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Abstract 

 

The focus on copper chalcogenide chemistry is experiencing continuous growth and interest 

over last few decades owing to their novel properties and significant applications in materials 

chemistry. The property of copper chalcogenides is mainly controlled by chalcogen sources. 

For example, the recent works have also witnessed the active role of decade old ligand system 

imidazolin-2-chalcogenones for this endeavor. Notably, imidazolin-2-chalcogenon ligands 

have potential to serve as a ligand with copper in medicine. Some other potential applications 

of these imidazolin-2-chalcogenone ligand supported copper included their use as precursor 

for nanomaterial synthesis and co-ligand in catalysis. However, these recent efforts have not 

answered the critical questions such as, do “homoleptic two coordinated” key intermediates 

exist in the catalytic process? How essential is “more π accepting imidazoline-2-selone” to 

isolate the homoleptic two coordinated coinage metal derivatives? In order to address these 

challenges, this thesis deals with the three main aspects of Imidazolin-2-chalcogenones 

(ImC), such as (1) synthesis of soluble copper(I) chalcogenone, (2) catalytic efficiencies of 

ImC‒Cu complexes, and comparison of catalytic activity of ImC‒Cu with NHC‒Cu (Chart 

A). Indeed, twenty one new structurally interesting copper(I) chalcogenones have been 

isolated and characterized by CHN analysis, FT-IR, multinuclear NMR, TGA, UV-vis, and 

single crystal X-ray diffraction techniques. These new molecules are found to be very active 

catalysts in ‘cabon-boron’, ‘cabon-nitrogen’ and ‘carbon-silicon’bond formation reactions. 

 

Chart A. Represents the ImC‒Cu complexes established in this thesis 
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Preface 

 

This thesis embodies the synthesis, characterization and catalytic applications of 

copper(I) chalcogenones. These new compounds have been characterized by CHN analysis, 

FT-IR, and multinuclear (1H and 13C) NMR spectroscopic studies, TGA, UV-vis and single 

crystal X-ray diffraction techniques. 

 

Chapter 1 (Introduction) reviews the complete literature on Imidazolin-2-chalcogenones 

(ImC) supported Cu(I) complexes. Synthesis and structure of Cu(I)-chalcogenone derivatives 

are reported along  with applications of metal‒ImC derivatives. 

  

Chapter 2 describes the linear Cu(I) chalcogenones: synthesis and application in borylation 

of unsymmetrical alkynes 

 

Chapter 3 depicts the synthesis and application of large CuI
8 cages, in [3+2] cyclo addition 

and hydroamination alkynes. 

 

Chapter 4 discourses the synthesis and applications of copper(I) complexes of C, S, Se and 

P donor ligands in C‒N and C‒Si bond formation reactions. 

 

Chapter 5 (Summary and conclusion) summarizes the results described in the chapters 2-4, 

making important correlations between the compounds. 
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Chapter 1 

 

Introduction 

The field of organometallic chemistry associates the aspects of traditional inorganic 

and organic chemistry. In particular, chemical compounds with at least one carbon‒metal 

bond, including alkali, alkaline earth, transition metals, and sometimes broadened to include 

metalloids like boron, silicon, and tin, are considered as organometallic compounds (OMC’s) 

[1-2]. Apart from the bonding to an organic fragments or molecules, bonding to 'inorganic' 

carbon, like carbon monoxide (metal carbonyls), cyanide, or carbide, are also considered to 

be organometallic compounds. Similarly, transition metal hydrides, metal nitrogen complexes 

and metal phosphine complexes are often included in discussions of organometallic 

compounds, though strictly speaking, they are not necessarily organometallic. In general, the 

related term "metalorganic compound" refers to metal-containing compounds lacking direct 

metal-carbon bonds but which contain organic ligands. Metal β-diketonates, alkoxides, 

dialkylamides, and metal phosphine complexes are representative members of this class [3]. 

1.1. Timeline of organometallic chemistry 

 1760 Louis Claude Cadet de Gassicourt discovered the fuming Cadet’s liquid 

comprises of cacodyl oxide and tetramethyldiarsine. 

 1827 William Christopher Zeise discovered the first π–complex K2[PtCl3(ƞ2-

C2H4)] (Zeise's salt). 

 Edward Frankland discovered several metal-alkyl complexes such as diethyl zinc 

(1848), diethyl mercury (1852), tetraethyl tin and trimethyl boron (1860). 

 1863 Charles Friedel and James Crafts prepared organochlorosilanes (RnSiCl4-

n). 

 1868-1870 Schützenberger synthesized the first metal-carbonyl derivatives 

[Pt(CO)2Cl2] and [Pt(CO)Cl]2. 

 1890-1891 Ludwig Mond discovered the first binary metal-carbonyl complexes 

{[Ni(CO)4] and [Fe(CO)5]}. 

 1899 Introduction of Grignard reaction by Victor Grignard. 
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 1951 Ferrocene was discovered (Modern organometallic chemistry begins with 

this discovery). 

 1956 Dorothy Crawfoot Hodgkin discovered the first biomolecule found to 

contain a metal-carbon bond (Vitamin B12). 

 1960 Wanzlick proposed monomer dimer equilibrium of carbene. 

 1991 Arduengo (III) isolated and characterized the first N-Heterocyclic Carbene. 

 

1.2. Nobel -prize winners related to OMC 

Nobel -Prize 

Winners 

 Discovery 

V. Grignard, P. 

Sabatier (1912) 

 

Grignard reagent 

K. Ziegler, G. Natta 

(1963) 

 

 

Zieglar-Natta catalyst 

E. O. Fisher, G. 

Wilkinson (1973) 

 

Sandwich compounds 

  

R. Hoffmann, K. 

Fukui (1981) 

  

 

Woodward-Hoffman 

Rules 
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K. B. Sharpless, R. 

Noyori, W. S. 

Knowles (2001) 
 

Hydrogenation and 

oxidation 

  

Y. Chauvin, R. H. 

Grubbs, R. R. 

Schrock (2005) 

   

Metal-catalyzed alkene 

metathesis 

  

R. F. Heck, E.-i. 

Negishi, A. Suzuki 

(2010) 

 

Palladium catalyzed cross 

coupling reactions 

 

 

1.3. Organometallic catalysis 

Catalyst is a chemical substance, which increases the rate of a reaction by lowering the 

activation energy (threshold energy) so that more reactant molecules interact with enough 

energy to overcome the energy barrier. Catalysis plays a vital role in the production of fuels, 

commodity chemicals, fine chemicals and pharmaceuticals as well as providing the means for 

experimental safeguards all over the world. Most catalysts used in industrial and research 

laboratories are inorganic (often organometallic) compounds. It is worth mentioning that more 

than 60% of all chemical products and 90% of all chemical processes are based on catalysis. 

Catalysis can be of two types, Homogeneous [4-7] and Heterogeneous [8-11]. 1) 

Homogeneous: Catalyst and reactant in the same phase e.g.) Organometallic Compounds 2) 

Heterogeneous: Catalyst and reactant in different phases e.g.) Metal surface active process 

catalytic decomposition of formic acid on noble metals. 

1.4. N-heterocyclic carbene 

N-heterocyclic carbenes are neutral divalent carbons and are classified as Fischer, 

Schrock and persistent carbenes (Figure 1.1) [12]. In the Fischer (singlet) carbene compounds, 

a carbon center bears a lone pair of electrons in sp2 hybridized orbital while a p orbital remains 

vacant. Schrock (triplet) carbenes are also known, where each of the two electrons occupy a 

degenerate p orbital. In addition, N-Heterocyclic carbenes (NHC’s) are heterocyclic persistent 
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carbenes and cyclic molecules that contain one carbene and at least one nitrogen atom within 

the carbene-containing ring structure. While these species were initially not widely applied in 

chemistry, they have now been employed in a broad range of fields, including organo-

catalysis [13] and organometallic chemistry [14-17]. Hundreds of different NHCs are known 

in the literature, and much has been learned about their properties and reactivity [18-20]. 

 

Figure 1.1: The three types of carbenes 

Preceding to the isolation of stable NHCs, some information was known about the 

properties of these species (Chart 1.1). As early as the 1960s, researchers such as Wanzlick 

were active in probing the reactivity of NHC’s generated in situ from, for example, the 

thermolysis of the corresponding dimers. In this way, the nucleophilic reactivity of these 

species with a number of reagents was characterized. Metal–carbene complexes were also 

prepared by Wanzlick and Schönherr, without isolation of the free carbene itself (Scheme 1.1) 

[21]. 

 

 Chart 1.1: Early studies of the reactivity of N-heterocyclic carbenes (NHC)  
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Scheme 1.1: Synthesis of first NHC-metal complex by in situ NHC generation 

The isolation of stable NHCs (Scheme 1.2, Arduengo, 1991) was a key event in the 

chemistry of this valuable class of compounds, as this allowed the preparation of material for 

detailed characterization [22]. In 1990s NHC’s gained popularity as ligands, and then research 

continued towards isolable NHC’s. Since then a large variety of NHCs have been synthesized. 

From the last 25 years, these NHC motifs have been modified by changing both the pendant 

groups and the skeletal ring structure [23]. 

 

Scheme 1.2: Stable N-heterocyclic carbene (NHC) isolated by Arduengo in 1991 (White 

solid) 
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1.5. NHC‒Cu chemistry 

Although, the chemistry of copper has a long history [24-25], the relatively contemporary 

discovery of N-heterocyclic carbene (NHC) as transition-metal supporting ligands has been 

legitimated novel outlooks to be discovered in copper reactivity and catalysis [22-26]. Soon 

after the inspirational discovery of Arduengo, Raubenheimer reported a neutral copper 

carbene complex [27]. However, the field remained dormant for almost ten years. In the early 

2000s, new breakthroughs were achieved: first, the synthesis of NHC-copper using Cu2O was 

reported by Danopoulos and followed by the first application in catalysis by Woodward [28-

29].  

The work by Buchwald and Sadighi appeared next, where the first catalysis using a well-

defined complex was described [30].The first reports in this field were based on systems used 

to mimic their phosphine relatives. NHCs have become ligands of significant interest due to 

their steric and electronic properties [31-33]. Combining the NHC ligand family and copper 

became, for some, an obvious and productive area [32-33]. Over the last decade alone, 

numerous systems have been developed. Copper-NHC complexes can be divided into two 

major classes: neutral mono-NHC and cationic bis-NHC derivatives: [Cu(X)(NHC)] (X = 

halide, acetate, hydroxide, hydride, etc.) [34-36] and [Cu(NHC)(L)][Y] (L = NHC or PR3; Y 

= PF6, BF4) [37-38]. Besides, few NHC-Cu catalysts available commercially have listed out 

in figure 1.2. 

 

Figure 1.2: Commercially available NHC-Cu complexes by Sigma Aldrich 

 The neutral-halide-bearing complexes have been widely used in catalysis, mainly due 

to their ease of synthesis [31-33]. In addition to halide-bearing complexes, notable 

important related compounds have been reported: Nolan and co-workers disclosed the 

first hydroxide derivative [Cu(OH)(IPr)] (IPr = N,N’-bis(2,6-di-

isopropylphenyl)imidazol-2-ylidene) and Sadighi published alkoxides, hydrides and 

borate species, which permitted novel reactivity to be explored [39-41]. With respect to 
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cationic derivatives, homoleptic and heteroleptic bis-NHC complexes have been reported 

and have been efficiently used in catalysis allowing important improvements (Chart 1.2) 

[37-38]. 

 

Chart 1.2: Various catalytic reactions established with Cu‒NHC until now 

1.6. Imidzolin-2-chalcogenone (ImC) 

After the isolation of free carbene, NHC’s gain high popularity as ligands and then 

research continued towards isolable NHC’s (Chart 1.3) [42]. Among the analogues NHC’s 

investigated, we have interested in studying the imidazolin-2-chalcogenones (ImC’s) owing 

to their vast applications in medicinal, supramolecular, material fields and also due to the 

promising features in catalysis [43-45]. 

 

Chart 1.3: Selected NHC analogues of main group derivatives 
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Over the past few decades, organo chalcogenones have attracted an appreciable amount 

of research interest as a result of their unique reactivities and complexation properties. With 

an increase in the orbital size of the chalcogens (O; 2p, S; 3p, Se; 4p, and Te; 5p), the stability 

of the corresponding ketones gradually decreases owing to improper orbital overlap with 

carbon (C; 2p) [46]. Rationally, examples of chalcogenone monomers progressively decrease 

from O to Te. As a matter of fact, monomeric tellones are extremely rare [47-48], whereas 

similar oxones and thiones are quite common in nature. Selones, which are intermediate 

members of this family, often show interdisciplinary properties. As a result, they usually 

appear in partial zwitterionic forms (C+= Se-) in lieu of true C=S or C+‒Te- forms (Scheme 

1.3), but still maintain substantial stability [49]. Such increased electron density on the Se 

center boosts its nucleophilic character [50-51]. 

 

Scheme 1.3: Possible zwitter ionic forms of imidazolin-2-chalcogenone (ImC) 

Owing to this unique structural feature, ImC have been utilized as synthons in organic 

synthesis for an enduring period of time. Their use as ligating struts in complexation with 

transition metals has recently started to develop. Similar to tellones, monomeric thiones and 

selones also exhibit a tendency to dimerize unless placed in a sterically hindered alkyl or aryl 

environment or stabilized by electronic delocalization. 

Moreover, such selenoketones have been used as inhibitors of lactoperoxidase-catalyzed 

oxidation and tyrosine nitration [52], as an analogue of the antithyroid drug methimazole 

(Figure 1.3) [53], in optoelectronics [54], as chemical sensors [55], and also as a chemical 

tool for Pd(II) extraction from water [56]. 
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Figure 1.3: Antithyroid drugs and their biological significance 

1.7. Types of ImC and their known coordination modes 

ImC can be classified based on different types of existing molecules, which mainly based 

on the number of chalcogen donors in a single molecule. 1) Mono dentate ImC’s, 2) bi dentate 

ImC’s and 3) tri dentate ImC’s as shown in chart 1.4. 

 

Chart 1.4: Various classes of ImC’s 

Since the first report of the one-pot synthesis of a selone starting from an imidazolium 

salt and elemental selenium by Jin et al. [57], a significant number of reports has been 

published following a similar synthetic protocol. A suitable synthesis of these imidazolin-2-

chalcogenones starts with their imidazolin-2-ylidene or imidazolium salt or N-substituted 

ImC as precursors (Scheme 1.4) [57-59]. 
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Scheme 1.4: General approach to access ImC from various starting materials 

Imidazolin-2-chalcogenone forms one dative bond with most metal atoms, and two 

dative bonds by utilizing both the lone pair electrons. Interestingly, ImC can be a potential 

reducing agent to reduce metal salts. This reducing nature made them pivotal in biology to 

inhibit the lactoperoxidase-catalyzed oxidation, also in inhibition of peroxynitrite- and 

peroxidase-mediated protein tyrosine nitration [52]. Besides, the nitrogen coordination to 

metal along with C=E‒M coordination could be possible by N-alkyl/aryl imidazolin-2-

chalcogenones, while it is absent in N,N’-dialkyl/aryl imidazolin-2-chalcogenones. Similarly, 

imidazole backbone can also be activated by phosphorous, silicon, chalcogen and group 

IA/IIA metals [60-62]. Notably, two types of coordination of ImC has been detected with 

halogens (scheme 1.5). 

 

Scheme 1.5: Known coordination properties of ImC with metals 
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1.8. ImC-metal chemistry 

 

Chart 1.5: Number of publications till January-2018) 

The preparation of ImC ligands with a variety of N-substituents is relatively easy, 

which allows tuning of the electronic properties and/or steric bulk of their complexes. 

However, metal-ImC chemistry is relatively new and not explored much compared to metal-

NHC. 117 articles have been published up to date on imidazolin-2-chalcogenones (Chart 1.5). 

Although, over 1200 articles have been published on “NHC-copper” and utilized in various 

fields of chemistry, the ImC-Cu has merely 20 articles so far. The ImC can form different 

metal complexes by changing metal ligand ratio. Most of the complexes containing mono-

ImC’s are mono nuclear and very few are multi nuclear complexes. Bis-ImC’s can also form 

mono nuclear complexes. But owing to the rotational freedom through linking groups 

between bis-ImC, complexes bridged by only one of these groups that tend to adopt a skewed 

arrangement, to minimize steric repulsions between the metal coordination spheres, therefore, 

the metals are quite widely placed in the complex. Generally the linker is either simple alkyl 

unit or aromatic unit, and sometimes linker consist donor atoms like C, N or S. 

 ImC, a special class of heteroketones, have gained increasing interest in recent years 

as efficient ligating agents in lieu of traditional N-heterocyclic carbenes. In fact, mono- and 

bis-imidazole selones have been extensively used to generate transition metal-based 

complexes [63-64] and have further been employed in versatile catalytic applications, such as 
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polymerization and the Heck cyclization etc. The known catalytic reactions with ImC-metal 

are summarized in chart 1.6 [65-70]. Similarly, chart 1.7 describes the applications of ImC 

supported metal complexes in various fields. 

 

Chart 1.6: ImC-metal catalysts mediated oraganic transformations 

 

Chart 1.7: ImC-Metal complexes applications in various fields 

 

Catalysis
14%

Medicine
7%

Nanomaterials
4%

Reactivity
5%Synthesis

61%

Industry
9%
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1.9. Structural comparison between NHC and ImC 

 

Figure 1.4: Structural comparison between NHC and ImC 

NHC’s are 2 ‒electron donors and have replaced all the classical 2 electron donors such 

as, phosphine, amine, ether, carbonyl etc. in organometallic chemistry. After which the 

modifications to NHC via substitution over nitrogen atom and substitution on backbone 

carbon atoms have been studied comprehensively so far. The modifications over carbene 

carbon or in place carbene carbon to generate carbene like moieties (analogues) have attracted 

considerable attention and have been a topic of interest after isolation of free carbene. In this 

context, a new area of NHC analogous such as, imidazolin-2-chalcogenones (ImC) have 

synthesized by introducing chalcogenone center at the carbene carbon and investigated to be 

perfectly analogues to NHC. 

Property ImC NHC 

Isolation Easy Inert atmosphere 

needed 

‒donating ability Strong Strong 

π‒accepting ability Weak Weak 

Steric and electronic 

tunability 

Tunable Tunable 

Electron density at the 

metal center 

More electron rich More electron rich 

Stability in air Stable Unstable 

Steric hindrance at the 

metal center 

Relatively less Relatively high 
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1.10. Structure, general properties and stability of ImC’s 

Compared to sulfur (2.58) or tellurium (2.10), the electronegativity of selenium (2.55) is 

much closer to carbon electronegativity (C = 2.55). As a result imidazolin-2-selone can be 

considered as a perfect analogue to NHC. The π‒electron cloud between carbon and 

chalcogen atom in C=E bond is expected to be oriented in the middle of carbon and chalcogen 

atom. However, these imidazoline-2-chalcogenones mostly exist in the form of zwitter ionic 

form (66%). Signifying the stronger ‒donor abilities over NHC and the uneven distribution 

of electrons in C=E bond are displayed in figure 1.5. 

 

Figure 1.5: π‒electron distribution in ImC’s 

As described the electronic and steric properties can be altered by modifying the 

substituents on nitrogen atoms and on carbon atoms of imidazole backbone. The steric 

hindrance is expected to be less in the complexes isolated with ImC compared to NHC-metal, 

since the metal stays away from carbene carbon through chalcogen center. Compared to NHC, 

ImC can coordinate to two metal centers in the molecule (Figure 1.6). And the recent 

investigations have confirmed the competitive efficiencies of ImC supported complexes in 

organic transformations. 
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Figure 1.6: Coordination modes of NHC vs ImC 

1.11. π-Acceptor Nature of ImC’s and NHC’s 

 

Figure 1.7: π-accepting nature of various NHC’s predicted using ImC’s 

The important applications of ImC is to access the π-accepting nature of NHC. The 

π-accepting nature of NHC can be evaluated by measuring the 77Se NMR of corresponding 

ImSe (Figure 1.7, 1.8). The major factors that alters the π‒accepting nature are; (i) saturation 

of the backbone, (ii) introduction of electron withdrawing groups into the backbone, (iii) 

annulation of aromatic ring, (iv) an increase in NCN angle and (v) replacement of nitrogen 

by a weaker -donor such as sulfur etc. 
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Figure 1.8: Factors effecting the π‒accepting nature of NHC 

The coordination entities isolated with the elements of periodic table (Except VIA and 

VIIA group) are presented herein by including their wide spread applications discovered so 

far. 

1.12. Copper‒ImC complexes 

Several ImC-Cu complexes have been synthesized and structurally characterized. In 

which, only four copper complexes have been isolated in its +II oxidation state. 

[CuCl2(C11H20N2S)2] (Cu1) has been synthesized at room temperature from an acetonitrile 

solution of 1,3-diisopropyl-4,5-dimethylimidazoline-2-thione and CuCl2.H2O in 48 h. Blue 

crystals of Cu1 were obtained from the recrystallization of a saturated acetonitrile solution 

upon diethyl ether diffusion [71]. Cu(II) center in Cu1 display distorted tetrahedral geometry 

from two Cl atoms [Cu‒Cl = 2.2182 (6) Å] and two thione S atoms [Cu‒S = 2.3199 (6) Å]. 

The angles at the copper cation, which lies on a twofold rotation axis, are Cl‒Cu‒Cl = 

142.84 (4)°, Cl‒Cu‒S = 94.80 (2) and 99.97 (2)°, and S‒Cu‒S = 132.46 (4)°. 
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Scheme 1.6: Synthesis of Cu(II) complex, Cu1 

Similarly, a series of novel SNS pincer ligands were metallated with CuCl2 in 

dichloromethane at reflux to produce tridentate SNS‒coordinated copper(II) compounds 

(Cu2-4) and were recrystallized from slow vapor diffusion of diethyl ether into a methanol 

solution containing the copper complex [72]. Cu(II) center in Cu2-4 display pseudo-square-

pyramidal geometry. The Cu–N bond length is shorter in Cu3 (2.22 Å) than in Cu2 and Cu4 

(2.29 and 2.33 Å, respectively). The Cu–S bond lengths are nearly identical for all of the 

complexes (ca. 2.31–2.32 Å). The Cu–Cl bond lengths are longest in Cu3 (2.36 and 2.31 Å) 

and shortest in Cu4 (2.27 and 2.30 Å). The Cu–Cl bond lengths in Cu2 (2.33 and 2.31 Å) are 

between those found in Cu3 and Cu4. 

  

Scheme 1.7: Synthesis of Cu(II) complexes, Cu2-4 

The metal-ligand coordination in Cu5 was demonstrated by growing single crystals by 

slow vapor diffusion of pentane into a dichloromethane solution of mbit (mbit = 1,3-dimethyl-

1H-imidazole-2(3H)-thione) and CuCl. Moreover, Cu5 produced better selectivity in 

hydroborylation of aromatic internal alkynes over NHC‒Cu complexes [73]. The copper 

metal center in Cu5 adopts trigonal planar geometry. The C–S bond distance is elongated to 

1.71 Å by coordination to copper and closer to a single bond (1.81 Å) than a double bond 

(1.56 Å). 

 

Scheme 1.8: Regio-selective borylation of alkynes catalyzed by Cu5 
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Cu6-10 have been synthesized by an equimolar mixtures of ligand and copper halide in a 

mixed solvent system such as acetonitrile-dichloromethane (Cu9,8b,10) or ethanol-

dichloromethane (Cu5-7,8a) solutions at room temperature for 6h. Interestingly, molecules 

Cu8b,10 show intramolecular π–π interactions (Cu8b; 3.67 Å to 3.90 Å and Cu10; 3.63 Å to 3.95 

Å) between the two heterocyclic chalcogenone ligands in the complex. Coordination of the 

thione ligand to copper in complexes Cu5,7,8a,8b results in almost identical S–C bond distances 

(1.71–1.72 Å), longer than the S–C bond distance in the free thione ligand (1.68 Å). Changes 

in the halide ligand have little effect on Cu–S bond distances, since the Cu–S bond lengths of 

2.2345(10) Å for Cu8a, 2.2401(11) Å for Cu8b, 2.2376(6) Å for Cu5 and 2.2298(9) Å for Cu7 

are similar. Similarly, the three-coordinate copper-selone complexes Cu6,9,10, have identical 

Cu–Se bond distances of 2.34 Å [74]. 

 

Scheme 1.9: Synthesis of Cu(I) complexes, Cu5-10 

Cu11-12 have been synthesized with an equimolar quantity of CuBr and CuI as a 

tetranuclear copper complexes with bridging selone ligands. Cu12 can also be synthesized via 

a two- step, one-pot reaction with molar equivalents of [Cu(CH3CN)4][BF4] and dmise (1,3-

dimethyl-1H-imidazole-2(3H)-selenone) in acetonitrile, resulting an insoluble precipitate, 

which can be re-dissolved by the addition of potassium iodide in methanol. The X-ray crystal 

structures of Cu11-12 display two different coordination geometries around copper metal 

centers, i.e., one of the copper adopts distorted trigonal planar geometry with two selenium 
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atoms (Cu–Se bond distances are 2.42 Å and 2.41 Å) and one halogen atom (Cu–I and Cu–

Br bond distances are 2.58 Å and 2.43 Å), while the other copper exhibits distorted tetrahedral 

geometry with two selenium atoms and with two bridging halogens [74]. 

