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ABSTRACT
�is paper introduces a novel approach for generating videos called
SynchronizedDeep Recurrent A�entiveWriter (Sync-DRAW). Sync-
DRAW can also perform text-to-video generation which, to the best
of our knowledge, makes it the �rst approach of its kind. It com-
bines a Variational Autoencoder (VAE) with a Recurrent A�ention
Mechanism in a novel manner to create a temporally dependent
sequence of frames that are gradually formed over time. �e recur-
rent a�ention mechanism in Sync-DRAW a�ends to each individual
frame of the video in sychronization, while the VAE learns a latent
distribution for the entire video at the global level. Our experiments
with Bouncing MNIST, KTH and UCF-101 suggest that Sync-DRAW
is e�cient in learning the spatial and temporal information of the
videos and generates frames with high structural integrity, and can
generate videos from simple captions on these datasets.

CCS CONCEPTS
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1 INTRODUCTION
Over the years, several generative methods have been proposed to
capture and model the latent representations of high-dimensional
data such as images and documents. In recent years, with the suc-
cess of deep learningmethods, Variational Auto-Encoders (VAEs) [11]
and Generative Adversarial Networks (GANs)[4] have emerged to
be the most promising deep learning-based generative methods for
performing tasks such as image generation [6, 16].

Existing e�orts (discussed in Section 2) in the last couple of
years have primarily focused on generation of images using the
aforementioned methods, by modeling the spatial characteristics
of a given training dataset [6, 15, 24], as well as extending these
methods to more novel applications such as adding texture/style
to images [3]. However, there has been very li�le e�ort in the
automated generation of videos. While there have been a few e�orts
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Figure 1: Videos generated automatically by proposed Sync-
DRAW for Single-Digit Bouncing MNIST, Two-Digit Bounc-
ing MNIST, and KTH Dataset.

in video prediction [22], the recent work by Vondrick et al. [25] was
the �rst to generate videos in an unsupervised manner using GANs.
Despite acceptable performance, the generated videos had several
drawbacks, as highlighted later in this work. Our work is an a�empt
to provide a di�erent perspective to video generation using VAEs,
which overcomes a few drawbacks of [25]; and more importantly,
provides a methodology to generate videos from captions for the
�rst time.

We propose a novel network called Sync-DRAW, which uses a
recurrent VAE to automatically generate videos. It utilizes a local
a�ention mechanism which a�ends to each frame individually in
‘synchronization’ and hence, the name Sync-DRAW (Synchronized
Deep Recurrent A�entive Writer). Our experiments show that the
proposed a�ention mechanism in Sync-DRAW plays a signi�cant
role in generating videos that maintain the structure of objects to
a large extent. Sync-DRAW also takes a step further by learning
to associate videos with captions, and thus learning to generate
videos from just text captions. To the best of our knowledge, this
work is the �rst e�ort to generate video sequences from captions,
and is also the �rst to generate videos using VAEs. Figure 1 shows
examples of video frames generated by trained Sync-DRAWmodels
on di�erent datasets.

�e key contributions of this paper lie in: (i) the design of an
e�cient and e�ective deep recurrent a�entive architecture to gen-
erate videos that preserves the structural integrity of objects in each
frame; (ii) the adaptation of the proposed architecture to generate
videos from just text captions; and (iii) a comprehensive review
and experimental study of video generations on datasets of varying
complexity. We now discuss earlier e�orts related to this work.
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2 BACKGROUND AND RELATEDWORK
In order to e�ectively generate meaningful structured data such
as an image, a learning model should be capable of learning the
latent representations for the given data, thus explaining the suc-
cess of deep architectures [1], which are today synonymous with
representation learning, as generative models. Initial e�orts in
generating such data using deep architectures were based on Deep
Belief Networks [7] and Deep Boltzmann Machines [18], which
contained many layers of latent variables and millions of parame-
ters. However, their overwhelming dependence on Markov Chain
Monte Carlo-based sampling methods made them di�cult to scale.
Over the last few years, newer deep learning approaches such as
Generative Adversarial Networks (GANs) [4] and Variational Auto-
Encoders (VAEs) [11] have been proven to perform quite e�ectively
on generative tasks, and have been shown to scale to large datasets.

