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Line of Sight2 x n,, MIMO
with Random Antenna Orientations

Lakshmi Natarajan, Yi HongSenior Member, IEEEand Emanuele Viterbdsellow, IEEE

Abstract—Line-of-sight (LoS) multiple-input multiple-output ~ can be designed to optimize the performance of the commu-
(MIMO) givets full spaltialirr;yltiplexigg gaindwgen éhe fiﬂtehgra nication system. The LoS MIMO channel quality, in terms of
array geometry and orientation are designed based on the iet- ; ; ; ; ;
terminal distance. These known design methodologies, thétold Egsgct;gé?:,:ﬂg:gglgg[gza_l?é]cg\sli?gsczgi f)??r?g?r!teelﬁlf:ﬁi
for antenna arrays with fixed orientation, do not provide full ¢ X 4 ) . :

MIMO gains for arbitrary array orientations. In this paper, distance and the inter-antenna spacing of transmit andveece
we study LoS MIMO channels with random array orientations  arrays, when the antennas are to be arranged in a rectangular
when the number of transmit antennas used for signalling is circular or a linear array. However, these design techrsique
2. We study the impact of common array geometries on ermor ,qqme that the position and the orientation of the antenna
probability, and identify the code design parameter that describes - . o -

the high signal-to-noise ratio SNR) error performance of an affaysare f|)_(ed, and the res“'t'”g C”_te”a may be (_j|ff|cmtD¢
arbitrary coding scheme. For planar receive arrays, the eror Satisfied if either of the communicating terminals is mobite

rate is shown to decay only as fast as that of a rank channel, if the positions of the wireless terminals are not known anpri

and no better than SNR™® for a class of coding schemes Systems designed according to these known criteria degrade
that includes spatlal multlple>.<|ng. We then show that for the gracefully with variations in the geometric parametersg an
tetrahedral receive array, which uses the smallest number fo . . . .
antennas among non-planar arrays, the error rate decays fasr may be_adequat_e n certain Scenarios where the Change_s n the
than that of rank 1 channels and is exponential inSNR for ~ Orientation are limited, such as in a sectored communieatio
every coding scheme. Finally, we design a LoS MIMO system cell where the variation of the base station orientatiorhwit
that guarantees a good error performance for all transmit/receive  respect to the direction of propagation is limited. However
array orientations and over a range of inter-terminal distances. these designs, which utilize two-dimensional antennayarra

Index Terms—Antenna array, array geometry, coding scheme, do not provide MIMO spatial multiplexing gains for arbityar
line-of-sight  (LoS), multiple-input multiple-output (MI MO),  array orientations.
probability of error. In [L0], the mutual information rates of a predominantly

LoS channel with arbitrary antenna array orientations were
|. INTRODUCTION studied using simulations and direct measurements in an in-

] . door environment. The results show that the three-dimesio
T HE LARGE swathes of raw spectrum available in thgnienna arrays obtained by placing the antennas on the faces

millimeter-wave frequency range are expected o providg 5 tetrahedron or a octahedron provide mutual information
an attractive solution to the high data-rate demands of tiges that are largely invariant to the rotation of antenna
future 5G cellular networks [1]. The small carrier waveltng arrays in indoor LoS conditions. Previous studies of three-
of millimeter-wave frequencies allow for reduced spacingimensional antenna arrays for wireless communicatious ha
between the antenna elements when multiple antennas A&inly studied the capacity of the resulting MIMO system
used at the transmitter and receiver. This implies thatipleit ;, 5 rich scattering environment. In_[11] a compact MIMO
input multiple-output (MIMO) spatial multiplexing gain®n  antenna was proposed which consistslfdipole antennas
be obtained even in the presence ofa;trong Iine-of_-sigthIL placed along the edges of a cube.2A-port and a36-port
component When operating in such high frequencles_[Z]. antenna were designed in [12] by placing antennas along

In LoS environments, the MIMO channel matrll is a he edges and faces of a cube. [n/[13] and [B4port and

deterministic function of the positions of the transmitéerd 16-port antennas were designed on a cube, respectively, and
recei_ver and the geometry of the antenna arrays use.d at eifjR performance of the MIMO system in terms of capacity
terminals. If the positions of the communicating termir@le  4nd channel eigenvalues in a richly scattering environment
fixed and known apriori, the geometry of the antenna arraygre studied. The objective df [11]=[14] has been to design a