 

Scheme 1.10: Synthesis of Cu(I) complexes, Cu11-12 

Cu13-14 have been synthesized in moderate yields from a reaction of Cu(OTf)2 with an 

excess of ImC (dmit for Cu13 and dmis for Cu14) in a mixture of acetonitrile and 

dichloromethane at room temperature for 4 h. Single-crystal X-ray analysis were grown by 

slow vapor diffusion of diethyl ether into a dichloromethane solution of Cu13 or into an 

acetonitrile solution of Cu14. 

 

Scheme 1.11: Synthesis of Cu(I) complexes, Cu13-14 
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This crystal growth resulted in association with co-crystallized chalcogenone dications. 

The copper metal center in Cu13 adopts a distorted trigonal planar geometry, with an average 

Cu–S bond distance of 2.2454(10) Å, while in Cu14 copper metal exhibits tetrahedral 

geometry with Cu–Se bond distance of 2.4538(10) Å. Furthermore, the reduction potentials 

of ligands have been discovered using Cu13-14 i.e., the kinetic studies using UV-vis 

spectroscopy on Cu13-14 indicate that dmise reduces Cu2+ to Cu+ three times faster than dmit. 

Cu15-24 have been synthesized and structurally characterized. Dinuclear homoleptic 

copper(I) complexes (Cu15,16) have been synthesized via the reaction of [Cu(CH3CN)4]BF4 

with the appropriate amount of dmit or dmise in acetonitrile at room temperature for 3 h. Cu15 

has been characterized by various spectroscopic techniques while, Cu16 was additionally 

characterized by X-ray diffraction analysis. The X-ray quality crystals were obtained by slow 

diffusion of diethyl ether into an acetonitrile solution of the Cu16 complex. The structural unit 

of [(dmise)2Cu(μ-dmise)Cu(dmise)2](BF4)2 (Cu16) is made up of two copper(I) centers, with 

the Se atom of the dimethylimidazole selone (dmise) ligands bridging the two copper atoms, 

forming a bent Cu‒Se‒Cu core. Each copper atom is further bonded to two dmise ligands and 

thus each copper adopts a distorted trigonal planar geometry. The average of four Cu–Se 

distances involving terminal dmise ligands (2.35 Å) is shorter than those involving the 

bridging dmise ligand (2.42 Å). The existing Cu(1)–Cu(2) bond distance is 2.6326(11). 

 

Scheme 1.12: Synthesis of Cu(I) complexes, Cu15-16 

Cu17,18 are isostructural molecules with two terminal and one bridging bis-ligand to 

exhibit butterfly shape through Cu2E2 cores. Each copper metal adopts a distorted tetrahedral 

geometry, with Cu⋯Cu distances (2.96 and 2.97 Å for Cu17 and Cu18, respectively). As 

expected, the terminal Cu–S and Cu–Se bond distances in Cu17 and Cu18 (averages 2.29 and 

2.42 Å, respectively). 
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Scheme 1.13: Synthesis of Cu(I) complexes, Cu17-20 

The centrosymmetric complex Cu19 exhibits two copper(I) centers with distorted trigonal 

planar geometry arising from the coordination of a terminal bidentate ligand and one of the 

thione moiety from bridging bidentate ligand. The Cu-S distances are in the expected range 

(2.2871(16)-2.3030(16)). While, Cu20 has been structurally characterized by various 

spectroscopic techniques and the crystal structure investigations have not been derived. 

Cu21-23 have been synthesized from mixed ligands in a mixture of acetonitrile and 

dichloromethane solvent and structurally characterized but the crystal structures were 

demonstrated only for Cu21,23. The two dinuclear copper complexes (Cu21,23) are 

centrosymmetric and exhibit rhombic Cu2Se2 cores, with all the bis(selone) ligands exhibiting 

the unusual bridging monodentate:bidentate coordination mode. Each copper metal center is 

coordinated to a terminal dmit or dmise ligand and three selone moieties from mbis (3,3'-

methylenebis(1-methyl-1H-imidazole-2(3H)-selenone)) ligands (one terminal and two 

bridging), with an overall distorted tetrahedral geometry in each case. The weak Cu–Cu 

interactions were expected in molecules Cu21,23, since the existing Cu⋯Cu distances (2.73 

and 2.74 Å for Cu21 and Cu23, respectively) are slightly shorter than the sum of the van der 

Waals radii of copper. The average lengths of the bridging Cu–Se bonds derived from mbis 
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ligands (2.52 and 2.51 Å for Cu21 and Cu23, respectively) are longer than the average terminal 

Cu–Se bond lengths associated with the same ligands (2.42 Å for both complexes). 

 

Scheme 1.14: Synthesis of Cu(I) complexes, Cu21-23 

The X-ray structure of Cu24, reveals the formation of a coordination polymer in which an 

infinite chain of four-coordinate copper(I) centers are bound to two terminal sulfur atoms 

from a bidentate mbit (3,3'-methylenebis(1-methyl-1H-imidazole-2(3H)-thione)) ligand and 

two sulfur atoms from bridging dmit ligands. The geometry around Cu(1) is best described as 

distorted tetrahedral and the average Cu–S bond lengths of 2.36 Å [75]. 

 

Scheme 1.15: Synthesis of Cu(I) complexes, Cu24 

All these complexes (Cu15-24) were subjected to electrochemical studies to investigate 

their reduction potentials [64,76-77]. Upon examination of the reduction potentials for the 

copper complexes Cu15-24, it is clear that the selone containing complexes exhibit more 

negative Cu(II/I) reduction potentials relative to the analogous thione complexes irrespective 

of the bridging unit. 
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The copper(I) complexes with [BF4]- counter ion ([TpmRCu(ImC)][BF4], Cu25-30) have 

been synthesized in two different routes. Method 1, includes a two-step, one-pot procedure 

via the treatment of equimolar amounts of [Cu(CH3CN)4][BF4] and dmise or dmit in 

acetonitrile followed by the addition of the desired tripodal ligand in acetonitrile. Method 2, 

involves treating [TpmRCu(CH3CN][BF4] with one molar equivalent of dmise or dmit in 

dichloromethane.  

 

Scheme 1.16: Synthesis of Cu(I) complexes, Cu25-36 

Similarly, copper complexes with the chloride counter ion ([TpmRCu(ImC)][Cl], Cu31-

34)were synthesized by reaction of equimolar amounts of CuCl and the chalcogenone in a 

mixed solvent system of methanol and acetonitrile, followed by the addition of a tripodal 

ligand in acetonitrile at room temperature. While, the neutral copper complexes 

([Tp*Cu(ImC)], Cu35-36) were synthesized by combining CuCl and dmise or dmit in methanol 

and acetonitrile, respectively, followed by the addition of tris(3,5-dimethylpyrazolyl)borate 

(Tp*) in acetonitrile. Each copper atom adopts a distorted tetrahedral coordination 
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environment with comparable average Cu‒Se (2.30 Å) and Cu‒S (2.20 Å) bond distances. 

All the complexes were stable in their solid state for about 5-10 h, but are easily oxidized to 

Cu(II) in solution. The electrochemical studies on Cu25-36 revealed that the reduction 

potentials of the copper selone complexes are more negative than the copper thione complexes 

[64,78]. 

The copper(I) complexes, Cu37-39 have been synthesized and structurally characterized. 

Cu37-39 synthesized by utilizing the appropriate selone ligand in diethyl ether followed by the 

addition of equimolar quantity of respective CuX (X = Br for Cu37 and X = I for Cu38,39). 

Cu37,38 obtained as precipitates from the reaction mixture which were recrystallized from 

dichloromethane, while Cu39 was semisolid in nature. Therefore structural investigations have 

made only on molecule Cu38 and was existing as a dimer in its solid state. The central (SeCuI)2 

unit is planar and the Cu‒Se bond length is (2.331(1) Å) as expected. In this molecule, both 

the Cu-I distances differ from each other (2.537(1) Å and 2.640(1) Å) [79-80]. 

 

Scheme 1.17: Synthesis of Cu(I) complexes, Cu37-39 

Scheme 1.18: Synthesis of Cu(I) complexes, Cu40-43 
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The Cu(I) complexes (Cu40-43) have been synthesized by using equimolar quantities of 

[Cu(CH3CN)4]PF6 and respective chalcogenone ligand in acetone at room temperature. X-ray 

structural information is not been evaluated while, spectroscopic techniques have been 

employed to characterize Cu40-43 [81]. 

Cu44 is a quasi-two-coordinate Cu(I) complex, which is structurally characterized. To a 

solution containing [Cu(SAr*)(iPr2NHCMe2)] in of THF at -30 °C was treated with an 

equimolar solution of sulfur in of THF. The reaction was performed at room temperature for 

20 minutes and the obtained yellow residue was extracted with n-hexane and recrystallized at 

-30 °C to yield colorless crystals. The Cu‒S bond distance is 2.157(1) Å with aryl ring, while 

ImC S‒Cu distance is 2.196(1) Å and the S‒Cu‒S angle deviated from linearity (152.98(4)o) 

[82]. 

 

Scheme 1.19: Synthesis of Cu(I) complexes, Cu44 

The mononuclear copper complexes, Cu45-46 have been isolated from the reaction 

between the corresponding ligand with equimolar quantity of CuBr in toluene at room 

temperature. Structurally characterized by various spectroscopic techniques while, 

crystallographic data refrained due to the poor quality data [83]. 

 

Scheme 1.20: Synthesis of Cu(I) complexes, Cu45-46 
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A tridentate ligand with two sulfur and one nitrogen donor has been utilized to 

synthesize three-coordinate copper(I) complexes, Cu47-49 by an equimolar quantities of ligand 

and CuCl2 in dichloromethane at reflux for 20 h. X-ray quality crystals were grown by a slow 

vapor diffusion of diethyl ether into a methanol solution containing the copper complex 

(Cu48,49). Copper metal center in Cu48,49 display pseudo-trigonal planar geometry, with C–S 

bond lengths ranging from 1.695 to 1.714 Å, which are between what is normally associated 

with a C–S single bond (1.83 Å) and a C=S double bond (1.61 Å). The Cu–N bond lengths in 

each system are approximately 2.0 Å and the Cu–S bonds are 2.2 Å [84]. 

 

Scheme 1.21: Synthesis of Cu(I) complexes, Cu47-49 

The first poly-rotaxane complex (Cu50) featuring the bi-imidazolium thiolate cation 

ligand is isolated by the formation of insitu C‒S bonding via C‒H bond activation. The 

synthesis includes the mixing of 1,1'-(ethane-1,2-diyl)bis(3-methyl-1H-imidazol-3-ium) 

bromide, CuI and (NH4)2MoO2S2 and grounding in an agate mortar followed by dissolution 

in DMF. The reaction mixture was transferred to a reaction flask followed by stirring at 90 

°C for 10 h. The reaction mixture was then filtered and crystallized in the dark. 12-membered 

ring molecular box and related rotaxane structure exists in Cu50. Two Cu ions coordinating 

with two μ2-I [Cu–I, 2.650(1) Å] form a four-member ring. It is μ2-S coordinating to copper 

[Cu–S, 2.415(3) or 2.434(3) Å] that bridge to connect above building blocks into the 12-

member ring (–Cu–I–Cu–S–Cu–S–)2, and extend into a 2-D network [85]. 

 

Scheme 1.22: Synthesis of Cu(I) complexes, Cu50 
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Cu51-54 are the Cu(I) complexes synthesized from mixed bidentate (CS-donor) ligands 

by treating with equimolar quantity of Cu(OAc) in acetonitrile at suitable temperature. X-ray 

quality crystals have been developed by slow vapor diffusion of saturated solutions of Cu51,54 

in acetonitrile. Crystal structures revealed the dimeric structural arrangement of Cu51,54 in 

their solid state. Interestingly, Cu51 display a Cu‒S‒Cu‒S ring resembling a parallelogram 

motif. The metal center in Cu51 adopts a distorted tetrahedral geometry and Cu‒S distances 

are in the range of 2.4210(4) to 2.4458(4) Å, while Cu54 display distorted trigonal planar 

arrangement and Cu‒S distances are in the range of 2.3557(6) to 2.8012(6) Å [86]. 

 

Scheme 1.23: Synthesis of Cu(I) complexes, Cu51-54 

 

Scheme 1.24: Synthesis of COR from Cu51-54 by demetallation process 

Demetallation followed by oxygen atom addition of the CSR ligands takes place in 

strongly coordinating solvents (DMSO and MeCN) under aerobic conditions to yield COR 

moiety, suggesting the weak coordination of the N-heterocyclic carbene to copper(I) centers. 

Moreover, these complexes utilized for their activities in C‒N and C‒S cross-coupling 

reactions. However, these complexes revealed very poor results for cross-coupling of aryl 

iodides with amides. 

Bis-imidazolin-thione supported copper complexes (Cu55-61) have been synthesized 

in two different methods. Complexes Cu55-57 have been isolated by addition of one equivalent 
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of a dichloromethane solution of the ligand to a methanol solution of the corresponding copper 

halide at room temperature, while Cu58-60 were readily prepared by addition of one equivalent 

of the ligand in acetonitrile to a solution of the corresponding copper(I) halide in acetonitrile. 

 

Scheme 1.25: Synthesis of Cu(I) complexes, Cu55-60 

Similarly, sulfur atom insertion method is employed during the reaction between 

[CuX(CSR)]2 (X = Br, I and R = Me, Bn) with an excess of S8 in acetonitrile at elevated 

temperature to produce the copper complexes, Cu56-57,59-60) in fairly good yields [87]. 
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Scheme 1.26: Synthesis of Cu(I) complexes, Cu56-60 from mixed ligand based  

copper complexes, Cu51-54 by sulfur insertion method 

The spectral investigations on three copper(I) halide complexes (Cu55-57) suggested 

the existence of monomeric form in contrast with the solid state dimeric molecules as 

presented below. However, in the solid state the copper metal center adopts distorted 

tetrahedral geometry, and the Cu-S bond distances lie between 2.3221(6) to 2.4602(5) Å. 

Cu58-59 are mononuclear complexes with trigonal planar arrangement around metal center, 

and the Cu-S bond distances are in between 2.2032(5) to 2.2178(5) Å for Cu58, 2.2071(2) to 

2.2129(3) Å for Cu59. While, Cu60 is a polymeric complex with different structural 

arrangement, in which, two sulfur donor atoms connected to different copper atoms. The Cu-

S distance for the sulfur donor attached to one copper atom is 2.3393(17) Å, while the other 

sulfur donor atom attached to two copper atoms is 2.4136(18) to 2.3278(17) Å. 
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Scheme 1.27: Expected mononuclear complexes from binuclear Cu(I) complexes, Cu55-57 

Similarly, Cu61 has been isolated as single crystals by slow evaporation method by 

layering the from Cu(BF4)2.hydrate in methanol over dichloromethane solution of mbit (mbit 

= 1,3-dimethyl-1H-imidazole-2(3H)-thione). 

 

Figure 1.9: Molecular structure of Cu(I) complex, Cu61 

Cu62 is a 2D coordination polymer isolated by mixing equimolar quantities of CuI 

and KSCN in an acetonitrile solution. The successive addition of respective ligand at room 

temperature and additional stirring for 2 h produce Cu62. Each copper metal atom is 

coordinated by two sulfur atoms with an average Cu-S distance of 2.2414 Å and one nitrogen 

atom from a terminal N-bonded thiocyanate anion with a Cu-N distance of 1.9172(17) Å. The 

coordination geometry around the copper atom is a slightly distorted trigonal-planar. 

Moreover, the Cu62 complex was found to an effective drug for antibacterial activity [88]. 
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Scheme 1.28: Synthesis of Cu(I) coordination polymer complex, Cu62 

Cu63 is the coordination polymer, which was isolated by treating Cu(CH3CN)4PF6 in 

acetonitrile with excess of bbit (3,3'-(butane-1,4-diyl)bis(1-methyl-1H-imidazole-2(3H)-

thione)) ligand in dichloromethane at room temperature. The copper metal center adopts 

distorted trigonal planar geometry with sulfur atoms of three bbit ligands, the average C‒S 

bond distance is 1.7144 Å, while the Cu‒S bond lengths vary from 2.226(6) to 2.269(6) Å 

and are in good agreement with the corresponding values in the other trigonal planar CuS3 

geometry. Cu63 also found to show an interesting features in antibacterial activity [89]. 

 

Scheme 1.29: Synthesis of Cu(I) complex, Cu63 

1.13. ImC-Metal complexes and their applications 

ImC supported metal derivatives find applications in organic transformations, biology 

and as trans-metallating agents. Although 117 articles were reported, most of them describe 

the structural investigations and the molecules that are showing interesting applications have 

described below. 

1.13.1. As trans-metallating agents 

Particularly, thione derivatives of bismuth(II) and zinc(II) elucidated to be acting as 

potential synthons for trans-metallation phenomenon.  

Pd1 has been isolated from Bi1 by trans-metallation route by the dropwise addition of 

a solution of [Pd(OAc)2] in THF to a solid Bi1 at room temperature. A dark-red to dark-brown 
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mixture can be noticed and very few black crystals of Pd1 suitable for X-ray diffraction were 

obtained by slow evaporation of the THF solution at room temperature after several weeks in 

a tube [90]. 

 

Scheme 1.30: Synthesis of Pd(ImC) complex (Pd1) from Bi(ImC) (Bi1) by trans-metallation 

reaction 

Similarly, Zn1 polymer has been treated with CdCl2 in DMF to isolate Cd1 polymer 

by metal exchange method. Good quality cubic shaped crystals of Cd1 were obtained after a 

week. In addition to this, Zn1 and Cd1 have shown promising features in inhibiting the activity 

of bacteria [91]. 

 

Scheme 1.31: Synthesis of Cd(ImC) complex (Cd1) from Zn(ImC) complex (Zn1) by trans-

metallation reaction 

1.13.2. As catalysts in organic transformations 

1-Benzyl-3-phenylchalcogenylmethyl-1,3-dihydrobenzoimidazole-2-chalcogenone 

ligands supported Ru(II) half-sandwich complexes (Ru1-4) have been synthesized and 

discovered their catalytic efficiencies in transfer hydrogenation of carbonyl compounds [92]. 

Particularly, Ru4 has the lowest energy gap between the HOMO and LUMO orbitals, and 

shows the better catalytic activity among the four complexes. 



33 

 

Scheme 1.32: .Catalytic transfer hydrogenation of carbonyl compounds catalyzed by Ru1-4 

The thione supported rhodium complexes (Rh1-11) found to be more active catalysts 

under selected conditions than their corresponding NHC complexes (Rh16,17,19) for 

hydroformylation of 1-hexene despite the fact that their selectivity is low [93]. 

 

Scheme 1.33: Hydro-formylation reaction of 1-hexene catalyzed by Rh1-19 

 

Figure 1.10: Mixed and thio ligands supported Rh complexes used in Hydro-formylation 

reaction 
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Figure 1.11: NHC supported Rh complexes used in Hydro-formylation reaction 

Rhodium (Rh20-23) and Iridium (Ir1-4) complexes have been synthesized and 

structurally characterized. However, Iridium complexes are only moderately active in the 

vinyl polymerization of norbornene in the presence of methylaluminoxane [94]. Similarly, 

nickel complexes (Ni1-6) have been isolated for the vinyl polymerization of norbornene and 

are found to exhibit higher activities for norbornene addition polymerization. However, all 

these catalysts work after the activation with MAO (Methylaluminoxane) and the catalysts 

Ni3 found to be the best catalysts with higher activity values (1.42x108 gPNB mol-1 Ni h-1) at 

room temperature [57,95]. 

 

Scheme 1.34: Vinyl polymerization of norbornene catalyzed by Ir1-4, Ni1-6 
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Figure 1.12: Catalysts used for vinyl polymerization of norbornene 

Ir5-8 are the first examples of complexes of (E, E’) (E and E’ = S and Se) ligands with 

Ir(III). These are efficient catalysts for the one-pot synthesis of 1,2-disubstituted 

benzimidazoles from alcohols. Similarly, the transfer of hydrogen from alcohols to acetone 

to yield carbonyl compounds is also been demonstrated by Ir5-8 and are displaying the better 

efficiency than previous reports with minimal catalyst loading [96]. 

 

Scheme 1.35: Synthesis of 1,2-disubstituted benzimidazoles and arobic oxidation of  

carbonyl compounds by Ir5-8 

A series of iridium complexes (Ir9-12) have been isolated with bis thione ligands and 

studied their efficiencies under visible-light induced oxidative coupling of benzylamine to 

imine, interestingly, the isolated yields are appreciable with Ir9-12 than their corresponding 

NHC derivatives Ir13-14 [70]. 
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Scheme 1.36: Oxidative coupling of benzylamine to imine by Ir9-14 

 

 

Figure 1.13: Catalysts used for the oxidative coupling of benzylamine 

 

Interestingly, the in situ generated catalyst (Pd2) has been demonstrated for the cross-

coupling reactions of various aryl halides with arylboronic acid catalysis (Suzuki coupling) 

under aerobic condition.97 However, the ligand L1 coordination with palladium has been 

detected by single crystal x-ray diffraction analysis during the reaction between 

PdCl2(CH3CN)2 and L1 in dichloromethane at room temperature. In addition to this, Pd(0) 

and Pd(II) complexes (Pd3 and Pd4) have been synthesized and compared their catalytic 

activity in Suzuki coupling reaction [98]. It was investigated that in most cases +2 oxidized 

catalyst Pd4 showed better efficiency than Pd(0) catalyst Pd3. 
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Scheme 1.37: Suzuki coupling catalyzed by in situ generated catalyst, Pd2 

 

 

Scheme 1.38: Suzuki coupling catalyzed by Pd(0) and Pd(II) catalysts, Pd3-4 

 

Moreover, the synthesis of self-supported, heterogeneous, thiourea–PdCl2 catalysts 

(Pd5-7) found applications in Suzuki reaction of aryl bromides and aryl boronic acids [99]. 

These newly designed bulky and rigid bis-thiourea ligands, acted as efficient heterogeneous 

catalysts in the Suzuki reaction in neat water under aerobic conditions. Moreover, facile 

recovery of the heterogeneous catalysts was validated with no deceptive palladium leaching. 
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Scheme 1.39: Suzuki coupling reactions catalyzed by Pd(II) catalysts, Pd5-7 

Se‒C‒Se pincer ligand is been used to derive Pd8 complex and was found to be useful 

catalyst for the heck coupling of iodobenzene [100]. The selone ligated Pd(II) pincer complex 

Pd8 was studied for limited substrate scope as a catalyst for the Heck C–C coupling reaction 

using iodobenzene with alkyl acrylates in DMA (Dimethylacetamide) at 140 oC. 

 

Figure 1.14: Heck coupling products isolated Pd(II) catalyst, Pd8 

Similarly, catalyst Pd9 provided the modest to good yields in Heck, Suzuki–Miyaura, 

and Sonogashira coupling reactions [101]. However, the substrate scope is limited for very 

few examples as displayed in figure 1.15. 
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Figure 1.15: Heck, Suzuki–Miyaura, and Sonogashira coupling products isolated by 

catalyst, Pd9 

 

Au1-3 complexes have been synthesized using pyridine based selone ligand (SeNSe) 

and are found to be highly an active catalysts in hydrogenation of nitroarenes to aromatic 

anilines [102]. Similarly, Au4-6 have been isolated by pyridine based SNS ligands and 

employed as catalysts in the reduction of 4-nitrophenol to 4-nitroaniline [103]. However, the 

latter was demonstrated based on UV-visible spectral changes and only on 4-nitro phenol. 

 

Scheme 1.40: Reduction of nitroarenes to aromatic amines by Au1-6 

 

Imidazole-2-thione and 1-imino-3-arylimidazol-2-ylidene gold(I) complexes (Au7-8) 

have been synthesized and discovered their efficiencies in hydroamination of alkynes [67]. 

NMR reactions were performed in CDCl3 to evaluate the percentage of conversion and was 

detected between NHC‒Au and ImC‒Au as presented in Scheme 1.41. 
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Scheme 1.41: Hydro-amination of alkynes catalyzed by catalysts, Au9-14 

 

Furthermore Zn2-7 have been employed for the reduction of 4-nitrobenzaldehyde in 

CDCl3 at reflux [104]. The maximum yield obtained is 59% with Zn7, however, the reaction 

does not takes place without catalyst and the yield is only 15% with commercial ZnCl2. 

 

 

Scheme 1.42: Reduction of 4-nitro benzaldehyde catalyzed by Zn2-7 

 

Zn8-9 and Cd2-5 have been structurally characterized and found to be useful catalysts 

for Barbier type of reactions [105]. Interestingly, Cd1,4 displayed better yields over all other 

catalysts. However, Cd1 examined for the substrate scope and was showing better yields (74-

98%) irrespective of substrates. 
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Scheme 1.43: Barbier type reaction catalyzed by Zn8-9 and Cd2-5 
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1.13.3. As an antibacterial agents 

Silver(I)-based coordination polymers (Ag1-5) of the bis-(imidazole-2-thione) ligands 

with varying dimensionality have been synthesized and found to be promising drugs in 

antibacterial activity [106] while, Ag6 is a 3D coordination polymer and showed better 

antibacterial activities [88]. Cd7 is a coordination polymer, investigated for antibacterial 

activities [107]. 

 

Figure 1.16: ImC-metal complexes used as drugs for antibacterial activities 
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1.14. Scope of the Work 

The structural properties and applications of ImC-metal have attracted much attention 

in recent past. Though, several transition metal-NHC analogues of metal ImC complexes are 

known, the application of ImC-transition metal derivatives are limited [90-91]. The known 

applications are limited to catalysis, medicinal chemistry as antibacterial agents [88,106-107] 

and also as single source precursors for nanomaterial applications [54,108-109]. 