�e Deep Recurrent A�entive Writer (DRAW) [6] was the earli-
est work to utilize a Recurrent-VAE (R-VAE) to learn to generate
images by progressively re�ning an image canvas over time using
a sequence of samples generated from a learnt distribution. DRAW
further combines this R-VAE with an a�ention mechanism [14],
which allows the generated image to focus on certain parts of the
image at each timestep. �is notion of a�ention resembles human
visual perception, and has been used recently for related applica-
tions such as generating captions for images [27] or even generating
images from captions [15, 17]. However, spatial a�ention di�ers
from spatiotemporal a�ention, and there has been very li�le e�ort
on using spatio-temporal latent representations to generate image
sequences or videos, which we address in this work. Further, to the
best of our knowledge, there has been no prior work in text-to-video
generation, which is one of the key objectives of this work.

�e state-of-the-art in the domain of video generation is a re-
cently proposed method called VGAN by Vondrick et al. [25], which
a�empts to generate videos using a spatio-temporal GAN. �is
GAN employs a two-stream strategy with one stream focusing on
the foreground, and another on the static background. While the
method delivers promising results, closer observation shows that
its generations are fairly noisy as well as lack ‘objectness’ (the struc-
tural integrity of the object), as shown in Section 4.7. In this work,
we propose a new and di�erent perspective to video generation
based on Recurrent VAEs (instead of GANs), which uses a novel
a�ention mechanism to generate videos. We show in this work
that the videos generated by the proposed approach are perceived
well by human users, as well as maintain the objects’ structural
integrity to a signi�cant extent on visual inspection. Moreover, we
extend the R-VAE to perform text-to-video generation, which to
the best of our knowledge, is the �rst e�ort to do so.

Other e�orts that can be considered as related to the proposed
work include e�orts in the unsupervised domain that have at-
tempted the task of video prediction (predict a future frame given a
video sequence). One of the �rst e�orts in this regard, [22], seeks to
learn unsupervised video representations using Long Short-Term
Memory units (LSTMs) [8] to predict future frames in videos. How-
ever, such e�orts are fundamentally di�erent from the objectives
of this work, since they do not a�empt to generate complete videos
from scratch. We now present the proposed methodology.

3 SYNC-DRAWMETHODOLOGY
Simply speaking, a video sequence can be perceived as comprising
of objects undergoing/performing action(s) across multiple frames
over a background. Hence, we primarily require our model to: (i)
generate a video sequence; (ii) model individual objects in the video
sequence; and (iii) capture the motion of the objects in the sequence.

To generate a video as a combination of several objects and to
model their motion separately, it seems intuitive to generate the
video incrementally with the network focusing and forming objects
one at a time. A recurrent visual a�ention mechanism can prove to
be an e�ective tool to a�end to relevant parts of a video sequence,
thus allowing the network to learn latent representations of coher-
ent parts of spatio-temporal data (objects). A video comprises of
unique artifacts that are not associated with images (such as camera
motion, e.g, zoom in/out), which have hitherto not been considered
in image generation e�orts. We hence propose a new read/write
a�ention mechanism which operates at a frame level, and uses a
grid of Gaussian �lters with learnable variance and stride in each
frame, which allows the network to automatically learn coherent
regions of video sequences (inspired from [5, 6]). We also use a
Recurrent VAE (R-VAE), which has been used for image genera-
tion in [6] (but not video generation), to embed this frame-wise
a�ention mechanism and generate a video over a set of time steps.

A trivial approach to extend the way R-VAE is used for image
generation in [6] to video generation would be to have a separate
R-VAE for generating each frame. However, such an approach ig-
nores the temporal relationship between frames, and the number of
parameters to be learnt across the VAEs may explode exponentially
with increasing number of frames. �erefore, to learn the video
data distribution e�cienctly but e�ectively, the proposed Sync-
DRAW uses a single R-VAE for the entire video (Figure 2). �is
global R-VAE, �rstly, allows us to model the temporal relationships
between the generated video frames. Secondly, it also allows us
to condition the generation of the video on captions to e�ectively
perform text-to-video generation (this would not have been easy
if we trivially extended the image R-VAE to videos). Moreover,
while it is possible to de�ne a�ention as a spatio-temporal cuboid
(3-D grid of Gaussian �lters) across frame blocks, we instead de-
�ne a separate individual a�ention mechanism for each frame of a
video, each of which acts simultaneously across all frames, so as
to learn latent spatio-temporal representations of video data. We
found this proposed strategy of using a global R-VAE with a local
frame-wise a�ention mechanism to be key in the results that we ob-
tained. �is approach introduces smoothness in the characteristics
of objects across the frames in comparison to 3-D spatio-temporal
approaches [25], which seem to have ji�ers in the generations, as
highlighted in the experiments section (Section 4).

