ersaults, cartwheels, and other acrobatic movements present in gymnastic routines which
means that they cover such actions as well. As gymnastic events are performed indoors
with the camera placed closer to the actor than diving, we found that it is easier to track the
actor. Additionally, the chosen actions have the following characteristics:

• Rapid deformation in body shape during a short interval of time.

• Low-resolution of the target to be tracked.

• Large change in target appearance from the first frame (the ground truth of the first
frame is used for initialization of the tracker).

• Highly occluded body parts while the action is being performed.

• Dense background in most of the cases which may contain other humans.

There are a total of 100, 125 and 150 videos for platform-diving, cliff-diving and dive

respectively. All the results subsequently presented in this section are obtained on the
testing videos based on the official test splits for HMDB51 and UCF50 datasets.
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Algorithm 2: Spatial localization of human body using Dictionary-CNN framework
Input : Frame sequence

Initial location of the target
Pre-trained weights from first 3 convolution layers of VGG-Net
Pre-trained fc4 and fc5 weight vectors from Algorithm 1
Trained dictionary matrix D
CNN score threshold γ
Sparsity threshold ρ

Output: Estimated location of the target
1 Generate positive and negative samples on initial location of the target
2 Perform weight update of fc4, fc5 and fc6 using positive and negative samples
3 for frame t in the frame sequence do
4 Produce candidate region proposals
5 Pick the optimal target location o based on maximum positive scores at fc6
6 if positive score ≥ γ then
7 Generate positive and negative samples around o
8 end
9 if positive score < γ then

10 for each candidate region proposal i do
11 Calculate sparsity score αi based on l1-lasso on D
12 end
13 Obtain optimal target location o based on mini |αi − ρ|
14 Generate positive and negative samples around o
15 Fine-tune fc4,fc5 and fc6 weight vectors based on errors generated from

positive samples and o
16 continue
17 end
18 if t mod 100 = 0 then
19 Fine-tune fc4,fc5 and fc6 weight vectors based on errors generated from

positive samples and o
20 end
21 end
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4.3.2 Metrics for evaluation

As per the recent literature [71], multiple object tracking accuracy has been used as the most
common benchmark. In the case of the dataset considered here, there is only a single object
of interest, and hence, we use single object tracking accuracy (OTA) which is computed as
follows:

OTA =
1

L

L∑
l=1

TP l, (4.3)

where L is total number of frames in all the videos, and the true positive for frame l is
denoted as:

TPl =

{
1 if Ol > τ̄

0 if Ol < τ̄,
(4.4)

where τ̄ is a pre-defined threshold and Ol = |Āl∩Al|
|Āl∪Al|

, where Āl and Al denote the occupied
regions on the image plane for the ground-truth and estimated bounding boxes for frame l,
respectively.

To automate the process of recognition and to avoid any manual annotation, we tried
obtaining the ground truth in the first frame using the state-of-the-art human detector pro-
posed in [93]. However, due to poor resolution of the target in most of the training videos,
we were unable to obtain the bounding box of the target. Hence, the first frame of a video
was manually annotated in absence of the ground truth.

4.3.3 Comparative analysis

For comparing the performance of the proposed hybrid framework, a state-of-the-art ap-
proach - MDNet [83] is used as the baseline in all the cases demonstrated below. The qual-
itative results on different instances of both platform-diving and cliff-diving are presented
in Figures 4.6 and 4.7, respectively. As it can be observed from these figures, both MDNet
and the proposed framework are close to the ground truth in case of small deformations
in the human body as shown in Figures 4.6(a) and 4.7(a). However, as the deformations
become more complex (Figures 4.6(b) and 4.7(b)), the hybrid tracker clearly gives spatial
localization outputs closer to the target than the MDNet tracker [83]. This gap in localiza-
tion outputs between the two trackers shows the inability of a purely CNN architecture to
handle highly deformed human figures. Notably, we have only used the ground truth for
evaluation of the trackers and not during the time of tracking in any way.

To demonstrate the effect of dictionary training, we also present the comparison of ac-
curacy between the hybrid dictionary-CNN framework and MDNet for different values of
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Figure 4.8: Comparison of accuracy (in %) between proposed hybrid framework and MD-
Net [83]

overlap threshold τ̄ on cliff-diving, platform-diving, and all clips in Figure 4.8. It can be
observed that the hybrid tracker performs consistently better than MDNet for all values
of the threshold. The difference in accuracy is a result of the MDNet performing not as
well as the hybrid tracker on complex deformation cases. Further, the difference is less
pronounced for cliff-diving than for platform-diving as the there are fewer humans in the
background and the background colour in many cases is in stark to the diver which causes
fewer confusions for MDNet. The accuracy presented here encompasses all frames irre-
spective of the deformation in the target. This is because there is no way to measure the
degree of deformation in low-resolution targets whose body-part or pose-based annotations
are not available.

As we have seen from the above results, dictionary allows the tracker to work more
accurately with less need for short term updates. It is observed that for each testing video,
only 3 short-term updates (on an average) were required by the hybrid tracker instead of the
10 short-term updates required by MDNet. This reduces the run-time by 21 seconds (7×3

52



Figure 4.9: Failure cases of human body representation. Each row represents a different
scenario. Blue represents ground truth, pink represents the output of the proposed frame-
work, and red represents MDNet output. Best viewed in color.

seconds per update) but after including the time taken for sparsity score calculation, we
only save 0.2 seconds per clip over MDNet. However, because of the reduced number of
short-term updates, the number of candidate proposals accumulated for long-term update
(called once per clip on an average) decreases by 70% which reduces the long-term update
time by 3 seconds per clip. Hence, the average savings for a video was observed to be
around 3.2 seconds (on a NVIDIA Tesla K20Xm GPU).

The qualitative analysis also produces a few failure cases where neither the hybrid
model nor MDNet can track the human target. A few example frames are shown in Fig-
ure 4.9 where the target is not identified by either MDNet or the hybrid approach. In these
examples, a part of the background structure resembles a human target. This leads to the
sparsity output produced by the background structure to be in the sparsity range considered
as a human during dictionary training. In low-resolution videos, there may be many possi-
ble structures which may look similar to a human body. However, to make the dictionary
choose a background structure over a human target, the structure also has to be in close
vicinity of the tracked target.

4.4 Summary

In this chapter, we presented a sparse representation based approach to study rapid body
deformations in human actions. Particularly, we concentrated on videos captured in low-
resolution where it challenging to estimate the pose of the human body. These scenarios are
are not handled well by state-of-the-art CNN based localization approaches in the absence
of any pose-based or part-based information. We demonstrated that the sparse represen-
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tation of the human body can be effectively used to locate the human body even under
deformation. Using the sparse representation to guide the CNN based representation was
shown to identify low-resolution targets in highly deformed poses. For different types of
actions like cliff diving, parallel bars, uneven bars, etc., the proposed approach was able to
recognize the human body throughout the action that can further help in the identification
of action.
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Chapter 5

Unsupervised action recognition using
action-vectors

In the last two chapters, we presented supervised dictionary learning based approaches for
recognition of actions and also humans performing those actions. However, using supervi-
sion requires a large number of annotated examples to train the model in order to achieve a
representative model. In this chapter, we present an approach for building an unsupervised
action representation for all actions without tracking of actors or action labels. To achieve
this, we consider that human actions can be modeled as a sequence of atomic attributes. For
example, boxing can be interpreted as a combination of attributes like right-hand punching

forward, right-hand retracting, left-hand punching forward, and left-hand retracting. How-
ever, the definition of such attributes is subjective and hence manual annotation of attributes
is highly inconsistent [146]. Further, unconstrained videos have inter-actor variability or
viewpoint differences causing large deviations within the same attribute and making their
explicit extraction difficult. Hence, techniques which require explicit supervision for selec-
tion of essential attributes like dictionary learning (see Chapter 3) is not suitable. Further,
a sparsity-based representation considers no correlation among the features across actions
which is in contradiction to the fact that human actions share correlated attributes like com-
mon limb movements. For example, an action like cricket bowling contains attributes of
another action running.

In the aggregation frameworks like Fisher vector [117] and vector of locally aggre-
gated descriptor (VLAD) [73], either the output is a very high dimensional representation,
or it is not specifically tuned for each action. So, in the proposed method, we aim to
provide a distinct low-dimensional representation for each action. Also, most of the ex-
isting works use some supervision in the form of manually annotated bounding boxes for
feature extraction[117, 60]. In our proposed method, we extract HOG, HOF, and MBH
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features without using bounding boxes or body joint localization. Then we build a univer-
sal attribute model (UAM) to estimate the probability density function for implicit attribute
extraction of all the actions. Using the UAM removes the need for manual annotation of
attributes making it an excellent choice even for fluid actions like blowing candles and
playing flute. Next, a fixed-dimensional super action-vector (SAV) is obtained by concate-
nating the adapted means of the UAM, given a clip. The super action-vector is intrinsically
low-dimensional because an action is composed of only a few attributes. So, to obtain
a low-dimensional representation, we decompose the SAV using factor analysis. In the
process, we get a low-dimensional representation for each clip which we refer to as an
action-vector. Finally, we show that even simple cosine scoring can be used for classifying
action-vectors as they are found to be distinctive for each action. This characteristic of the
action-vectors eliminates the need for using class labels to build a classifier unlike in most
of the existing literature [17, 118, 73]. Figure 5.1 presents a block diagram of the entire
process of action-vector extraction.

Universal 
Action Model 

(UAM)

Adapted 
UAM

Action-vector

MAP adaptation

...

...

All action clip features

Total 
variability 

matrix
EM 
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        ...
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Super 
 Action  
Vector
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Figure 5.1: Unsupervised attribute modelling and action-vector extraction

The rest of the chapter is organized as follows. In Section 5.1, the process of extrac-
tion of action-vectors is presented with universal attribute modelling, super action-vector
formation, and action-vector extraction using factor analysis. In Section 5.2, the perfor-
mance evaluation of action-vectors on UCF101 and HMDB51 datasets is presented and the
summary of this chapter is covered in Section 5.3.