As discussed in this section (Chapter 1, vide supra), only 13 types of organic 

transformations have been demonstrated using ImC-metal complexes. Out of which only one 

transformation has been displayed by using ImC-Cu catalyst in 2010 by Son et al., while the 

applications of NHC-Cu are well known [73]. However, the comparative catalytic 

applications using both NHC-metal and ImC-metal are limited (only 4 examples are known) 

to elucidate the alternative ligand behavior of ImC over NHC. Albeit, the efficiency of ImC 

supported metal complexes in terms of isolated yield and selectivity of desired product is high 

over NHC-metal complexes [67,70,73,93]. On the other hand, the catalyst reproducibility has 

not been demonstrated as of now. Although 20 articles have been reported on ImC-Cu 

derivatives, like [(NHC)2Cu]X the linear homoleptic chalcogenone derivatives are still 

scarce.82 Moreover, the ImC-Cu clusters are rare [74,87]. Besides, it is worth mentioning that 

the comparison of efficiencies and reaction pathway studies between phosphine-metal, NHC-

metal and ImC-metal are not known [93]. Thus, our thesis focus is to understand the structural 

and catalytic applications of ImC supported copper(I) complexes. Besides, our target is to 

compare the catalytic efficiencies of ImC supported copper(I) with their NHC-Cu analogues. 
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1.15. Objectives 

Our objectives are:  
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2.1. Introduction  

The focus on copper chalcogenide chemistry is experiencing continuous growth and 

interest over last few decades owing to their novel properties and significant applications 

[1,2]. The property of copper chalcogenides is mainly controlled by chalcogen sources. For 

example, the recent works have also witnessed the active role of decade old ligand system 

imidazolin-2-chalcogenones for this endeavor [3-6]. Notably, imidazolin-2-chalcogenone 

ligands have potential to serve as a ligand with copper in medicine [3]. Some other potential 

applications of these imidazolin-2-chalcogenone ligand supported copper included their use 

as precursor for nanomaterial synthesis and co-ligand in catalysis. Recently the shape and 

phase controlled copper-selenide nanoflakes were reported using 1-n-butyl-3-

ethylimidazolium methylselenite and copper sulphate [4]. Besides, the imidazoline-2-thione 

tethered copper catalysts were demonstrated for highly regioselective boron addition to 

internal alkynes [5]. This catalytic study represents the first and only report available to 

understand the role of imidazoline-2-chacogenone in catalysis as co-ligand. In this process 

the catalytic reactions were carried out using insitu generated catalysts. The isolation of 

catalyst from catalytic reaction mixture led to tri coordinated copper imidazoline-2-thione 

complex with planar metal geometry. Although copper exist in different coordination mode 

with imidazoline-2-chalcogenones [2d,6], homoleptic two coordinated copper complexes of 

imidazoline-2-chalcogenones are not reported. Recent efforts have revealed that it is possible 

to isolate two coordinated homoleptic imidazoline-2-selone gold complexes 

[(IPr=Se)2Au][AuCl2], 1,3-bis(2,6-diisopropyl-phenyl)-imidazoline-2-selone and 

[(IPrOMe=Se)2Au][AuCl2], IPrOMe = 1,3-bis-(2,6-diisopropyl-4-methoxyphenyl)-imidazoline-

2-selone, using more π accepting imidazoline-2-selone ligands (Scheme 2.1, A) [7]. However, 

only one quasi-linear homoleptic copper imidazolin-2-chalcogenone complex is known 

(Scheme 2.1, B) [8]. Molecule B has been isolated using relatively less π‒accepting thione 

ligand. 
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Scheme 2.1: Known linear/quasi-linear homoleptic group 9, imidazoline-2-

chalcogenone complexes 

However, these recent efforts have not answered the critical questions necessary to clearly 

realize the formation of linear dicoordinated coinage metal complexes involving imidazolin-

2-chalcogenones. For example, do “homoleptic two coordinated” intermediates exist in the 

catalytic process? How essential is “more π accepting imidazoline-2-selone” to isolate the 

homoleptic two coordinated coinage metal derivatives? In order to address these above 

challenges, we have isolated the homoleptic two coordinated copper imidazoline-2-

thione/selone complexes using relatively less π accepting imidazoline-2-thiones/selones and 

studied their role in regioselective borylation of alkynes. 

 

2.2. Experimental Section 

2.2.1. General remarks 

All manipulations were carried out under argon atmosphere in a glove box using 

standard Schlenk techniques. The solvents were purchased from commercial sources and 

purified according to standard procedures and freshly distilled under argon atmosphere prior 

to use [9]. Unless otherwise stated, the chemicals were purchased from commercial sources. 

IPrHCl (1,3-bis(2,6-diisopropylphenyl)-1H-imidazol-3-ium chloride), IPr=S (1,3-bis(2,6-

diisopropylphenyl)-1H-imidazole-2(3H)-thione), IPr=Se (1,3-bis(2,6-diisopropylphenyl)-

1H-imidazole-2(3H)-selenone), IMesHCl (1,3-dimesityl-1H-imidazol-3-ium chloride), 

IMes=S (1,3-dimesityl-1H-imidazole-2(3H)-thione), and IMes=Se (1,3-dimesityl-1H-

imidazole-2(3H)-selenone) were prepared as previously reported [10]. Cu(ClO4)2.6H2O and 

Cu(BF4) hydrate were purchased from Sigma Aldrich and used as received. FT-IR 

measurement (neat) was carried out on a Bruker Alpha-P Fourier transform spectrometer. The 

UV-vis spectra were measured on a T90+ UV-visible spectrophotometer. Thermogravimetric 
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analysis (TGA) was performed using a TASDT Q600, Tzero-press. NMR spectra were 

recorded on Bruker Ultrashield-400 spectrometers at 25 °C unless otherwise stated. Chemical 

shifts are given relative to TMS and were referenced to the solvent resonances as internal 

standards. Elemental analyses were performed by the Euro EA-300 elemental analyzer. The 

crystal structures of 1-8 were measured on an Oxford Xcalibur 2 diffractometer. Single 

crystals of complexes suitable for the single crystal X-ray analysis were obtained from their 

reaction mixture at room temperature and the suitable single crystals for X-ray structural 

analysis were mounted at low temperature (150 K) (except 1, 3 and 5, measured at 298 K) in 

inert oil under an argon atmosphere. Using Olex2 [11], the structure was solved with the 

ShelXS [12] structure solution program using Direct Methods and refined with the 

olex2.refine refinement package using Gauss-Newton minimization. Absorption corrections 

were performed on the basis of multi-scans. Non-hydrogen atoms were anisotropically 

refined. Hydrogen atoms were included in the refinement in calculated positions riding on 

their carrier atoms. No restraint has been made for any of the compounds. The function 

minimized was [∑w(Fo
2 − Fc

2)2] (w = 1/[σ2(Fo
2) + (aP)2 + bP]), where P = (max(Fo

2,0) + 

2Fc
2)/3 with σ2(Fo

2) from counting statistics. The functions R1 and wR2 were (∑||Fo| − 

|Fc||)/∑|Fo| and [∑w(Fo
2 – Fc

2)2/∑(wFo
4)]1/2, respectively. Structures 1 and 5 contains solvent 

accessible VOIDS of 143 Å3 and 144 Å3, respectively. This residual voids in a structure may 

be due to the disordered counter ion density. The counter ions in structures 1, 2, 5 and 6 are 

disordered. 

 

Caution  

Perchlorate salts of metal salts and complexes are potentially explosive. Only small 

amounts of material should be prepared and handled with great care; particular caution must 

be exercised when they are dried under vacuum. 

 

2.2.2. Synthesis of [(IPr=S)2Cu]ClO4 (1) 

A mixture of IPr=S (0.100 g, 0.238 mmol) and Cu(ClO4)2.6H2O (0.106 g, 0.286 

mmol) in methanol (5 mL) was refluxed at 80 oC for 12 h. The clear reaction mixture was 

brought to room temperature to result the colorless crystals of 1 in 2 days. Yield: 73% (based 

on Cu(ClO4)2.6H2O). M.p.: 258-260 °C (dec.). Elemental analysis calcd (%) for 

C54H72ClCuN4O4S2 (1002.4): C, 64.58; H, 7.23; N, 5.58; Found: C, 64.08; H, 7.19; N, 5.50. 

1H NMR (400 MHz, CDCl3): δ = 7.38-7.34 (t, 2H, CHpara), 7.20-7.18 (d, 4H, CHmeta), 7.10 (s, 

2H, ImH), 2.35-2.28 (sept, 4H, iPrCH), 1.16-1.15, 1.13-1.11 (d, 24H, CH3) ppm. 13C NMR 

(100 MHz, CDCl3): δ = 160.07 (NCN), 145.63 (ImC), 131.66, 131.48, 124.99, 122.10 (ArC), 
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28.91 (iPrCH), 24.16, 23.30 (CH3) ppm. FT-IR (neat): ῡ = 2933(s), 2839(m), 1554(w), 

1458(s), 1424(m), 1379(s), 1334(m), 1214(m), 1180(w), 1094(s) (Cl‒O), 981(s), 938(s), 

803(s) cm-1. 

 

2.2.3. Synthesis of [(IPr=Se)2Cu]ClO4 (2)  

2 was prepared in the same manner as described for 1 using IPr=Se (0.100 g, 0.213 

mmol) and Cu(ClO4)2.6H2O (0.095 g, 0.256 mmol) in methanol (5 mL). Yield: 70% (based 

on Cu(ClO4)2.6H2O). M.p.: 276-278 °C (dec.). Elemental analysis calcd (%) for 

C54H72ClCuN4O4Se2 (1098.2): C, 59.06; H, 6.61; N, 5.10; Found: C, 58.56; H, 6.71; N, 5.08. 

1H NMR (400 MHz, CDCl3): δ = 7.43-7.39 (t, 2H, CHpara ), 7.23-7.22 (d, 4H, CHmeta), 7.20 

(s, 2H, ImH), 2.34-2.28 (sept, 4H, iPrCH), 1.20-1.19, 1.12-1.10 (d, 24H, CH3) ppm. 13C NMR 

(100 MHz, CDCl3): δ = 154.21 (NCN), 145.50 (ImC), 132.44, 131.55, 124.98, 123.86 (ArC), 

28.96 (iPrCH), 24.24, 23.32 (CH3) ppm. FT-IR (neat): ῡ = 2961(s), 2871(m), 1519(w), 

1454(s), 1351(s), 1324(m), 1214(m), 1182(w), 1076(s) (Cl‒O), 967(s), 804(s), 750(s) cm-1. 

 

2.2.4. Synthesis of [(IMes=S)2Cu]ClO4 (3)  

 3 was prepared in the same manner as described for 1 using IMes=S (0.100 g, 0.297 

mmol) and Cu(ClO4)2.6H2O (0.132 g, 0.356 mmol) in methanol (5 mL). Yield: 74% (based 

on Cu(ClO4)2.6H2O). M.p.: 263-265 °C (dec.). Elemental analysis calcd (%) for 

C42H48ClCuN4O4S2 (834.2): C, 60.34; H, 5.79; N, 6.70; Found: C, 60.14; H, 5.87; N, 6.59. 1H 

NMR (400 MHz, CDCl3): δ = 7.04 (s, 4H, ImH), 6.94 (s, 8H, CHmeta), 2.25 (s, 12H, CH3para), 

1.95 (s, 24H, CH3ortho) ppm. 13C NMR (100 MHz, CDCl3): δ = 157.02 (C=S), 141.08, 134.95, 

131.63, 130.10, 121.21 (ArC), 21.10 (p-CH3), 17.59 (o-CH3) ppm. FT-IR (neat): ῡ = 3169(w), 

1607(m), 1554(w), 1481(s), 1442(m), 1374(s), 1232(m), 1095(s), 1072(s) (Cl‒O), 925(w), 

844(w), 735(s) cm-1. 

 

2.2.5. Synthesis of [(IMes=Se)2Cu]ClO4 (4) 

4 was prepared in the same manner as described for 1 using IMes=Se (0.100 g, 0.260 

mmol) and Cu(ClO4)2.6H2O (0.116 g, 0.312 mmol) in methanol (5 mL). Yield: 67% (based 

on Cu(ClO4)2.6H2O). M.p.: 278-280 °C (dec.). Elemental analysis calcd (%) for 

C42H48ClCuN4O4Se2 (930.0): C, 54.26; H, 5.20; N, 6.03; Found: C, 54.06; H, 5.18; N, 5.93. 

1H NMR (400 MHz, CDCl3): δ = 7.04 (s, 4H, ImH), 6.94 (s, 8H, CHmeta), 2.24 (s, 12H, 

CH3para), 1.95 (s, 24H, CH3ortho) ppm. 13C NMR (100 MHz, CDCl3): δ = 150.28 (C=S), 

141.12, 134.81, 132.56, 130.09, 123.04 (ArC), 21.23 (p-CH3), 17.69 (o-CH3) ppm. FT-IR 
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(neat): ῡ = 1602(m), 1549(w), 1480(s), 1443(m), 1363(s), 1230(m), 1038(s) (Cl‒O), 926(w), 

845(w), 735(s) cm-1. 

 

2.2.6. Synthesis of [(IPr=S)2Cu]BF4 (5) 

5 was prepared in the same manner as described for 1 using IPr=S (0.100 g, 0.238 

mmol) and Cu(BF4)2 (0.068 g, 0.286 mmol) in methanol (5 mL). Yield: 69% (based on 

Cu(BF4)2). M.p.: 296-298 °C (dec.). Elemental analysis calcd (%) for C54H72BCuN4F4S2 

(991.6): C, 65.40; H, 7.32; N, 5.65; Found: C, 64.86; H, 7.18; N, 5.43. 1H NMR (400 MHz, 

CDCl3): δ = 7.53-7.50 (t, 2H, CHpara), 7.33-7.32 (d, 4H, CHmeta), 7.21 (s, 2H, ImH), 2.65-2.55 

(sept, 4H, iPrCH), 1.40-1.38, 1.20-1.18 (d, 24H, CH3) ppm. 13C NMR (100 MHz, CDCl3): δ 

= 159.99 (C=S), 145.63, 131.62, 131.50, 124.97, 122.11 (ArC), ), 28.90 (iPrCH), 24.13, 23.30 

(CH3) ppm. 11B{1H} NMR (128.4 MHz, CDCl3): δ = -0.98 ppm. 19F{1H} NMR (376.4 MHz, 

CDCl3): δ = -154.30 ppm. FT-IR (neat): ῡ = 3540(b), 2963(s), 1632(m), 1556(w), 1462(s), 

1375(s), 1257(w), 1214(w), 1040(s) (B‒F), 939(w), 802(m), 746(s), 693(s), 570(m) cm-1. 

 

2.2.7. Synthesis of [(IPr=Se)2Cu]BF4 (6)  

6 was prepared in the same manner as described for 1 using IPr=Se (0.100 g, 0.213 

mmol) and Cu(BF4)2 (0.060 g, 0.256 mmol) in methanol (5 mL). Yield: 77% (based on 

Cu(BF4)2). M.p.: 260-262 °C (dec.). Elemental analysis calcd (%) for C54H72BCuN4F4Se2 

(1085.4): C, 59.75; H, 6.69; N, 5.16; Found: C, 59.66; H, 6.72; N, 5.21. 1H NMR (400 MHz, 

CDCl3): δ = 7.61-7.57 (t, 2H, CHpara), 7.38-7.36 (d, 4H, CHmeta), 7.14 (s, 2H, ImH), 2.56-2.46 

(sept, 4H, iPrCH), 1.28-1.26, 1.15-1.14 (d, 24H, CH3) ppm. 13C NMR (100 MHz, CDCl3): δ 

= 154.21 (C=Se), 145.50, 132.44, 131.55, 124.99, 123.86 (ArC), ), 28.96 (iPrCH), 24.25, 

23.32 (CH3) ppm. 11B{1H} NMR (128.4 MHz, CDCl3): δ = -0.99 ppm. 19F{1H} NMR (376.4 

MHz, CDCl3): δ = -154.14 ppm. FT-IR (neat): ῡ = 3552(b), 2963(m), 1631(m), 1554(w), 

1462(m), 1425(m), 1359(s), 1212(w), 1176(w), 1044(s) (B‒F), 939(m), 803(s), 749(s), 

689(m) cm-1. 

 

2.2.8. Synthesis of [(IMes=S)2Cu]BF4 (7)  

7 was prepared in the same manner as described for 1 using IMes=S (0.100 g, 0.297 

mmol) and Cu(BF4)2 (0.085 g, 0.356 mmol) in methanol (5 mL). Yield: 75% (based on 

Cu(BF4)2). M.p.: 288-290 °C (dec.). Elemental analysis calcd (%) for C42H48BCuN4F4S2 

(823.3): C, 61.27; H, 5.88; N, 6.80; Found: C, 61.06; H, 5.18; N, 5.93. 1H NMR (400 MHz, 

CDCl3): δ = 7.17 (s, 4H, ImH), 6.94 (s, 8H, CHmeta), 2.28 (s, 12H, CH3para), 1.94 (s, 24H, 

CH3ortho) ppm. 13C NMR (100 MHz, CDCl3): δ = 156.94 (C=S), 141.05, 134.96, 131.66, 



57 

130.08, 121.23 (ArC), 21.10 (p-CH3), 17.57 (o-CH3) ppm. 11B{1H} NMR (128.4 MHz, 

CDCl3): δ = -0.97 ppm. 19F{1H} NMR (376.4 MHz, CDCl3): δ = -154.13 ppm. FT-IR (neat): 

ῡ = 3531(b), 1632(m), 1552(w), 1480(m), 1442(m), 1374(s), 1287(m), 1231(m), 1028(s) (B‒

F), 923(w), 842(w), 733(s), 691(s), 602(s), 570(m) cm-1. 

 

2.2.9. Synthesis of [(IMes=Se)2Cu]BF4 (8)  

8 was prepared in the same manner as described for 1 using IMes=Se (0.100 g, 0.260 

mmol) and Cu(BF4)2 (0.075 g, 0.312 mmol) in methanol (5 mL). Yield: 63% (based on 

Cu(BF4)2). M.p.: 235-237 °C (dec.). Elemental analysis calcd (%) for C42H48BCuN4F4Se2 

(917.2): C, 55.00; H, 5.28; N, 6.11; Found: C, 54.86; H, 5.23; N, 5.98 . 1H NMR (400 MHz, 

CDCl3): δ = 7.26 (s, 4H, ImH), 7.02 (s, 8H, CHmeta), 2.36 (s, 12H, CH3para), 2.02 (s, 24H, 

CH3ortho) ppm. 13C NMR (100 MHz, CDCl3): δ = 150.07 (C=Se), 141.06, 134.81, 132.58, 

130.06, 123.08 (ArC), 21.23 (p-CH3), 17.67 (o-CH3) ppm. 11B{1H} NMR (128.4 MHz, 

CDCl3): δ = -1.01 ppm. 19F{1H} NMR (376.4 MHz, CDCl3): δ = -153.76 ppm. FT-IR (neat): 

ῡ = 3525(b), 1630(m), 1550(w), 1480(m), 1448(m), 1369(s), 1288(m), 1234(m), 1022(s) (B‒

F), 825(w), 793(w), 735(w), 689(s), 566(m) cm-1. 

 

2.2.10. 1-8 catalyzed regioselective boron addition to unsymmetrical alkynes 

 The catalytic reactions were carried out under very mild conditions using newly 

synthesized copper(I) catalysts (1-8) for the regioselective boron addition of unsymmetrical 

alkynes in THF using previously reported synthetic procedure [5]. Copper(I) complex (0.050 

mmol) was taken in a Schlenk flask along with NaOt-Bu (0.100 mmol) in THF (0.40 mL) 

under the brisk flow of nitrogen. After the mixture was stirred at room temperature for 30 

min, bis(pinacolato)diboron (B2pin2) (0.55 mmol) in THF (0.30 mL) was added. The reaction 

mixture was stirred further for 20-30 min. Then, alkyne (0.50 mmol) was added, followed by 

MeOH (1 mmol). The Schlenk flask was washed with THF (0.40 mL), sealed, and allowed to 

stir at room temperature. The progress of reaction was monitored by TLC. After the 

completion, 5-10 mL hexane was added and the reaction mixture was filtered through Celite 

and concentrated. The products were purified by column chromatography to produce an oily 

liquids. The fading of the starting materials and appearance of products were conveniently 

examined by 1H NMR spectroscopy. 
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2.3. Result and discussion 

 

2.3.1. Synthesis and characterization of 1-8 

The linear mononuclear copper(I) thiones and selones, 1-8 were isolated in excellent 

yield from the reduction of corresponding copper(II) salts using imidazoline-2-

thiones/selones (Scheme 2.2). The reduction of copper(II) to copper(I) using imidazoline-2-

chalcogenones, R=E (E = S, Se and Te) is one of the rare reaction. Only two reports 

demonstrate the reduction of Cu2+ to Cu+ by chalcogenones. The first Cu2+ to Cu+ reduction 

was demonstrated by Brumaghim and co-workers [2b]. Later, the reduction of CuCl2 using 

2,6-bis{[N-isopropyl-N′-methylene]-imidazoline-2-thione}-pyridine or 2,6-bis{[N-

isopropyl-N′-methylene]triazole-2-thione}pyridine was reported [13]. 

 

Scheme 2.2: Synthesis of 1-8 

 The formation of 1-8 were confirmed by elemental analysis, FT-IR, multinuclear (1H, 

13C, 11B and 19F) NMR, UV-vis, TGA and single crystal X-ray diffraction techniques. All 

these compounds are soluble in common organic solvents like CH2Cl2, CHCl3, acetone, THF, 

and acetonitrile. In 13C NMR, the carbene carbon chemical shift value of 1-8 were upfield 

shifted (about  = 5-8 ppm) from those of the corresponding ligands IPr=E and IMes=E, 

respectively (Figure 2.4 and 2.9). This could be due to a decrease in the π-acceptance nature 

of the carbene carbon upon coordination. In 1H NMR, the signals of protons, which are in 

weak interactions with counter anions are clearly shuffled (Figure 2.5 and 2.10). The FT-IR 

spectra of 1-8 showed stretching frequencies in the range of 1022 to 1094 cm-1 for 

uncoordinated perchlorate/tetra fluoro borate anions (Figure 2.3 and 2.8). In addition, the tetra 

fluoro borate complexes (4-8) were further confirmed by 19F and 11B NMR spectroscopy. The 

11B NMR spectra of 5-8 showed a sharp signal in the range of 0.97 to 1.01 ppm (Figure 

2.11) and 19F NMR spectra of 5-8 showed a sharp signal in the range of -153.76 to -154.30 

ppm (Figure 2.12). The solid state structures of 1-8 were further confirmed by single crystal 

X-ray diffraction study. 
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2.3.2. Single crystal X-ray structure of 1-8 

The molecules 1-3 and 5-8 crystallized in the monoclinic space group, C2/c, while 

molecule 4 crystallized in the orthorhombic space group, P212121 (Figure 2.1-2.2 and 2.6-

2.7). The crystallographic data for 1-8 are furnished in table 2.2, 2.3. The molecular drawing 

with selected bond lengths and bond angles are reported in scheme 2.3 and table 2.1. 

Molecules 1-8 are isolated as homoleptic cation with corresponding anion. 1-3 and 5-8 are 

the rare examples of structurally characterized perfect linear homoleptic copper(I) 

chalcogenone derivatives, while 4 is in quasi-linear geometry. 

 

Figure 2.1: (I); Molecular structure of 1. (II); Molecular structure of 2. Hydrogen 

atoms and perchlorate counter ions have been omitted for clarity 
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Figure 2.2: (I); Molecular structure of 3. (II) Molecular structure of 4. Hydrogen 

atoms have been omitted for clarity 

 

 The copper(I) center in 1-8 is two coordinated with two imidazoline-2-

thiones/selones and valency is satisfied by one perchlorate/tetra fluoro borate counter anion. 

Similar such linearly coordinated copper(I) compounds are very rare. In particular, only two 

nonlinear copper(I) thione derivatives [Cu(dptu)2](SO4)0.5 (dptu = N,N’-diphenylthiourea) (S–

Cu–S is 162.18(2)o) and [Cu(SAr*)(S=C(NiPr)2(CMe)2)] (Ar*S = 2,6-bis(2,4,6-

triisopropylphenyl)benzenethiolate) (S–Cu–S is 162.98(4)o) were reported with thiourea type 

of ligands (vide supra, Scheme 2.1, B) [14]. Among coinage metals, only linearly coordinated 

gold(I) imidazoline-2-chalcogenone complexes are known (vide supra, Scheme 2.1). 

However, few non imidazole class of ligands coordinated quasi-linear or linear group 9 thio 

derivatives, [Ph4P][Cu(SC{O}Me)2] (176.6(2)◦), [NEt4][Cu(SAd)2] (Ad = adamantanyl) 

(180◦), fac-[Mn(CNtBu)(CO)3{(PPh2)2C(H)SC(S)NMe2}]2Cu][BF4] (180◦), 
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[Ph4P][Ag(SC{O}Me)2] (178.9(5)o) and [Ph4P][Ag(SC{O}Ph)2] (161.1(4)o) were reported 

[15,16]. 