3.1 Sync-DRAW Architecture
Let X = {x1,x2, · · · ,xN } be a video comprising of frames xi , i =
1, · · · ,N where N is the number of frames in the video. Let the
dimensions for every frame be denoted by A × B. We generate X
over T timesteps, where at each timestep t , canvases for all frames
are generated in synchronization. �e Sync-DRAW architecture
comprises of: (i) a read mechanism which takes a region of interest
(RoI) from each frame of the video; (ii) the R-VAE, which is respon-
sible to learn a latent distribution for the videos from these RoIs;
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Figure 2: Sync-DRAW architecture. (a) �e read-write mechanisms and the R-VAE; (b) Conditioning the R-VAE’s decoder on
text features extracted from captions for text-to-video generation; (c) Canvases generated by Sync-DRAW over time (each row
is a video at a particular time step, last row is the �nal generated video).

and (iii) a write mechanism which generates a canvas focusing on a
RoI (which can be di�erent from the reading RoI) for each frame.
During training, at each time step, a RoI from each frame of the
original video is extracted using the read mechanism and is fed
to the R-VAE to learn the latent distribution, Z , of the video data.
�en, a random sample from this distribution, Z , is used to generate
the frames of the video using the frame-wise write mechanisms.
At test time, the read mechanism and the encoder of the R-VAE
are removed; and at each time step, a sample is drawn from the
learned Z distribution to generate a new video through the write
mechanism. We now describe each of these components.

3.1.1 Read Mechanism. �e read a�ention mechanism in Sync-
DRAW is responsible for reading a region of interest (RoI) from
each frame xi at every timestep t . As mentioned earlier, the RoI
is de�ned by a K × K grid of Gaussian �lters, where the grid’s
center, grid’s stride and the Gaussian’s variance (which is the same
across all grid points) are all learned while training the network.
Varying these learned parameters allows us to vary the RoI read
at every time step. In particular, due to the separability of the 2-D
Gaussian �lter, the RoI patch is read by dynamically computing
1-D Gaussian �lters F tip and F tiq , which correspond to a set of size
K (a user-de�ned parameter for the grid size) of 1 × A and 1 ×
B-dimensional Gaussian �lters respectively, for each frame xi at
timestep t , with ip and iq being the two spatial dimensions of frame
xi . (For convenience, we will refer to F tip and F tiq as being of sizes
K×A andK×B respectively.) �ese �lters are evaluated together on
aK×K grid which de�nes the RoI of the frame to a�end to. In order
to compute these �lters, we learn a set of read a�ention parameters
for each frame: д̃tip , д̃

t
iq
,σ ti , δ̃

t
i , β

t
i where i ∈ {1, · · · ,N }. д̃tip and

д̃tiq correspond to the grid center coordinates along the two frame
dimensions respectively; and δ̃ ti corresponds to the stride between
the points in the grid. Evidently, we propose to learn a separate set

of these parameters for each frame in the video. In order to ensure
that these parameters lie within the frame dimensions, they are
slightly modi�ed using:

дtip =
A + 1
2 (д̃tip + 1);д

t
iq =

B + 1
2 (д̃tiq + 1)

δ ti =
max(A,B) − 1

N − 1 δ̃ ti

�ese new parameters дtip and дtiq are then used to calculate the
centers for the horizontal and vertical �lterbanks using:

µtipu
= дtip + (u − N /2 − 0.5)δ

t
i (1)

µtiqv
= дtiq + (v − N /2 − 0.5)δ

t
i (2)

for u,v ∈ {1, · · · ,K}. σ ti serves as the standard deviation for all
�lterbanks at timestep t on xi , the ith frame. F tip and F tiq are then
obtained �nally as follows:

F tip [u,a] =
1
Zip

exp
(
−
(a − µtipu )

2

2(σ ti )2
)

(3)

F tiq [v,b] =
1
Ziq

exp
(
−
(b − µtiqv )

2

2(σ ti )2
)

(4)

where a ∈ {1, · · · ,A}, b ∈ {1, · · · ,B}, u,v ∈ {1, · · · ,K} and Zip ,
Ziq are the normalization constants.

