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Abstract

Objective

To develop an algorithm for automated quantification of Haller’s layer in choroid using

swept-source optical coherence tomography (OCT).

Background

So far, to understand the association of various diseases with structural changes of choroid,

only gross indicators such as thickness, volume and vascularity index have been examined.

However, certain diseases affect specific sublayers of the choroid. Accordingly, a need for

targeted quantitation arises. In particular, there is significant interest in understanding Hal-

ler’s layer, a choroidal sublayer comprising relatively large blood vessels. Unfortunately, its

intricate vasculature makes, manual quantitation difficult, tedious, and error-prone. To sur-

mount this difficulty, it is imperative to develop an algorithmic method.

Methodology

The primary contribution of this work consists in developing an approach for detecting the

boundary between Haller’s and Sattler’s layers, the latter comprising medium-sized vessels.

The proposed algorithm estimates vessel cross-sections using exponentiation-based binari-

zation, and labels a vessel large if its cross-section exceeds certain statistically determined

threshold. Finally, the desired boundary is obtained as a smooth curve joining the innermost

points of such large vessels. On 50 OCT B-scans (of 50 healthy eyes), our algorithm was

validated both qualitatively and quantitatively, by comparing with intra-observer variability.

Extensive statistical analysis was performed using metrics including Dice coefficient (DC),

correlation coefficient (CC) and absolute difference (AD).
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Results

The proposed algorithm achieved a mean DC of 89.48% (SD:5.03%) in close agreement

with the intra-observer repeatability of 89.12% (SD:5.68%). Corresponding mean AD and

mean CC were of 17.54 μm (SD:16.45μm) and 98.10% (SD:1.60%) which too approximate

the respective intra-observer repeatability values 19.19 μm (SD:17.69 μm) and 98.58%

(SD:1.12%).

Conclusion

High correlation between algorithmic and manual delineations indicates suitability of our

algorithm for clinically analyzing choroid in greater finer details, especially, in diseased eyes.

Introduction

The choroid consists of three sub-structures: choriocapillaris, Sattler’s layer and Haller’s layer

[1]. Choriocapillaris, the innermost structure adjoining retinal outer boundary defined by

Bruch’s membrane, comprise the tiniest choroidal vessels. In contrast, Haller’s layer, compris-

ing the largest vessels is the outermost and adjoins the choroid-sclera interface (CSI). Sand-

wiched in between lies Sattler’s layer comprising medium-sized vessels. Structural changes in

choroid potentially indicate various diseased conditions including choroid neovascularization

(CNV), high myopia, chorioretinal inflammatory diseases, tumors, central serous chorioreti-

nopathy (CSC), age-related macular degeneration (AMD) and diabetic retinopathy (DR) [2, 3,

4, 5, 6, 7, 8, 9]. Against this backdrop, understanding the structural changes in choroid and

their relevance to various diseases as well as disease management has been of long-standing

interest to clinicians. Indeed, ophthalmologists now envision diving deeper and examining at

sub-structural levels [10].

The present state-of-the-art technology of swept-source optical coherence tomography

(OCT), employing a light source with increased wavelength of 1060 nm, has enhanced the

quality of choroidal imaging as well as the speed of acquisition and the field-of-view [11, 12].

Such advancements have enabled clinicians to quantify specific parameters such as choroidal

thickness and volume, with a view to studying their association with various diseases [2, 3, 13,

14, 15]. Yet, those studies focusing on gross structural changes do not fully exploit the available

information. A better understanding of the underlying pathology can be obtained by investi-

gating changes within choroidal sub-structures [15, 16]. Indeed, clinicians have begun to

investigate the effect of various diseases on Haller’s layer [10, 17, 18]. Recently, in an assess-

ment of choroid patterns in healthy eyes using en face OCT [19], the authors indicated that the

vasculature pattern potentially plays a role in the origin and development of neuroretinal

pathologies, with possible effect on chorioretinal diseases and circulatory abnormalities such

as central serous chorioretinopathy (CSC) [20]. However, the above work takes a qualitative

approach towards manual evaluation of choroidal morphology. Indeed, due to the intricate

vasculature involved, manual quantification of Haller’s layer could be difficult, tedious, and

error-prone. Against this backdrop, to obtain quantitative estimate of clinically significant

parameters, it is imperative to develop a suitable algorithmic tool. Specifically, the envisioned

tool should (i) segment the choroid, and (ii) delineate Haller’s layer from Sattler’s layer (see

Fig 1). As algorithmic segmentation of choroid has already been achieved with high accuracy
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[21, 22, 23, 24, 25, 26, 27], we are left with the task of delineating between large and medium

sized vessels.