 

 

Scheme 2.3: Vital bond lengths [Å] and angles [o] of compounds 1-8 

 

The C=S bond lengths and C=Se bond lengths are increased upon coordinating with 

copper compared to their corresponding ligands IPr=S (1.670(3) Å), IMes=S (1.675(18) Å), 

IPr=Se (1.822(4) Å), and IMes=Se (1.830(6) Å) (Scheme 2.3) [10]. The Cu‒S bond lengths 

in 1, 3, 5 and 7 are almost comparable with that of [NEt4][Cu(SAd)2] (Ad = adamantanyl) 

(2.147(1) Å) [15]. The E–Cu–E bond angle in 1-3 and 5-8 is exactly 180o, while molecule 4 

is in quasi-linear form with Se–Cu–Se angle of 176.29(4)o. Similar such linear and quasi-

linear thio derivatives of copper complexes are limited, which are known with different types 

of thio ligands [15,16]. Thus Cu–E bond lengths in 1-3 and 5-8 are comparable, while Cu–Se 

bond lengths in 4 are not comparable (Cu(1)–Se(1), 2.251(9) Å and Cu(1)–Se(1’), 2.248(9) 

Å). 
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Figure 2.3: Neat FT-IR spectrum of 4 

 

Figure 2.4: 1H NMR spectrum of 4 in CDCl3 at room temperature 
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Figure 2.5: 13C NMR spectrum of 4 in CDCl3 at room temperature 

 

Figure 2.6: (I); Molecular structure of 5. (II); Molecular structure of 6. Hydrogen atoms and 

tetra fluoro borate counter ions have been omitted for clarity 
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Figure 2.7: (I); Molecular structure of 7. (II); Molecular structure of 8. Hydrogen atoms 

have been omitted for clarity 
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Figure 2.8: Neat FT-IR spectrum of 5 in CDCl3 at room temperature 

 

Figure 2.9: 1H NMR spectrum of 5 in CDCl3 at room temperature 
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Figure 2.10: 13C NMR spectrum of 5 in CDCl3 at room temperature 

 

Figure 2.11: 11B NMR spectrum of 5 in CDCl3 at room temperature 
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Figure 2.12: 19F NMR spectrum of 5 in CDCl3 at room temperature 

 

 

Table 2.1: Selected bond lengths (Å) and bond angles (o) in 1-8. 

 Cu(1)‒E(1)  C(1)‒E(1)  E(1)‒Cu(1)‒E(1)  C(1)‒E(1)‒Cu(1)  

1 2.146(9) 1.702(4) 180.0 109.44(13) 

2 2.268(5) 1.857(4) 180.0 105.09(14) 

3 2.143(7) 1.701(3) 180.0 107.19(9) 

4 2.247(9) 1.864(5) 176.29(4) 103.23(15) 

5 2.150(9) 1.700(4) 180.0 109.65(13) 

6 2.270(4) 1.862(4) 180.0 105.07(13) 

7 2.153(4) 1.705(18) 180.0 106.70(6) 

8 2.257(3) 1.860(3) 180.0 103.04(7) 
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Table 2.2: Structural parameters of compounds 1-4. 

 1 2 3 4 

Empirical formula                                                                                C54H69ClCuN4O4S2 C54H72N4O4ClCuSe2 C42H48N4O4ClCuS2 C42H48N4CuSe2ClO4 

Formula weight 1001.25 1098.12 835.96 929.79 

Temperature (K) 298 150 298 150 

Crystal system Monoclinic Monoclinic Monoclinic   Orthorhombic 

Space group C2/c C2/c C2/c P212121 

a/Å 19.8863(14) 19.5343(15) 21.1509(9) 8.3174(3) 

b/Å 15.9337(4) 16.1976(6) 8.2603(3) 17.8053(5) 

c/Å 20.405(3) 21.4008(15) 24.586(1) 28.9437(7) 

α/° 90 90 90 90 

β/° 114.235(8) 121.691(10) 101.678(4) 90 

γ/° 90 90 90 90 

Volume (Å3) 5895.8(10) 5761.7(9) 4206.5(3) 4286.4(2) 

Z 4 4 4 4 

ρcalc/mg mm-3 1.128 1.2658 1.3200 1.4407 

Absorption 

coefficient (µ/mm-1) 

1.931 2.744 2.602 3.586 

F(000) 2124.0 
2272.4 

1752.6 1887.5 

Reflections collected 12751 10957 8849 11109 

Rint 0.0308 0.0354 0.0277 0.0363 

GOF on F2 1.650 1.039 1.030 1.035 

R1 (I>2ϭ(I)) 0.0868 0.0766 0.0481 0.0480 

wR2 (I>2ϭ(I)) 0.2510 0.233171 0.145660 0.140271 

R1 values (all data) 0.1097 0.0866 0.0642 0.0551 

R2 values (all data) 0.2710 0.2332 0.1457 0.1403 
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Table 2.3: Structural parameters of compounds 5-8. 

 5 6 7 8 

Empirical formula                                                                                C54H72N4S2CuBF4 C54H72BN4F4CuSe2 C42H48BN4F4S2Cu C42H48BCuF4N4Se2 

Formula weight 991.70 1085.44 823.32 917.16 

Temperature (K) 298 150 150 150 

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic 

Space group C2/c C2/c C2/c C2/c 

a/Å 19.9289(11) 19.6185(8) 20.0772(7) 19.9268(8) 

b/Å 15.8882(5) 16.1577(3) 8.2488(3) 8.3983(3) 

c/Å 20.3741(16) 21.2244(9) 24.7461(10) 24.7922(10) 

α/° 90 90 90 90 

β/° 114.824(8) 121.810(6) 101.745(4) 100.413(4) 

γ/° 90 90 90 90 

Volume (Å3) 5855.1(7) 5717.4(5) 4012.5(3) 4080.6(3) 

Z 4 4 4 4 

ρcalc/mg mm-3 1.1249 1.2609 1.3629 1.4928 

Absorption 

coefficient (µ/mm-1) 

1.574 2.385 2.188 3.235 

F(000) 2104.4 
2239.3 

1719.5 1854.4 

Reflections collected 11826 10507 6872 6844 

Rint 0.0346 0.0221 0.0220 0.0240 

GOF on F2 1.067 1.031 1.049 1.052 

R1 (I>2ϭ(I)) 0.0865 0.0736 0.0383 0.0391 

wR2 (I>2ϭ(I)) 0.2953 0.2354 0.1080 0.1061 

R1 values (all data) 0.1127 0.0763 0.0442 0.0433 

R2 values (all data) 0.2953 0.2354 0.1080 0.1061 
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2.4. UV-vis solid and solution state absorption study of 1–8 

 The solution state UV-vis absorption spectra of 1-8 were measured in CHCl3 (Figure 

2.13(I) and 2.13(III)). In solution state UV-vis absorption spectra, IPr=S (L1), IPr=Se (L2), 

IMes=S (L3), IMes=Se (L4), and 1-8 shows nearly comparable absorption patterns. The 

absorption band observed around 240-250 nm can be attributed to π→π* transition, while the 

absorption band observed around 260-310 nm can be assigned to n→π* transition. In general, 

the absorption intensity of 1-8 are considerably lower (hypochromic) along with 

bathochromic shift compared to corresponding chalcogenone ligands. As shown in Figure 

2.13(II) and 2.13(IV), the solid state UV-vis absorption spectra of 1-8 are not comparable 

with solution state absorption spectra of 1-8. In the case of solid state absorption spectra, the 

π→π* and n→π* transitions are merged together to give a broad absorption band. 

 

 

Figure 2.13: (I) Solution state UV-vis spectra of (IPr=S) L1, (IPr=Se) L2, 1, 2, 5 and 6 in 

CHCl3 at 25 oC (1.8 X 10-5 M); (II) Solid state UV-vis spectra of (IPr=S) L1, (IPr=Se) L2, 1, 

2, 5 and 6. (III) Solution state UV-vis spectra of (IMes=S) L3, (IMes=Se) L4, 3, 4, 7 and 8 in 

CHCl3 at 25 oC (1.8 X 10-5 M); (IV) Solid state UV-vis spectra of (IMes=S) L3, (IMes=Se) 

L4, 3, 4, 7 and 8 
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2.5. TGA analysis of 1-8 

 The thermal stability of molecules 1-8 are analyzed by TGA. Figure 2.14 reveals the 

thermal breakdown pathway of 1-8 based on thermal investigation in a flowing nitrogen 

atmosphere (10 oC min-1, 30-900 oC). Complexes 1-5 show enough stability till 370-390 oC 

then sudden weight loss in a single step in the region of 40-70%, which can be endorsed for 

the decomposition of organic moieties. Subsequently, the gradual weight loss was observed 

till 850 oC with 9-12% residue for the metal chalcogenides. Whereas, complex 2 displayed an 

extreme stability till 370 oC and showed gradual weight loss till 850 oC with 12% residue. The 

complexes 6-8 were fairly stable up to 400 oC and showed gradual decrease till 800 oC but 

the complex 6 lost its weight gradually up to 600 oC and remains unchanged till 900 oC with 

18% residue. The black residues obtained from the thione compounds (1, 3, 5 and 7) were 

almost in concord with the calculated values for the copper mono sulfide (CuS). Similarly, 

the residues obtained from the selone compounds (2, 4, 6 and 8) were in concord with the 

calculated values for the copper mono selenide (CuSe). 

 

 

Figure 2.14: TGA curve of 1-4 (I) and 5-8 (II) from 30-900 oC under nitrogen atmosphere 

with heating rate of 10 oC min-1. Left: 1 residual wt. 9%, calc. wt is 10%; 3 residual wt. 

12%, calc. wt. 12%; 5 residual wt. 10%, calc. wt is 9% and 7 residual wt. 14%, calc. wt. 

12%. Right: 2 residual wt. 10%, calc. wt is 12%; 4 residual wt. 18%, calc. wt. 16%; 6 

residual wt. 18%, calc. wt is 15% and 8 residual wt. 16%, calc. wt. 15% 

 

2.6. Copper(I) catalyzed borylation of unsymmetrical alkynes 

 The copper(I) mediated selective borylation of alkyne is consider to be one of the key 

reaction in multi step organic synthesis [17,18]. The catalytic reaction were demonstrated 

with copper using NHC [17] or phosphine [18] as ligand. For example, the imidazole 

chalcogenones supported copper catalysts for borylation of alkyne is rare [5,18d]. Thus, 
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molecules 1-8 are used as catalyst for regioselective borylation of alkyne under mild 

conditions (Table 2.4). The borylation of 1-phenyl-1-propyne using bis(pinacolato)diboron in 

THF was probed in the presence of MeOH as a proton source at ambient temperature using 

catalysts 1-8 (Scheme 2.4). 

Scheme 2.4: Regioselective borylation of 1-phenyl-1-propyne using 1-8 

 

The catalysts 1-8 are active towards borylation of 1-phenyl-1-propyne over a period 

of 24 h to 36 h. Among 1-8, catalyst 4 is very active (yield, 96%) and highly regioselective 

(100% major product) (Table 2.4, entry 4). The catalyst 2 shows poor selectivity (Entry 2), 

while catalyst 6 gives poor conversion (Entry 6). Notably, the regioselectivity (98%-100% 

major product) of 3 (Entry 3), 5 (Entry 5), 7 (Entry 7) and 8 (Entry 8) is appreciable, however 

the yield is considerably lower than entry 4. In order to understand the role of ancillary 

ligands, the catalytic reaction was performed using only IMes=Se (Entry 9), Cu(ClO4)2.6H2O 

(Entry 10), Cu(BF4)2.H2O (Entry 11) and IMes=Se/Cu(ClO4)2.6H2O (Entry 12). As expected, 

no catalytic reaction was noticed in the presence of IMes=Se (Entry 9). The reaction was very 

slow in the case of Cu(ClO4)2.6H2O with poor yield (Entry 10). Interestingly, the 

regioselectivity and yield are nearly comparable for Cu(BF4)2.H2O (Entry 11) and 

IMes=Se/Cu(ClO4)2.6H2O (Entry 12). Therefore, the well define catalyst 4 (Entry 4) is very 

active than the insitu catalyst (Entry 12). 

 

 

 

 

 

 

 

 

 

 



73 

Table 2.4: Regioselective borylation of 1-phenyl-1-propyne using 1-8.a 

E Catalyst Time (h) Selectivity (%)b 

A         B 

SMC (%)b Y (%)c 

1 1 24 90        10 90 80 

2 2 36 86         14 75 70 

3 3 24 99          01 74 68 

4 4 24 100         ND >99 96 

5 5 36 100         ND 64 62 

6 6 36 94         06 40 38 

7 7 24 98        02 76 70 

8 8 36 99        01 90 82 

9 IMes=Se 48 0          0 NR NR 

10 Cu(ClO4)2.6H2O 48 99         01 45 40 

11 Cu(BF4)2.H2O 36 98        02 65 60 

12 IMes=Se and 

Cu(ClO4)2.6H2O 

36 94        06 70 64 

aReaction conditions: 0.50 mmol 1-phenyl-1-propyne, 0.55 mmol bis(pinacolato)diboron, 5 

mol% copper(I) catalyst, 10 mol% NaOt-Bu and 1.0 mmol MeOH were used at room 

temperature. E-entry, b%-Based on 1H NMR spectroscopy, c%-Isolated yield by column 

chromatography, NR-No reaction, ND-Not detected, SMC-starting material conversion and 

Y-yield 

 

Scheme 2.5: Plausible reaction pathway shows the nucleophilic attack by Bpin anion from 

less hindered side followed by protonation 
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Subsequently, the temperature and solvent choice were optimized using catalyst 4 

(Table 2.5). The regioselectivity and yield are not appreciable when the reaction was carried 

out using 4 in THF at 75 oC (Entry 2) or in 1,4-dioxane at 25 oC (Entry 3) or in hexane at 25 

oC (Entry 4). The mid polar solvents like toluene, diethyl ether and dichloromethane gave 

considerable selectivity with good yield (Entry 5-7, respectively). Therefore the best possible 

conversion and regioselectivity can be obtained using catalyst 4 in THF at room temperature 

(Entry 1 and 4). As proposed in scheme 2.5, the nucleophilic attack by Bpin anion take place 

at the electrophilic centre; followed by protonation led to an expected product. The most 

efficient catalytic nature of 4 can be attributed to the more Lewis acidic nature of copper 

centre: i.e., poor ‒donor and strong ‒accepting nature of ligand coordinated with a strong 

cationic nature of metal centre [7] and deviation in bond angle also facilitates the intermediate 

formation followed by greater conversion of substrates. 

 Consequently, the scope of catalyst 4 was analyzed for unsymmetrical alkynes (Table 

2.6). The aromatic alkynes like phenyl acetylene, 1-phenyl-1-butyne and ethyl 3-

phenylpropiolate gave 100% selectivity with very good yield (Table 2.6, entries 1-2 for 

product A and entry 3 for product B) [19]. Whereas, the aliphatic alkynes like 2-hexyne, 1-

octyne and 2-octyne gave considerably less selectivity compared to aromatic alkynes (Table 

2.6, entries 4-6). However, the product yield for both aliphatic and aromatic alkynes are 

comparable. 

 

Table 2.5: Optimization of regioselective borylation of 1-phenyl-1-propyne by 4 in 24 h.a 

E Solvent T (oC) Selectivity (%)b 

A         B 

SMC (%)b Y (%)c 

1 THF 25 100        ND >99 96 

2 THF 75 95       05 76 70 

3 1,4-dioxane 25 90       10 37 35 

4 Hexane 25 90       10 46 40 

5 Toluene 25 98       02 85 78 

6 Et2O 25 95       05 90 85 

7 CH2Cl2 25 99        01 80 76 

aReaction conditions: 0.50 mmol 1-phenyl-1-propyne, 0.55 mmol bis(pinacolato)diboron, 5 

mol% copper(I) catalyst (4), 10 mol% NaOt-Bu and 1.0 mmol MeOH were used in 1.0 mL 

of solvent. E-entry, b%-Based on 1H NMR spectroscopy, c%-Isolated yield by column 

chromatography, ND-Not detected, SMC-starting material conversion and Y-yield 
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Table 2.6: Regioselective borylation of unsymmetrical alkynes by 4 at 25 oC in THF.a 

E Starting material Major product Selectivity (%)b 

A       B 

SMC 

(%)b 

Y 

(%)c 

1  

 

100      ND 75 69 

2  

 

100      ND 82 78 

3 

 

 

ND    100       80 72 

4  

 

78       22 85 76 

5  

 

85       15 90 80 

6  

 

90      10 95 82 

aReaction conditions: 0.50 mmol alkyne, 0.55 mmol bis(pinacolato)diboron, 5 mol% 

copper(I) catalyst (4), 10 mol% NaOt-Bu and 1.0 mmol MeOH were used in 1.0 mL of THF 

at room temperature for 24 h. E-entry, b%-Based on 1H NMR spectroscopy, c%-Isolated 

yield by column chromatography, ND-Not detected, SMC-starting material conversion and 

Y-yield 
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2.7. Summary 

The copper(I) thione (1, 3, 5 and 7) complexes along with a rare homoleptic two 

coordinated copper(I) selone (2, 4, 6 and 8) complexes were synthesized and structurally 

characterized. The molecules 1-8 were isolated from copper(II) to copper(I) reduction by 

chalcogenones. The molecules 1-3 and 5-8 are in perfect linear geometry, while 4 is in quasi-

linear geometry. These newly isolated molecules 1-8 were used as catalyst for boron addition 

to alkynes. The catalysts 1-8 were active for regioselective boron addition to alkynes. 

Moreover, (i) we assume that the homoleptic two coordinated intermediate do not exist in the 

catalytic process, (ii) the π‒accepting nature of imidazoline-2-chalcogenone do play less role 

in isolating homoleptic two coordinated coinage metal derivatives, (iii) complex 4 showed 

the best catalytic activity, (iv) well define catalyst is much more active than the in-situ 

generated catalyst, for example catalyst 4, (v) IMes=Se based copper(I) complexes (4 and 8) 

were more selective and efficient than 3 and 5-7, and (vi) the more Lewis acidic nature of 

copper centre in 4 enhances the catalytic activity. The excellent selectivity of the reactions at 

room temperature, especially with 4, makes this strategy viable for borylation of 

symmetrical/unsymmetrical alkynes. Nevertheless the investigation towards highly selective 

catalysts with reduced reaction time is in progress. 
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3.1. Introduction  

The chemistry of copper-NHC (NHC = N-heterocyclic carbene) has attracted much 

attention in the past two decades invoking requirements in catalysis [1]. The most of the 

known copper-NHC molecules are mononuclear, dinuclear, trinuclear or tetranuclear [2]. 

Though, more than twelve hundred articles have been reported (according to the SciFinder 

search on “Copper Carbene”) related to the copper carbene chemistry, the NHC‒Cu clusters 

are rare [3]. Unlike phosphine based copper clusters [4], the penta5 or higher nuclear copper‒

NHC derivatives and their catalytic applications are limited due to strong  donor and poor 

‒accepting nature of NHC along with steric hindrance [6]. The search for the suitable NHC 

or analogues of NHC type ligands to isolate the polynuclear copper clusters or cages are in 

great demand [7]. Therefore it is one of the most challenging tasks to design the synthetic 

strategy using NHC or NHC analogues for clusters or cages of specific nuclearity with shape. 

Recently, the NHC analogues of imidazole-2-chalcogenone copper(I) complexes have been 

reported with promising features in catalysis due to the tunable ‒donor and π‒accepting 

nature of imidazole-2-chalcogenone [8]. Surprisingly, the catalytic efficiency of copper-

imidazole-2-chalcogenone complexes is better than copper‒NHC complexes. This chapter 

describes the first perfect Cu8
I cubic cages [{Cu(Bptp)}8(PF6

)](PF6
)7 (9) and 

[{Cu(Bpsp)}8(PF6
)](PF6

)7 (10) supported by imidazole-2-chalcogenone ligands (Bptp = 2,6-

bis(1-isopropylimidazole-2-thione)pyridine or Bpsp = 2,6-bis(1-isopropylimidazole-2-

selone)pyridine). To the best of our knowledge, 9 and 10 are the large copper cubic cages 

isolated as of now. 

 

3.2. Experimental Section 

 

3.2.1. General remarks 

All manipulations were carried out under argon atmosphere using standard Schlenk 

techniques. The solvents were purchased from commercial sources and purified according to 

standard procedures and freshly distilled under argon atmosphere prior to use [9]. Unless 

otherwise stated, the chemicals were purchased from commercial sources. 1,1'-(pyridine-2,6-

diyl)bis(3-isopropyl-1H-imidazol-3-ium)bromide,  2,6-Bis(1-isopropylimidazole-2-

thione)pyridine (Bptp) [10] and 2,6-bis(1-isopropylimidazole-2-selone)pyridine (Bpsp) 

ligands were synthesized as reported [11]. 2,6-dibromo pyridine, Sulphur powder, selenium 

powder and [Cu(CH3CN)4]PF6 were purchased from Sigma Aldrich and used as received. 
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FT-IR measurement (neat) was carried out on a Bruker Alpha-P Fourier transform 

spectrometer. The UV-vis spectra were measured on a T90+ UV-visible spectrophotometer. 

Thermogravimetric analysis (TGA) was performed using a TASDT Q600, Tzero-press. NMR 

spectra were recorded on Bruker Ultrashield-400 spectrometers at 25 °C unless otherwise 

stated. Chemical shifts are given relative to TMS and were referenced to the solvent 

resonances as internal standards. Elemental analyses were performed by the Euro EA-300 

elemental analyzer. The crystal structures of 9 and 10 were measured on an Oxford Xcalibur 

2 diffractometer. Single crystals of complexes suitable for the single crystal X-ray analysis 

were obtained from their reaction mixture at room temperature and the suitable single crystals 

for X-ray structural analysis were mounted at room temperature (298 K) in inert oil under an 

argon atmosphere. Using Olex2 [12], the structure was solved with the ShelXS [13] structure 

solution program using Direct Methods and refined with the olex2.refine refinement package 

using Gauss-Newton minimization. Absorption corrections were performed on the basis of 

multi-scans. Non-hydrogen atoms were anisotropically refined. Hydrogen atoms were 

included in the refinement in calculated positions riding on their carrier atoms. No restraint 

has been made for any of the compounds. 

 

3.2.2. Synthesis of 9 

[Cu(CH3CN)4]PF6 (0.069 g, 0.185 mmol) was dissolved in acetonitrile (3 mL) in an 

oven dried Schlenk flask under inert atmosphere, to which Bptp (0.100 g, 0.278 mmol) in 

chloroform was added dropwise and was allowed to stir for 12 h. Yield: 93% (0.128 g, based 

on [Cu(CH3CN)4]PF6). M.p.: 220-223 °C (melting). Elemental analysis calcd (%) for 

C23.5H32.5N7.5S3Cu1P1F6 (724.76): C, 38.94; H, 4.52; N, 14.49; S, 13.27; Found: C, 38.8; H, 

4.5; N, 14.7; S, 13.3. 1H NMR (DMSO-d6, 400 MHz):  = 1.37-1.39 (d, 2((CH3)2CH), 12H), 

4.90-4.94 (m, 2(CH3)2CH, 2H), 7.74 (d, imidazole, 2H), 7.86 (d, imidazole, 2H), 8.07-8.08 

(d, pyridine, 2H), 8.39-8.43 (t, pyridine, 1H) ppm. 13C NMR (DMSO-d6, 100 MHz):  = 21.03 

((CH3)2CH), 49.40 ((CH3)2CH), 116.88 (pyridine), 119.99 (imidazole), 120.36 (imidazole), 

142.97 (pyridine), 147.56 (pyridine), 155.87 (C=S) ppm. 31P NMR (DMSO-d6, 161 MHz): 

157.36 to -131.02 (sept, PF6) ppm. 19F NMR (DMSO-d6, 376 MHz):  = 71.05 to -69.16 

(d, PF6) ppm. FT-IR (neat): ῡ  3156(w), 2978(w), 1671(w), 1596(m), 1459(s), 1400(s), 

1342(m), 1279(w), 1221(s), 1130(m) (C=S), 1070(w), 995(w), 828(vs) (P‒F), 730(m), 

682(m), 553(s) (P‒F) cm-1. 
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3.2.3. Synthesis of 10 

 [Cu(CH3CN)4]PF6 (0.055 g, 0.146 mmol) was dissolved in acetonitrile (3 mL) in an 

oven dried Schlenk flask under inert atmosphere, to which Bpsp (0.100 g, 0.220 mmol) in 

chloroform was added dropwise and was allowed to stir for 12 h. Yield: 81% (0.105 g, based 

on [Cu(CH3CN)4]PF6). M.p.: 215-216 °C (melting). Elemental analysis calcd (%) for 

C23.5H32.5N7.5Se3Cu1P1F6 (865.45): C, 32.61; H, 3.79; N, 12.14; Found: C, 32.7; H, 3.8; N, 

12.8. 1H NMR (DMSO-d6, 400 MHz): 1.36-1.37 (d, 2((CH3)2CH), 12H), 4.92 (m, 2(CH3)2CH, 

2H), 7.88 (d, imidazole, 2H), 8.01 (d, imidazole, 2H), 8.14-8.15 (d, pyridine, 2H), 8.45 (t, 

pyridine, 1H) ppm. 13C NMR (DMSO-d6, 100 MHz): 21.20 ((CH3)2CH), 51.57 ((CH3)2CH), 

118.79 (pyridine), 122.26 (imidazole), 122.71 (imidazole), 143.71 (pyridine), 148.51 

(pyridine), 154.19 (C=Se) ppm. 31P NMR (DMSO-d6, 161 MHz): 157.32 to -130.98 (sept, 

PF6) ppm. 19F NMR (DMSO-d6, 376 MHz): 71.06 to -69.17 (d, PF6) ppm. FT-IR (neat): ῡ  

3156(w), 2977(w), 1692(w), 1574(m), 1458(s), 1420(s), 1341(m), 1217(w), 1116(m) (C=Se), 

1073(w), 1045(w), 829(vs) (P‒F), 758(m), 732(m), 677(m), 586(m), 554(s) (P‒F) cm-1. 