�e last parameter, βti , allows the network to learn the temporal
relationships between the patches read from the frames. It lets the
model decide the level of importance to be given to each frame for
generating the video at any time step. Before feeding to the R-VAE,
the patch read from each frame of the input video is scaled by its
respective βti , i ∈ {1, · · · ,N } as follows:

read(xi ) = βti (F
t
ip )xi (F

t
iq )

T (5)



where read(xi ) is of size K × K . �is learned set of parameters,
β , allows Sync-DRAW to selectively focus on one (or a subset) of
frames of the video at a given timestep if required.1

3.1.2 R-VAE. �e R-VAE is responsible to generate the video
sequence by sampling from the latent distribution learnt by the
VAE at each time step. �e core components of a standard R-VAE
are the encoder LSTM, LSTMenc (which outputs henc ), the latent
representation, Z , and the decoder LSTM, LSTMdec (which outputs
hdec ) [2]. �e R-VAE runs for T time steps (user-de�ned) and
generates a set of canvasesCt = {ct1, c

t
2, · · · , c

t
N } at every timestep

t , where σ (Ct ) is the video generated a�er t timesteps. Since the
R-VAE works at the global video level, the canvases for all the
frames in the video are generated in synchronization, which by
our observation, preserve the inter-frame temporal relationships.
At every t , we de�ne a new quantity, X̂ t , which represents the
video-level error, as follows:

X̂ t = X − σ (Ct−1) (6)
where σ is the sigmoid function, and X is the input video. �e
LSTM-encoder at time t is then processed as follows:

htenc = LSTMenc

(
ht−1enc ,

[
Rt ,ht−1dec

] )
(7)

where Rt =
[
r t1 , r

t
2 , · · · , r

t
N

]
with r ti = [read(xi ), read(x̂

t
i )]. h

t
enc

is then used to estimate the parameters of latent variable Z t , which
characterizes the approximate posterior Q

(
Z t |htenc

)
that captures

the latent representation. �is is done using the reparameterization
technique described in [12]. A sample zt ∼ Q

(
Z t |htenc

)
is then

obtained and fed to the LSTM-decoder, LSTMdec , producing htdec :

htdec = LSTMdec

(
ht−1dec , z

t
)

(8)

htdec is used to compute the write a�ention mechanism parameters
as described below. We note that the read a�ention parameters
at time t are learned as a linear function of ht−1dec and the input X ,
whose weights are learned during training in the read block.

3.1.3 Write Mechanism. As part of the write mechanism, we
need two things per frame: what to write, and where to write.
�e former is obtained using an a�ention window, wt , which is
computed as a linear function of htdec , whose weights are learnt
during training. �e a�ention window is, once again, de�ned by
an equivalently similar set of parameters as the read mechanism,
which are now computed using htdec (as against using h

t−1
dec and X

for the read parameters). Next, similar to the read mechanism, a set
of �lterbanks F̂ tip and F̂ tiq are computed using these write a�ention
parameters, de�ning the RoI to be a�ended to while writing into
each frame. Finally, the canvas cti corresponding to every frame i
at time step t is created as follows:

write(htdec ) =
1
β̂ti

(F̂ tip )
Twt

i (F̂
t
iq ) (9)

cti = c
t−1
i +write(htdec ) (10)

�e canvasses are accumulated over timesteps T, denoted by
cT and the �nal video generated is computed as σ (cT ). By using
1σ , δ̃ , and β are de�ned in the logarithm scale to ensure that values are always
positive.

sigmoid function over cT , we can consider the output as the emis-
sion probabilities making it equivalent to P(X |Z1...T ). In Figure 2,
the �nal arrow is used to represent the connection between the
technical implementation of the algorithm and the mathematical
interpretation of the underlying model.

3.1.4 Sync-DRAW with captions. To generate videos from cap-
tions, we use a pre-trainedmodel of skip-thought vectors, SKpre [13],
and pass the caption, Y , through this model to generate a latent
representation for the caption, S .

S = SKpre (Y ) (11)
We then condition LSTMenc and LSTMdec on S [20] to modify

equations 7 and 8, and generate corresponding hidden representa-
tions as:

htenc = LSTMenc

(
ht−1enc ,

[
Rt ,ht−1dec , S

] )
(12)

htdec = LSTMdec

(
ht−1dec ,

[
zt , S

] )
(13)

At test time, when the R-VAE’s encoder and read mechanisms are
removed, a caption Y is provided as input to the R-VAE’s decoder
to condition the generation on the given caption, Y .