So far, structural quantification of Haller’s layer has received limited attention. A method

based on probability cones has recently been suggested for detecting Haller’s layer boundary

in volume OCT scans [28]. However, such method makes use of volumetric heuristic, which

does not apply to the more ubiquitous B-scans. To fill this gap, we propose to delineate

between Haller’s and Sattler’s layers in individual B-scans using a sequence of 2D processing

steps. Our 2D technique is less complex, yet extendable to volumetric quantification. Interest-

ingly, evaluation of algorithmic performance also presents significant challenge as ground

truth information generally remains unavailable. In the aforementioned work [28], the algo-

rithmic accuracy was evaluated qualitatively, by comparing the algorithmic outcome with clin-

ically salient features observed in 2D Indocyanine Green Angiography (ICGA) images in a

subjective manner. Such evaluation suffers from two limitations. Firstly, as retinal vasculature

and choriocapillaries potentially occlude many large choroidal vessels in 2D ICGA images, fea-

tures observed in the latter many not provide a fair basis for comparison. Further, a quantita-

tive, rather than a qualitative, measure of accuracy would provide a more desirable basis for

clinical decision making. Accordingly, we propose to adopt a quantitative index of algorithmic

accuracy. Unfortunately, a direct calculation of accuracy with reference to the ground truth

remains infeasible in view of the latter’s unavailability. Thus, one must choose an indirect mea-

sure of accuracy calculated vis-à-vis new appropriate reference. An analogous situation arose

in the context of algorithmic characterization of the choroid (in its entirety) [27]. In that work,

observer repeatability was taken as reference, with which the mean deviation between out-

comes of algorithmic and manual procedures was compared. In this paper, we similarly evalu-

ate the performance of the proposed method to algorithmically demarcate Haller’s layer in the

individual B-scans.

Materials and methods

Experimental datasets

This observational study was conducted at L.V. Prasad Eye Institute, Hyderabad, India, with

the approval of the institutional review board and followed the tenets of the Declaration of

Helsinki. Fifty healthy subjects (25 women and 25 men) were recruited, who consented to the

OCT imaging of the ocular posterior segment. The mean age of the subjects was 50.7 years

(standard deviation: 18.5 years). Further, the mean spherical equivalent was 0.1±0.9. OCT

scans were acquired using a Triton swept-source OCT device (Topcon Corporation, Tokyo,

Fig 1. Sample swept-source OCT B-scan depicting the choroid layer and its sub-structures—Choriocapillaris, Sattler’s layer

and Haller’s layer. Notation: CIB—Choroid inner boundary; COB—Choroid outer boundary; CSI—Choroid-sclera interface.

https://doi.org/10.1371/journal.pone.0193324.g001
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Japan), which uses a tunable laser centered at 1050 nm to acquire 100,000 A-scans per second.

Only central foveal scans were included in the study. Further, only central B-scan of one eye,

randomly chosen, of each subject was considered.

Manual segmentation

Segmentation results produced by the proposed algorithm were validated against manual

markings. In particular, the Haller’s layer boundary was marked twice by single observer in

two separate sessions masked from previous markings. To this end, the freehand selection tool

of the publicly available ImageJ software was used [29]. These markings were used to estimate

observer repeatability and to validate the robustness of the proposed algorithm.

Proposed automated methodology

The proposed methodology is depicted as flow chart in Fig 2. The algorithm mainly involves

extraction of binarized choroid layer, choroid vessel identification and large vessel extraction.

A step-by-step description of the methodology is presented in the following.

Preprocessing. In optical coherence tomography (OCT), the inherent speckle noise

affects the visibility of various tissues and may confound the segmentation [31]. Further, due

to attenuation of the signal when penetrated into deeper structure such as choroid, the contrast

between vessel region and stromal regions is not high. In view of this, we first convolved the

raw OCT B-scan with a 5 × 5 Wiener filter which is already shown to reduce the speckle and

increase the signal-to-noise ratio, while preserving strong edges [32]. Fig 3b depicts the wiener

filtered estimate of raw OCT scan shown in Fig 3a. Subsequently, adaptive histogram equaliza-

tion was applied, with 8 × 8 tiling, for contrast enhancement (see Fig 3c).