5.1 Unsupervised action-vector extraction

We can consider each clip to be a sample function which realizes the random process gener-
ating the action. To compare the similarity of two action clips, we need to match the sample
functions. Such a match can be based only on the parameters of the pdf which describes
the random process generating the action. If we assume that the underlying pdf can be
estimated using a Gaussian mixture model (GMM), then the number of mixtures must be
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sufficiently large to accommodate the intra-action variances in unconstrained videos. Un-
fortunately, a single clip does not have enough data points to estimate the pdf of the action.
Further, training a GMM for every action has been shown to the challenging especially
for actions with few examples [42]. Hence, we propose to train a universal GMM using
the clips of all the actions. We call this model the universal attribute model (UAM) which
has a large number of mixtures for modelling the attributes of different actions spanning
across datasets. However, it was observed that even for a large number of actions spanning
multiple datasets, the number of mixtures is not exceedingly large as they share attributes.

5.1.1 Universal attribute model (UAM)

The universal attribute model (UAM) can be represented as follows

p(xl) =
C∑
c=1

wcN (xl|µc,σc), (5.1)

where the mixture weights wc satisfy the constraint
∑C

c=1 wc = 1 and µc,σc are the mean
and covariance for mixture c of the UAM, respectively. A feature xl is part of a clip x

represented as a set of feature vectors x1,x2, · · · ,xL. This feature can be either a HOF or
an MBH descriptor and we train a separate UAM for each during evaluation using standard
EM estimation.

We hypothesize that after training the UAM, each Gaussian component in the UAM
captures an attribute. This attribute can be specific to a particular action or may be present
in multiple actions. In Figure 5.2, we show the UAM posteriograms for two actions: Hu-

lahoops and Benchpress. A posteriogram is a representation of posterior probabilities of
Gaussian mixtures given the frame (actually the normalized posterior probabilities of all the
features extracted from the frame) obtained from the UAM. The posteriograms belonging
to the clips of action Hulahoops (Figure 5.2(a)) show almost identical posterior probabil-
ity patterns. The black Gaussian mixtures represent the attributes which contribute to the
action Hulahoops. The slight changes in the patterns for two clips of the same action can
be attributed to actor and viewpoint variations. A similar trend follows for the Benchpress

action in Figure 5.2(b).

As the goal is to find the pdf of the action that generates a clip, we need to adapt the
UAM parameters using the data in the clip. We perform a maximum aposteriori (MAP)
adaptation similar to [89, 42] for obtaining the requisite pdf which describes the clip.
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Figure 5.2: UAM posteriograms (using 256 Gaussian mixtures) for two actions of UCF101:
(a) Hulahoops and (b) Benchpress. Although the two clips of Hulahoops have variable
number of frames, the sequence of Gaussian mixtures having the highest posterior prob-
ability (in black) is similar throughout the action. These mixtures represent the attributes
which contribute to the action and the slight deviations may be caused by actor or viewpoint
variability. Similar behavior can be observed in the clip of Benchpress.
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5.1.2 Representation of actions as super action-vector (SAV)

The UAM parameters are adapted for every clip to enhance the contribution of the attributes
present in it. This adaptation requires updating the parameters of each of the mixture
components in the UAM. Given L feature vectors of a clip x, the probabilistic alignment
of these feature vectors into each of the C mixture components of the UAM is calculated
as a posterior p(c|xl) which is computed as

p(c|xl) =
wcp(xl|c)∑C
c=1 wcp(xl|c)

, (5.2)

where xl is a d× 1 feature vector and p(xl|c) is the likelihood of a feature xl arriving from
a mixture c. The prior probability p(c) is given by the corresponding mixture weight wc.

The computed posterior probability p(c|xl) is then used to calculate the zeroth and first
order Baum-Welch statistics for a clip x given by

nc(x) =
L∑
l=1

p(c|xl), (5.3a)

and

Fc(x) =
1

nc(x)

L∑
l=1

p(c|xl)xl, (5.3b)

respectively. The MAP adapted parameters of a clip-specific model can be obtained as a
convex combination of the UAM and the clip-specific statistics. For every mixture c of the
UAM, the adapted weights and means are calculated as

ŵc = αnc(x)/L+ (1− α)wc, (5.4a)

µ̂c = αFc(x) + (1− α)µc. (5.4b)

The covariance is not modified as there is not enough data in one clip to update the entire
covariance matrix of the UAM. The adapted means for each mixture are then concatenated
to compute a (Cd× 1)-dimensional SAV for each clip represented as

s(x) = [µ̂1µ̂2 · · · µ̂C ]t. (5.5)

Obtaining a fixed-dimensional representation like the super action-vector normalizes the
effect of varying length clips but results in a high-dimensional representation. This repre-
sentation though contains many of the attributes that do not contribute to the clip and hence
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are not changed from the original UAM. It follows from Equation 5.2 where the likelihood
p(xl|c) is close to zero for mixtures in the UAM which are not responsible for modelling
the attributes and hence the features belonging to the clip. This translates to posterior prob-
ability p(c|xl) being close to zero for the same mixtures. Further, the statistics for these
mixtures, nc(x) and µc(x), are also close to zero following Equations 5.3a and 5.3b. Fi-
nally, the MAP adapted weights ŵc and means µ̂c for these non-contributing mixtures to
be the same as that in the UAM. Since each clip contains only a few of the total UAM
mixtures (attributes), only those means are modified. Hence, the SAV is intrinsically low-
dimensional, and by using a suitable decomposition, we can extract such a representation
which we refer to as an action-vector.

5.1.3 Extraction of compact action-vectors using factor analysis

In order to arrive at a low-dimensional representation, the SAV s is decomposed as

s = m + Tw, (5.6)

where m is assumed to be an actor and viewpoint independent supervector. Such a su-
pervector can be initialized using the UAM supervector as the UAM is trained using large
number of actors and viewpoints resulting in a distribution that is marginalized over views
and actors. Also, T is a low-rank rectangular matrix known as the total variability matrix of
sizeCd×r, and a r-dimensional random vector w whose prior distribution is assumed to be
a standard GaussianN (0, I) [18]. We refer to this random vector as an action-vector which
is a hidden variable and is defined by its posterior distribution P (w|x) after observing a
clip x as P (w|x) ∝ P (x|w)N (0, I)

∝ exp

(
wTtΣ−1s̃(x)− 1

2
wtTtN(x)Σ−1Tw − 1

2
wtw

)
= exp

(
wTtΣ−1s̃(x)− 1

2
wtM(x)w

)

= exp

(
−1

2
(w − L(x))tM(x)(w − L(x))

)
× constant, (5.7)

where Σ is a diagonal covariance matrix of dimension Cd×Cd and it models the residual
variability not captured by the total variability matrix T. The matrix L(x) is defined as

L(x) = M−1(x)TtΣ−1s̃(x) (5.8)
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where s̃(x) is the centered supervector which appears because the posterior distribution of
w is conditioned on the Baum-Welch statistics of the clip centered around the means of
the UAM. The first order Baum-Welch statistics centered around the UAM mean can be
obtained as

F̃c(x) =
L∑
l=1

p(c|xl)(xl − µc). (5.9)

We can now express s̃(x) as the concatenated first-order statistics given below

s̃(x) = [F̃1(x)F̃2(x) · · · F̃C(x)]t. (5.10)

Also, the matrix M(x) is defined as

M(x) = I + TtΣ−1N(x)T, (5.11)

where N(x) is a diagonal matrix of dimension Cd×Cd whose diagonal blocks are nc(x)I,
for c = 1, ..., C and I is the identity matrix of dimension d× d.

From Equation 5.7, the mean and covariance matrix of the posterior distribution are
given by

E[w(x)] = M−1(x)TtΣ−1s̃(x) (5.12a)

and
Cov(w(x),w(x)) = M−1(x), (5.12b)

respectively. Using EM algorithm [51], we iteratively estimate the posterior mean and
covariance in the E-step and use the same to update T and Σ in the M-step.

In the first E-step of the estimation, m and Σ are initialized with the UAM mean and
covariance, respectively. For the total variability matrix T, a desired rank r is chosen,
and the matrix is initialized randomly. Then E[w(x)] and Cov(w(x),w(x)) calculated
according to Equations 5.12a & 5.12b.