3.1.5 Loss function. �e loss function for Sync-DRAW is com-
posed of two types of losses (similar to a standard VAE [12]), both
of which are computed at the video level. �e �rst is the recon-
struction loss, LX , computed as the binary pixel-wise cross-entropy
loss between the original video X and the generated video, σ (CT ).
�e second is the KL-divergence loss, LZ , de�ned between a latent
prior P(Z t ) andQ(Z t |htenc ) ∼ N(µt , (σ t )2) and summed over allT
timesteps. We assume prior P(Z t ) as a standard normal distribution
and thus, LZ is given by:

LZ =
1
2

( T∑
t=1

µ2t + σ
2
t − logσ 2t

)
−T /2 (14)

�e �nal loss is the sum of the two losses, LX and LZ .

3.1.6 Testing. During the testing phase, the encoder is removed
from Sync-DRAW and due to the reparametrization trick of the VAE
[12], z is sampled from N (0, I ), scaled and shi�ed by the learned
µt and (σ t )2, to generate the �nal videos.

4 EXPERIMENTS AND RESULTS
We studied the performance of Sync-DRAWon the following datasets
with varying complexity: (i) Single-Digit Bouncing MNIST (which
has been used in similar earlier e�orts [9, 22, 26]), (ii) Two-digit
Bouncing MNIST; and (iii) KTH Human Action Dataset [19]. Fig-
ure 3 shows sample videos from these datasets. Considering this
is the �rst work in text-to-video and there is no dataset yet for
such a work, we chose these datasets since they provide di�erent
complexities, and also allow for adding captions2. We manually
created text captions for each of these datasets (described later) to
demonstrate Sync-DRAW’s ability to generate videos from captions.
We varied the number of timesteps T and K for read and write at-
tention parameters across the experiments based on the size of the
2�e codes, the captioned datasets and other relevant materials are available at h�ps:
//github.com/Singularity42/Sync-DRAW

https://github.com/Singularity42/Sync-DRAW
https://github.com/Singularity42/Sync-DRAW


Figure 3: A few sample videos from each of the dataset used
for evaluation. (a) Single-Digit Bouncing MNIST. (b) Two-
Digit Bouncing MNIST. (c) KTH Dataset.

frame and complexity of the dataset (grayscale or RGB). Stochastic
Gradient Descent with Adam [10] was used for training with initial
learning rate as 10−3, β1 as 0.5 and β2 as 0.999. Additionally, to
avoid gradient from exploding, a threshold of 10.0 was used.

4.1 Baseline Methodology
For performance comparison and to highlight the signi�cance of
having a separate set of a�ention parameters for each frame of the
video, we designed another methodology to extend [6] to gener-
ate videos, by modeling a�ention parameters as spatio-temporal
cuboids and adding a set of �lterbanks F tZ of size K × N to operate
over the temporal dimension (in addition to the two �lterbanks in
the spatial dimensions). We use this methodology as our baseline
for comparison. We tried on several se�ings of parameters and
present the best results for the baseline methodology in this paper.

Figure 4: Single-Digit Bouncing MNIST results for (a) Base-
line method and (b) Sync-DRAW

4.2 Results on Single-Digit Bouncing MNIST
As in earlier work [9, 22, 26], we generated the Single-Digit Bounc-
ing MNIST dataset by having the MNIST handwri�en digits move
over time across the frames of the sequence (Figure 3a). Each video
contains 10 frames each of size 64 × 64 with a single 28 × 28 digit
either moving le� and right or up and down. �e initial position

Figure 5: Two-Digit BouncingMNIST results for (a) Baseline
method and (b) Sync-DRAW
for the digit in each video is chosen randomly in order to increase
variation among the samples. �e training set contains 12, 000
such videos. �e results of Sync-DRAW on Single Digit MNIST are
shown in Figures 2(c) and 4(b). �e �gures illustrate the usefulness
of the proposed methodology in gracefully generating the �nal
video as a sequence of canvases. When compared to the baseline
methodology results, as shown in Figure 4(a), the quality of the gen-
erated digits is clearly superior with the digits having well-de�ned
structure and boundaries. An interesting observation in Figure 2(c)
is that while each frame has its own a�ention mechanism in the
proposed framework, it can be seen that the same region of the
digit is being a�ended to at every timestep t , even though they are
present at di�erent pixel locations in each frame, thus validating
the proposed approach to video generation.