Binarized choroid layer extraction. Next, we proceed to binarization of the OCT image

to extract the choroid vessels. To this end, we adopted the recently published binarization

method based on exponential enhancement [33] and additional nonlinear processing [30] (see

Fig 2. Schematic of proposed algorithm.

https://doi.org/10.1371/journal.pone.0193324.g002
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Fig 3d). At this point, we localize choroid layer in the binarized image thus obtained by detect-

ing the choroid inner boundary (CIB) and choroid outer boundary (COB) (refer to Fig 1) algo-

rithmically from the preprocessed OCT image. In particular, we adopted the structural

similarity (SSIM) index based methodology previously validated by our group, which reported

more than 95% Dice coefficient vis-à-vis manual delineation [27]. Accordingly, the boundaries

obtained for the representative image at hand is depicted in Fig 3e and the corresponding

binarized choroid layer segmented from the previously obtained binarized image is shown in

Fig 3f. Notice that in the binarized choroid layer (BCL), dark regions indicate the choroid ves-

sel cross-sections and the white regions indicate the stroma.

Choroid vessel identification. In the BCL obtained earlier, due to tightly packed vascula-

ture, often times multiple vessels appear connected and hence may result in spurious detec-

tions. In response, we attempted to delineate such connected vessel cross-sections. To this end,

we begin with complementing the BCL, i.e., marking vessels cross-sections as white pixels, for

ease of processing (see Fig 3g). Subsequently, we performed morphological closing operation,

with a structuring element of size 5 × 5 pixels, to remove tiny spurious structures. Next, water-

shed-distance transformation is applied on the binary image to delineate the connected vessels

[34]. In particular, first the distance transform (DT) is obtained which computes the distance

from every pixel to the nearest nonzero-valued pixel. Generally, distance transform should be

Fig 3. Proposed algorithm depicted graphically. (a) Raw OCT B-scan; (b) Denoised using Wiener filter; (c) Adaptive

histogram equalized image; (d) Binarized image [30]; (e) Detected choroid boundaries [27]; (f) Binarized choroid layer

(inverted); (g) Watershed segmentation; (h) Watershed segmentation post extended-minima; (i) Large vessel

boundaries; (j) Innermost (linear interpolated) points of the vessels; (k) Smoothened Haller’s layer boundary; and (l)

Algorithmic (yellow) vs (orange and red) manual demarcations.

https://doi.org/10.1371/journal.pone.0193324.g003
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followed with watershed transform (WT) which detects the vessel boundaries. However, in

this case, applying watershed immediately after DT would result in over segmentation (Fig

3h). In view of this, we performed extended-minima transform prior to WT to avoid such

complexities (Fig 3i). The zero valued pixels (w) of WT estimate signify the watershed ridge

pixels which in turn indicate the initial vessel boundaries (Fig 3i). Finally, a logical AND opera-

tion between the BCL and the w extracts complete the segmentation (Fig 3j) [34].

Large vessel extraction. We now proceed to categorize the segmented vessel cross-sec-

tions to obtain the large vessels. We acknowledge that there is no set criteria for separating the

large vessels [3]. However, inspired by structural properties of choroid, we proposed a two fold

approach to identify the large vessels. In the first step, all the vessels lying along the choroid-

sclera interface (CSI) within 5 pixels are considered as vessels belonging to Haller’s layer [10].

In the next step, among the remaining cross-sections only those vessels that have area greater

than the median of the cross-sectional areas identified along the CSI are also considered as

large vessels.

Haller’s layer demarcation. Finally, the cross-sections obtained from the union of the

aforementioned two steps (Fig 3g) are used to demarcate the Haller’s layer from Sattler’s layer.

In particular, innermost pixel from each cross-section (Fig 3h) is identified and subsequently, a

two-stage interpolation is performed. In the first stage, we applied a linear interpolation to

obtain an initial estimate of Haller’s layer boundary (Fig 3i). In the second stage, we employed a

non linear interpolation, based on robust local weighted linear least squares regression (with a

window size equal to one fifth of the width of the B-scan), to obtain a smooth estimate (Fig 3j).

Statistical measures

Accuracy of proposed methodology was evaluated by comparing algorithmic segmentation

vis-à-vis manual markings performed twice by a single observer in separate sessions in a

masked fashion. Specifically, we adopted certain standardized measures established earlier for

evaluating algorithmic segmentation of choroid [27]. In particular, we evaluated absolute dif-

ference (AD), correlation coefficient (CC) and Dice coefficient (DC) between algorithmic seg-

mentation and the manual reference i.e., average of two manual markings. Further, these

values were compared against corresponding values obtained for intra-observer repeatability.