In the M-step, the matrix T is calculated as the solution of∑
x

N(x)TE[w(x)wt(x)] =
∑
x

s̃(x)E[wt(x)], (5.13)

which results in a system of r linear equations. The right hand side of Equation 5.13
contains s̃(x) which also accounts for the number of features in the clip. As T is the same
for all the clips. the left hand side is also weighed by N(x) to account for the number of
features in the clip.
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For each c = 1, · · · , C, the residual matrix Σ is estimated mixture by mixture as

Σc =
1

nc(x)

(∑
x

S̃c(x)−Mc

)
(5.14)

where Mc denotes the cth diagonal block of the Cd×Cd matrix 1
2

∑
x s̃(x)E[wt(x)]T t +

TE[w(x)]̃st(x) and S̃c(x) is the second-order Baum-Welch statistics of the clip centered
on the means of the UAM calculated as

S̃c(x) = diag

(
L∑
l=1

p(c|xl)(xl − µc)(xl − µc)
t

)
. (5.15)

After the final M-step i.e. estimation of T and Σ matrices, the action-vector for a given
clip can be represented using the mean of its posterior distribution as follows

w(x) = (I + TtΣ−1N(x)T)−1TtΣ−1s̃(x). (5.16)

This process of obtaining the action-vector is known as factor analysis [51]. The T-matrix
contains the eigenvectors of the largest r eigenvalues of the total variability covariance ma-
trix [18]. We hypothesize that these large eigenvalues arrive from the Gaussian mixture(s)
which model the attributes in the clip. The original SAV can now be projected onto a r-
dimensional action-vector based on T . The 2-D visualization of action-vectors (r=200) is
presented in Figure 5.3(b) using t-distributed stochastic neighbor embedding (t-SNE) [80].
It follows that most of the actions of UCF101 form easily identifiable clusters that is in
contrast to Figure 5.3(a) where highly overlapping MBH features can be seen for the same
actions. Hence, the proposed approach can effectively represent the video clip in a fixed
dimensional space. The ability to obtain such a lower dimensional embedding confirms our
hypothesis that SAVs are intrinsically low-dimension. The visualization of action-vectors
for the MBH feature (Figure 5.3(b)) shows that there is a general distinction among ac-
tions which is obtained without the use of action labels. This visualization leads us to
explore the viability of action-vectors for classification without explicitly training a classi-
fier. The inherent separation means that the factors extracted represent the SAV faithfully.
Factor analysis yields such descriptive factors if the data follows a Gaussian distribution.
In Figure 5.4, we visualize the SAV of an action class in the HMDB51 dataset which is
transformed to 2 dimensions using t-SNE and the histogram of the resulting projections
is plotted. It can be observed that indeed SAVs of all action classes considered together
follow a Gaussian distribution and this explains the representation power of action-vectors.
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(a) (b)

Figure 5.3: t-SNE visualization on selected classes of UCF101 (a) MBH features (b) MBH
action-vectors. Best viewed in color.

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3
0

200

400

600

800

1000

1200

1400

Figure 5.4: Histogram of super action-vector for MBH features of an action class in
HMDB51 dataset (reduced to 2 dimensions using t-SNE).

5.1.4 Unsupervised action-vector scoring

We started with the goal of comparing clips based on the underlying pdf of their actions
and arrived at an action-vector representation. The pdf was estimated using a GMM where
each mixture is assumed to learn an attribute. Hence, the action-vector extraction method
of obtaining useful attributes to represent a clip is equivalent to obtaining the pdf for that
clip. Now, once we have obtained such a normalized representation (because of N(x)) in
Equation 5.16, we can directly compare the action-vectors of any two clips using cosine
scoring without the use of labels. For cosine scoring, the distance between a pair of action-
vectors is expressed as

k(w1,w2) =
wt

1w2√
wt

1w1

√
wt

2w2

. (5.17)
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During testing, the average cosine similarity of the clip with all the training clips from each
class is calculated and the clip is assigned the class with the highest average score.

5.2 Experimental Results

In this section, we present the performance of action-vectors under various configurations
of the universal attribute model (UAM) and with different features.

5.2.1 Datasets

A detailed performance analysis of action-vectors is performed on the UCF101 and HMDB51
(details in Section 3.2.1) datasets.

UCF101

UCF101 is one of the largest trimmed action dataset consisting of 13000+ clips of human
actions spanning 101 classes [109]. Each video clip contains only the action of interest,
and the average duration of each clip is around 7.21 seconds. A three-fold cross validation
strategy is followed for evaluation according to the splits are obtained from the UCF101
website.

5.2.2 Experimental Settings

We present action-vector performance with different UAM mixtures ranging from 256 to
2048. It is found empirically that beyond 2048 mixtures, the improvement in classification
accuracy is negligible as compared to the enormous increase in the training time for the
UAM and factor analysis stages. Further, it was found that action-vector dimension is not
critical for classification performance and produces negligible difference. Hence, for all the
reported results hereafter, the action-vector dimension is set to be 200 based on empirical
validation.

Feature extraction on these datasets in the form of HOG, HOF, and MBH descriptors is
done (as part of the iDT framework [118]) without using any human annotations. Though
the classification performance of iDT significantly improves when using human bounding
boxes [117], annotations are either not available or expensive to acquire for most of the
unconstrained videos.
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5.2.3 Super action-vector vs. Action-vector

In Table 5.1, the performance of the proposed action-vector is compared with super action-
vector (SAV). It can be observed that extracting essential attributes with factor analysis
leads to a more discriminative representation that achieves superior classification accuracy.
Further, it can be seen that the performance improves slightly for all feature descriptors
when the number of UAM mixtures are increased, for the UCF101 dataset. However,
the gains become less pronounced as compared to the increase in training time. Hence,
it can be concluded that even with a modest number of mixtures (256), reasonably good
classification performance can be obtained which shows that this efficacy of the action-
vector framework.

Table 5.1: Comparison of super action-vector & action-vector classification performance
(%) using cosine scoring for varying UAM mixtures on UCF101 dataset.

Representation
# of UAM mixtures

256 512 1024 2048
HOG HOF MBH HOG HOF MBH HOG HOF MBH HOG HOF MBH

super action-vector 59.89 61.23 62.45 60.46 62.99 63.56 59.11 62.40 64.28 64.22 64.96 65.12
action-vector 86.47 89.50 90.47 86.47 89.44 90.74 86.64 89.67 90.78 87.17 88.80 90.67

In Table 5.2, we evaluate the performance of action-vectors on the HMDB51 dataset.
Clearly, action-vectors perform classification better than super action-vectors over all de-
scriptors and UAM configurations. It is interesting to note that the performance of both
SAV and action-vector dips as the number of UAM mixtures increase. We hypothesize that
the number of distinct attributes in the actions of HMDB51 is fairly low and as a result,
training such a large number of mixtures becomes challenging. However, it was found that
decreasing the number of mixtures to 128 causes a massive dip in the performance which
indicates that at least 256 mixtures are required to capture the attributes of all the actions. It
is important to note that action-vectors with MBH features perform consistently better than
both HOG and HOF. This shows that MBH expresses the attributes of an action reasonably
better than other features which lead to better discrimination.

Table 5.2: Comparison of super action-vector & action-vector classification performance
(%) using cosine scoring for varying UAM mixtures on HMDB51 dataset.

Representation
# of UAM mixtures

256 512 1024 2048
HOG HOF MBH HOG HOF MBH HOG HOF MBH HOG HOF MBH

super action-vector 54.21 55.36 55.34 52.15 54.71 55.44 56.98 52.88 53.21 48.68 53.49 55.12
action-vector 74.11 76.67 76.99 73.24 75.62 76.08 71.88 74.18 74.51 68.44 70.72 72.55
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5.2.4 Action-vectors vs. other aggregation methods

Finally, the performance of action-vectors is compared with other aggregation methods like
Fisher vector and VLAD in Table 5.3. The concatenated action-vectors used for compar-
ison are formed using the action-vectors three different feature descriptors, HOG, HOF,
and MBH. The final action-vector is 600-dimensional and harnesses complimentary infor-
mation of the descriptors to enhance the classification accuracy over the individual action-
vectors. Further, it can be observed that unsupervised cosine scoring of action-vectors
performs on par with supervised classification methods using convolutional neural network
based descriptors combined with Fisher vectors [113, 123, 17]. This shows that the pro-
posed methods of using factor analysis for extracting a aggregate representation is effective
at discrimination even without supervision.

Table 5.3: Comparison with other state-of-the-art aggregation methods

Method Accuracy (in %)
UCF101 HMDB51

C3D features + iDT(fisher) [113] 90.4 -
Traj-pooled deep CNN + iDT(fisher) [123] 91.5 65.9
VLAD3 + iDT(fisher) [73] 92.2 -
iDT-FV + DNN Hybrid [17] 92.4 70.4
Action-vector concatenated (HOG + HOF + MBH) + cosine 91.3 77.1

5.2.5 Analysis on untrimmed videos

We extend the analysis of action-vectors to temporally untrimmed videos present in the
THUMOS14 dataset [48]. The videos in THUMOS14 are significantly longer than UCF101
and the actions of interest have significantly less duration as compared to other background
activities. The actions of interest are based on the 101 action classes in UCF101. In Figure
5.5, we show the similarity between action-vectors obtained for the same action in two dif-
ferent datasets i.e. UCF101 and THUMOS14. It can be observed that even in untrimmed
videos, the similarity of the actions is noticeable while the separation across different ac-
tions is maintained. We hypothesize that the reason behind the similarity is that the total
variability matrix T can faithfully reconstruct only the foreground actions that have been
learned through the UAM and not arbitrary background movements. This is important as
the average length of the clips in THUMOS14 is around 3 minutes, but the duration of
relevant actions is only around 4-5 seconds which makes action-vectors an important tool
for relevant action spotting.
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Figure 5.5: t-SNE plot shows similarity in action-vectors of UCF101 and THUMOS14
across two classes - WritingOnBoard (UCF101, ) (THUMOS14, ) and WallPushups
(UCF101, ) (THUMOS14, )

In order to understand how action-vectors enhance the mixtures belonging to the at-
tributes of a specific action, an untrimmed clip containing the action blowing candles is
presented in the form of an entropy plot of UAM posteriograms in Figure 5.6. It can be
observed that during the action of interest, the entropy value is low which shows that only
a few of the UAM mixtures get activated. These mixtures represent the attributes which
form a part of the action. Apart from the actions of interest, the video also contains activi-
ties which are not in the 101 actions of UCF101 and have not been modeled by the UAM.
During such background activities, higher entropy values are observed which shows that an
arbitrarily large number of mixture components get activated simultaneously. We expect
to see this behavior from any action that is not modeled by the UAM as there will be no
particular set of attributes (components) which will be affiliated with the action. It can also
be observed that the entropy values change gradually when the clip transitions from the
action to the background or vice-versa which is a result of MBH features being extracted
over a period of 15 frames.