4.3 Results on Two-Digit Bouncing MNIST
Extending the Bouncing MNIST dataset, we generated the two-
digit Bouncing MNIST dataset where two digits move independent
of one another, either up and down or le� and right, as shown in
Figure 3(b). �e dataset consists of a training set of 12, 000 videos,
with each video containing 10 frames of size 64 × 64 with two
28 × 28 digits. In order to ensure variability, the initial positions
for both the digits were chosen randomly. In case of an overlap,
the intensities are added, clipping the sum if it goes beyond 1. �e
results of applying Sync-DRAW to this two-digit Bouncing MNIST
dataset are shown in Figures 5(b) and 6(a). Once again, the baseline
method performs rather poorly as shown in Figure 5(a). Figure
6(a) also shows that Sync-DRAW a�ends to both the digits at every
time step simultaneously. In the initial time steps, a single structure
is formed which then breaks down to give the two digits in the
subsequent time steps. We believe that this is the reason that though
the generated digits have a well de�ned structure and a boundary,
they are still not as clear as when compared to results on Single-
Digit Bouncing MNIST. We infer that there is a need for a “stimulus”
for a�ention mechanism to know that there are two digits that need
to be a�ended to. �is claim is substantiated in subsequent sections
where we include alignment with captions in Sync-DRAW, giving
the a�ention mechanism this required stimulus.

4.4 Results on KTH dataset
We evaluated the performance of Sync-DRAW on the KTH Human
Action Database [19] to benchmark the approach on a more real



Figure 6: (a) Sync-DRAW results on Two-Digit BouncingMNIST; (b) Sync-DRAW results on Two-Digit BouncingMNIST videos
when captions are included. Clearly, captions improve generation of ‘objectness’ of the digits.

Figure 7: Videos generated by Sync-DRAW for KTHHuman
Action Dataset without captions.

dataset. We chose KTH dataset over other video datasets such
as UCF as the videos from KTH were accompanied with meta-
data which helped us to create meaningful captions for the videos
and experiment Sync-DRAW with captions on this dataset. �e
KTH dataset consists of over 2000 videos of 25 subjects performing
six di�erent actions - walking, running, jogging, hand-clapping,
hand-waving and boxing. We resized the frames to 120 × 120 and
performed generation for 10 frames. Given the complexity of the
scene and increased frame size, we increased K to 12 andT to 32 to
obtain videos with be�er resolution.

Figure 7 shows some test videos generated for the KTH dataset.
�e clarity of the person in the generated scenes suggests that
Sync-DRAW is able to perform equally well on a real-world dataset.

4.5 Sync-DRAW with captions
As discussed in Section 3.1.4, the proposed Sync-DRAW methodol-
ogy can be used to generate videos from captions.

4.5.1 Single-Digit BouncingMNIST. For every video in the bounc-
ing MNIST dataset, a sentence caption describing the video was
included in the dataset. For Single-Digit Bouncing MNIST, the con-
comitant caption was of the form ’digit 0 is moving le� and right’ or
’digit 9 is moving up and down’. Hence, for the single-digit dataset,
we have 20 di�erent combinations of captions. In order to chal-
lenge Sync-DRAW, we split our dataset in such a way that for all
the digits, the training and the test sets contained di�erent motions

Figure 8: Sync-DRAW generates videos from just captions
on the Single-Digit BouncingMNIST: Results above were au-
tomatically generated by the trained model at test time.

Figure 9: Sync-DRAW generates videos from just captions
on the Two-Digit Bouncing MNIST: Results above were au-
tomatically generated by the trained model at test time.

for the same digit, i.e. if a digit occurs with the motion involving up
and down in the training set, the caption for the same digit with the
motion le� and right (which is not used for training) is used in the
testing phase. Figure 8 shows some of the videos generated from
captions present in the test set. It can be observed that even though
the caption was not included in the training phase, Sync-DRAW



Figure 10: Sync-DRAW generates videos from just captions
on KTH dataset.
is able to capture the implicit alignment between the caption, the
digit and the movement fairly well.

4.5.2 Two-Digit Bouncing MNIST. We conducted similar exper-
iments for the Two-Digit Bouncing MNIST, where the captions
included the respective motion information of both the digits, for
example ’digit 0 is moving up and down and digit 1 is moving le�
and right’. Figure 9 shows the results on this dataset, which are
fairly clear and good on visual inspection (we show quantitative
results later in Section 4.6). Interestingly, in Figure 6(b), we notice
that when Sync-DRAW is conditioned on captions, the quality of
the digits is automatically enhanced, as compared to the results in
Section 4.3 (Figure 6(a)). �ese results give the indication that in the
absence of captions (or additional stimuli), the a�ention mechanism
in Sync-DRAW focuses on a small patch of a frame at a time, but
possibly ignores the presence of di�erent objects in the scene and
visualizes the whole frame as one entity. However, by introduc-
ing captions, the a�ention mechanism receives the much needed
“stimulus” to di�erentiate between the di�erent objects and thereby
cluster their generation, resulting in videos with be�er resolution.
�is is in concurrence with the very idea of an a�ention mecha-
nism, which when guided by a stimulus, learns the spatio-temporal
relationships in the video in a signi�cantly be�er manner.