Finally, quotient measures—quotient of mean and quotient of coefficient of variance, were

also obtained to facilitate comparison against different algorithms. In particular, quotient mea-

sures close to value ‘one’ are desired which indicate that automated algorithm performs at par

with manual performance. The definitions and further details of all the measures are presented

in S1 Appendix provided in Supplementary material.

Results

We now proceed to evaluate the accuracy of the proposed algorithm. In particular, on 50 B-

scans of 50 eyes from unique subjects, our methodology was tested. The mean age of the sub-

jects was 50.7 years (standard deviation: 18.5 years). Further, 25 subjects were women, and 25

subjects were men. The mean spherical equivalent was 0.1 ± 0.9. Fig 4 depicts close agreement

between the algorithmic segmentation and manual markings on nine representative B-scans.

Next, we turn to evaluate the proposed methodology quantitatively.

Statistical performance analysis

As alluded earlier, performance of the algorithm evaluated against the manual markings using

the metrics—Absolute difference (AD), correlation coefficient (CC), Dice coefficient (DC),

and performance quotients are presented here.
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Absolute difference. On the 50 B-scans, absolute difference estimated between algorith-

mic segmentation and manual reference spans from 0.0009 μm to 113.75 μm with a mean of

17.54 μm and standard deviation (SDAD) 16.45 μm. These values were observed to be in close

agreement with the corresponding observer repeatability values ranging from 0.0011 μm to

119.54 μm with a mean 19.19 μm and SDAD 17.69 μm. The mean AD (MAD) and SDAD val-

ues suggest that algorithm was more consistent than the observer repeatability. Fig 5(a) depicts

absolute difference estimates averaged per scan between algorithmic and manual reference

alongside observer repeatability values. Finally, the quotient measures, quotient of mean

(QMAD) and quotient of coefficient of variation (QCVAD) were observed to be close to 1.0

with values 0.91 and 1.02, respectively, corroborating the efficacy of the algorithm. Further

details are furnished in Table 1.

Correlation coefficient. Turning to comparison in terms of correlation coefficient (CC),

on the dataset at hand, the proposed algorithm achieved a high CC, ranging between 92.92%

and 99.76% with a mean of 98.10% and a standard deviation (SDAD) 1.60%, with manual ref-

erence. On the other hand, the CC among two manual markings was ranging from 94.48% to

99.91% with a mean of 98.59% and SDAD of 1.12% demonstrating a high intra-observer

repeatability as well as close match with proposed algorithm. Fig 5(b) depicts the CC compari-

son automated algorithm vis-à-vis manual markings. Proceeding in similar vein as earlier, we

obtained the quotient of mean (QMCC) and quotient of coefficient of variation (QCVCC)

which were also close to 1.0 with values 1.35 and 1.43. Comprehensive details are provided in

Table 1.

Dice coefficient. Similar observations, mimicking AD and CC, are also made with Dice

coefficient (DC) analysis. In particular, the DC values estimated between algorithmic segmen-

tation and manual reference spanned between 76.88% to 96.47% with a mean of 89.48% and

standard deviation (SDDC) 5.03% while the DC between manual demarcations was observed

to vary between 75.35% to 97.34% with a mean 89.12% and SDAD 5.68%. Fig 5(c) depicts DC

between algorithmic estimates and manual reference against corresponding observer repeat-

ability values. The quotient of mean (QMDC) and the quotient of coefficient of variation

(QCVDC) were found to be close to 1.0 with values 0.97 and 0.88, further substantiating the

accuracy of the automated algorithm. Table 1 presents further details.

Overall, in light of the above observations, the proposed algorithm was shown to have a

close agreement with manual reference and demonstrated better performance than the intra-

observer repeatability.