5.3 Summary

In this chapter, we proposed an compact and discriminative representation of actions called
action-vectors. Attributes of all actions were learned in a universal attribute model and for
each clip and the essential attributes were extracted from this model. It was shown that this
extraction can be performed in an unsupervised manner by using factor analysis to produce
low-dimensional action-vectors. Even without supervision, this approach was shown to
produce comparable classification accuracy as compared to other aggregation based rep-
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Figure 5.6: Entropy plot for the number of UAM posteriors (using MBH features) for an
untrimmed clip of blowing candles in THUMOS14.

resentations like Fisher vectors and VLAD paired with classifiers. Also, we showed that
action-vector can spot actions interspersed with large segments of background actions in
temporally untrimmed videos.
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Chapter 6

Supervised action recognition using
linear and non-linear embedding of
action-vectors

In the last chapter, a compact and low-dimensional representation called action-vector was
proposed which was formed by extracting the attributes from a universal attribute model
(UAM). As the extraction process promotes the choice of relevant attributes for each ac-
tion, similar actions with analogous attributes result in nearly identical action-vectors. For
example, two different actions like baseball swing and sword exercise appear visually sim-
ilar based on the attributes i.e. motion trajectories as shown in Figure 6.1. The trajectories
show that the limb movements of the actors which resemble closely though the duration and
stance of the person performing the action is quite different. So, representation of actions
should not only be based on discovering similarity across different instances of the same
action but also realizing minute differences across instances of similar actions. Invariably,
in such cases, class labels need to be used to discriminate among these actions and this mo-
tivates the use of discriminative embedding of attribute based action-vector representation.

Low-dimensional discriminative embedding has been used on action representations
like 3D CNN[113] and improved dense trajectory (iDT) [117] to improve classification
performance [12, 22]. Though mostly linear embedding methods like linear discriminant
analysis (LDA) has been used extensively, non-linear methods like kernel based embed-
ding have also been used for compact representation of human actions [70]. Even graph
based embedding of human actions in terms of Kronecker graphs have been explored for
explaining the composition of human actions [112]. In this chapter, we discuss linear de-
composition techniques like LDA and probabilistic LDA (PLDA) in detail in Section 6.1
and extend the discussion to non-linear decomposition techniques like Siamese networks in
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(a) baseball swing

(b) sword exercise

Figure 6.1: Inter-action similarity shown with motion trajectory. Best viewed in color.

Section 6.2. In Section 6.3, we present experimental results on benchmark action datasets
and conclude with a summary in Section 6.4.

6.1 Linear decomposition using LDA and PLDA

Intra-action variabilities are introduced when recording the same action from different cam-
era views which can reveal or hide certain action attributes. In the action-vector space,
these variabilities result in action-vectors of the same action to be far apart. Comparing
action-vectors using cosine scoring which considers the distance between action-vectors
for classification results in misclassification. Hence, we propose to use class information
using supervised decomposition techniques like linear discriminant analysis (LDA) to re-
duce the effect of intra-action variability.

6.1.1 Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA), specifically Fisher’s LDA assumes that the action-
vectors of two actions have means µ0,µ1 and covariances Σ0,Σ1. Then, the linear combi-
nation of action-vectors yw will have means yµi and variances ytΣiy for class i = 0, 1,
respectively. The separation between these two distributions is the ratio of the between
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class variance to the within class variance:

S =
(y(µ1 − µ0))2

yt(Σ0 + Σ1)y
. (6.1)

The maximum separation is achieved when y ∝ (Σ0 + Σ1)−1(µ1 − µ0), i.e., y is the
normal to the discriminating hyperplane.

In case of more than two classes, the aim is to find a subspace which contains all of the
class variability. If each of m classes has a mean µi and the same covariance Σ, then the
scatter between class variability is defined as the sample covariance of the class means

Σb =
1

m

m∑
i=1

(µi − µ)(µi − µ)t, (6.2)

where µ is the mean of the class means. The class separation in a direction u in this case
will be given by

S =
yTΣby

ytΣy
. (6.3)

This means that when y is an eigenvector of the projection matrix A = Σ−1Σb and the
separation will be equal to the corresponding eigenvalue. If the projection matrix A is
diagonalizable, the variability between features will be contained in the subspace spanned
by the eigenvectors corresponding to the m1 largest eigenvalues (as A is at most of rank
m− 1). Figure 6.2 shows the LDA projected action-vectors onto 100 dimensions (highest
available for 101 actions). Clearly, the different actions are better separated into clusters
than Figure 5.3(b).

6.1.2 Probabilistic Linear Discriminant Analysis (PLDA)

Even though LDA solves the intra-class variability issue, the number of dimensions avail-
able for projection is always limited by the number of classes. In PLDA, there is no di-
mensionality constraint and it has been shown to produce better results than LDA for tasks
like face recognition [90, 11] and object recognition [43]. Hence, we propose to use PLDA
based action-vector scoring which is derived with a two-covariance model similar to LDA.
The two-covariance model is known as a generative linear-Gaussian model, where latent
vectors y representing actions are assumed to be distributed according to the prior distribu-
tion

p(y) = N (y|µ,Sb). (6.4)
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Figure 6.2: t-SNE visualization of LDA projected MBH action-vectors on selected classes
of UCF101. Best viewed in color.

For a given action represented by a latent vector ŷ, the distribution of action-vector w is
assumed to be

p(w) = N (w|y,Sw). (6.5)

The maximum-likelihood estimates of the model parameters, µ,Sb, and Sw, can be ob-
tained using EM algorithm. Now, in case of LDA, the projection of all the vectors using
the projection matrix A would be followed by cosine scoring. In PLDA, the projection ma-
trix A is not obtained explicitly and scoring is done using for every pair of action-vectors
(w1,w2) using the following two hypotheses:

• Null hypothesisHs: A pair of action-vectors w1 and w2 is generated from the distri-
bution p(w|ŷ) which involves only a single latent vector ŷ representing a particular
action.

• Alternative hypothesis Hd: A pair of action-vector w1 or w2 is generated using two
latent vectors representing two different actions that are independently generated
from p(y).

The score can now be calculated as a log-likelihood ratio between the two hypotheses Hs

andHd as
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k(w1,w2) = log
p(w1,w2|Hs)

p(w1,w2|Hd)
(6.6)

= log

∫
p(w1|y)p(w2|y)

p(w1)p(w2)
, (6.7)

where in the numerator, we integrate over the distribution of action-vectors to determine
the likelihood of producing both action-vectors from the same latent action model. For
the hypothesis that action-vectors belong to separate actions, the product of the marginal
likelihoods p(w1) and p(w2) is used.

6.2 Non-linear decomposition using Siamese networks

We have discussed two important linear embedding methods, LDA and PLDA in the previ-
ous section. However, linear embedding may not lead to the discovery of higher order non-
linear relationships across feature dimensions. To extract such dependencies, non-linear
hierarchical structures like deep Siamese networks are useful. Especially, Siamese neu-
ral networks have been successfully used for verification tasks like person re-identification
[13], object recognition [128], and gesture recognition [5], where there is a need to find cor-
respondence between two items among thousand different items. Further, it shows promise
where less number of examples are available as in one-shot recognition of image categories
[23, 55]. More recently, in [127], actions were recognized using Siamese networks. Each
action was divided into precondition (cause) and effect parts which are fed as input to sep-
arate CNN stream. For the precondition part, a 4096-D feature vector is obtained for each
frame and average pooled to obtain a single 512-D feature representation for the entire
part. Then, this representation is transformed for each action separately, and the output is
compared to the 512-D output of the effect part. This approach requires the division of an
action video into precondition and effect which is not only subjective but requires labori-
ous manual annotation. Instead, we propose to use a complete representation of the entire
action i.e., action-vector as input to a Siamese deep neural network which is trained using
contrastive loss for discriminating actions. Figure 6.3 presents the training of Siamese net-
works after extracting action-vectors which modifies Figure 5.1 from the previous chapter.

As Siamese networks are trained to differentiate between inputs rather than classify in-
puts, the low-dimensional representation of the video is used for differentiating between
videos of different classes. The Siamese network consists of two identical sister neural
networks with the same weights. The sister networks are given the action-vector represen-
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Figure 6.3: Siamese networks for non-linear decomposition of action-vectors

tations of different clips as their input. The last layer of each network then culminates in a
contrastive loss function which evaluates the similarity between the two videos.

The Siamese network is optimized using a contrastive loss computed as

(1− y)
1

2
e2
w + (y)

1

2
{max(0, a− ew)}2, (6.8)

where ew = ‖gw(w1)−gw(w2)‖2 is the Euclidean distance between the two outputs of the
sister networks and is a measure of the semantic similarity between the inputs. The term
gw is the output of either one of the sister networks and w1 and w2 are the inputs. The
label y is either 1 if the inputs are from the same class and 0 otherwise and the margin a
is set to be greater than 0 so that dissimilar pairs beyond this margin do not contribute to
the loss. This ensures that the network is optimized for dissimilar pairs that the networks
consider as fairly similar. For training the network, the contrastive loss value is calculated
using both the inputs, and then back propagated to both the networks.

In Figure 6.4, we present a case where Siamese networks are able to differentiate be-
tween two visually similar actions baseball swing and sword exercise (as shown in Figure
6.1). It can be observed that action-vectors (200 dimensional) for both actions are scattered.
On the other hand, the Siamese network 1st hidden layer output (100 dimensions) is clearly
separable for these actions.

6.2.1 Siamese network configuration

To obtain the best possible Siamese network configuration, three different sister neural
network are used- NN1: 200− 100R, NN2: 200− 100R− 50R, and NN3: 200− 100R−
100R where R represents ReLU activation. The input action-vector is calculated using a
UAM with 256 mixtures trained on the training split of HMDB51. The NN3 configuration
achieves the best results among the three overall feature descriptors as shown in Table 6.1
and it is used for reporting the results in subsequent experiments. We use a dropout of 0.1
between the layers except for the output layer, and the learning rate was set to 0.0001 with
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(a) action-vector (b) Siamese 1st hidden layer

Figure 6.4: t-SNE (stochastic neighbour embedding) plots for similar actions (see Figure
6.1) baseball swing ( ) and sword exercise ( ). Best viewed in color.