4.5.3 KTH Dataset. As mentioned in Section 4.4, we were able
to generate descriptive captions for the videos in the KTH dataset by
using the metadata which included the person and the correspond-
ing action. We carried out our experiments on videos for walking
and running as it further helped to deterministically introduce the
notion of direction. Some examples of the captions are ’person 1 is
walking right to le�’ and ’person 3 is running le� to right’. Figure 10
shows some of the videos generated by Sync-DRAW using just the
captions for KTH dataset. �e generated videos clearly demonstrate
Sync-DRAW’s ability to learn the underlying representation of even
real-world videos and create high quality videos from text.

4.6 �antitative analysis
4.6.1 Reconstruction Loss. While quantitative analysis is dif-

�cult in image/video generation methods (due to lack of ground
truth for the generations), we analyzed the quality of the videos
generated by Sync-DRAW by computing the Negative Log Likeli-
hood (NLL) of the generated samples (as recommended by �eis
et al. in [23] for evaluating generative models). We compared the
NLL values at convergence against the baseline approach, and a
setup where, instead of a hierarchical approach, we allowed both

the spatial and temporal relationships to be learned at the global
level (called Global in table below). �e results are presented in
Table 1. From the losses, we can clearly infer that Sync-DRAW
performs signi�cantly be�er than the other two approaches.

Experiments One Digit
MNIST

One Digit
MNIST*

Two Digit
MNIST

Two Digit
MNIST*

Sync-DRAW 340.39 327.11 639.71 524.41
Global 500.01 512.46 899.06 860.54
Baseline 3561.23 3478.26 5240.65 5167.94

Table 1: Negative Log Likelihoods at convergence for Sync-
DRAW, Baseline and Global methods. * = with captions
(Lower is better).

4.6.2 Psychophysical Analysis. In order to quantify the visual
quality of the generated videos, we further performed a psychophys-
ical analysis where we asked a group of human subjects to rate the
videos generated by Sync-DRAW for di�erent datasets. 37 subjects
(each ignorant of this work) were given a set of 10 generated videos
from each experiment we conducted with Sync-DRAW, and were
asked to rate the perceived visual quality of a video on a scale of
1 − 10 (with 10 being the highest score, and also corresponded to
the score for original videos from the respective datasets shown to
the subjects). �e statistics of this analysis are presented in Tables 2
and 3. It can be observed that the average rating for Single-Digit
Bouncing MNIST (with and without captions), Two-Digit Bouncing
MNIST (with captions) and KTH (with captions) is very high which
correlates well with the qualitative results. �e scores for Two-Digit
Bouncing MNIST and KTH without captions were slightly lower
(although not unacceptable) due to the reduction in clarity. Genera-
tions on these datasets, however, improved with the availability of
a stimulus in the form of captions (as explained before in Figure 6).

4.7 �alitative comparison with VGAN [25]
To compare our results with the recently proposed VGAN method
in [25], which is the only earlier e�ort for video generation from
scratch, we ran a comprehensive set of experiments. We �rst studied
the performance of VGAN’s [25] code on the Bouncing MNIST
dataset. In order to align with VGAN’s requirements, we modi�ed
the Bouncing MNIST dataset to comprise of videos containing 32

Datasets One Digit
MNIST

Two Digit
MNIST KTH Dataset

Avg. Video
�ality Score 9.37 ± 0.63 7.86 ± 0.75 7.27 ± 0.80

Table 2: Average score ± Standard Deviation given to the
videos generated by Sync-DRAWwithout captions for di�er-
ent datasets. Baseline: low score (2.7 ± 0.53) for all datasets.

Datasets One Digit
MNIST

Two Digit
MNIST KTH Dataset

Avg. Video
�ality Score 9.43 ± 0.60 8.97 ± 0.83 9.10 ± 0.77

Table 3: Average score ± Std Deviation given to videos gen-
erated by Sync-DRAW with captions for di�erent datasets.



Figure 11: �alitative comparison of video generation on
MNIST dataset between VGAN and Sync-DRAW. First 10
frames generated by both approaches are shown for brevity.