 

3.2.4. Synthesis of 9@AuCl 

Molecule 9 (0.01g, 1 equiv) and an excess (dms)AuCl (0.07g, 16 equiv) were mixed together 

and evacuated for 10 minutes, after which 1 mL of acetonitrile was added under argon flow 

and allowed to stir at room temperature for 12h. 1H NMR (DMSO-d6, 400 MHz): 1.39 (s, 

2((CH3)2CH), 12H), 4.98 (m, 2(CH3)2CH, 2H), 7.65-7.73 (m, imidazole, 4H), 8.27 (m, 

pyridine, 3H) ppm. 

 

3.2.5. Synthesis of 9@Perylene 

Molecule 9 (0.01g, 1 equiv) and an excess perylene (0.03g, 8 equiv) were mixed together and 

evacuated for 10 minutes, after which 1 mL of acetonitrile was added under argon flow and 

was allowed to stir at reflux for 4 h. 1H NMR (DMSO-d6, 400 MHz): 1.39-1.41 (d, 

2((CH3)2CH), 12H), 4.93-5.02 (m, 2(CH3)2CH, 2H), 7.53-7.57 (t, perylene, 2H), 7.73 (d, 

imidazole, 2H), 7.79-7.81 (d, perylene, 2H), 7.86 (d, imidazole, 2H), 8.18-8.20 (d, pyridine, 

2H), 8.35-8.42 (m, perylene, 2H and pyridine 1H) ppm. 

 

3.2.6. Synthesis of 9@Pyrene 

Molecule 9 (0.01g, 1 equiv) and an excess pyrene (0.03g, 8 equiv) were mixed together and 

evacuated for 10 minutes, after which 1 mL of acetonitrile was added under argon flow and 

was allowed to stir at reflux for 4h. 1H NMR (DMSO-d6, 400 MHz): 1.39-1.41 (d, 



83 

2((CH3)2CH), 12H), 4.95-4.98 (m, 2(CH3)2CH, 2H), 7.74 (d, imidazole, 2H), 7.87 (d, 

imidazole, 2H), 8.07-8.30 (m, pyrene, 10H), 8.32-8.40 (m, pyrene, 3H) ppm. 

 

3.2.7. Cu(I) catalysts catalysed azide–alkyne cycloaddition reactions (CuAAC)  

Catalyst 9 or 10 (1 mol%), azide (1 mmol) and terminal alkyne (1.2 mmol) were 

placed in an oven dried Schlenk flask. The reaction mixture was then allowed to stir at room 

temperature and the progress of the reaction was monitored by thin layer chromatography. 

The solid mass obtained was dissolved in ethyl acetate and passed through silica gel column. 

The solvent has been removed by rotary evaporator and the residue washed several times with 

n-hexane yielded pure desired products. All the isolated products were well characterized by 

1H and 13C NMR and few products (Ia, Ib, IIa and IIbB) were also characterized by single 

crystal X-ray diffraction technique. 

 

3.2.8. Cu(I) catalysts mediated hydroamination of terminal alkynes 

Catalysts 9 or 10 (1 mol %) and AgBF4 (1 mol %) were placed together in an oven 

dried Schlenk flask. The Schlenk flask was then evacuated and refilled with nitrogen two to 

three times. Subsequently, acetonitrile (1 mL) was added to the mixture and was allowed to 

stir at room temperature for 5-10 minutes. After which, the corresponding arylamine (0.6 

mmol) and terminal alkyne (0.50 mmol) were added successively. The resulting mixture was 

allowed to stir at 70 ºC for the appropriate time and the progression of the reactions were 

determined by thin layer chromatography. The isolated imines were well characterized by 1H 

and 13C NMR spectroscopy. 

 

3.3. Result and discussion 

3.3.1. Synthesis and characterization 

The octanuclear copper(I) cubic clustes 9 and 10 were isolated in excellent yield by 

treating [Cu(CH3CN)4]PF6 with an appropriate amount of Bptp or Bpsp in acetonitrile and 

chloroform mixture (Scheme 3.1). Pyridine-based organo dichalcogenone ligands Bptp and 

Bpsp were synthesized in a single step via the reactions of pyridine bridged imidazolium 

dibromide derivatives with elemental chalcogen powder in the presence of K2CO3 in good 

yield. 

The ionic salts 9 and 10 were confirmed by FT-IR, multinuclear (1H, 13C, 31P and 19F) 

NMR, UV-vis, TGA, CHN analysis, BET, single crystal X-ray diffraction and powder X-ray 

diffraction techniques. 9 and 10 are stable under ambient conditions for several months and 

soluble in polar solvents such as acetonitrile and DMSO. In 1H NMR, the isopropyl CH signal 
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is upfield shifted by around 0.3 ppm, while imidazole CH signals are downfield shifted by 0.4 

to 0.9 ppm. The hydrogen at 4th position in the pyridine unit appeared to be downfield shifted 

by 0.4 ppm, while the other protons at 3rd and 5th position in pyridine moiety appears to be 

upfield shifted by 0.4 to 0.6 ppm compared to free ligands. The 13C NMR spectra of the 

copper(I) complexes 9 and 10 are mostly the same with very little shift in the resonances when 

compared to the respective ligand precursors (Figure 3.2 and 3.8). In 13C NMR, the C=S and 

C=Se signal in 9 and 10 appeared to be upfield shifted (5 ppm for 9 and 1 ppm for 10 compared 

to corresponding ligand), respectively (Figure 3.3 and 3.9). This can be attributed to the strong 

‒donor and poor π‒accepting nature of the carbene carbon upon complexation with 

copper(I). The 31P NMR spectra shows a septet for the presence of PF6 counter ions in 9 and 

10 (Figure 3.4 and 3.10). The 19F NMR spectra depicts a doublet for PF6 counter ions in 9 and 

10 (Figure 3.5 and 3.11). 

 

 

Scheme 3.1: Synthesis of 9 and 10 
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Figure 3.1: Neat FT-IR spectrum of 9 at room temperature 

 

Figure 3.2: 1H NMR spectrum of 9 in DMSO-d6 at room temperature 
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Figure 3.3: 13C NMR spectrum of 9 in DMSO-d6 at room temperature 

 

Figure 3.4: 31P NMR spectrum of 9 in DMSO-d6 at room temperature 
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Figure 3.5: 19F NMR spectrum of 9 in DMSO-d6 at room temperature 

 

The ionic salts 9 and 10 crystallized in the cubic space group, Pn-3n. The 

crystallographic data for 9 and 10 are furnished in table 3.2. The solid-state structures with 

selected bond lengths and bond angles are reported in figures 3.1. Liu and co-workers have 

reported several octanuclear copper(I) clusters using phosphorus-chalcogenide as suitable 

ligand, where the presence of interacting elementary ion into the center of a centerosymmetric 

copper cluster or cubic cage is very essential to retains the original symmetry of the cluster 

[14]. Notably, a tremendous efforts have been made to alter the size of the octanuclear copper 

core [15]. The size of the metal core can be altered based on the size and charge of anion 

present in the center of cage [16]. In all these aforementioned Cu8(I) cubic cages, the edge 

length between Cu(I)····Cu(I) in octanuclear copper cubic cage ranges from 2.859 Å to 3.225 

Å [16c]. Surprisingly, the known Cu8(I) cubic cages were isolated only using [(iPrO)2PE2]- (E 

= Se or S) ligands. However it appears that the (i) similar such cages have never been reported 

with any other ligands; (ii) octanuclear copper cubic cages with larger than Cu(I)····Cu(I) 

edge length of 3.225 Å have never been isolated. Thus, the neutral donor ligand, imidazole-

2-chalcogenone can be an ideal replacement for anionic ligand [(iPrO)2PSe2]- to generate 

octanuclear copper(I) clusters. Though several copper(I) cubic cages have been isolated with 

centered atom (mainly halogen or chalcogen or hydride etc), only one copper(I) cubic cage, 

[Cu8{Se2P(OiPr)2}6](PF6)2 has been reported without centered atom [16a], where the Cu····Cu 
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seperations are not equal (3.216(1) and 3.220(1) Å). 9 and 10 are the first examples of perfect 

copper(I) cubic cages known without non-interacting centered atom or molecule. 

 

 

Figure 3.6: (I); The solid state structures of 9 and 10. Hydrogen atoms and PF6 counter 

anions have been omitted for the clarity. Dotted lines between copper centres are imaginary 

lines. (II); Coordination environment of copper(I) in 9 and 10 

 

 

Table 3.1: Selected bond lengths (Å) and angles (°) in 9 and 10.  

 9 10 

C(1)‒E(1) 1.700(2) 1.856(5) 

E(1)–Cu(1) 2.249(6) 2.338(5) 

E(1)–Cu(1)–E(1) 120.0 120.0 

C(1)–E(1)–Cu(1) 112.72(8) 109.45(14) 

N(1)–C(1)–N(2) 105.07(19) 105.0(4) 

N(1)–C(1)–E(1) 125.17(18) 124.5(4) 

N(2)–C(1)–E(1) 129.74(18) 130.4(4) 

 



89 

 

Figure 3.7: Neat FT-IR spectrum of 10 at room temperature 

 

Figure 3.8: 1H NMR spectrum of 10 in DMSO-d6 at room temperature 
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Figure 3.9: 13C NMR spectrum of 10 in DMSO-d6 at room temperature 

 

Figure 3.10: 31P NMR spectrum of 10 in DMSO-d6 at room temperature 
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Figure 3.11: 19F NMR spectrum of 10 in DMSO-d6 at room temperature 

 

The faces of the cubanes 9 and 10 are open. Notably, the distance between copper 

atoms in 9 (8.413 Å) and 10 (8.593 Å) are equal. The diagonal distance between Cu····Cu is 

14.571 Å (for 9) and 14.883 Å (for 10). The Cu····Cu diagonal distance found in 9 and 10 are 

nearly 50% shorter than the diagonal Fe····Fe distance found in the large FeII/NiII face capped 

cubic box (25.622 Å) [17]. The solid-state structures of complexes 9 and 10 consists of one 

cubic [Cu8(Bptp/Bpsp)12]8+ cation and eight [PF6]- anions, in which each copper center is 

linked by three ligands. The E–Cu–E bond angles around copper centers in 9 and 10 are in 

favour of trigonal planar arrangement. 

The carbon–sulfur bond lengths in 9 is 1.700(2) Å, which is closer to that of (C=S, 

1.61 Å) double bond [18a] than a single bond distance (C–S, 1.83 Å) [18b]. The carbon–

selenium bond length in 10 is 1.856(5) Å, which is closer to that of a C–Se single bond 

distance (1.94 Å) [19a] than a C=Se double bond distance (1.74 Å) [19b]. The S–Cu distance 

(2.249 (6) Å) in complex 9 is slightly shorter than that of  dichloro-[(ƞ3-S,S,N)(2,6-bis){[N-

isopropyl]imidazole-1-ylidene-2-thione}-pyridine copper(II)] (2.30-2.32 Å) [20]. The Se–Cu 

bond length (2.338(5) Å) found in 10 is slightly elongated than that of [(IPr=Se)2Cu]X and 

[(IMes=Se)2Cu]X (Where X = BF4 and ClO4) (2.24-2.27 Å) [8c]. 
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Table 3.2: Structural parameters of compounds 9 and 10. 

 

 

 9 10 

Empirical formula                                                                                C72H88N24F48P8S24Cu8 C72H88N24F24P16Cu8Se16 

Formula weight 5837.38 6817.85 

Temperature (K) 298 298 

Crystal system Cubic Cubic 

Space group Pn-3n Pn-3n 

a/Å 24.4090(3) 24.82051(14) 

b/Å 24.4090(3) 24.82051(14) 

c/Å 24.4090(3) 24.82051(14) 

α/° 90 90 

β/° 90 90 

γ/° 90 90 

Volume (Å3) 14542.9(3) 15290.87(15) 

Z 2 2 

ρcalc/mg mm-3 1.3329 14807 

Absorption coefficient 

(µ/mm-1) 

3.301 4.785 

F(000) 5995.9 6666.0 

Reflections collected 10421 12189 

Rint 0.0266 0.0288 

GOF on F2 1.005 1.011 

R1 (I>2ϭ(I)) 0.0410 0.0359 

wR2 (I>2ϭ(I)) 0.1338 0.0893 

R1 values (all data) 0.0496 0.0478 

R2 values (all data) 0.1432 0.0979 
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3.4. PXRD and Thermogravimetric analysis 

The PXRD pattern of bulk samples of 9 and 10 are nearly comparable with calculated 

PXRD pattern of corresponding single crystal data (Figure 3.12), which clealy supports the 

phase purity of bulk samples of 9 and 10. 

 

Figure 3.12: (I); Experimental powder X-ray diffraction pattern (A) of 9 vs simulated 

powder pattern (B) for 9. (II); Experimental powder X-ray diffraction pattern (A) of 10 vs 

simulated powder pattern (B) for 10 

 

Figure 3.13: TGA curves of 9 and 10 from 30 to 550 °C under a nitrogen atmosphere with a 

heating rate of 10 °C min−1. For 9: residual wt 26%, calc. wt 23%; For 10: residual wt 39%, 

calc. wt 40% 

Moreover, the theremal stability of 9 and 10 is not comparable (Figure 3.13). The 

thermal decomposition pathway of 9 is much clear than 10. 9 and 10 depicted enough stability 

until 200 °C. Then compound 9 shows a little weight loss (5%), which can be attributed to the 



94 

phase change in 9. Subsequently 9 shows enough stability until 305 oC then observed a sudden 

weight loss in a single step to give Cu2S residue (26%, Calcd. 23%), which can be attributed 

to the decomposition of organic moieties in 9. Besides, 10 depicts gradual weight loss from 

its melting point (210 oC) through minor phase transformations along with the organic 

moieties decomposition to yield Cu3Se2 residue (39%, Calcd. 40%). 

 

3.5.  UV-visible absorption studies 

The solution state and solid state UV-visible absorption spectra of 9 and 10 are 

compared with Bptp and Bpsp, respectively (Figure 3.14). Almost similar absorption patterns 

for π → π* (200-300 nm) and n → π* (300–350 nm) transitions are observed in the solution 

state UV-vis spectroscopy for both the ligands and their copper(I) complexes (9 and 10). 

Bathchromic shift was notieced for Bpsp and 10 compared to Bptp and 9. Interestingly, in the 

solid state UV-vis study, complexes 9 and 10 depicted the bathochromic shift along with 

broadening of absorption band due to a strong molecular association in solid state form 

compared to their solution state study. 

 

 

Figure 3.14: UV-vis spectra of Bptp, Bpsp, 9 and 10 (Solution state in acetonitrile at 25 oC, 

2.8 x 10-5 M) 
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3.6.  Miscellaneous investigations 

Considering the size of these cages, 9 was subjected to BET analysis. The maximum 

quantity adsorbed at STP is 1.45 cm3/g, which is not very impressive. However, the molecule 

was subjected to trans-metallation, host-guest interactions with pyrene, perylene and fullerene 

and the obtained results have been presented below. 

 

3.6.1. Trans-metallation reaction with molecule 9. 

Besides, the attempts to transmetallate copper in 9 by gold using (dms)AuCl were 

unproductive (Figure 3.15). Both 9 and 10 undergoes dissociation to result the starting 

materials by depositing gold metal on the surface of the flask. 

The compound 9 and (dms)AuCl were dissolved completely in acetonitrile and was 

colorless in the beginning, after 10 minutes the reaction mixture turns violet in color and then 

after 30 minutes the reaction mixture contains blue precipitate in a colorless solution. After 

which the reaction mixture was dried in vacuo and subjected to NMR measurements. The 1H 

NMR measurement supports the presence of ligand (Bptp) moiety in the crude product of 

trans-metallation reaction (Figure 3.16). 

 

Figure 3.15: Reaction progress during trans-metallation reaction 



96 

 

Figure 3.16: 1H NMR spectrum of trans-metallation reaction mixture in DMSO-d6 at room 

temperature 

 

In order to understand the host-guest property of these cages, the preliminary studies 

were carried out between 9 and pyrene or perylene (Scheme 3.2-3.3). 9 act as a host for both 

perylene and pyrene to result 9@perylene (Figure 3.17-3.19) and 9@pyrene (Figure 3.20-

3.22), respectively. Notably the perylene uptake by 9 is much faster than pyrene. Attempt to 

introduce C60 into 9 was not successful (Figure 3.23). 

 

3.6.2. Host-Guest interactions on molecule 9 with perylene. 

The compound 9 and perylene were not dissolved completely in acetonitrile and has 

a yellow turbid solution in the beginning and was allowed to stir at 85 oC, the reaction mixture 

forms a yellow crystalline solid in a clear colorless solution after 4 h, and then the reaction 

mixture was dried in vacuo and subjected to spectroscopic measurements, which evidently 

displays the existence of 9@perylene molecule. 
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Scheme 3.2: Synthesis of 9@Perylene molecule by host-guest interactions 

 

 

Figure 3.17: 1H NMR spectrum of 9@perylene in DMSO-d6 at room temperature 
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Figure 3.18: Solution state UV-visible spectral analysis of 9 and the reaction mixture of 

9@perylene in acetonitrile at elevated temperature with 1 h interval, measured at 298K with 

2.8 x 10-5 M acetonitrile solution 

 

Figure 3.19: Neat FT-IR spectrum of 9 (Black), a reaction mixture of 9 and perylene (Blue) 

and perylene (Red) after 4 h in acetonitrile 
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3.6.3. Host-Guest interactions on Molecule 9 with Pyrene. 

The compound 9 and pyrene were not dissolved completely in acetonitrile and was a little 

yellow turbid solution in the beginning, after 10 minutes at 85 oC, the reaction mixture turns 

as clear yellow solution after 4 h, and the reaction mixture was dried in vacuo and subjected 

to spectroscopic measurements, which clearly shows the existence of 9@pyrene molecule. 

 

 

Scheme 3.3: Synthesis of 9@Pyrene molecule by host-guest interactions 

 

As presented in Figure 3.21, the reaction mixture represents only pyrene absorption 

spectra in solution UV-vis spectroscopy up to 2 h, while broadening of the absorption bands 

noticed after 3 h is due to the association of pyrene with molecule 9, and the final (4 h) 

absorption spectra of the reaction mixture is fairly altered from the molecule 9 alone, 

suggesting the complete incorporation/association of pyrene into the molecule 9. 
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Figure 3.20: 1H NMR spectrum of 9@pyrene in DMSO-d6 at RT 

 

Figure 3.21:  Solution state UV-visible spectral analysis of 9 and the reaction mixture of 9 

and pyrene in acetonitrile at elevated temperature with 1 h interval, measured at 298K with 

2.8 x 10-5 M acetonitrile solution 
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Figure 3.22: Neat FT-IR spectrum of 9 (Black), a reaction mixture of 9 and pyrene (Red) 

and pyrene (Blue) after 4 h in acetonitrile 

 

Figure 3.23: 1H NMR comparison of molecule 9@C60 host-guest interactions in DMF-d7 at 

RT 
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Molecule 9 (0.014g, 1 equiv) and C60 (0.02g, 1 equiv) were mixed together under 

argon flow in an NMR tube and was dissolved in DMF-d7 (0.5 mL), then it was subjected to 

NMR measurement at time 0 minutes. After which it was allowed to stay at 85 oC and then 

1H NMR was measured every day to investigate the incorporation/association of C60 into the 

cavity of molecule 9. 1H NMR (DMF-d7, 400 MHz): 1.47-1.49 (d, 2((CH3)2CH), 12H), 5.01-

5.08 (m, 2(CH3)2CH, 2H), 7.78-7.79 (d, imidazole, 2H), 7.95 (d, imidazole, 2H), 8.27-8.29 

(m, pyridine, 2H), 8.46-8.50 (m, pyridine, 1H) ppm. 

 

3.7.  Catalytic Investigations 

Subsequently, 9 and 10 were employed for azide-alkyne cycloaddition reactions to 

produce 1,2,3-triazoles under mild conditions (Scheme 3.4, Table 3.3). Though, the catalytic 

reactions were promising both in water medium (entry 1) and under neat conditions (entry 2), 

less reaction time was noticed for the solvent free reaction over the water media reaction. 

 

 

Scheme 3.4: Catalysts 9 and 10 mediated one-pot synthesis of triazoles 

 

Table 3.3: Optimization studies for CuAAC reaction mediated by Copper(I) catalysts 9 

and 10.a 

Entry Catalyst Cat. (mol%) Solvent Time (min) Yield (%)b 

1 9 1 water 30 >99 

2 9 1 neat 15 >99 

3 9 0.5 neat 60 98 

4 9 0.1 neat 180 94 

5 9 2 neat 15 >99 

6 10 1 neat 20  >99 

7 [Cu(CH3CN)4]PF6 1 neat 60 45 
aReaction conditions: phenyl acetylene (0.6 mmol), benzyl azide (0.5 mmol) and solvent 

(2 mL). bIsolated yield 
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Chart 3.1: aReaction conditions: alkyne (1.2 mmol), azide (1 mmol), Catalyst 9 and/or 10 

(1 mol%), neat, isolated yield 

 

Besides, the yield of Ia was decreased, when the catalyst mol% was decreased (for 0.5 

mol%, see entry 3 and for 0.1 mol%,  see entry 4). However, the extension of time led to the 

isolation of quantitative yield of Ia. On the other hand, not much improvement in the yield 

was observed by reducing the time or increasing catalyst loading (2 mol%, entry 5). Notably, 

catalyst 10 requires little longer time than the catalyst 9 (entry 6). In addition, less amount of 

product formation (Ia) was observed under solvent free conditions using only 

[Cu(CH3CN)4](PF6) (entry 7). Further, we have explored the scope of the reactions using 
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benzyl azide, 4-nitrobenzylazide, 4-bromobenzylazide, phenylazide and 2,4,6-trimethyl 

phenylazide with a varieties of terminal alkynes using 1 mol% of 9 and/or 10 as catalysts 

under solvent free conditions. The yield of the product was excellent (>95%, Chart 3.1). 

The isolated products were characterized by 1H and 13C NMR spectroscopy. The solid 

state structures of isolated products Ia, Ib, IIa, and IIb were additionally evaluated by single 

crystal X-ray diffraction analysis (Figure 3.24). 

 

 

 

Figure 3.24: (I) The solid state structure of Ia. (II) The solid state structure of Ib. (III) The 

solid state structure of IIa. (IV) The solid state structure of IIb. Atom Colours: Dark Blue; 

Carbon, Sky Blue; Nitrogen, Red; Oxygen and Rose; Hydrogen 
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Table 3.4: Structural parameters of compounds Ia, Ib, IIa and IIb. 

 Ia Ib IIa IIb 

Empirical formula                                                                                C15H13N3 C16H14N3 C15H12N4O2 C16H14N4O2 

Formula weight 235.29 249.32 280.29 294.32 

Temperature (K) 298 298 298 298 

Crystal system Monoclinic Monoclinic Orthorhombic Monoclinic 

Space group P21/c P21 P212121 P21/c 

a/Å 6.0383(13) 8.0688(12) 5.7169(7) 9.5421(9) 

b/Å 8.0923(17) 5.8237(6) 13.9426(17) 5.7049(4) 

c/Å 25.709(8) 14.4259(17) 17.101(3) 27.128(3) 

α/° 90 90 90 90 

β/° 93.516(19) 100.683(13) 90 98.745(10) 

γ/° 90 90 90 90 

Volume (Å3) 1253.9(5) 666.13(15) 1363.1(3) 1459.6(2) 

Z 4 2 4 4 

ρcalc/mg mm-3 1.2463 1.2429 1.3657 1.3392 

Absorption coefficient 

(µ/mm-1) 

0.076 0.076 0.095 0.092 

F(000) 496.2 264.1 584.3 616.3 

Reflections collected 10726 2967 3974 6410 

Rint 0.0743 0.0457 0.0430 0.0333 

GOF on F2 1.040 1.035 1.066 1.069 

R1 (I>2ϭ(I)) 0.0688 0.0736 0.0884 0.0688 

wR2 (I>2ϭ(I)) 0.1682 0.1638 0.2247 0.1538 

R1 values (all data) 0.1497 0.1494 0.1699 0.1375 

R2 values (all data) 0.2335 0.2281 0.2989 0.1999 
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In addition to this the catalysts longevity has been investigated using 1 mol% of catalyst 

9 with benzyl azide and phenyl acetylene in neat conditions at room temperature and it was 

found that the same catalyst can produce appreciable yields for eight successive cycles (Figure 

5.26). Moreover, PXRD studies on reused catalyst revealed that the catalyst exists as an intact 

octa-nuclear cage rather than dissociated molecules (Figure 3.25). 

 

 

Figure 3.25: Longevity studies on catalyst 9 (1 mol%) in click catalysis using benzyl 

azide (1 mmol) and phenyl acetylene (1.2 mmol) under neat conditions at room temperature 
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Figure 3.26: PXRD studies on reused catalyst 9 

 

Since the copper catalyzed one-pot synthesis of triazoles, by a three-component reaction 

(organic bromide, sodium azide and an alkyne; in order to avoid azide isolation) is very much 

demanding [21], the 9 and 10 mediated one-pot reactions were performed in water (Scheme 

3.5). 