. . - _ compact array by densely packing the antenna elements while
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the information theoretic limits, we need code design dete where \ is the carrier wavelength and=\/—1. The re-
based on an error performance analysis of the communicatiuiting wireless channel igg, = vVSNRHx + wg,, Where
channel. In this paper, we consider LoS MIMO channels wheyg, € C"" is the received vectorx € C? is the transmitted
the number of transmit antennas used for signalling &nd vector,wgry € C"~ is the circularly symmetric complex white
both the transmit and receive arrays have random orienttioGaussian noise with unit variance per complex dimension,
We study the impact of the geometry of the antenna arrays and SNR is the signal-to-noise ratio at each receive antenna.
the system error performance and design a LoS MIMO systéthe power constraint at the transmitterIEIs(HxH?) <1. We
that guarantees a minimum channel quality and good erassume that the channel matik is known at the receiver
performance for arbitrary transmit and receive orientstio but not at the transmitter. Ldi;, h, € C"~ denote the two
over a range of inter-terminal distances. columns ofH, andH = QR be its QR decomposition where
We model the2-transmit antenna,.-receive antenna LoS Q € C"*2 has orthonormal columns, i.€Q is a semi-unitary
MIMO channelH using the upper triangular matriR ob- matrix, and
tained from its QR-decomposition (Sectioh I1). This allous

hin
to derive bounds on pairwise error probability and identtifg [[h | Hﬁ—lﬁ
code parameter that determines the high signal-to-notse ra R = o2 |hih,
(SNR) error performance of arbitrary coding schemes in LoS 0 [ ||” — h]?

Mlvhcgschh:nrlﬁ:; for anv olanar. i.e-dimensional. arrance- Let ;. denote the correlation between the two colurhpsand
W y P » 1.0 : ’ 9 hf_ of H, and§,, be the phase ol‘f{hg, i.e.,

ment of receive antennas (such as linear, circular and rec
angular arrays), the rate of decay of error probability is |h1h2| i
similar to that of a rankl LoS MIMO channel whenever * = Tl The] andd,, = arg (hth)'
the receiver undergoes random rotations. Further, for some
coding schemes, includingpatial multiplexing[15]—-[17], the From (1), we havefh, || = ||hz|| = \/n,, and hence,
error rate with any planar receive array decays no faster tha 1 ety
SNR™? even though the channel is purely LoS and experiences R =n, {O m] .
no fading (Section 1ll).
We consider the smallest number of receive antenpas 4 Since Q is semi-unitary andwg, is a white Gaussian noise
that can form a three-dimensional, i.e., non-planar, gean Vector,y = Q'yr, is a sufficient statistic fox. Hence, in the
ment, and derive bounds on error performance when they fofist of the paper we will consider the following equivalent
a tetrahedral array. In this case, the error probabilityagiec channel
faster than that of a rank channel and is always exponential y = VSNRRx + w, )
in SNR irrespgctive of the coding schemg used (Sev'A)\'/hereR is given in [2), andw = Qfx is a two-dimensional
We then design a LoS .MIMO sysFem with a.good.error pefﬂrcularly symmetric complex white Gaussian noise withozer
formancg for all tra_nsml'F and receive array onentauons_rm/ mean and unit variance per complex dimension.
range of inter-terminal distances by using a tetrahedrcaive
array and adaptively choosing two transmit antennas from a
triangular/pentagonal array at the transmitter (Sediigm). A- Modelling theR matrix
Finally, we present simulation results to support our théoal To analyze the error performance of arbitrary coding
claims (Sectio V). schemes in LoS MIMO channels, we model the ph@seas
Notation: Matrices and column vectors are denoted by boigddependent of, and uniformly distributed iff0, 2r). Deriving
upper-case and lower-case symbols respectively. The dgmiape probability distribution of¢,, and p appears difficult,
AT, AT and ||A[|r denote the transpose, the conjugatdrowever, we provide an analytical motivation and numerical
transpose and the Frobenius norm of a maixThe symbol examples to support the validity of our model.
| - || denotes the-norm of a vector. For a complex number ~ We follow the notations from[]3],[[4] to describe the
arg(z) andRe(z) denote its phase and real part, respectivelyjeometry of the transmit and receive antenna positions as
The expectation operator is denoted Ibfy). illustrated in Fig[dl. We denote the inter-antenna distaatce
the transmitter byd,, and define the origirO of the three-
Il. THE2 x nr LOS MIMO CHANNEL dimensional reference coordinate system as the mid-point
We consider MIMO line-of-sight (LoS) transmission withpetween the two transmit antennas. Define thaxis of the
nt =2 antennas at the transmitter amgl > 2 antennas at coordinate system to be along the line connecting the two
the receiver. Assuming that the large scale fading effectfansmit antennas, i.e., the positions of the two transmit a
such as path loss, are accounted for in the link budget, W& nas are[o, 0, %}T and [0’ 0, _%}T, respectively. Choose
take the magnitude of the complex channel gain between aRg ;-axis of the coordinate system such that the centéid
transmit-receive antenna pair to be unity:Jf , is the distance of the receive antenna array lies on the: plane. LetO’ be
between the:t" transmit and then'" receive antennas, thenat a distance of? from O and at an angléd to the z-axis
the (m,n)"* component of channel matrid € C"**is [4] |.e., at the poin{R cos 3, 0, Rsin 3]". Consider an auxiliary
2 Tmm coordinate system witlD’ as the origin and the three axes
hnn = exp (2 N ) ; ) x',y, 2 defined as follows: the’ axis is along the direction