RMSprop used as an optimizer. It is found empirically that increasing the number of layers
or neurons caused significant deterioration of classification performance. As the number of
training instances per action in the HMDB51 dataset is only around 70, it is observed that
deeper networks with more number of hidden layers cannot be trained effectively because
of over-fitting.

Table 6.1: Performance (in %) of Siamese network with different configurations on
HMDB51 dataset

Configuration HOG HOF MBH
NN1 42.1 45.9 49.6
NN2 57.8 59.6 62.4
NN3 72.1 78.5 83.1

6.3 Experimental results

In this section, we present the performance of various non-linear and linear embedding
methods. Specifically, intermediate fusion of action-vectors, the various configurations of
Siamese networks, and comparison with state-of-the-art action recognition techniques are
discussed.

6.3.1 Datasets

The embedding methods discussed in this chapter are evaluated on the following datasets -
UCF101, HMDB51, MPII cooking activities, and THUMOS14.
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MPII Cooking Activities

The MPII cooking activities dataset [94] contains 5,609 videos of 65 fine-grained cooking
activities with low inter-class variability. Each clip is 5 seconds long and recorded at 30
frames per second and all the activities are performed by 12 different subjects.

6.3.2 Experimental settings

The HOG, HOF, and MBH features are extracted using the same spatio-temporal volumes
used in improved dense trajectory (iDT)[117]. It is found that changing the feature de-
scriptor and the number of mixtures produces a significant change in the classification
performance. However, any change in the action-vector dimension does not result in any
significant difference in accuracy, and the value of 200 was chosen as the dimension as it
performed marginally better empirically. For LDA, a maximum of 100 dimensions was
used for 101 actions in UCF101, 50 dimensions were chosen for 51 actions of HMDB51,
and 64 dimensions were chosen for 65 actions in MPII Cooking.

6.3.3 Performance of linear embedding techniques

The two linear embedding techniques - LDA and PLDA are compared on two benchmark
datasets, UCF101 and HMDB51. In Table 6.2, the classification performance of both LDA
and PLDA is presented with different feature descriptors and varying number of UAM
mixtures. It can be observed that the performance of both LDA and PLDA rises steadily
with the number of UAM mixtures which shows that more distinctive attributes can be
represented using a larger model. Further, it can be seen that PLDA performs better than
LDA consistently across descriptors and number of UAM mixtures. This shows that using
latent models for each action class and describing action-vectors using the same is more
effective than finding the optimal linear discriminant surfaces for projection.

Table 6.2: Classification accuracy (%) for linear embedding techniques on UCF101.

Embedding
# of UAM mixtures

256 512 1024 2048
HOG HOF MBH HOG HOF MBH HOG HOF MBH HOG HOF MBH

LDA 88.17 90.50 79.82 88.2 90.30 91.90 88.40 90.57 92.10 87.24 90.10 92.21
PLDA 88.44 90.90 73.35 88.6 91.07 92.55 88.60 91.24 92.68 88.84 90.74 92.99

In Table 6.3, the analysis of LDA and PLDA over action-vectors is presented on HMDB51
dataset. As seen with UCF101, the performance of PLDA is also superior to LDA across
feature descriptors. Similarly, MBH again leads other feature descriptors consistently over
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different UAM configurations. This shows that MBH expresses the action attributes bet-
ter than other features descriptors resulting in better classification. The only trend which
is different from UCF101 is that the performance worsens as the number of mixtures are
increased. This shows that there are significantly less distinct attributes in HMDB51 that
need to be expressed through the UAM. So, as the number of mixtures are increased, there
are not enough distinct features which can be used to train these extra mixtures. As these
mixtures become overwhelmingly large, they become arbitrarily associated with different
actions and cause poor classification performance.

Table 6.3: Classification accuracy (%) for various scoring mechanisms on HMDB51. UAM
is trained on HMDB51 training set.

Embedding
# of UAM mixtures

256 512 1024 2048
HOG HOF MBH HOG HOF MBH HOG HOF MBH HOG HOF MBH

LDA 74.55 77.32 78.56 73.98 75.95 77.52 70.54 73.66 74.77 65.10 67.91 67.32
PLDA 76.24 78.17 79.54 74.21 76.67 78.69 71.55 73.53 74.38 63.21 66.14 65.56

6.3.4 Intermediate fusion techniques using PLDA

So far, we have seen the performance of the action-vectors on individual descriptors. In
literature, HOG, HOF, and MBH feature descriptors have been shown to extract compli-
mentary information and they are combined in various ways to improve action recognition
performance [117]. Hence, we also explore different fusion techniques like: (a) inter-
mediate fusion (IF) of action-vectors scored with SVM classifier, (b) intermediate latent
dimension fusion (ILDF) using PLDA, and (c) score fusion (SF) using PLDA scores. For
the experimental results demonstrated here, the action-vectors considered for each of the
individual descriptors are 200-dimensional. In Table 6.4, we present the results using these
fusion techniques on action-vectors. To perform intermediate fusion (IF), the action-vectors
of different features for the same clip are concatenated and classified using an SVM. In case
of IDLF, a PLDA model is trained on the concatenated action-vectors of the training set and
then the concatenated action-vectors of the test clips are classified using this model. For
score fusion (SF), a convex combination of PLDA scores is used which is optimized for
better performance. In all cases, the action-vectors and PLDA classification scores are ob-
tained on 2048 mixture UAMs trained separately for each feature. It can be observed that
an action-dependant latent projection technique like PLDA performs better than concate-
nation of action-vectors (intermediate fusion scored with SVM) or score fusion.
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Table 6.4: Comparison of intermediate fusion and SVM (IF + SVM), PLDA-based in-
termediate latent decomposition fusion (ILDF), and score fusion (SF) on UCF101. The
underlying UAM model has 2048 mixtures.

Feature
combination

Accuracy (in %)

IF + SVM PLDA-based
ILDF SF

HOG + HOF 90.45 91.23 92.99
HOG + MBH 93.15 93.74 93.92
HOF + MBH 93.56 94.10 93.96
HOG + HOF + MBH 94.21 95.13 93.98

6.3.5 Linear embedding of action-vectors vs. state-of-the-art

Table 6.5 compares the classification performance of the proposed method with the state-of-
the-art techniques used for action recognition on the UCF101, HMDB51, and THUMOS14
datasets. The action-vectors for untrimmed videos in THUMOS14 are extracted using the
best performing UAM for UCF101 (2048 mixtures for all features) and corresponding ~T -
matrix on the UCF101 dataset. This is done in accordance to the THUMOS14 challenge
where the UCF101 dataset is used as the training set for the THUMOS14 test clips [48].

Some state-of-the-art techniques listed in Table 6.5 like [147, 63, 114, 104] use long-
term features to represent the entire video with a single feature. Other techniques use
aggregation models like bag-of-words (BoW) [133], Fisher vector [44, 113, 123, 17] or
VLAD [73]. Notably, many of the methods augment CNN features with iDT features to
attain the high classification accuracy[114, 123]. Among the methods that use long-term
features, temporal linear embedding (TLE) networks [19] perform the best on UCF101.
The proposed action-vectors produces comparable performance to TLE on UCF101 and
comfortably outperforms it by 10% on the slightly more challenging HMDB51 (according
to [58]). We hypothesize that action-vectors capture better long-term temporal dependency
than TLE. As the actions HMDB51 are more closer to each other than UCF101 in terms of
motion patterns, long-term dependencies are more useful for classification which leads to
better performance of action-vectors than TLE on HMDB51.

For the untrimmed THUMOS14 dataset in particular, the state-of-the-art approaches
[44, 122, 44] use fixed-sized windows to process untrimmed videos. Fixed-sized windows
cannot handle high variations in the duration of actions. To mitigate this issue, fixed-
sized windows of different temporal resolutions are extracted from the same clip. The
final classification result is based on the aggregation of the classification outputs of each
of the windows [123]. Such approaches add to computational overhead as the same video
is processed multiple times at different time scales whereas in the proposed approach, we
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Table 6.5: Comparison of classification accuracy of proposed approach with existing state-
of-the-art methods

Method Accuracy (in %)
UCF101 HMDB51 THUMOS14

Spatio-Temporal CNN [147] 93.0 68.2 -
Multi-skip feature [63] 89.1 63.9 -
Long-term CNNs +iDT [114] 92.7 67.2 -
Two-stream CNN [104] 88.0 59.4 -
Temporal segment networks (TSN) [124] 94.3 69.4 -
HOF + MBH + Event model + BoW [133] - 49.86 -
Objects + motion [44] - - 71.6
C3D features + iDT(fisher) [113] 90.4 - -
Traj-pooled deep CNN + iDT(fisher) [123] 91.5 65.9 -
VLAD3 + iDT(fisher) [73] 92.2 - -
iDT-FV + DNN Hybrid [17] 92.4 70.4 -
iDT+CNN [122] - - 62.0
iDT+FV [120] - - 63.1
Temporal linear embedding (TLE) [19] 95.6 71.1 -
Action-vector ILDF (HOG + HOF + MBH) + PLDA 95.1 81.1 71.9
Action-vector IF (HOG + HOF + MBH) + SVM 94.3 81.0 70.9

compute a single action-vector for the entire video which outperforms these methods.

6.3.6 Comparison of linear and non-linear embedding techniques

Next, we compare the different linear and non-linear embedding techniques which we have
discussed in this chapter. In Table 6.3, such a comparison is presented on the HMDB51
dataset. For non-linear embedding methods, kernel discriminant analysis (kDA) is also
introduced for comparison. It can be observed that Siamese networks based embedding of
action-vectors performs better than other linear and non-linear embedding techniques. This
is also true across the different feature vectors and different UAMs with a varying number
of mixtures.