 

Scheme 3.5: Catalysts 9 and 10 mediated one-pot synthesis of triazoles 

 

The catalysts 9 and 10 gave remarkable yield (> 90%) from reactants with electron-rich 

or electron-poor azides and alkynes (Chart 3.2). The catalytic efficiency of 9 and 10 are 

comparable with cationic [Cu(NHC)2]+ systems [22]. Thus, it was realized that the co-

coordinatively unsaturated Cu(I) centers with trigonal planar arrangement along with open 

face cubic arrangement allow the CuAAC reaction substrates to conveniently approach the 

metal center on cubic surface to trigger the reaction. 
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Chart 3.2: aReaction conditions: alkyne (1.2 mmol), azide (1 mmol), Catalyst 9 and/or 10 (1 

mol%), neat, isolated yield 

 

 Moreover, the catalysts 9 and 10 were highly active and selective (Markovnikov’s 

product) for the hydroamination of terminal alkynes with arylamines (Scheme 3.6, Table 3.5). 

The reaction was performed between phenyl acetylene and 2,6-dimethyl aniline in acetonitrile 

using 1 mol% catalyst 9 or 10 along with 1 mol% AgBF4 as cocatalyst. 

 

 

Scheme 3.6: Hydroamination of alkynes by catalysts 9 and 10 
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Table 3.5: Optimization studies for hydroamination reaction mediated by Copper(I) 

catalysts 9 and 10a. 

Entry Catalyst Cat. (mol%) Solvent Time (h) Yield (%)b 

1 9 1 CH3CN 2 >99 

2 10 1 CH3CN 2 >99 

3c 9 1 CH3CN 3 98 

4d 9 1 CH3CN 12 72 

5 9 1 Benzene 2 20 

6 9 1 CH3OH 2  70 

7 9 1 THF 2 65 

8e 9 1 CH3CN 2 90 

9 AgBF4 1 CH3CN 12 30 

10 Ag(OTf) 1 CH3CN 12 25 

aReaction conditions: phenyl acetylene (0.5 mmol), 2,6-dimethylaniline (0.6 mmol) and 

solvent (2 mL). bIsolated yield, cwithout AgBF4,
 dreaction performed at room temperature, 

ewith Ag(OTf) 

 

 The reaction proceeds very smoothly with both the catalysts in presence of AgBF4 in 

2 h (entry 1 and 2). Besides the absence of AgBF4 required slightly longer time (3 h) for the 

completion of hydroamination reaction (entry 3). On the other hand, moderate yield was 

noticed for the same reaction performed at RT for 12 h (entry 4). However, benzene (entry 

5), methanol (entry 6) and tetrahydrofuran (entry 7) produced moderate yields. The presence 

of Ag(OTf) along with catalyst 9 gave fairly good yield (entry 8). However, AgBF4 presence 

is significant in this transformation. The  starting material conversion was not appriciable only 

with AgBF4 (entry 9) or Ag(OTf) (entry 10) under longer reaction times. Therefore 

acetonitrile was anticipated to be the best solvent for this transformation with quantitative 

yields. The catalysts were highly active (yield, from 92 to 99%) with excellent functional 

group tolerance (Chart 3.3) and the catalytic efficiency of 9 or 10 are on par with Cu‒NHC 

catalysts [22b, 23]. 
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Chart 3.3: Products isolated in hydroamination reaction. Reaction conditions: alkyne (0.5 

mmol), substituted aniline (0.6 mmol) and solvent (2 mL) 

 

3.8. Summary 

In summary, the large octanuclear Cu(I) cubic cages (9 and 10) supported by organo 

dichalcogenones were synthesized and characterized. 9 and 10 are the first examples of 

perfect Cu(I) cubic cage with Cu(I)····Cu(I) distance of 8.413 Å  (for 9) and 8.593 Å  (for 

10). Formation of cationic cubic cages were accompanied by the association of twelve ligands 

(Bptp or Bpsp) with eight trigonal planar [CuSe3] vertex. The cationic charge of cubic cages 

were satisfied by eight PF6
 counter anions, in which one of the PF6

 anion occupies at the 

centre of Cu8 cube without any interaction. Moreover, 9 and 10 are found to be very active 

catalysts in click chemistry under mild condition, one pot synthesis of triazoles as well as the 

selective hydroamination of terminal alkynes.  
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Chapter 4 

 

Copper(I) complexes of C, S, Se 

and P donor ligands for C‒N and 

C‒Si bond formation 
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4.1. Introduction 

The chemistry of “soft” Lewis donors such as imidazolin-2-chalcogenones (ImC or 

NHC=E, E = S and Se) supported metal complexes have gained much attention during past 

two decades in catalysis due to their tuneable σ-donor and π-accepting properties [1-3]. Thus, 

the metal will be more electrophilic when attached with more π–acceptor ligands (PPh3), 

while, it becomes relatively less electrophilic when attached to weak π–acceptors such as 

NHC and ImC (Chart 4.1) [4]. 

 

Chart 4.1: ‒donor and π‒accepting nature of PPh3, NHC and ImC ligands 

 Notably, the stronger -donor abilities, over π-accepting nature of ImC compared to 

both phosphine and NHC is due to the existence of larger contribution (66%) of zwitterionic 

form (NHC+‒E-) [5]. Although, the coordination chemistry of transition metals with ImC is 

well known [6], the catalytic applications of these complexes are limited [7]. Notably, the 

catalytic efficiency NHC=E metal complexes is significantly remarkable compared to NHC-

metal complexes (Chart 4.2) [7]. For example in copper chemistry, ImC supported copper(I) 

complexes{[(IMS)2CuCl]; IMS = 1,3-dimethylimidazoline-2-thione, and 

[(IMes=Se)2Cu][BF4]; IMes=Se = 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-selone} were 

found to be more regioselective in hydroborylation of alkynes over NHC-Cu [7d-e]. Most 

recently, we have investigated the efficiency of [(Bptp/Bpsp)12Cu8][PF6]8 (Bptp = 3,3'-

(pyridine-2,6-diyl)bis(1-isopropyl-1H-imidazole-2(3H)-thione), Bpsp = 3,3'-(pyridine-2,6-

diyl)bis(1-isopropyl-1H-imidazole-2(3H)-selenone)) in click catalysis as well as in hydro-

amination of alkynes, and are found to be as best as NHC‒Cu catalyst [8]. However, as of our 

knowledge, the catalytic comparisons of copper phosphines with NHC‒Cu, ImC‒Cu have 

never been investigated. 
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Chart 4.2: Known catalytic comparisons between ImC‒metal and NHC‒metal supported 

Cu(I) complexes 

 Indeed, herein we present the first comparative study of copper‒NHC’s, copper-

ImC’s and copper-phosphines. The coordination properties of ligands, structural features of 

copper(I) complexes and catalytic efficiency of new copper(I) complexes are reported in 

detail. 

 

4.2. Experimental section 

4.2.1. General remarks  

The necessary manipulations were carried out under argon atmosphere in a glove box 

or using standard Schlenk techniques. The solvents were purchased from commercial sources 

and purified according to standard procedures and freshly distilled under argon atmosphere 
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prior to use [9]. IMes.HCl (1,3-dimesityl-1H-imidazol-3-ium chloride), IMes=S (1,3-

dimesityl-1H-imidazole-2(3H)-thione), IMes=Se (1,3-dimesityl-1H-imidazole-2(3H)-

selenone), IPr=Se (1,3-bis(2,6-diisopropylphenyl)-1H-imidazole-2(3H)-selenone), Ebis (3,3'-

(ethane-1,2-diyl)bis(1-methyl-1H-imidazole-2(3H)-selenone)) and Ebpis (3,3'-(ethane-1,2-

diyl)bis(1-isopropyl-1H-imidazole-2(3H)-selenone)) were prepared as previously reported 

[7k-l]. Unless otherwise stated, the chemicals were purchased from commercial sources. 

CuCl, CuBr, CuI, [Cu(CH3CN)4]PF6, KPF6 and NH4BF4 were purchased from Sigma Aldrich 

and used as received. FT-IR measurement (neat) was carried out on a Bruker Alpha-P Fourier 

transform spectrometer. The UV-vis spectra were measured on a T90+ UV-visible 

spectrophotometer. NMR spectra were recorded on Bruker Ultrashield-400 spectrometers at 

25 °C unless otherwise stated. Chemical shifts are given relative to TMS and were referenced 

to the solvent resonances as internal standards. Elemental analyses were performed by the 

Euro EA-300 elemental analyzer. The crystal structures of 11-24 were measured on an Oxford 

Supernova diffractometer. Single crystals of complexes suitable for the single crystal X-ray 

analysis were mounted on Goniometer KM4/Xcalibur equipped with Sapphire2 (large Be 

window) detector (CuKα radiation source, λ = 1.5418 Å) at ambient temperature (298 K) in 

inert oil under an argon atmosphere. Using Olex2 [10], the structure was solved with the 

ShelXS [11] structure solution program using Direct Methods and refined with the 

olex2.refine refinement package using Gauss-Newton minimization. Absorption corrections 

were performed on the basis of multi-scans. Non-hydrogen atoms were anisotropically 

refined. H atoms were included in the refinement in calculated positions riding on their carrier 

atoms. No restraint has been made for any of the compounds. 

 

4.2.2. Synthesis of [(IMes=S)Cu]Cl (11) 

A mixture of IMes=S (0.100 g, 0.297 mmol) and CuCl (0.035 g, 0.356 mmol) in 

methanol (5 mL) was refluxed at 80 oC for 12 h. The obtained clear solution was brought to 

an ambient temperature, led to the formation of colorless crystals of 11. Yield: 78% (based 

on CuCl). M.p.: 207-209 °C (dec.). Elemental analysis calcd (%) for C21H24ClCuN2S 

(435.50): C, 57.92; H, 5.55; N, 6.43; Found: C, 57.84; H, 5.57; N, 6.39. 1H NMR (400 MHz, 

DMSO-d6): δ = 7.66 (s, 2H, ImH), 7.07 (s, 4H, CHmeta), 2.26 (s, 6H, CH3para), 1.95 (s, 12H, 

CH3ortho) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 155.66 (C=S), 140.04, 134.65, 131.85, 

129.61, 121.67 (ArC), 20.69 (p-CH3), 17.11 (o-CH3) ppm. FT-IR (neat): ῡ = 3148(w), 

3112(w), 3082(w), 2917(m), 1605(m), 1558(w), 1482(s), 1449(m), 1382(s), 1290(m), 
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1235(s), 1167(w) (C=S), 1140(w), 1034(m), 925(w), 853(s), 750(s), 693(s), 666(w), 606(m), 

572(m), 520(m) cm-1. 

 

4.2.3. Synthesis of [(IMes=S)Cu]Br (12) 

  12 was prepared in the same manner as described for 11 using IMes=S (0.100 g, 0.297 

mmol) and CuBr (0.051 g, 0.356 mmol) in methanol (5 mL). Yield: 84% (based on CuBr). 

M.p.: 220-222 °C (dec.). Elemental analysis calcd (%) for C21H24BrCuN2S (479.93): C, 52.55; 

H, 5.04; N, 5.84; Found: C, 52.54; H, 5.07; N, 5.79. 1H NMR (400 MHz, DMSO-d6): δ = 7.31 

(s, 2H, ImH), 6.97 (s, 4H, CHmeta), 2.22 (s, 6H, CH3para), 1.93 (s, 12H, CH3ortho) ppm. 13C NMR 

(100 MHz, DMSO-d6): δ = 159.87 (C=S), 138.59, 135.02, 133.21, 128.87, 119.70 (ArC), 

20.62 (p-CH3), 17.32 (o-CH3) ppm. FT-IR (neat): ῡ = 3147(w), 3113(w), 3084(w), 2916(m), 

1604(m), 1556(w), 1481(s), 1449(m), 1382(s), 1345(w), 1289(m), 1234(s), 1167(w) (C=S), 

1141(w), 1033(m), 924(w), 885(s), 851(m), 748(s), 693(s), 644(w), 605(m), 573(m), 519(m) 

cm-1. 

 

4.2.4. Synthesis of [(IMes=S)Cu]I (13) 

 A mixture of IMes=S (0.100 g, 0.297 mmol) and CuI (0.068 g, 0.356 mmol) in 

methanol (5 mL) was refluxed at 80 oC for 12 h. The obtained white precipitate was dissolved 

in hot acetonitrile and allowed to crystallize at ambient condition in 2 days. Yield: 71% (based 

on CuI). M.p.: 232-234 °C (melting). Elemental analysis calcd (%) for C21H24CuIN2S 

(526.95): C, 47.87; H, 4.59; N, 5.32; Found: C, 47.84; H, 4.57; N, 5.29. 1H NMR (400 MHz, 

DMSO-d6): δ = 7.61 (s, 2H, ImH), 7.08 (s, 4H, CHmeta), 2.28 (s, 6H, CH3para), 1.98 (s, 12H, 

CH3ortho) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 156.55 (C=S), 139.76, 134.78, 132.17, 

129.50, 121.27 (ArC), 20.69 (p-CH3), 17.23 (o-CH3) ppm. FT-IR (neat): ῡ = 3145(w), 

3111(w), 3084(w), 2913(m), 1597(m), 1556(w), 1478(s), 1445(m), 1380(s), 1286(m), 

1230(s), 1165(w) (C=S), 1138(w), 1028(m), 921(w), 848(s), 743(s), 690(s), 604(m), 570(m) 

cm-1. 

 

4.2.5. Synthesis of [(IMes=Se)Cu]Br (14) 

 14 was prepared in the same manner as described for 11 using IMes=Se (0.100 g, 

0.260 mmol) and CuBr (0.048 g, 0.312 mmol) in methanol (5 mL). Yield: 87% (based on 

CuBr). M.p.: 227-229 °C (melting). Elemental analysis calcd (%) for C21H24BrCuN2Se 

(526.85): C, 47.88; H, 4.59; N, 5.32; Found: C, 47.91; H, 4.57; N, 5.29. 1H NMR (400 MHz, 

DMSO-d6): δ = 7.73 (s, 2H, ImH), 7.02 (s, 4H, CHmeta), 2.25 (s, 6H, CH3para), 1.95 (s, 12H, 

CH3ortho) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 148.22 (C=Se), 139.24, 134.58, 133.32, 
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129.13, 123.30 (ArC), 20.68 (p-CH3), 17.57 (o-CH3) ppm. FT-IR (neat): ῡ = 3145(w), 

3108(w), 3078(w), 2916(m), 1605(m), 1553(w), 1480(s), 1447(m), 1371(s), 1337(w), 

1291(m), 1232(s), 1166(w) (C=Se), 1125(w), 1032(m), 925(w), 851(s), 752(s), 688(s), 

594(w), 568(s), 520(m) cm-1. 

 

4.2.6. Synthesis of [(IMes=Se)Cu]I (15) 

 15 was prepared in the same manner as described for 13 using IMes=Se (0.100 g, 

0.260 mmol) and CuI (0.060 g, 0.312 mmol) in methanol (5 mL). Yield: 77% (based on CuI). 

M.p.: 224-226 °C (melting). Elemental analysis calcd (%) for C21H24CuIN2Se (573.85): C, 

43.95; H, 4.22; N, 4.88; Found: C, 43.91; H, 4.17; N, 4.89. 1H NMR (400 MHz, DMSO-d6): 

δ = 7.79 (s, 2H, ImH), 7.08 (s, 4H, CHmeta), 2.30 (s, 6H, CH3para), 1.97 (s, 12H, CH3ortho) ppm. 

13C NMR (100 MHz, DMSO-d6): δ = 149.14 (C=Se), 139.85, 134.57, 132.94, 129.53, 123.31 

(ArC), 20.77 (p-CH3), 17.38 (o-CH3) ppm. FT-IR (neat): ῡ = 3143(w), 3107(w), 3079(w), 

2913(m), 1599(m), 1551(m), 1477(s), 1443(m), 1369(s), 1334(w), 1289(m), 1228(s), 

1163(w) (C=Se), 1123(m), 1026(m), 922(w), 849(s), 746(s), 684(s), 599(w), 566(m) cm-1. 

 

4.2.7. Synthesis of [(IMes=Se)2Cu][CuCl2] (17) 

 Method 1: 17 can be prepared in the same manner as described for 11 using IMes=Se 

(0.100 g, 0.260 mmol) and CuCl (0.031 g, 0.312 mmol) in methanol (5 mL). Yield: 75% 

(based on CuCl). Method 2: IMes=Se (0.100 g, 0.260 mmol) was treated with excess 

[(IMes)CuCl] (0.16g, 0.426 mmol) in acetone at reflux for overnight yielding the desired 

product 17 as major product. Yield: 65% (based on IMesCuCl). M.p.: 218-220 °C (melting). 

Elemental analysis calcd (%) for C42H48Cl2Cu2N4Se2 (964.79): C, 52.29; H, 5.01; N, 5.81; 

Found: C, 52.30; H, 5.07; N, 5.84. 1H NMR (400 MHz, DMSO-d6): δ = 7.81 (s, 2H, ImH), 

7.07 (s, 4H, CHmeta), 2.28 (s, 6H, CH3para), 1.94 (s, 12H, CH3ortho) ppm. 13C NMR (100 MHz, 

DMSO-d6): δ = 148.59 (C=Se), 140.00, 134.46, 132.76, 129.58, 123.45 (ArC), 20.74 (p-CH3), 

17.21 (o-CH3) ppm. FT-IR (neat): ῡ = 3146(w), 3106(w), 3076(w), 2915(m), 1607(m), 

1553(w), 1482(s), 1448(m), 1371(s), 1338(m), 1292(m), 1233(s), 1165(w) (C=Se), 1125(w), 

1033(s), 925(w), 852(s), 754(s), 688(s), 595(s), 569(s) cm-1. 

 

4.2.8. Synthesis of [(IMes)2Cu][Cl] (18) 

 18 can be prepared as by-product during the synthesis of 17 in method 2. Yield: 30% 

(based on [(IMes)CuCl]. M.p.: 277-279 °C (dec.). Elemental analysis calcd (%) for 

C42H48ClCuN4 (707.85): C, 71.26; H, 6.83; N, 7.91; Found: C, 71.30; H, 6.87; N, 7.94. 1H 

NMR (400 MHz, CDCl3): δ = 7.00 (s, 4H, ImH), 6.89 (s, 8H, CHmeta), 2.41 (s, 12H, CH3para), 
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1.66 (s, 24H, CH3ortho) ppm. 13C NMR (100 MHz, CDCl3): δ = 177.35 (C‒Cu), 139.39, 134.53, 

134.45, 129.16, 122.78 (ArC), 21.18 (p-CH3), 16.95 (o-CH3) ppm. FT-IR (neat): ῡ = 2912(m), 

1604(m), 1542(w), 1483(s), 1400(m), 1266(s), 1230(s), 1163(m), 1069(m), 1036(m), 929(m), 

857(s), 733(s), 641(m), 573(m) cm-1. 

 

4.2.9. Synthesis of [(IMes=Se)2Cu][PF6] (19) 

 Method 1: 19 can be prepared in the same manner as described for 11 using IMes=Se 

(0.100 g, 0.260 mmol) and [Cu(CH3CN)4]PF6 (0.097 g, 0.260 mmol) in methanol (5 mL). 

Yield: 80% (based on [Cu(CH3CN)4]PF6). Method 2: IMes=Se (0.100 g, 0.260 mmol) was 

treated with [(IMes)CuCl] (0.208g, 0.520 mmol) and an excess of KPF6 (0.239 g, 1.300 

mmol) in acetone at reflux for overnight yielding the desired product 19 as major product. 

Yield: 68% (based on [(IMes)CuCl]. M.p.: 259 °C (dec.). Elemental analysis calcd (%) for 

C42H48CuF6N4PSe2 (975.28): C, 51.72; H, 4.96; N, 5.74; Found: C, 51.73; H, 4.97; N, 5.80. 

1H NMR (400 MHz, CDCl3): δ = 7.36 (s, 4H, ImH), 7.04 (s, 8H, CHmeta), 2.37 (s, 12H, 

CH3para), 2.10 (s, 24H, CH3ortho) ppm. 13C NMR (100 MHz, CDCl3): δ = 142.28 (C=Se), 

140.96, 134.70, 132.53, 129.88, 124.58 (ArC), 21.35 (p-CH3), 18.47 (o-CH3) ppm. 31P NMR 

(CDCl3, 161 MHz): -157.59 to -131.22 (sept, PF6) ppm. 19F NMR (CDCl3, 376 MHz): -74.72 

to -72.83 (d, PF6) ppm.  FT-IR (neat): ῡ = 1484(m), 1435(m), 1264(s), 1185(m) (C=Se), 

1121(m), 834(s) (P‒Fstretching), 731(s), 697(s), 549(s) cm-1. 

 

4.2.10. Synthesis of [(IMes)2Cu][PF6] (20) 

 20 can be prepared as by-product during the synthesis of 19 and also 21 by method 

2. Yield: 28% along with 19 and 25% along with 21 (based on [(IMes)CuCl]. M.p.: 238-240 

°C (melting). Elemental analysis calcd (%) for C42H48Cu2F6N4P (817.36): C, 61.72; H, 5.92; 

N, 6.85; Found: C, 61.73; H, 5.97; N, 6.84. 1H NMR (400 MHz, CDCl3): δ = 7.01 (s, 4H, 

ImH), 6.89 (s, 8H, CHmeta), 2.41 (s, 12H, CH3para), 1.66 (s, 24H, CH3ortho) ppm. 13C NMR 

(100 MHz, CDCl3): δ = 177.35 (C‒Cu), 139.40, 134.52, 134.45, 129.16, 122.78 (ArC), 21.18 

(p-CH3), 16.96 (o-CH3) ppm. 31P NMR (CDCl3, 161 MHz): 157.59 to -131.21 (sept, PF6) 

ppm. 19F NMR (CDCl3, 376 MHz): 74.73 to -72.84 (d, PF6) ppm. FT-IR (neat): ῡ = 2920(w), 

1608(w), 1482(s), 1454(m), 1372(m), 1341(w), 1265(s), 1234(m), 1035(m), 840(s) (P‒

Fstretching), 734(s), 700(m), 557(s) cm-1. 

 

4.2.11. Synthesis of [(IPr=Se)2Cu][PF6] (21) 

 Method 1: 21 can be prepared in the same manner as described for 11 using IPr=Se 

(0.10 g, 0.213 mmol) and [Cu(CH3CN)4]PF6 (0.040 g, 0.106 mmol) in methanol (5 mL). 



122 

Yield: 78% (based on [Cu(CH3CN)4]PF6). Method 2: IPr=Se (0.100 g, 0.213 mmol) was 

treated with [(IMes)CuCl] (0.160g, 0.426 mmol) and an excess of KPF6 (0.19 g, 1.065 mmol) 

in acetone at reflux for overnight yielding the desired product 21 as major product. Yield: 

70% (based on [(IMes)CuCl].  M.p.: 268-270 °C (dec.). Elemental analysis calcd (%) for 

C54H72CuF6N4PSe2 (1143.60): C, 56.71; H, 6.35; N, 4.90; Found: C, 56.70; H, 6.37; N, 4.89. 

1H NMR (400 MHz, CDCl3): δ = 7.43–7.39 (t, 2H, CHpara), 7.23–7.22 (d, 4H, CHmeta), 7.20 

(s, 2H, ImH), 2.34–2.28 (sept, 4H, iPrCH), 1.20–1.19, 1.12–1.10 (d, 24H, CH3) ppm. 13C 

NMR (100 MHz, CDCl3): δ = 155.76 (C=Se), 145.79 (ImC), 133.11, 131.11, 124.61, 123.37 

(ArC), 29.22 (iPrCH), 24.95, 23.44 (CH3) ppm. 31P NMR (CDCl3, 161 MHz): -157.59 to -

131.21 (sept, PF6) ppm. 19F NMR (CDCl3, 376 MHz): -74.82 to -72.82 (d, PF6) ppm. FT-IR 

(neat): ῡ = 2962(m), 2867(m), 1558(w), 1463(s), 1420(m), 1345(s), 1265(m), 1212(w), 

1181(m) (C-Se), 1120(w), 1060(m), 937(m), 839(s) (P‒Fstretching), 803(w), 737(s), 555(s) cm-

1. 

 

4.2.12. Synthesis of [(PPh3)4Cu4I4] (22) 

 CuI (0.50g, 0.263 mmol) and excess of PPh3 (1.38g, 0.526 mmol) was mixed together 

in acetonitrile (20 mL) and was allowed to stir at 85 oC for overnight yielding a colourless 

clear solution which upon cooling to room temperature produces white crystalline solid of 22. 

Yield: 82% (based on CuI).  M.p.: 221-223 °C (melting). Elemental analysis calcd (%) for 

C72H60Cu4I4P4 (1810.94): C, 47.75; H, 3.34; Found: C, 47.80; H, 3.37. 1H NMR (400 MHz, 

CDCl3): δ = 7.30-7.25 (m, 3H, ArH), 7.17-7.13 (m, 2H, CHortho) ppm. 13C NMR (100 MHz, 

CDCl3): δ = 134.09, 133.94, 133.79, 133.58, 129.46, 128.47, 128.38 (ArC) ppm. 31P NMR 

(CDCl3, 161 MHz): 4.96 (s, PPh3) ppm. FT-IR (neat): ῡ = 1677(w), 1562(w), 1475(m), 

1429(s), 1212(w), 1178(m), 1093(m), 1025(w), 995(w), 744(s), 691(s), 521(m) cm-1. 