)
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We now upper bound the magnitude of the derivative.of
with respect to3. The derivative ofd f2/dS equals

i —127dyd,, sin 3 cos O, o 127dyd,y, cos B cos b,
R\ P R\ ‘

m=1

. (6)
Note that|df,/dj3| < b, whereb = W—m:ldm For an
infinitesimal changeA g3 in the value ofg,

d
12206+ 89)] = |12(8)] = |£2(68) + L2 8] - 1229)
dy Using the fact that |u + w| — |u|| < |w| for anyu,w € C,
we have
dfz
12208+ 28)| = 18] | < |35 | 1881 < blas]

It follows immediately that|d|f2|/dS| < b. Using the fact

Fig. 1. lllustration of the parameters used in the systemeahod that“ = |F(ﬂ)|/n7“ = |f2(ﬂ)|/nr, we have
dp| 1 |d|f b

00/, i.e., along the vectofcos 3, 0, sin 3] 7, 2’ axis is on the Bl é;' < - (7)

x—z plane, andy’ is parallel toy. Let (d,,, 0m, ¢m) be the

spherical coordinates of the'" receive antenna with respect NOte that6, = argF" = argf + arg f», and hence,
to this auxiliary coordinate system, whetg, is the radial df,/dB = d(arg f1)/dB + d(arg f2)/dB. Now, arg fi =

distancef,, is the polar angle and,. is the azimuthal angle. 27d: sin /A, and henced(arg f1)/df = 2md; cos 3/A. Us-

The distancer,,, , between then!™ transmit andm® receive N9 (@) and the fact that the range of transmissioms much

antennas satisfies! 5] larger thand,,,, we have

d, d(arg f1)  2mdycosfB _ 2mdy Y7 i dm b S du
Tm,n = R+ dy, sin 0, cos ¢, —i—(—l)"EsinB—i— 3 A > Rn,  n, —|d3|"
(dy, 8100, SI0 1, )2 + (diy cOS Oy + (—1)"% cos 3)? Hence, we expeatf,, /d5 > |du/dp], i.e., a small change in
2R " the value ofg, that causes a negligible changezinchanges

the phasé,, by an entire cycle oRx rad. This motivates the

Therefore, the difference,, 2 — .1 is given by channel model wheré,, is independent of:. and uniformly

. (dyn €08 b, + % cos )2 distributed in the intervalo, 2r).
Tm.2 = Tm,1 = dysinff + o°R Examplel. Consider & x 2 LoS system operating in E-band

(dy €08 B,y — 22 cos 3)2 at the frequency of2 GHz over a distanc& = 10 m. Let the

m m 2 . L.
- R two receive antennas be positioned such that 0, 6, = ,
dydy, cos B ¢oS O, ¢1 = ¢2 = 0 andd; = ds = d,./2. Then, using[(b), we have
=dssinfS + . (4) , )
R Wil — 2ex i2md, sin B cos wdid, cos 3
12 = 26xp ) RA '

Let F(3) = hih, denote the inner product between the two
columns ofH as a function of3. Using [1) and[{4), we obtain It follows that

n wdd,. cos 3 27d; sin 8
" = ————— ) andf, = ———. 8
F(8) =hihy = 3 b, 1 hnsa = cos ( RN ) hETN ®
, m:1. " , Suppose the antenna geometry is to be configured sdthat
_ exp(l%dt Slnﬁ) i:eXp(z%dtdm cos 3 cos 9m) is unitary, i.e.,. = 0, under the assumption that= 0. This