Table 6.6: Performance comparison (%) of various discriminative embedding techniques
on HMDB51

Embedding
Technique

# UAM mixtures
256 512

HOG HOF MBH HOG HOF MBH
LDA 74.55 77.32 78.56 73.98 75.95 77.52
PLDA 76.24 78.17 79.54 74.21 76.67 78.69
kDA 61.45 65.16 66.12 69.51 70.53 72.75
Siamese (NN3) 72.14 78.53 83.10 76.41 79.35 83.04
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Apart from traditional action recognition datasets, we test the performance of action-
vectors especially with discriminative embedding on fine grained actions. For evaluation,
the MPII cooking activities dataset [95] is used which consists of 65 cooking actions like
cutting, peeling, cutting slices, and cutting dice that have very low inter-class variability.
Even on this challenging dataset, both linear and non-linear embedding of action-vectors
performs well as can be seen in Table 6.7. Particularly, Siamese networks and LDA are very
close in terms of classification performance and beat the other decomposition techniques.

Table 6.7: Classification accuracy (%) for various discriminative embedding techniques on
MPII Cooking

Embedding
Technique

# UAM mixtures
256 512

HOG HOF MBH HOG HOF MBH
LDA 74.14 77.48 78.48 76.45 79.48 78.61
PLDA 65.34 67.56 66.85 69.12 67.35 67.63
kDA 63.45 64.16 65.21 64.51 65.53 67.75
Siamese (NN3) 75.48 76.95 78.46 77.81 79.24 80.27

6.3.7 Non-linear embedding of action-vectors vs. state-of-the-art

In Table 6.8, we present the performance of Siamese networks with state-of-the-art tech-
niques on the HMDB51 dataset. Temporal segment networks (TSN) [124], max pooled
deep features (CNN +C3D) and iDT features [22], two-stage temporal segment networks [65],
and iDT features with deep neural networks (DNN) [17] all provide a single feature repre-
sentation for a video by utilizing spatial, temporal and spatio-temporal CNNs, and further
augment it with iDT features. It can be observed that discriminative embedding of action-
vectors using a single feature descriptor MBH which is part of the iDT features is more
effective in action recognition than these methods. This shows that factor analysis seems a
better choice for discriminative action representation and following it with contrastive loss
training aids in classification even further.

In Table 6.9, a comparison with state-of-the-art approaches is presented for MPII cook-
ing activities dataset. Approaches like interaction part mining [144], localized semantic
features [145], etc. concentrate on object detection, and its manipulation to recognize the
actions. Instead in [12], frame-based CNN features from a video are embedded on Grass-
mannian manifold. A support vector regressor is learned on the embedded features aug-
mented with iDT features for classification. It can be observed that the proposed Siamese
network based embedding scheme performs better than all these embedding and object
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interaction based approaches. We hypothesize that Siamese networks are able to better
discriminate actions as the comparison is performed on the deep features extracted by the
sister networks. As neural networks are universal approximators, they can span the action-
vector space better than linear approaches. Further, action-vectors with non-linear discrim-
inative embedding can easily discriminate between action classes with both low and high
variability which shows the versatility of the representation.

Table 6.8: Comparison of Siamese network based embedding of action-vectors with state-
of-the-art on HMDB51

Method Accuracy
(in %)

3DCNN features + Siamese [127] 63.4
Traj-pooled deep CNN + iDT(fisher) [123] 65.9
Long-term CNNs +iDT [114] 67.2
Temporal segment networks (TSN) [124] 69.4
iDT-FV + DNN Hybrid [17] 70.4
Temporal linear embedding (TLE) [19] 71.1
Max-pool (CNN+C3D) + iDT[22] 73.1
Deep local video feature [65] 75.0
Action-vector (MBH) + Siamese 83.1

Table 6.9: Comparison of Siamese network based embedding of action-vectors with state-
of-the-art on MPII Cooking Activities

Method Accuracy
(in %)

CoHOG +iDT [50] 46.6
Localized Semantic Features [145] 70.5
VideoDarwin [27] 72.0
Interaction Part Mining [144] 72.4
GRP-CNN + iDT(Fisher) [12] 75.7
Action-vector (MBH) + Siamese 80.3

6.4 Summary

In this chapter, we explored discriminative embedding of low-dimensional action represen-
tations to distinguish between visually similar actions both at coarse and fine level. A com-
parison of linear and non-linear embedding methods was presented on various benchmark
datasets where actions had both low and high inter-class variability. With PLDA based em-
bedding and fusion of action-vectors across different features, state-of-the-art performance
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was demonstrated across different datasets, both trimmed and untrimmed. We extended the
idea of discriminative embedding with deep non-linear embedding using with Siamese net-
works and found that even fine grained actions with similar attributes were distinguishable.
A comparison with state-of-the-art approaches revealed that such a non-linear embedding
comfortably outperforms state-of-the-art approaches.
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Chapter 7

Action recognition in surveillance videos

In the last chapter, the efficacy of action-vectors was demonstrated on both trimmed and
untrimmed datasets. On temporally untrimmed videos, action-vectors were able to recog-
nize the foreground actions amid a lot of background activities. So, it is a natural fit for
abnormal events like snatch thefts which have an extremely low probability of occurrence
in long surveillance footage. Manually detecting these rare events or anomalies is chal-
lenging in cities as there are hundreds of cameras which need to be monitored. Further,
anomalies have localized spatio-temporal signatures where they occur over a small time
window in a long sequence or a small spatial region in a wide surveillance area. Another
distinguishing feature of actions such as theft is that outside this anomalous spatio-temporal
region, no irregularities are present and only regular activities are observed. As anomalous
activities like chain and purse snatching are prevalent in many countries, addressing this
problem is of immediate concern.

Most of the existing literature on detecting anomalous activities like snatching uses
datasets collected in controlled laboratory settings with no crowd or background and with
an excellent viewing angle of the activity. Even when conducted in crowded scenes as in
[6], the entire pickpocket incident is staged with apriori knowledge of how the incident
is going to take place which makes analysis a lot easier. So, to analyze real-life thefts,
we present a dataset called Snatch 1.0 1 collected from unconstrained surveillance footage.
This dataset contains surveillance footage obtained from the traffic police department of
the city of Hyderabad in India which includes various instances of snatch thefts (details in
Section 7.4.1). It was observed that snatching incidents in surveillance videos can occur
in a variety of scenarios which are of diverse types and lead to different victim reactions.
Some of the examples of snatch thefts are shown and described in Figure 7.1.

An ontology of snatch thefts encountered in surveillance videos is presented in Table

1http://www.iith.ac.in/vilg/datasets/

83



Scenarios Reactions

(a)
thief on motorbike pillion rider cannot snatch cleanly victim gets dragged

(b)
thief on foot and inquires snatches chain runs away victim chases

(c)
thief on motorbike pillion rider snatches chain rides away victim keeps standing

(d)
thief on motorbike pillion rider snatches chain rides away victim chases

(e)
thief on foot tries to snatch from behind victim is dragged

(f)
thief on foot snatches chain runs away victim chases

Figure 7.1: Different snatching scenarios as captured in Snatch 1.0. Best viewed in colour.
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Table 7.1: Ontology of snatching scenarios, types and victim reactions
Snatch Type 1
(Direct grab)

Snatch Type 2
(Inquire and grab)

Scenario 1
(Thief on motorbike)

Reaction 1
(Victim chases) Reaction 1

(Victim chases)Reaction 2
(Victim dragged)

Reaction 3
(Victim falls

or remains standing)

Reaction 3
(Victim remains standing)

Scenario 2
(Thief on foot)

Reaction 1
(Victim chases)

Reaction 1
(Victim chases)

Reaction 3
(Victim falls

or remains standing)

Reaction 3
(Victim falls

or remains standing)

7.1 based on our analysis of the examples depicted in Figure 7.1, . It is evident that snatch
thefts are not only complex to model but also the definition of a snatch theft itself is non-
trivial. Each interaction between individuals needs to be studied to decide whether or not it
is a potential snatch theft or not. These interactions can be considered as part of the larger
set of human actions [58]. Hence, we propose a framework for analyzing these interactions.
At first, an unsupervised Gaussian mixture model called universal attribute model (UAM)
is trained using a variety of human actions containing attributes like punching in HMDB51
and UCF101 datasets which is visually similar to grabbing in snatch thefts as shown in
Figure 7.2. Gaussian mixture models have previously been explored to model attributes of
actions [8, 130]. Using factor analysis, the essential attributes useful for describing snatch
thefts are extracted and represented in the form of action-vectors. We show that action-
vectors perform better than existing state-of-the-art feature descriptors while leveraging a
lot of existing video data containing human actions to effectively represent snatch thefts.
In addition, we also show that prior modelling based methods like rule-based systems are
also not as effective as representation based methods like action-vectors.

The rest of the chapter is as organized as follows. Section 7.1 discusses the related
literature for anomaly detection in surveillance videos with a focus on suspicious activities.
In Section 7.2, a baseline rule-based system for snatch theft detection is presented for com-
parison with the action-vector representation. Experimental results on the curated dataset
Snatch 1.0 is presented in Section 7.4 and finally the summary is presented in Section 7.5.
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(a) grab (b) punch

Figure 7.2: Visual similarity in (a) grabbing of Snatch 1.0 and (b) punching of HMDB51
dataset.

7.1 Related work in surveillance video analysis

A majority of existing literature in the field of anomaly detection is aimed towards detection
of generalized abnormal patterns [142, 100] or behaviour in case of individuals or crowds
[107]. As the notion of anomaly is subjective, there have been diverse research efforts based
on the availability of labelled data for either normal or anomalous event, the frequency of
anomalous occurrence, and the nature of the anomaly (general or specific).