 

4.2.13. Synthesis of [(Ebis)CuI]n (23) 

Method 1: 22 (0.26g, 0.143 mmol) and Ebis (3,3'-(ethane-1,2-diyl)bis(1-methyl-1H-

imidazole-2(3H)-selenone)) (0.10g, 0.287 mmol) were mixed together and evacuated for 10 

minutes in high vacuo followed by the addition of acetonitrile (5 mL), and was allowed to stir 

at 85 oC for 12 h, yielding a clear colourless solution, which upon cooling to ambient 

temperature produced colourless crystalline solid of 23. Yield: 75% (based on 22).  Method 

2: CuI (0.05 g, 0.299 mmol) and PPh3 (0.15 g, 0.599 mmol) were mixed together in 

acetonitrile (5 mL), and was allowed to stir at 85 oC for 3 h. To the obtained clear solution 

Ebis (0.10 g, 0.299 mmol) was added and was further stirred at reflux for 12 h to obtain a 

clear solution, which on further cooling to room temperature yields compound 23. M.p.: 220-
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222 °C (dec.). Elemental analysis calcd (%) for C10H14Cu2I2N4Se2 (729.06): C, 16.47; H, 1.94; 

N, 7.68; Found: C, 16.43; H, 1.97; N, 7.64. 1H NMR (400 MHz, CDCl3): δ = 6.80-6.79 (d, 

2H, ImH), 6.76 (d, 2H, ImH), 4.57 (s, 4H, CH2‒CH2), 3.66 (s, 6H, CH3) ppm. 13C NMR (100 

MHz, CDCl3): δ = 155.73 (C=Se), 119.95, 119.75 (ImC), 47.22 (CH2‒CH2), 37091 (CH3) 

ppm. FT-IR (neat): ῡ = 2932(m), 1679(s), 1561(m), 1479(m), 1436(m), 1405(m), 1244(m), 

1180(m) (C=Se), 1115(s), 1046(m), 924(w), 808(m), 751(w), 717(s), 690(s), 533(s) cm-1. 

 

4.2.14. Synthesis of {[(Ebpis)1.5Cu][BF4]}n (24) 

Method 1: 24 was synthesized in the same method as described for 23 using 22 

(0.22g, 0.123 mmol) and Ebpis (3,3'-(ethane-1,2-diyl)bis(1-isopropyl-1H-imidazole-2(3H)-

selenone)) (0.10, 0.247 mmol). The successive addition of excess NH4BF4 (0.13 g, 1.235 

mmol) to the reaction mixture after 12 h, produced a clear solution. The reaction mixture was 

filtered and concentrated in vacuo to isolate 24 in very good yield. Yield: 78% (based on 22).  

Method 2: CuI (0.05 g, 0.299 mmol) and PPh3 (0.15 g, 0.599 mmol) were mixed together in 

acetonitrile (5 mL), and was allowed to stir at 85 oC for 3 h. To the obtained clear solution 

Ebpis (0.12 g, 0.299 mmol) was added and was further stirred at reflux for 12h to obtain an 

orange precipitate, then NH4BF4 (0.06 g, 0.599 mmol) which on further cooling to room 

temperature yields compound 24. M.p.: 229-231 °C (dec.). Elemental analysis calcd (%) for 

C21H33B1Cu1F4N6Se3 (756.75): C, 33.33; H, 4.40; N, 11.11; Found: C, 33.30; H, 4.37; N, 

11.14. 1H NMR (400 MHz, CDCl3): δ = 6.79-6.76 (m, 4H, ImH), 5.26-5.07 (m, 2H, N‒CH), 

4.60 (s, 4H, CH2‒CH2), 1.34-1.32 (d, 12H, CH3) ppm. 13C NMR (100 MHz, CDCl3): δ = 

154.13 (C=Se), 120.38, 114.77, 50.96, 46.71, 21.95 (CH3) ppm. 11B{1H} NMR (128.4 MHz, 

CDCl3): δ = -0.99 ppm. 19F{1H} NMR (376.4 MHz, CDCl3): δ = -154.02 ppm. FT-IR (neat): 

ῡ = 3170(w), 3141(w), 2977(w), 1567(m), 1453(m), 1418(s), 1325(s), 1218(m), 1175(m) 

(C=Se), 1135(m), 1036(s) (B‒Fstretching), 741(s), 684(s), 640(m), 518(m) cm-1. 

 

4.2.15. General synthetic procedure for the [3+2] cycloaddition of azides and terminal 

alkynes 

Azide (1.0 mmol), alkyne (1.2 mmol), catalyst (1 mol%) and water (1 mL) were loaded. The 

solution was stirred at room temperature for 1 h and the conversion was noticed by TLC to 

ensure the completion of reaction. After the complete conversion water (5 mL) was added 

followed by the addition of ethyl acetate (5 mL). The reaction mixture was allowed to stir at 

room temperature for further 5-10 minutes. After which the ethyl acetate layer was collected 

and the volatiles were evaporated to obtain the solid compound. The acquired solids were 
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further washed with n-hexane and dried under vacuo to yield the desired product. The isolated 

1,2,3-triazole products in all the experiments were estimated to be extremely pure. 

4.2.16. General procedure for the synthesis of C‒Si bonding 

Catalyst (1 mol%) was placed in an oven dried Schlenk flask and was evacuated for 5 minutes 

then refilled with an argon gas. CH3CN (1 mL) was added to the flask under argon, followed 

by terminal alkyne (1.0 mmol), hydrosilane (1.2 mmol) and pyridine (0.2 mmol). The 

resulting mixture was allowed to stir at 100 oC for 12 h. After the completion of the reaction, 

a saturated aqueous NH4Cl solution (10 mL) was added to the mixture, and the aqueous phase 

was extracted with ethyl acetate (5 mL x 3). The combined organic layer was washed with 

brine (10 mL) and then dried over anhydrous sodium sulfate. Filtration and evaporation of the 

solvent followed by column chromatography on silica gel gave the corresponding product. 

  

4.3. Result and discussion 

The N-heterocyclic thione and selone ligands such as IMes=S, IMes=Se, IPr=Se, Ebis and 

Ebpis were synthesized in fairly good yields from their corresponding imidazolium salts using 

elemental chalcogen powders in the presence of potassium carbonate [7k-l]. These 

organochalcogen ligands were demonstrated as promising ligands to investigate the 

coordination abilities with copper metal. The copper(I) complexes isolated herein are found 

to be organized in three different categories such as neutral monomeric copper(I) complexes 

[12], cationic monomeric copper(I) complexes, neutral 2D copper(I) sheet and cationic 2D 

copper(I) sheet. 

4.3.1. Synthesis and characterization of 11-15 

Neutral mononuclear copper(I) complexes, 11-15 were synthesized by treating copper(I) 

halides with one equivalent of IMes=E in methanol (Scheme 4.1). The monomeric copper(I) 

complexes 11-15 were isolated in excellent yield. The crystalline solids 11-15 are soluble 

only in hot acetonitrile and in DMSO. The formation of these compounds were established 

by elemental analysis, FT-IR, multi nuclear NMR spectroscopy, UV-vis and single crystal X-

ray diffraction techniques. 

In 1H NMR, the aryl hydrogens are slightly downfield shifted upon complexation, while the 

imidazole hydrogens are largely downfield shifted due to hydrogen bonding interactions. The 

C=E signal in 13C NMR is up-field shifted by 5-10 ppm due to the decrease in π-acceptance 

nature of carbene carbon upon complexation. FT-IR spectra of molecules 11-15 show the 

existence of C=E stretching frequency at 1163-1167 cm-1, which is in agreement with the 

complex formation. 
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Scheme 4.1: Synthesis of 11-15 

 

4.3.2. Single crystal X-ray structures of 11-15 

The solid state structures of 11-15 were unambiguously determined by single crystal x-ray 

diffraction technique (Figure 4.1). 11-15 crystallized in the monoclinic space group, P21/c. 

The crystallographic data for 11-14 are listed out in table 4.1, while 15 is listed in table 4.2 

and the important bond parameters are assembled in table 4.4. The molecular structures of 

11-15 are isostructural and are neutral monomeric copper(I) chalcogenenone complexes with 

a copper:chalcogen ratio of 1:1. The copper(I) centre in 11-15 is two coordinated with one 

imidazole thione/selone and one halogen atom. Interestingly, the molecular structures of 11-

15 are comparable with NHC analogues of [(IMes)CuX]. 

 

 

Figure 4.1 Molecular structures of 11-15 
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Upon coordination, the C=S bond length (1.699(3) Å for 11, 1.699(3) Å for 12, 

1.699(8) Å for 13) and C=Se bond length (1.855(5) Å for 14, 1.842(9) Å for 15) are marginally 

increased related to their corresponding ligands (IMes=S (1.675(18) Å) and IMes=Se 

(1.830(6) Å)) [5k]. The E‒Cu‒X bond angle in molecules 11-15 lies between 159.60(4)-

165.94(6)o, suggesting the quasi-linear arrangement around metal centre. 

 

4.3.3. Molecular packing and Hydrogen bonding interactions in 11-15 

Molecules 11-15 show quite a strong C–H···Cl, and also moderately strong C–H···S and C–

H···Se hydrogen bonding interactions in their solid state structures as evidenced by single 

crystal X-ray diffraction analysis (Chart 4.3). Surprisingly, the molecular packing of 11 is not 

comparable with 12-15. The hydrogen bonded polymeric chain through C(3)–H(3)···Cl 

(2.8116(2) Å, 164.549(3)o) interactions are observed in 11, and are marginally stronger than 

the C–H···Cl interactions reported for [(IPr=S)BiCl3]·CHCl3 (C(2)–H(2)···Cl(1); 2.871 Å, 

145.32o) [5k]. 

 

 

Chart 4.3: The representation of H(3)···Cl(1) bond distances in 11 and  H(2)···E(1) bond 

distances and C(2)‒H(2)‒E(1) bond angles in molecules 12-15 

 

The solid state structure elucidated from single crystal X-ray diffraction technique 

revealed the oppositely arranged molecular layers in molecule 11. While, all the other 

molecules (12-15) are arranged in AA’AA’AA’AA’AA’ (Figure 4.2-4.3) fashion in their 

solid states structures. In addition to this, an unusual C–H···S bonding is noticed in 12 
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(3.101(1) Å, 134.84(1)o) and 13 (3.044(3) Å, 136.51(7)o), while the very rare C–H···Se 

bonding observed in 14 (3.158(1) Å, 132.74(3)o) and 15 (3.1241(1) Å, 132.134(3)o) [5k]. The 

observed C–H···S interactions in 12 and 13 are quite weak compared to the interactions 

reported for [(IPr]S)BiCl3]·CHCl3 (H···S; 2.797 Å, 175.23o) [5k], while C–H···S interactions 

in 12 and 13 are stronger than the interactions reported for N,N’-dimethylthioformamide 

(H···S;3.781(7)  Å, 175.4(7)o) [13].  

- 

 

 

Figure 4.2: (I) Molecular packing arrangement of 11 with extended C–H···Cl 

hydrogen bonding interactions. Non-interacting hydrogen atoms have been omitted 

for the clarity. D···A distances [Å]: H(3)···Cl(1), 2.8116(2); C–D···A angles [o]: 
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C(3)–H(3)···Cl(1), 164.549(3). (II) Molecular packing arrangement of 12 with 

extended C–H···S hydrogen bonding interactions. Non-interacting hydrogen atoms 

have been omitted for the clarity. D···A distances [Å]: H(2)···S(1), 3.1008(1); C–

D···A angles [o]: C(2)–H(2)···S(1), 134.838(1); C(1)–S(1)···H(2), 106.654(1). (III) 

Molecular packing arrangement of 13 with extended C–H···S hydrogen bonding 

interactions. Non-interacting hydrogen atoms have been omitted for the clarity. 

D···A distances [Å]: H(2)···S(1), 3.0441(3); C–D···A angles [o]: C(2)–H(2)···S(1), 

136.506(7); C(1)–S(1)···H(2), 106.816(4) 

Besides, the imidazole protons signal appeared to be down field shifted (about 0.3-0.7 

ppm) for molecules 11-15 due to the existence of hydrogen bonding (Figure 4.4). 

Moreover, the C(1)‒E(1)‒Cu(1) bond angles are almost comparable. The existing 

E···H bond distances (3.0441(3)-3.1576(1) Å) and bond angles (132.134(3)-

136.506(7)o) additionally supports the moderately strong hydrogen bonding (Chart 

4.3) [7k,14]. 
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Figure 4.3: (I) Molecular packing arrangement of 14 with extended C–H···Se hydrogen 

bonding interactions. Non-interacting hydrogen atoms have been omitted for the clarity. 

D···A distances [Å]: H(2)···Se(1), 3.1576(1); C–D···A angles [o]: C(2)–H(2)···Se(1), 

132.740(3); C(1)–Se(1)···H(2), 105.844(2). (II) Molecular packing arrangement of 15 with 

extended C–H···Se hydrogen bonding interactions. Non-interacting hydrogen atoms have 

been omitted for the clarity. D···A distances [Å]: H(2)···Se(1), 3.1241(1); C–D···A angles 

[o]: C(2)–H(2)···Se(1), 132.134(3); C(1)–Se(1)···H(2), 104.541(1) 

 

 

 

Figure 4.4: Section of 1H NMR spectra (400 MHz, DMSO-d6) displays the aryl region 

among 11-15 
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Table 4.1: Structural parameters of compounds 11-14. 

 11 12 13 14 

Empirical formula C21H31N2S

CuCl 

C21H24N2S

CuBr 

C21H24N2Se

CuBr 

C21H24N2S

CuI 

Formula weight 435.50 479.93 526.85 526.95 

Temperature (K) 298 298 298 298 

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic 

Space group P21/c P21/c P21/c P21/c 

a/Å 11.062(5) 11.203(4) 11.204(2) 11.502(12) 

b/Å 15.367(6) 15.375(6) 15.341(2) 15.412(14) 

c/Å 13.707(6) 13.620(6) 13.774(11) 13.615(16) 

α/° 90 90 90 90 

β/° 113.378(5) 112.795(5) 112.61(15) 112.63(13) 

γ/° 90 90 90 90 

Volume (Å3) 2139.1(18) 2163.1(14) 2185.3(6) 2227.9(5) 

Z 4 4 4 4 

ρcalc/mg mm-3 1.352 1.474 1.601 1.570 

Absorption coefficient 

(µ/mm-1) 

3.540 4.529 5.495 13.179 

F(000) 900.7 976.0 1036.0 1042.9 

Reflections collected 5620 8986 5465 8950 

Rint 0.0214 0.0242 0.0206 0.0442 

GOF on F2 1.062 1.054 1.017 1.063 

R1 (I>2ϭ(I)) 0.0506 0.0458 0.0556 0.0850 

wR2 (I>2ϭ(I)) 0.1450 0.1207 0.2110 0.3193 

R1 values (all data) 0.0656 0.0546 0.0674 0.1158 

R2 values (all data) 0.1700 0.1309 0.2111 0.3194 

 

4.3.4. Synthesis and characterization of 17-21 

The cationic copper(I) complexes (17-21) were isolated  in very good yields by treating 

IMes=Se (for 17 and 19) and IPr=Se (for 21) with [Cu(CH3CN)4]PF6 in methanol (Scheme 

4.2-4.3). Interestingly, these complexes can also be isolated in very good yield along with 

cationic NHC-copper(I) complexes 18 and 20 by ligand transfer method from [(IMes)CuCl] 

(16) [15]. The ligand exchange reaction signifies the improved donor abilities of ImC over 

NHC ligands to stabilize metal center [16]. Compounds 17, 19 and 21 were crystallized at 

ambient temperature. The compounds 18 and 20 were separated by hand picking method from 

the mixture and purified by recrystallization from saturated dichloromethane solutions. The 
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formation of 17, 19 and 21 were established by elemental analysis, FT-IR, multi nuclear NMR 

spectroscopy and single crystal X-ray diffraction techniques. The PF6 counter anion in 

molecules, 19 (834 cm-1), 20 (840 cm-1) and 21 (839 cm-1) were confirmed by IR 

spectroscopy. The 31P NMR display septet for the presence of PF6 (-131.21 to -157.59 ppm) 

ion and the 19F NMR show doublet for PF6 (-72.82 to -74.82 ppm) ion. The C=Se is shifted 

up field for 16 (178.98 ppm), for 17 (148.59 ppm), for 19 (142.28 ppm) and for 21 (154.21 

ppm) respectively. Molecules 17 and 19 display (10-15 ppm) up field shift after complexation, 

compared to their corresponding ligand (IMes=Se, 157.49 ppm). 21 shows up field shift 

around 8 ppm, compared to its ligand (IPr=Se, 162.14 ppm), suggesting a strong –donor 

nature of NHC=E over NHC [7d,k-l]. 

 

 

Scheme 4.2: Synthesis of 17-20 
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Scheme 4.3: Synthesis of 21 

 

4.3.5. Single crystal X-ray structure of 17-21 

The solid state structures of 17, 19 and 21 were confirmed by single crystal X-ray diffraction 

technique (Figure 4.5). 17, 19 and 21 crystallized in the monoclinic space group, P21/n (for 

17 and 19), C2/c (for 21). The crystallographic data for 17, 19 and 20 are fitted out in table 

4.2 and the important bond parameters are listed table 4.4. The molecular structures of 17, 19 

and 21 are cationic homoleptic mononuclear copper(I) selones. The copper(I) centre in 17, 19 

and 21 are ceremoniously two coordinated with two imidazoline-2-selones and its valence 

satisfied with one counter anion, particularly, [CuCl2]- for 17, [PF6]- ion for 19 and 21. The 

cation salt 17 represent the first copper‒ImC salt with loosely bound [CuCl2]- salt. 

The C=Se bond lengths in 17 (1.856(3) Å), 19 (1.853(3) Å) and 21 (1.849(3) Å) are 

considerably longer than that of corresponding ligands [IMes=Se (1.830(6) Å) and IPr=Se 

(1.822(4) Å)] [7d,k-l]. The Se‒Cu bond distances are almost similar and the Se‒Cu‒Se bond 

angels found in 17, 19 and 21 are perfectly linear as reported for linear copper(I) 

chalcogenones by our group [7d]. The molecules 18 and 20 produced poor quality crystals, 

however, the bonding modes of NHC to the copper(I) metal centre is clearly established by 

single crystal X-ray measurement. 
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Figure 4.5: (I) Molecular structure of 17. Hydrogen atoms and dichlorocuprate counter ions 

have been omitted for clarity; (II) Molecular structure of 19. Hydrogen atoms and 

hexafluoro phosphate counter anions have been omitted for clarity; (III) Molecular structure 

of 21. Hydrogen atoms and hexafluoro phosphate counter anions have been omitted for 

clarity 



134 

 

Interestingly, the presence of dichlorocuprate counter ion in 17 is responsible for the 

expected existence of mononuclear complex as shown in scheme 4.4. The NMR studies (1H, 

13C, HMBC and HSQC) on molecule 17 and its comparative spectral changes with 11 suggests 

that the existence of mononuclear complex without any counter ion (Figures 4.6-4.10). As of 

our knowledge, this is the first example of imidazolin-2-selone that shows the dynamic 

equilibrium between homoleptic and heteroleptic species. 

 

 

Scheme 4.4: Expected solution state structure of molecule 17 in solution state as suggested 

by NMR studies 

 

 

Figure 4.6: Comparison of 1H NMR between molecules 11 and 17 in DMSO-d6 at 

RT 
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Figure 4.7: HMBC spectrum of (IMes=S)CuCl (11) in DMSO-d6 at RT 

 

Figure 4.8: HSQC spectrum of (IMes=S)CuCl (11) in DMSO-d6 at RT 
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Figure 4.9: HMBC spectrum of [(IMes=Se)2Cu][CuCl2] (17) in DMSO-d6 at RT 

 

Figure 4.10: HSQC spectrum of [(IMes=Se)2Cu][CuCl2] (17) in DMSO-d6 at RT 
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Table 4.2: Structural parameters of compounds 15, 17, 19 and 20. 

 15 17 19 21 

Empirical formula C21H24N2Se

CuI 

C42H48N4Cl2

Cu2Se2 

C42H48N4F6

PCuSe2 

C54H72N4F6

PCuSe2 

Formula weight 573.85 964.79 975.30 1143.63 

Temperature (K) 298 298 298 298 

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic 

Space group P21/c P21/n P21/n C2/c 

a/Å 11.5428(5) 8.3465(2) 8.4401(2) 19.575(8) 

b/Å 15.3915(8) 19.3330(5) 18.3180(4) 16.342(4) 

c/Å 13.7448(7) 13.4761(3) 14.4474(3) 20.431(10) 

α/° 90 90 90 90 

β/° 112.36(5) 96.74(2) 98.02(2) 113.63(5) 

γ/° 90 90 90 90 

Volume (Å3) 2258.3(2) 2159.5(10) 2211.8(9) 5987.8(5) 

Z 4 2 2 4 

ρcalc/mg mm-3 1.6877 1.4836 1.4644 1.2685 

Absorption coefficient 

(µ/mm-1) 

13.981 4.531 3.421 2.601 

F(000) 1110.4 968.2 984.1 2353.1 

Reflections collected 9201 8771 7598 10607 

Rint 0.0314 0.0497 0.0193 0.0223 

GOF on F2 1.021 1.046 1.040 1.045 

R1 (I>2ϭ(I)) 0.0490 0.0463 0.0472 0.0542 

wR2 (I>2ϭ(I)) 0.1503 0.1347 0.1319 0.1516 

R1 values (all data) 0.0623 0.0545 0.0588 0.0665 

R2 values (all data) 0.1504 0.1525 0.1522 0.1697 
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4.3.6. Synthesis of copper(I) coordination polymers 23 and 24 

The 2D copper(I) layer 23 was isolated in good yield by treating [(PPh3)3Cu4I4] with Ebis. 23 

can also be isolated from the direct reaction between CuI, PPh3 and Ebis (Scheme 4.5). The 

two dimensional ionic coordination polymer of 24 was isolated from the one pot reaction 

between CuI, PPh3, Ebpis and NH4BF4 or by treating 22 with Ebpis and NH4BF4 (Scheme 

4.6). These experiments signifies the higher –donor strength of NHC=Se over PPh3 [16]. 

The formation of 23 and 24 were established by elemental analysis, FT-IR, multi nuclear 

NMR spectroscopy and single crystal X-ray diffraction techniques. The FT-IR spectrum of 

24 display the existence of BF4 counter ion (B‒Fstrectching, ῡ = 1036 cm-1), and was also 

approved by a signal at -0.99 ppm in 11B NMR and a signal at -154.02 ppm in 19F NMR. The 

carbene carbon signal in 23 (155.73 ppm) and 24 (154.13 ppm) are in the up field shifted as 

expected after the coordination to copper [7d]. 

 

 

Scheme 4.5: Synthesis of 22 and 23 
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Scheme 4.6: Synthesis of 24 

 

4.3.7. Single crystal X-ray structures of 22-24 

The solid state structures of 22-24 were determined by single crystal X-ray diffraction 

techinique (Figure 4.11 and 4.13). Molecule 22 crystallized in monoclinic space group, C2/c, 

while, 23 crystallized in the monoclinic space group, P21/c and 24 crystallized in tetragonal 

space group, P41212. The crystallographic data for 22, 23 and 24 are listed out in table 4.3 and 

the important bond parameters are listed in table 4.4.  

The copper(I) centre in 22 shows two types of coordination environments such as tetra and 

penta coordination with µ2 and µ3 bridging iodides. The coordination environment of penta 

coordinated copper in 22 is fulfilled by three iodine atoms, one phosphine and one copper 

atom. The coordination environment of tetra coordinated copper is fulfilled by two iodine, 

one phosphorus and one copper atoms. The µ3 bridged iodine and copper distances are 

established to be longer than the distance noted between µ2 bridged iodine and copper centres. 

The µ3 bonded Cu‒I distances (2.713(14) Å) are found to be slightly longer than the µ2 bonded 

Cu‒I distances (2.645(14) Å).The Cu‒P bond lengths [Cu(1)‒P(1), 2.248(2) Å, Cu(2)‒P(2) 

Å, 2.227(2)] are comparable. The Cu‒Cu distances in molecule 22 found to be 2.843(19) Å, 

which is comparable with the sum of van der Walls radii for copper (2.8 Å) [17]. 
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Figure 4.11: Solid state structure of 22. Hydrogen atoms and dichlorocuprate counter ions 

have been omitted for clarity. Selected bond lengths (Å) and angles (o): Cu(1)‒P(1), 

2.248(2), Cu(2)‒P(2), 2.227(2), Cu(1)‒Cu(2), 2.843(19), Cu(1)‒I(1), 2.713(14), Cu(1)‒I(2), 

2.645(14), Cu(2’)‒I(1), 2.590(14), Cu(2)‒I(2), 2.533(14), Cu(1)‒I(1)‒Cu(2’), 105.86(4), 

Cu(1)‒I(2)‒Cu(2), 66.57(4), Cu(1’)‒I(2)‒Cu(2’), 64.72(2) 

 

The molecule 23 is a two dimensional sheet consists of Cu2I2 core. Each Cu2I2 core 

is further connected by Ebis ligands to form an interesting 2D layer of 23 (Figure 4.12-4.13). 