Figure 12: �alitative comparison of video generation on
dataset in [25] between VGAN and Sync-DRAW. (a) depicts
the videos generated by VGANmodel we trained. (b) depicts
the videos generated by Sync-DRAW.�e�rst 10 frames gen-
erated by both approaches are shown here for brevity.

frames in RGB, and then trained VGAN on this modi�ed Bouncing
MNIST dataset. To ensure an equitable comparison, we ran Sync-
DRAW on the same dataset as well (note that our earlier results had
di�erent se�ings on this dataset). �e results of the experiments
are shown in Figure 11. Next, we ran Sync-DRAW on the dataset
made available in VGAN’s work [25]. We changed Sync-DRAW’s
parameters to support generation of videos containing 32 frames.
�e results can be seen in Figure 12. Lastly, in order to have a fair
comparison, we ran both the codes on a dataset that they were
never run on before, the UCF-101 dataset [21]. Each video in the
training dataset from UCF-101 contained 32 colored frames. 3 �ese
results can be seen in Figure 13.

From our experiments, we notice that there are signi�cant di�er-
ences between Sync-DRAW and VGAN results. While VGAN gives
an overall semblance of sharper generations, on closer look, the
generations are noisy with poor objectness. (While [25] reported

3VGAN [25] uses UCF-101 to show their network’s capability to learn representations
for action classi�cation but has shown no generation result on UCF-101

Figure 13: �alitative comparison of video generation on
UCF101 dataset between VGAN and Sync-DRAW. �e �rst
10 frames generated by both approaches are shown here for
brevity. On the right, a sample frame of each video is shown
magni�ed for better comparison.

results that look be�er, we found this to be true on closer observa-
tion for many results there too). On the other hand, Sync-DRAW’s
generations have a smoothness to them and are fairly noise-free in
comparison, although they are a bit blurry. �e results of VGAN
on Bouncing MNIST highlight this issue of poor objectness further.
Similar observations can also be made on the results generated
from training on VGAN [25]’s own dataset. �e results on UCF-101
serve as a fair comparison between the two methods because of
the lack of any bias in the dataset used to train the two models. We
also conducted a psychophysical analysis on the videos generated
by VGAN, and found the scores on VGAN to be comparable to
that of Sync-DRAW. Sharpening the generations of Sync-DRAW on
real-world datasets, while maintaining its overall smoothness, is
an important direction of our future work.

5 CONCLUSION AND FUTUREWORK
�is paper presents Sync-DRAW, a new approach to automatically
generate videos using a Variational Auto-Encoder and a Recur-
rent A�ention Mechanism combined together. We demonstrate
Sync-DRAW’s capability to generate increasingly complex videos
starting from Single-Digit BoundingMNIST tomore complex videos
from KTH and UCF101 datasets. We show that our approach gives
adequate focus to the objects via the a�ention mechanism and gen-
erates videos that maintain the structural integrity of objects. We
also demonstrated Sync-DRAW’s ability to generate videos using
just captions, which is the �rst of its kind. As evident from the
results, our approach is highly promising in the domain of video
generation. Our ongoing/future e�orts are aimed at improving
the quality of the generated videos by reducing blurriness and
generating videos from even more complex captions.
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[23] Lucas �eis, Aäron van den Oord, and Ma�hias Bethge. 2015. A note on the
evaluation of generative models. arXiv preprint arXiv:1511.01844 (2015).

[24] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. 2016. Pixel
Recurrent Neural Networks. arXiv preprint arXiv:1601.06759 (2016).

[25] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. 2016. Generating videos
with scene dynamics. In Advances In Neural Information Processing Systems. 613–
621.

[26] SHI Xingjian, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and
Wang-chun Woo. 2015. Convolutional LSTM network: A machine learning ap-
proach for precipitation nowcasting. InAdvances in Neural Information Processing
Systems. 802–810.

[27] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, A�end and Tell:
Neural Image Caption Generation with Visual A�ention. In Proceedings of the
32nd International Conference on Machine Learning (ICML-15). 2048–2057.


	Abstract
	1 Introduction
	2 Background and Related Work
	3 Sync-DRAW Methodology
	3.1 Sync-DRAW Architecture

	4 Experiments and Results
	4.1 Baseline Methodology
	4.2 Results on Single-Digit Bouncing MNIST
	4.3 Results on Two-Digit Bouncing MNIST
	4.4 Results on KTH dataset
	4.5 Sync-DRAW with captions
	4.6 Quantitative analysis
	4.7 Qualitative comparison with VGAN vondrick2016generating

	5 Conclusion and Future Work
	References