As a lot of labelled data for normal behaviour is available, many approaches model
normal behaviour extensively and consider events which do not follow these models as
anomalous activities. One such approach was proposed for crowded scenarios in [30] by
considering three key characteristics: 1) distance between objects, 2) velocity between ob-
jects, and 3) area of the objects. The average velocity was monitored and analyzed for
any sudden change in speed and direction. A related work [69] used the motion direction
in addition to the features as mentioned above, to propose a motion-influence map which
localizes both global and local unusual activities. The motion-influence map considers the
speed and direction of various objects to determine their relative influence on other ob-
jects for detecting unusual motion patterns. In [14], apart from magnitude and direction
of motion, entropy information was further added to form a combined histogram of flow
orientation, motion, and entropy (HOFME) descriptor. The usage of entropy was to de-
termine the density of motion during normal events. Using the same motion descriptors,
sparse representation has also been used in [82] for identifying abnormal activities. Their
method proposed that abnormal motion patterns cannot be sparsely represented using a
dictionary trained on normal motion patterns.

While all the works mentioned above address generic anomalous activities, there are
cases for example when one or more vehicles may slow down while approaching a human
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to avoid a collision and later increase their speeds which would then be incorrectly labelled
as an anomaly. On a related note, in [41], it was shown that optical flow of motion is
consistent during a regular activity or interaction and is disrupted when snatching occurs.
However, their work considers examples where there are no other anomalies and even un-
conditional changes in optical flow which are frequent in vehicular traffic, can be mistaken
for a snatching incident.

Apart from estimating better feature descriptors, few works have also incorporated spa-
tial, social, interaction, and sequence contexts for improving anomalous activity detection.
In [68], a typical roadside surveillance scene was divided into different zones like traffic
lanes, stationary areas, etc. each of which was termed as a scene context and the direction
and flow of persons in each of these contexts were measured. Further, to understand normal
group behaviour among each scene context, the interaction between any two individuals in
the close spatial vicinity was measured for gaze and motion direction information. This
was termed as social context and revealed normal behaviour in different scene contexts. In
[131], contextual information was used to model the scene in addition to low-level motion
information. The contextual information was modelled in the form of prior knowledge as to
the type of interactions between actors and the different possible human poses in the scene.
Another attempt to model snatching using natural language with the help of clauses was
made in [45]. Snatching was defined as a sequence of the thief approaching thief (follow-
ing or confronting) and the thief snatching the belonging (attack). The attack was detected
through primitive actions such as running, walking, and turning. Then a Markov logic net-
work was learned using the rules of activity and probability of actions. These approaches
assume that a) the testing scenarios will be same as training scenes regarding pose and ac-
tions, b) all the events can be identified, and c) enough labelled data is available to learn
the sequences. In real-world scenarios, snatching events rarely happen as compared to reg-
ular interactions which makes it difficult to obtain labelled examples. Also, these events
occur in crowded scenarios where occlusion makes action detection challenging, and a lot
of variations can be encountered in snatching incidents. The dataset presented in this work
contains real-world videos with high occlusion and low-resolution making it difficult to
employ pose estimation techniques on the detected humans.

Given the works presented above and also based on the categorization provided in [107],
a crime like snatching can be characterized as having the following characteristics: 1)
snatching activity occurs much more infrequently than regular interactions, 2) many ac-
tions which contribute to snatching do not have significantly different characteristics from
normal activities like approach, running, etc. Further, the infrequency of snatching events
mean that the most of the completely supervised methods where both the training and
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testing set should contain large labelled data of abnormal patterns cannot be employed.
Similarly, the closeness to normal activities makes the use of completely unsupervised
methods unsuitable as in these methods, the normal behaviour is learned, and deviations
which are "far-away" are termed anomalous [82]. This motivates the use of representations
like action-vectors which can enhance the dissimilarity between snatch thefts and regular
actions.

7.2 Baseline: Rule-based snatch theft monitoring

In order to establish the performance of action-vectors which is representation based method,
a baseline rule-based system is devised. A rule based method is based on the application
of external rules for identifying both normal and anomalous classes and typically include
the specification of a set of rules for the feature set and critical thresholds for each of the
features being assessed. The system comprises of three stages which are presented below.

7.2.1 Stage I: Detection and tracking of humans in crowded scenarios

Tracking algorithms [35, 83] require the first frame containing the human to be annotated
which is not possible in an incoming surveillance stream. Hence, a state-of-the-art detector
like YOLO-You Only Look Once [93] is used. We use the detection outputs to initialize a
kernelized correlation filter (KCF) based tracker [35]. However, as snatching is a sudden
activity and as most of the trackers are designed for detecting smooth motion, KCF cannot
cope with the sudden movements. In such a case, YOLO is used for verification of the
tracked human and to re-initialize the tracking process. We use a track maintenance system
similar to [135] which utilizes both detection results from YOLO and tracking results from
KCF. Each track is a structure representing a person in the video and consists of 1) id:
the integer ID of the track, 2) bbox_list: list of bounding boxes in every frame where the
person is detected, 3) firstFrame : first frame where person was detected/tracked, and
4) lastFrame : last frame where person was detected/tracked. These tracks are used for
interaction identification and processing in the next stage.

7.2.2 Stage II: Victim and thief identification

In this stage, the identity of the potential thief and the victim are uncovered among the
thousands of individuals detected. For such identification, the nature of every interaction
based on the scenarios mentioned in Table 7.1 needs to be recognized. To identify all the
interactions in a surveillance video, every pair of detected humans is checked if they appear
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in the same set of frames using the firstFrame and lastFrame information from their
respective track structures.

Once some common frames are discovered between a pair of people i and j, these set of
frames constitute a meeting. As frame-based detection during the meeting may not always
be robust because of either low-resolution or occlusion, every meeting is studied for few
frames before and after the meeting for 1) either person i or j moves at a higher speed than
the other and/or 2) directions of i and j are same. The first condition checks whether one
of the persons darts towards the victim (Snatch Type 2 in Scenario 1, and Snatch Type 1 &
2 in Scenario 2 of Table 7.1). For discovering sudden movement, the average speed before
and during the meeting are compared. In the case that either person i or j are detected as
slowing down before the meeting and moving suddenly during the meeting then it is highly
possible that a snatch theft has taken place and hence, possibleSnatching flag is set. The
second condition checks whether the victim is being dragged during the meeting (Reaction
3 of Table 7.1). A minimum angle threshold is decided empirically to measure the similarity
in the direction of persons i and j. If the direction is found to be same, it can mean that
either the victim is chasing or is being dragged. In such a case, possibleDragging flag is
set to be true which is used later in the identification of snatch thefts.

Finally, if possibleSnatching is set as a result of any of the behaviours detected above,
a speed comparison of the persons before the meeting is performed to provide the possible
victim and thief identity. Here, we assume that thief on a motorbike has higher speed than
the victim before the meeting (Scenario 1 of Table 7.1). We additionally use the YOLO
tracker [93] to detect motorbike in the vicinity of the meeting to claim thief identity with
more confidence.

7.2.3 Stage III: Snatch Theft Verification

After obtaining the identity of the potential thief and victim in the previous stage, the
authenticity of the snatch theft is verified in this stage. We exploit the key characteristics
of different snatch thefts presented in Table 7.1. If both thief and victim are found to be
rushing in the same direction after the meeting with a gap of a few frames, then a snatch
theft can be confirmed where the victim is chasing the thief (Reaction 1 of Table 7.1). The
average speeds during and after the meeting are compared to check for rapid movement.
If either the possibleDragging (Reaction 2 of Table 7.1) is set in the previous stage, and
the thief is found to be racing after the meeting, then also snatching can be confirmed.
Finally, if possibleSnatching is set, and the thief rushes after the meeting, snatching is
confirmed with victim standing passively or falling (Reaction 3 of Table 7.1). If neither
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of these reactions is noted like the victim continues to move in a direction opposite to the
thief, then it is mostly a false alarm.

7.3 Unsupervised modeling of snatch theft actions

The process of tracking and subsequent behaviour analysis as mentioned in the baseline
system depends largely on critical thresholds for parameters which may sometimes be dif-
ficult to obtain for diverse scenarios. Instead, we propose to learn a representation for
snatch thefts using its similarities and differences from other human actions. As we have
seen that snatch thefts are very diverse, capturing these variations using a Gaussian mix-
ture model (GMM) requires a large number of mixtures. Unfortunately, a single snatch
theft video does not have enough data points to estimate the parameters of such a GMM.
Hence, we train a universal GMM using the clips of existing human actions datasets like
UCF101 and HMDB51 containing 101 and 51 actions, respectively. This GMM is called a
universal attribute model (UAM) which implicitly models action attributes. Many of these
attributes from other actions like punching can be used to describe snatch thefts as shown
in Figure 7.2.

The UAM parameters need to be adapted for each action clip like snatch theft to en-
hance the contribution of the attributes present in it. This adaptation requires updating the
parameters of each of the mixture components in the UAM. The MAP adapted parameters
of such a clip-specific model can be obtained as a convex combination of the UAM and
the clip-specific statistics. The covariance is not modified as there is not enough data in
one clip to update the entire covariance matrix of the UAM. The adapted means for each
mixture are then concatenated to compute a super action-vector (SAV) for each clip.

Obtaining a fixed-dimensional representation like the SAV, normalizes the effect of
varying length clips but results in a high-dimensional representation owing to the large
number of mixtures in the UAM. However, the SAV for a clip contains many of the at-
tributes that do not contribute to the action, in this case, snatch thefts. Hence, the SAV is
intrinsically low-dimensional, and by using a suitable decomposition, we can extract such
a representation which we refer to as an action-vector.

To arrive at a low-dimensional representation, the super action-vector is decomposed
as a low-dimensional action-vector whose prior distribution is assumed to be a standard
Gaussian. We refer to this random vector as an action-vector which is a hidden variable.
For a particular clip, the Gaussian mixture(s) which model the attributes in snatch thefts
produce high posterior probability. The original super action-vector can then be projected
onto a low-dimensional action-vector using only the eigenvectors representing the Gaussian
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mixtures contributing to the snatch thefts.