The copper(I) centre in 23 adopts tetrahedral geometry (106.384(0)o-113.202(1)o) by two 

selone units and with two iodides. The bridging Cu‒I distances (2.650(12) Å to 2.660(13) Å) 

are in the expected range. The Se‒Cu distance is (2.553(14) Å) considerably longer than that 

of 14, 15, 17, 19, 20 and 24. This is a rare structural evidence for the µ2 bridging mode of bis-

imidazolin-2-chalcogenone ligands [6d,e,17b]. 

The molecule 24 exists as two dimensional sheet through tricoordinated homoleptic copper 

selenide (114.60(4)o to 126.86(4)o). The geometry of copper(I) centre in 24 can be described 

as trigonal planar. The coordination environment around copper(I) is satisfied by µ3 bridging 

Ebpis ligands. The Se‒Cu distances in 24 are slightly elongated (2.323(10) Å-2.336(9) Å) due 

to the formation of extended coordination (Figure 4.12). 
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Figure 4.12: (I) Solid state structure of 23. Hydrogen atoms have been omitted for clarity; 

(II) Solid state structure of 24. Hydrogen atoms and tetrafluoroborate counter ions have 

been omitted for clarity 
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Figure 4.13: Packing arrangement of molecule 23 
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Table 4.3: Structural parameters of compounds 22, 23-24. 

 22 23 24 

Empirical formula C74H63NP4Cu4I4 C5H7CuIN2Se C21H33N6BF4CuSe3 

Formula weight 1887.03 364.53 756.78 

Temperature (K) 298 298 298 

Crystal system Monoclinic Monoclinic Tetragonal 

Space group C2/c P21/c P41212 

a/Å 26.6333(12) 9.8486(4) 16.4174(2) 

b/Å 16.1396(6) 10.7720(3) 16.4174(2) 

c/Å 18.2784(8) 8.0970(3) 22.1831(4) 

α/° 90 90 90 

β/° 110.048(5) 103.735(4) 90 

γ/° 90 90 90 

Volume (Å3) 7380.9(6) 834.44(5) 5979.02(16) 

Z 4 4 8 

ρcalc/mg mm-3 1.6980 2.9015 1.6813 

Absorption coefficient 

(µ/mm-1) 

15.579 10.604 5.613 

F(000) 3650.2 667.7 2955.9 

Reflections collected 13446 3108 12308 

Rint 0.0691 0.0326 0.0230 

GOF on F2 1.027 1.007 1.047 

R1 (I>2ϭ(I)) 0.0790 0.0443 0.0395 

wR2 (I>2ϭ(I)) 0.2104 0.1237 0.1025 

R1 values (all data) 0.0917 0.0572 0.0478 

R2 values (all data) 0.2419 0.1395 0.1121 
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Table 4.4: Key bond angles and bond distances in molecules 11-24. 

 C=E (Å) E‒Cu (Å) 13C (C=E) 13C (C‒M) NC(Se)N (o) E‒Cu‒X (o) 

11a 1.699(3) 2.129(11) 155.6 - 109.2(3) 165.94(6) 

12a 1.699(3) 2.135(9) 159.87  - 106.4(2) 163.97(4) 

13a 1.699(8) 2.142(3) 156.55 - 105.4(7) 160.72(10) 

14a 1.855(5) 2.241(11) 148.21 - 106.6(5) 163.34(6) 

15a 1.842(4) 2.252(9) 149.14 - 105.9(4) 159.60(4) 

      E‒Cu‒E (o) 

16b - - - 177.66 105.1(1) - 

17a 1.856(3) 2.253(3) 148.59 - 106.1(3) 180.0 

18b - - - 177.35 100.6(19), 

105.4(17) 

180.0 

19b 1.853(3) 2.252(3) 142.28 - 106.0(3) 180.0 

20b - - - 177.35 93.5(16), 

102.4(13) 

179.1(9) 

21b 1.849(3) 2.267(3) 154.21 - 105.7(2) 180.0 

23b 1.867(7) 2.553(14) 155.73 - 106.8(6) 160.72(10) 

24b 2.336(9) 2.323(10)-

2.336(9) 

154.13 - 106.0(5), 

106.0(5), 

108.7(12) 

114.60(4)-

126.86(4) 

a [13C] NMR measured in DMSO-d6, b [13C] NMR measured in CDCl3 

 

4.4. UV-vis solid and solution state absorption study of 11–24 

The solution state UV-vis absorption spectra of 11-24 were measured in CH3CN at 25 oC 

(Figure 4.14).  

The solid state UV-visible spectra of 11-24 are broad compared to their solution state 

UV-visible spectra, mainly due to the molecular association in the solid state. The selone 

derivatives (14 and 15) of IMes=E show slight bathochromic shift compared to the thione 

derivatives (11-13). 
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Figure 4.14: (I) Solution UV-vis spectra of complexes 11-15 in acetonitrile at 298 k with 

1.2x10-5 M solutions; (II) Solid state UV-vis spectra of complexes 11-15 at 298 k; (III) 

Solution UV-vis spectra of complexes 16-21 in acetonitrile at 298 k with 1.2x10-5 M 

solutions; (IV) Solid state UV-vis spectra of complexes 16-21 at 298 k; (V) Solution UV-vis 

spectra of complexes 22-24 in acetonitrile at 298 k with 1.2x10-5 M solutions; (VI) Solid 

state UV-vis spectra of complexes 22-24 at 298 k. 

 

Besides, all the complexes show absorption at higher wavelength than corresponding 

ligands IMes=S (243, 273 nm), IMes=Se (246, 290 nm) [7k]. The solution state spectra is 
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almost identical except for 15, which shows slight red shift. Molecules, 18 and 20 shows slight 

red shift for n-π* transitions, while in the solid state π-π* and n-π* transitions are merged 

together to show a broad absorption range to support the molecular association. Upon 

coordination, 17, 19 and 21 depicts about 50 nm shift for n-π* transitions due to the influence 

of selone moiety. Besides, the solid state UV-visible spectra of complexes 22-24 displayed a 

broad signal in the range of 200-400 nm, while the same appears to be distinct signals for π-

π*and n-π* transitions in solution state UV-visible study. The absorption band appeared at 

274 nm (for 23) and 278 nm (for 24) can be assigned to ligand-metal charge transfer. 

 

4.5. Copper catalysts mediated cycloaddition of azides and terminal alkynes 

The application of newly isolated catalysts (11-15, 17, 19 and 21-24 were investigated for the 

click reaction of azides with terminal alkynes [18-21]. Besides, the well-known catalyst, such 

as [(IMes)CuCl] (16) together with its homoleptic NHC derivatives such as [(IMes)2Cu][Cl] 

(18) and [(IMes)2Cu][PF6] (20) were also tested for comparison. Therefore, we have 

demonstrated the click catalysis using ImC supported copper(I) complexes and compared the 

catalytic efficiency with NHC and phosphine supported copper(I) complexesfor the first time. 

To the best of our knowledge, the significance of ancillary ligands such as PPh3, NHC, 

NHC=S and NHC=Se have never been compared in any catalysis [7d-e,6,20]. 

 

 

Scheme 4.7: [3+2] cycloaddition of benzylazide with phenyl acetylene 
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Figure 4.15: Screening of catalysts 11-24 in click catalysis (entries 1-14); Reaction 

conditions; phenyl acetylene (1.2 mmol), benzyl azide (1.0 mmol), catalyst (1 mol%) and 

neat condition at RT, E-entry, Entries: 15; only CuCl, 16; only CuI, 17; IMes=S and CuCl, 

18; IMes.HCl and CuCl, 19; PPh3 and CuI, 20; 0.5 mol% 22 for 4 h, %Y; %-Isolated yield 

by column chromatography 

 

The catalytic reactions were carried out under neat conditions at room temperature 

(Scheme 4.7). Notably, the catalysts 11-16, 18 and 20 (entries 1-6,8,10) gave very good 

conversion (70-92%) within 1 h [19]. Besides, linear copper(I) chalcogenones (17, 19 and 21) 

gave moderate yield (68-76%, entries 7, 9 and 11). Moreover, the coordination polymers (23 

and 24) (68-75%, entries 13-14) are found to be active like linear chalcogenones in this 

catalysis. Despite the fact that the phosphine based copper(I) iodide (22) was found to be 

much more efficient (95%, entry 12) among all the catalysts isolated herein. The catalysts 13, 

16 and 22 were found to be efficient in this catalysis (90-95%, entries 3, 6 and 12) among all 

the isolated catalysts 11-24 (Chart 4.4). Therefore the effect of ligand for this transformation 

has been investigated by carrying out the experiments with only copper(I) chloride (entry 15) 

or copper(I) iodide (entry 16) and noticed a poor yield. The insitu generated catalysts gave 

considerable yields (52-58%, entries 17 and 19). Besides, the IMes.HCl addition to CuCl is 
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also produced a decent yield (45%, entry 18). Therefore, the entries 15-19 employ the 

significance of the presence of ligand for this reaction and distinguishes the prominence of 

well-defined catalyst. However, the decrease in catalyst 22 quantity to 0.5 mol% led to the 

isolation of 90% yield after 4 h (entry 20).Thus the catalysts 13, 16 and 22 seems to be the 

efficient catalysts. 

 

Chart 4.4: Catalysts used for the substrate scope in click catalysis 

 

 

Figure 4.16: Solvent screening in various solvents using catalysts 13 (Black), 16 (Red) and 

22 (Green); Reaction conditions: phenylacetylene (1.2 mmol), benzylazide (1.0 mmol), 

catalyst (1 mol%) and solvent at RT; Entries: 1; in Water, 2; in DMSO:Water, 3; in 

THF:Water, 4; in tBuOH:Water, 5; in tBuOH, 6; in DMSO and 7; in THF; %Y: %-Isolated 

yield by column chromatography 
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In order to investigate the effect of solvent in this reaction, the relatively better 

catalysts (13, 16 and 22) were subjected to click catalysis in various polar solvents as 

described in figure 4.16. Virtually the identical out put was perceived for all three catalysts in 

different solvents. However, water was found to be a better choice (entry 1). Therefore, all 

three catalysts 13, 16 and 22 were examined for the substrate scope in water (Scheme 4.8, 

Chart 4.5). Interestingly, the substantial discrepancies in reactivity have not been observed. 

The catalysts 13, 16 and 22 were remarkably efficient. 

 

 

Scheme 4.8: [3+2] cycloaddition of arylazides with terminal alkynes 
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Chart 4.5: 1,2,3-triazoles isolated by click catalysis by 13, 16 and 22 in water 

The plausible mechanistic pathway through which the thione/selone supported 

copper(I) complex proceeds the click catalysis has been displayed in chart 4.6-4.7 [22]. 

 

Figure 4.17: FT-IR spectral comparison of phenyl acetylene and its mixture with molecule 

13 
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Chart 4.6: Plausible mechanism for huisgen coupling reaction by catalyst 13 

 

The copper(I) catalyst is expected to form an intermediate A by coordinating with 

both terminal alkyne and azide (Chart 4.7). Followed by the successive reproduction of 

catalyst to yield the desired 1,2,3-triazoles. 

 

Chart 4.7: Expected steric hindrance at the metal centre in 13 and 16 

 

It is worth stating that, the steric hindrance in molecules 17-21 and 23-24 plays a 

major influence in constructing the intermediate A, which disfavors the product formation 

compared to catalysts 13 and 16. The reasonably less steric hindrance exists at the metal centre 

in 13 due to the localization of metal centre away from NHC via thione, favours the formation 

of intermediate A in addition to the easy leaving iodine attached to the metal (Chart 4.7). 

Besides, the greater efficiency of 22 is anticipated by the presence of more number of 

electrophilic metal centers, while, 13 and 16 display relatively less activity because of the 

presence of weakly π–accepting ligands attached to the metal. 
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4.6. Copper catalysts mediated C‒Si bond formation reactions 

Alkynylsilane derivatives are the noticeable class of structural motifs in organic synthesis 

as Si-masked synthetic intermediates, particularly for C‒C and C‒X (X = hetero atom) bond 

formation reactions [23]. Cross-dehydrogenative coupling of terminal alkynes and 

hydrosilanes has been studied by using various metal salts such as H2PtCl6/I2, CuCl/TMEDA 

(TMEDA = N,N,N’,N’-tetraethylenediamine), LiAlH4, Zn(SO2CF3)2/pyridine, MgO, and 

KNH2/Al2O3 [24]. However, the metal complexes mediated cross-dehydrogenative coupling 

is limited, the only example known so far is M(ƞ2-Ph2CNPh)(hmpa)3 (M = Yb or Ca, hmpa = 

hexamethylphosphoramide) (Chart 4.8) [25]. 

 

Chart 4.8: Catalysts used for cross-dehydrogenative coupling of alkynes 

 

Initially, the dehydrogenative silylation was examined for suitable reaction 

conditions using phenyl acetylene and triethylsilane (1:1.2 equivalents) in acetonitrile at 100 

oC for 12 h without base (entry 1) with 1 mol% catalyst 13 gave 65% of desired product. 

Interestingly, the addition of catalytic amounts (20 mol%) of organic base such as pyridine 

produced quantitative yield (entry 2). Nevertheless, the catalyst 16 and 22 also conceded the 

desired product in very good yield (entry 13, 14). 

 

Scheme 4.9: Cross-dehydrogenative coupling of terminal alkynes 

 

Consequently, catalyst 13 was utilized for this transformation to find out the suitable 

conditions. The effect of base was investigated by employing the reaction with K2CO3 (entry 

4), KOtBu (entry 5), NEt3 (entry 6) and KOH (entry 7). However, none of them produces the 

quantitative yield (55-78% only). Then the solvent effect on this reaction was studied by using 

CH3OH (entry 8), THF (entry 9), 1,4-dioxane (entry 10) and toluene (entry 11). The change 

in solvent does not favor the formation of desired product. Subsequently, the influence of 

temperature on the reaction rate was investigated (entry 12) by performing the reaction at 

room temperature. Even after extending the time for 24 h, the desired product formed is not 
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satisfactory. Similarly, the significance of catalyst in this transformation was reviewed by 

performing this experiment without catalyst. The yields are found to be inadequate (entry 3). 

 

Table 4.5: Copper(I) mediated cross-dehydrogenative coupling reactions.a 

E Solvent Base SMC (%)b 

1 CH3CN - 65 

2 CH3CN Pyridine 98 

3c CH3CN Pyridine 10 

4 CH3CN K2CO3 57 

5 CH3CN KOtBu 78 

6 CH3CN NEt3 55 

7 CH3CN KOH 68 

8 CH3OH Pyridine 12 

9 THF Pyridine 19 

10 1,4-dioxane Pyridine 14 

11 Toluene Pyridine 30 

12d CH3CN Pyridine 62 

13e CH3CN Pyridine 95 

14f CH3CN Pyridine 92 

aReaction conditions: Phenylacetylene (0.40 mmol), Triethylsilane (0.60 mmol), Catalyst (1 

mol%), base (20 mol%), solvent (1.0 mL); SMC: Starting Material Conversion; bPercentage 

of conversions are based on GC (The given GC conversion values are the average of at least 

two independent measures); cwithout catalyst; dreaction at room temperature; ewith catalyst 

16; fwith catalyst 22 

 

As presented in chart 4.9 phenyl acetylene and 1-octyne were treated with 

triethylsilane, dimethylphenylsilane and achieved over 90% yields (compounds VI-IX). 

Similarly the double dehydrogenative coupling was carried out using diphenylsilane to afford 

the silicon-tethered diyne building blocks (X-XI) with very good yield. It is worth mentioning 

that the dehydrogenative coupling of alkynes with triphenyl silane led to the recovery of 

starting materials that supports the unfavorable condition of steric bulk of silane in this 

transformation. 
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Chart 4.9: Alkynylsilanes isolated by 13, 16 and 22. Reaction conditions for X and XI; 

phenyl acetylene (0.80 mmol), diphenylsilane (0.40 mmol), catalyst (1 mol%), base (20 

mol%) and solvent (1 mL) 

 

4.7. Summary 

In summary, copper(I) complexes supported by NHC (for 16, 18 and 20), NHC=E ( 

for 11-15, 17, 19, 21, 23 and 24) and PPh3 (for 22) were synthesized and structurally 

characterized. The molecules 11-15 were isolated as rare mononuclear NHC=E supported 

neutral copper(I) chalcogenones. The molecules 17, 19 and 21 were isolated by ligand 

exchange reaction between [(IMes)CuCl] and IMes=Se (for 17 and 19) and IPr=Se (for 21) 

along with homoleptic copper(I)-NHC complexes 16, 18 and 20. The synthetic methodology 

of 16, 18 and 20 represent the first synthetic strategy to isolate copper chalcogenones from 

copper carbene derivatives. Complexes 17-21 display a perfect linear geometry around 

copper(I) center. The molecules 23 and 24 were isolated from phosphine based copper(I) 

iodide complex 22. These newly isolated molecules 11-24 were used as catalyst for [3+2] 

cycloaddition of azides with terminal alkynes. The catalysts 13, 16 and 22 were relatively 

more active for cycloaddition reactions. Besides, cationic 13, 16 and 22 were found to be 

efficient in C‒Si bond formation reaction. Thus, (i) The ligand exchange experiment signifies 

the higher –donor abilities of NHC=E, (ii) PPh3 based catalyst (22) is effective in click 

catalysis over NHC=E and NHC based catalysts, (iii) Less steric hindrance and more Lewis 

acidic metal centre facilitates the reaction, (iv) The efficiencies derived in this work are 

22>13>16>11=12=14=15>18=20=17=19=21=23=24, (v) –donor strength detected is in the 

following order; ImC>NHC>PPh3. Nevertheless the investigations towards the comparison 

between NHC and NHC-analogous metal complexes in terms of stability, reactivity in organic 

transformations in order to reduce the reaction times and produce quantitative yields is in 

progress in our laboratory. 
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Chapter 5 

 

Summary and Conclusion 

ImC are air and moisture stable NHC analogues, which can act as an excellent two 

electron donors toward elements across the periodic table. However the applications of metal 

ImC complexes are limited. In particular, the first catalytic application of Cu-ImC was 

reported in 2010 by Son et al., which is known as the only report known as of today.  In 

particular the catalytic efficiency of Cu-ImC complexes are much superior than that of Cu-

NHC catalysts. Indeed, this dissertation deals with the synthesis of different mono, bis ImC 

supported copper(I) complexes for carbon-boron, carbon-nitrogen and carbon-silicon bond 

formation reactions. Chapter one (Introduction) reviews the complete literature on ImC and 

their copper derivatives. Chapter two to four deals with the synthesis, characterization and 

application of newly prepared ImC and their copper derivatives. The final section of each 

chapter lists the references from the literature, which are indicated in the text (Chapters 1-4) 

by appropriate numbers appearing as square brackets. Lists of abbreviations, table, scheme, 

and figure captions appearing in this report are collected together in the beginning of the thesis 

chapters. The summary and conclusion are reported in chapter 5. 

In chapter 2, the syntheses and structures of copper(I) chalcogenone complexes are 

described. The homoleptic mononuclear copper(I) complexes [(IPr=E)2Cu]ClO4, IPr=E, 1,3-

bis(2,6-diisopropylphenyl)imidazoline-2-thione (1) and 1,3-bis(2,6-

diisopropylphenyl)imidazoline-2-selone (2); [(IMes=E)2Cu]ClO4, IMes=E, 1,3-bis(2,4,6-

trimethylphenyl)imidazole-2-thione (3) and 1,3-bis(2,4,6-trimethylphenyl)imidazole-2-

selone (4); [(IPr=E)2Cu]BF4, E = S (5); E = Se (6) and [(IMes=E)2Cu]BF4, E = S (7); E = Se 

(8) are formed from the reduction of copper(II) to copper(I) with the corresponding 

imidazoline-2-chalcogenones (Chart 5.1). X-ray structure analyses of seven compounds (1–3 

and 5–8) show that the copper(I) ion is in a perfect linear coordination, while 4 is in quasi-

linear geometry. Molecules 2, 4, 6 and 8 are the first structurally characterized homoleptic 

copper(I) selone complexes. The optical and thermal properties of imidazoline-2-

chalcogenones and their copper(I) derivatives are investigated. 
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Chart 5.1: Catalysts (1-8) isolated in this chapter 

 

These complexes are able to act as catalysts in regioselective borylation of numerous 

unsymmetrical alkynes, yielding synthetically useful vinylboronates (Scheme 5.1). Among 

catalysts 1–8, catalyst 4 is highly selective towards the regioselective boron addition of 1-

phenyl-1-propyne. 

 

Scheme 5.1: Regioselective borylation of 1-phenyl-1-propyne using 1-8 

 

 Among the isolated catalysts (1-8), the catalysts 4 showed better catalytic efficiency 

in terms of isolated yields and selectivity over NHC-Cu catalysts reported earlier (Chart 5.2). 
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Chart 5.2: Comparison between NHC-Cu and ImSe-Cu in borylation of alkynes 

 

In chapter 2, two mega size copper(I) cubic cages, [{Cu(Bptp)}8(PF6
-)](PF6

-)7 (9) and 

[{Cu(Bpsp)}8(PF6
-)](PF6

-)7 (10) supported by imidazole-2-chalcogenone ligands (Bptp = 2,6-

bis(1-isopropylimidazole-2-thione)pyridine or Bpsp = 2,6-bis(1-isopropylimidazole-2-

selone)pyridine) have been synthesized and characterized (Chart 5.3). The formation of ionic 

salts 9 and 10 were confirmed by FT-IR, multinuclear (1H, 13C, 31P and 19F) NMR, UV-vis, 

TGA, CHN analysis, BET, single crystal X-ray diffraction 0and powder X-ray diffraction 

techniques. To the best of our knowledge, these are the first examples of octanuclear copper(I) 

cluster in a perfect cubic architecture with copper-copper distances of 8.413 Å or 8.593 Å. 

Interestingly, these anion-centered CuI
8 cubic arrangements are not supported by cubic 

centered ions or face centered molecules. Formation of cationic cubic cages were 

accompanied by the association of twelve ligands (Bptp or Bpsp) with eight trigonal planar 
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[CuSe3] vertex. The cationic charge of cubic cages were satisfied by eight PF6
- counter anions, 

in which one of the PF6
-anion occupies at the centre of Cu8 cube without any interaction. 

 

Chart 5.3: Molecular structure of 9 and 10 

The copper(I) cubic cages are found to be highly active catalysts in click chemistry 

(Scheme 5.2) as well as hydroamination reactions. The scope of the catalytic reactions have 

been investigated with thirty five different combinations in click reactions and six different 

combinations in hydroamination of alkynes. 

 

 

Scheme 5.2: Catalysts 9 and 10 mediated one-pot synthesis of triazoles 

 

The isolated catalysts (9 and 10) showed better catalytic efficiency in terms of reaction 

times with most NHC-Cu catalysts, however, these are as good as the best click catalysts 

[(IAd)CuX, X = Cl, Br and I] reported as of now (Chart 5.4). 
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Chart 5.4: Comparison between NHC-Cu and ImC-Cu in click catalysis 

 

In chapter 3, the syntheses and structures of ten new copper(I) chalcogenone complexes 

are described. The mononuclear copper(I) complexes (IMes=E)CuX [E = S, Se, IMes=E 1,3-

bis(2,4,6-trimethylphenyl)imidazol-2-thone (11-13) and 1,3-bis(2,4,6-

trimethylphenyl)imidazol-2-selone (14-15)] (Scheme 7.11), (NHC=E)2CuX, [NHC=E; 

IMes=Se, X = CuCl2 (17), NHC=E; IMes=Se, X = PF6 (19) and NHC=E = IPr=Se, X = PF6 

(21) [IPr=Se, 1,3-bis(2,6-diisopropylphenyl)imidazoline-2-selone], and a polynuclear 

copper(I) complexes [(Ebis)CuI]n, (23) [Ebis =1,2-bis(3-methyl-4-imidazolin-2-

selone)ethane], [(Ebpis)1.5CuBF4]n (24) [Ebpis = 1,2-bis(3-isopropyl-4-imidazolin-2-

selone)ethane] were isolated and characterized by FT-IR, multinuclear NMR. 
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Chart 5.5: Catalysts (11-24) isolated in this chapter 

 

Interestingly, the linear copper(I) complexes 17, 19 (Chart 5.5) and 21 were also isolated 

from [(IMes)CuCl] (16) by ligand transfer method. Besides, the complexes 23 and 24 were 

synthesized from the isolated tetranuclear copper(I) complex, [(PPh3)4Cu4I4] (22). The single 

crystal X-ray structures of 11-15, 17, 19, 21 and 23-24 depicts the existence of different 

coordination modes around copper(I) metal center. The copper center in 11-15 show quasi-

linear coordination, 17, 19, 21 exhibit perfect linear coordination, 23 shows tetrahedral 

coordination, while 24 display a perfect trigonal planar coordination. The UV-vis absorption 

aspects of copper(I) derivatives have been investigated. 

Moreover, all these complexes (11-24) were able to act as catalyst in [3+2] cycloaddition 

of azides with alkynes (Scheme 5.3) to yield 1,2,3-triazoles. Among catalysts 11-24, catalysts 

13, 16 and 22 are exceedingly active towards the synthesis of 1,2,3-triazoles. 
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Scheme 5.3: Catalysts 11-24 mediated [3+2] cyclo addition reaction 

 

The isolated catalysts (11-24) showed almost similar catalytic efficiency in terms of 

reaction times and yields with most NHC-Cu catalysts, however, the phosphine derived 

copper complex showed better activity among the isolated catalysts (Chart 5.6). 

 

Chart 5.6: Comparison between Phosphine-Cu, NHC-Cu and ImC-Cu in click catalysis 
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