Fig 4. Automated vs manual markings of Haller’s layer; yellow—Automated, orange—Manual marking by grader-1, red—Manual marking by

grader-2, yellow-red stripes—Choroid inner and outer boundaries.

https://doi.org/10.1371/journal.pone.0193324.g004
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Fig 5. Statistical analysis: Automated vs manual methods. Notation: M1—manual segmentation-1, M2—manual

segmentation-2, M—average of M1 and M2, P—proposed.

https://doi.org/10.1371/journal.pone.0193324.g005
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Discussion

In this work, we proposed an automated methodology to detect the boundary separating Hal-

ler’s and Sattler’s layers of the choroid with an aim of quantifying Haller’s layer. Specifically,

we described an intuitive heuristic to identify the large blood vessels after binarizing the cho-

roid layer. Delineation results of our algorithm exhibit close agreement with those obtained

manually, specifically achieving a Dice coefficient of 89.48% vis-à-vis an intra-observer Dice

coefficient of 89.12%. In fact, to the best of our knowledge, ours remains the first attempt at

quantitative performance measurement comparison for the problem at hand. An earlier algo-

rithm in similar circumstances was evaluated only via subjective quality comparison with 2D

ICGA images [35]. Here, note that retinal sublayers, with boundaries marked by significant

intensity gradient, are relatively straightforward to delineate [36, 37, 38]. In contrast, segmen-

tation of choroidal substructures poses a tougher challenge. Unlike in retinal sublayers, choroi-

dal sublayers are not defined by sharp intensity transition and potentially possess structural

similarity. Consequently, traditional gradient-based segmentation techniques, employed for

quantifying retinal layers, are not appropriate. The present method, employing extended-min-

ima transform alongside watershed segmentation, has been developed to meet such a

requirement.

Further, there is no ground truth or absolute criterion for categorizing the large and

medium sized vessels. Classification between those must be based on relative diameter of the

blood vessels rather than a predetermined threshold.

Table 1. Statistical analysis: Automated vs manual methods. Notation: M1-manual segmentation-1, M2-manual segmentation-2, M-average of M1 and M2, P-proposed,

Mq-mean, SDq-standard deviation, CVq-coefficient of variation, QMq-quotient of mean, QCVq-quotient of coefficient of variation, q takes AD, CC or DC.

Evaluation criteria Method Parameter Unit Value

Absolute difference

(AD)

Automated

(P vs M)

MAD (SDAD) μm (μm) 17.54 (16.45)

Min—Max μm 0.0009–113.75

CVAD ratio 0.9379

Manual

(M1 vs M2)

MAD (SDAD) μm (μm) 19.19 (17.69)

Min—Max μm 0.0011–119.54

CVAD ratio 0.9218

QMAD ratio 0.91

QCVAD ratio 1.02

Correlation coefficient

(CC)

Automated

(P vs M)

MCC (SDCC) % (%) 98.10 (1.60)

Min—Max % 92.92–99.76

CVCC ratio 0.0163

Manual

(M1 vs M2)

MCC (SDCC) % (%) 98.59 (1.12)

Min—Max % 94.48–99.91

CVCC ratio 0.0114

QMCC ratio 1.35

QCVCC ratio 1.43

Dice coefficient

(DC)

Automated

(P vs M)

MDC (SDDC) % (%) 89.48 (5.03)

Min—Max % 76.88–96.47

CVDC ratio 0.0562

Manual

(M1 vs M2)

MDC (SDDC) % (%) 89.12 (5.68)

Min—Max % 75.35–97.34

CVDC ratio 0.0637

QMDC ratio 0.97

QCVDC ratio 0.88

https://doi.org/10.1371/journal.pone.0193324.t001
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In rare instances, our method could result in intermediate introduction of deformities and

warping in vessel cross-sections, potentially leading to spurious delineations. However, such

demarcations are unlikely to affect the estimated boundary between large and medium-sized

vessels because the proposed median criterion removes outliers and ensures robustness. How-

ever, in view of the intricate nature of the choroid vasculature, it is conceivable that successful

criteria, other than the median criterion, could be developed to differentiate between large and

medium-sized blood vessels. However, we expect the performance of any such algorithm irre-

spective of the underlying classification criterion, to still be dictated by the signal-to-noise

ratio of the OCT images. For instance, in a 256 scan volume acquired without averaging from

a Triton swept-source machine, the contrast between stromal and luminal regions is poten-

tially low, and hence, may adversely affect segmentation. In such cases, further preprocessing

could improve final outcome.

In the current study, the proposed algorithm was tested only on healthy eyes. Next, we plan

to test our algorithm on images taken from diseased subjects, specifically, including those suf-

fering from age-related macular degeneration (AMD) and central serous chorioretinopathy.

However, complex structural changes in diseased eyes may prevent application of the pro-

posed algorithm in its current form, and require suitable modification. We shall also extend

our method to volumetric analysis of large and medium-sized choroidal vessels. A preliminary

work tracing choroidal vessels in 3D has recently been reported [39].

Supporting information

S1 Appendix. Performance criteria and statistical measures.

(PDF)
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