7.4 Experimental results

In the section, we compare action-vector based representation with state-of-the-art descrip-
tors designed for anomaly detection.

7.4.1 Snatch 1.0 : Dataset Description

The videos obtained from the surveillance cameras are low-resolution in most surveillance
setups. In cases of wide area surveillance, events of interest can occur further away from
the camera because of which person detection becomes more challenging. As snatch theft
incidents occur infrequently, we could only obtain a total of 35 chain snatch theft inci-
dents after searching through the archived video footage of over six months from different
surveillance cameras placed in the city of Hyderabad, India. The snatch thefts were spread
within 4.5 hours of surveillance footage containing 37485 regular interactions. It was ob-
served that snatch thefts are 4-5 seconds in duration, so we divided the entire surveillance
footage into 10-second clips which resulted in a total of 816 clips.

7.4.2 Effect of different feature descriptors and UAM mixtures

In this work, action-vectors are formed using two state-of-the-art feature descriptors, namely,
HOF and MBH which are obtained as part of the improved dense trajectory set of features
[117]. In Table 7.2, the classification performance of these action-vectors is presented
for varying number of UAM mixtures. Also, different classifiers like ensemble subspace
discriminant analysis (ESDA), k nearest neighbours (k-NN), and support vector machines
(SVM) are used for evaluation. For each of the classifiers, 3-fold cross-validation is used.
The dimension for the action-vector referred to as r in the previous section is fixed to be 200
as it is found that varying the action-vector dimension does not yield any change in clas-
sification performance. It can be observed that action-vector performs consistently across
all the settings making it an effective representation. Further, even smaller UAM with less
number of mixtures can help in efficien representing snatch thefts leading to proper classi-
fication. In Figure 7.3, the t-SNE plot of the action-vectors with HOF and MBH features
using 256 UAM mixtures is shown where clear separability can be noticed between the
regular interactions and snatch thefts.

Action-vectors are compared against recent state-of-the-art feature descriptors for de-
scribing human actions: a) HOFM (histogram of optical flow and magnitude) [14] and b)
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Table 7.2: Action-vector classification performance (in %) for Snatch 1.0.

Classifier

# of UAM mixtures
HOF MBH

256 512 1024 256 512 1024
ESDA 99.2 99.3 99.3 98.3 99.4 99.4
k-NN 99.5 99.4 99.4 99.7 99.5 99.5
SVM 99.7 99.7 99.8 99.8 99.6 99.4

snatch

regular

snatch

regular

(a) HOF (b) MBH

Figure 7.3: Action-vectors for Snatch 1.0 using (a) HOF features and (b) MBH features,
using 256 UAM mixtures. Best viewed in color.

3D convolutional neural network (3DCNN) features [113]. For HOFM, we use the param-
eter settings as per [14] where a regular grid of size 30 × 30 × 3 is created. The first two
dimensions correspond to grid cell dimensions (width and height) in space, and the third
dimension corresponds to the depth in time. For 3DCNN, a pre-trained network trained
on the sports 1M dataset as per [113] was used to obtain the features. Each 3DCNN fea-
tures summarizes the information in 16 frames into a single descriptor and resulting in 20
feature descriptors for every 10-second clip used in our experiments. The classification
outputs of these 20 descriptors are then combined using majority voting to produce the
final classification output for the clip.

From Table 7.3, it can be observed that the proposed framework misses only 1 snatch
theft as compared 5, 20, and 24 and to the other features. In terms of both accuracy and area
under the curve (AUC), action-vector representation outperforms other features as shown
in Figure 7.4. Also, when action-vectors calculated using MBH features are compared
to MBH features, a significant improvement can be observed. This shows that action-
vectors can extract meaningful information from existing descriptors to produce even more
discriminative representations.
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Table 7.3: Comparison with state-of-the-art feature descriptors using SVM classfier.

Method Missed Snatches Accuracy
(in %)

AUC
(in %)

Rule-based baseline 15 42.9 52.3
HOFM [14] 24 47.6 69.8
MBH [117] 20 59.3 72.4

3DCNN [113] 5 96.6 98.3
action-vector (HOF) 1 99.8 99.8
action-vector (MBH) 1 99.8 99.9
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Figure 7.4: ROC for performance comparison of action-vectors with state-of-the-art. Best
viewed in colour.

We present some of the detected snatch theft scenarios in Figure 7.5 according to the
scenarios explained in Table 7.1. It can be observed that action-vectors recognize a diverse
set of snatch thefts which have little similarity to each other. However, a few false positive
cases are also encountered where regular interactions are identified as snatch thefts are
shown in Figure 7.6. Such cases are difficult to address without identifying and tracking
the thief’s limbs.

7.5 Summary

In this chapter, we presented a framework for snatch theft detection in unconstrained videos
using action attribute modelling. For evaluation, we introduced a dataset called Snatch 1.0
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(a) Scenario 1, Snatch Type 1 and Reaction 1

(b) Scenario 2, Snatch Type 2 and Reaction 3

(c) Scenario 2, Snatch Type 2 and Reaction 1

(d) Scenario 2, Snatch Type 2 and Reaction 3

(e) Scenario 1, Snatch Type 2 and Reaction 1

Figure 7.5: Detection results of snatch theft using the proposed framework. For visual-
ization, a YOLO [93] detector and a kernelised correlation filter [35] based tracker was
applied on each of the detected snatch theft clips. Bounding boxes are drawn (in green)
with the id (in blue) on top of the box for different persons. Best viewed in colour.
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(a) (b)

Figure 7.6: False positive cases where normal interactions detected as snatch thefts

that contains snatch thefts in surveillance videos. To obtain the baseline performance on
Snatch 1.0, a rule-based system was designed. Our proposed representation for snatch
thefts was obtained by leveraging a large GMM trained on action datasets HMDB51 and
UCF101. This mitigated the need for labelled snatch theft examples which is difficult to
obtain. It was visually shown in the action-vector space, snatch thefts and regular actions
can be easily differentiated. Finally, we demonstrated the efficacy of action-vectors over
existing state-of-the-art feature descriptors.
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Chapter 8

Summary and Conclusions

In this thesis, we presented different approaches for developing robust and discriminative
representations for human actions. We showed that the proposed representations were able
to address challenges like intra-action variations (due to actors, viewpoints, and duration),
inter-action similarity, background motion, and occlusion of actors. Further, we demon-
strated that with the non-linear embedding of the proposed representations, actions with
fine-grained differences were effectively identified.

In the first approach, we modeled high-level representations of each action class into
class-wise dictionaries. We were able to obtain a sparse representation for each action
which retained only the discriminative information for that particular action in the dictio-
nary and hence reduces inter-action similarity. A sparsity-based classification method is
then proposed to classify the low-rank representation of clips obtained using these dictio-
naries. However, some of these actions consist of rapid body deformations which impede
the extraction of local features necessary for action recognition. Hence, we introduced
a sparse representation of convolutional neural network (CNN) features that is robust in
locating humans under rapid deformation.

In the next approach, we exploited inter-action similarity to train a universal attribute
model (UAM) to learn action attributes (common and distinct) implicitly across all the
actions. Using maximum aposteriori (MAP) adaptation, a high-dimensional super action-
vector (SAV) for each clip was extracted. As this SAV contained redundant attributes of
all other actions, we used factor analysis to extract a novel low-dimensional action-vector
representation for each clip. Action-vectors were shown to suppress background motion
and highlight actions of interest in both trimmed and untrimmed clips. Action-vector were
further subjected to linear embedding using linear discriminant analysis (LDA) and prob-
abilistic LDA (PLDA) to address inter-action similarity. Also, Siamese networks were
explored for non-linear embedding of action-vectors to mitigate viewpoint variations in
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fine-grained action recognition.
Finally, we presented an approach for modeling actions like snatch thefts in surveillance

videos. Due to the lack of labeled snatch thefts examples, we leveraged universal attribute
models trained on large action datasets to extract the subset of attributes contributing to
snatch thefts. The final representation was shown to be effective in distinguishing snatch
thefts from regular actions with high accuracy.

8.1 Contributions of the thesis

1. A framework that leverages the sparsity of high-level action features to build dis-
criminative action-specific dictionaries.

2. An approach for recognizing actions with rapid body deformations using sparse rep-
resentation of convolutional neural network (CNN) features.

3. A novel unsupervised factor analysis based decomposition approach to produce low-
dimensional action-vectors. Even without supervision, action-vectors are shown to
be highly discriminative for a large number of actions.

4. A method to address inter-action similarity using probabilistic linear discriminant
embedding of action-vectors to classify visually similar actions.

5. A method for intermediate latent dimension fusion that combines complimentary in-
formation across action-vectors of different feature descriptors. The fused represen-
tation obtains state-of-the-art action recognition performance on highly challenging
action datasets.

6. An approach for non-linear embedding of action-vectors using deep Siamese net-
works to discriminate between fine-grained actions with high inter-class similarity.

7. An unsupervised approach for modeling complex and highly infrequent activities like
snatch theft detection using action attribute models trained on large action datasets.
The final representation obtained is distinct from a variety of regular actions which
resulted in excellent classification performance.

8.2 Directions for Further Research

In future, we would like to extend our action-vector based representation for localization of
actions in untrimmed videos. Specifically, we would like to design a real-time system that
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processes an incoming stream of video data by recursively calculating the action-vectors
on short video snippets of the stream. Using a classification module, we should be able
to determine the action in that short snippet using action-vectors. We would also like to
explore a video recommendation system that uses content-based video indexing to organize
large video repositories on the web. The indexing would be based on the action contained
in the videos which can then be retrieved by a user-generated query. Such a system would
be able to analyze and caption videos automatically which would reduce the burden of
manual annotation for the ever-expanding video repositories on the web.
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