A — RA can be achieved by choosinlg andd,. so that
®) dydycos B dyd, 1
Let f,(83) = exp (i2rd; sin 3/)) and o A RA 2
This is the criterion for uniform linear arrays
o i2ndydym, cos 3 cos O, given in [3]-[5]. With A=4.2 mm, the choice of
f2(B) = _ exp ) : di=d, = /RA2=0.145m vyields p=0. With this
m=1 choice ofd; andd,., through direct computation using (8), we
ThenF(B) = f1(B)f2(B), arg F = arg f, +arg fo, and since observe that ag undergoes a small variation in value from
|fi] =1, we also haveF| = |fs]. 0 rad through0.029 rad (1.66°), the corresponding value of

w changes fronD to 6.6 x 10~*, while 6,, ranges over the
1The angleg is equal to the paramet# used in [[3], [4]. entire interval from0 to 27 rad. [ |
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Fig. 2. The joint probability density functiorfi (6 of Example[2. Fig. 3. The joint probability density functiofi(6,,, 1) of Example[3B.
Hvu 122 153

Example2. Continuing with the2 x 2 system of Examplgl1, of all possible transmit codewords. The rows of the code-
now assume that the transmit and receive arrays are affegtedvords X € ¢ correspond to the two transmit antennas and
independent random rotations about their respective @iestr the columns to thel” time slots. All codewords are equally
The random rotations are uniformly distributed over thecepalikely to be transmitted and the optimal decoder, i.e., the
of all 3-dimensional rotations. The channel matl and the maximum-likelihood (ML) decoder, is used at the receiver.
parameters),, and . are now random variables. The jointwe further assume that the communication scheme satisées th
probability density functionf(6,,, 1) obtained using Monte- average power constraidty ... || X||% < |¢| T. Our analysis
Carlo methods is shown in Figl 2. We compu(&d,,, ;1) over holds for arbitrary code®’, including space-time block codes
a rectangular grid o625 points usingl0” randomly generated (STBCs) [18].

instances ofH. For any fixedu, we observe thaf (6,,, 1) is We now briefly recall two specific coding schemes which
essentially constant across all valuesfgf implying thatf,, will be used in our simulations (in Sectidnl V) to illustrate
is uniformly distributed in[0, 27) and is independent qi. @ our analytical resultsSpatial multiplexing (SMYL5]-[17],

Example3. Consider a2 x 4 LoS MIMO system, with a Which is also known a¥BLASTin the literature, is a simple
rectangular array at the receiver, carrier frequency2o6Hz, Yet powerful scheme where independent information symbols
and inter-terminal distance @ = 10 m. The receive antennas@re transmitted across different antennas and time slbis. T
are placed at the vertices of a square whose edges arec@iebook?” C C2*! corresponding to SM occupies = 1
length d,. We choosed; = d, = /R\/2, which yields time slot, and is given by

the ideal channel (i.eyu = 0) if the transmit and receive s

arrays are placed broadside to each other [5]. The joint ¢ = {[ 2} ‘ 81, 82 EA},

probability density functionf(¢,,, 1), obtained using Monte- .

Carlo methods, when the transmit and receive arrays undebgeereA is a complex constellation, such as QAM or PSK.
uniformly random rotations about their centroids is shown i TheGolden codg19] is an STBC for two transmit antennas
Fig. [3. As in Exampld12, the numerical result supports tHeccupyingT’ = 2 time slots, and is given by

validity of our channel model. ] alsy +7s3)  alss +7s4)
In the rest of the paper we model thex n, LoS channel = { [ia(sg +psy)  alsy + M33)} S1,---5 84 € A} ’
using the2 x 2 matrix (cf. (3))

where A is a QAM constellationy = (1 +/5)/2, u =1/,

_ 1 ep a=1+iu anda = 1+ ir. Unlike SM, the Golden code
R= v {0 V1= Hz} ’ @) spreads the information symbols across time and antennas.
where® is uniformly distributed in0, 27) and Both SM and Golden code have been well studied in the
case of non line-of-sight MIMO fading channels. The SM
1| 12mdydyy, cos B cos O, scheme provides high data rate with low complexity encoding
H= N, z:l exp ( R ) | ’ (10) and decoding, while the Golden code provides high data rate,

full-diversity as well as a large coding gain at the cost of

B. Coding schemes higher decoding complexity in fading channels.

We analyse the error performance of any arbitrary codin
scheme for two transmit antennas with a finite transmissi
duration. LetT > 1 denote the transmission duration of a We now analyse the error performance of a given arbitrary
given communication scheme arfl c C2*7 the finite set coding scheme for a fixed value of Let ¥ c C**T be

Error probability analysis for a fixed:
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any code andX,,X; € ¥ be two distinct codewords. Letis the modified Bessel function of the first kind and zeroth

AX = X, — X, be the pairwise codeword difference matrixorder. For larger we have [[20]

The pairwise error probability betwe&b, andX,, for a fixed e

1 and a given realizatio® = 6 is [18] Io(z) = (14+0(z™1)). (15)
V2nx

PEP (X, — Xy|1, 0 = 0) = O ( /SNR||f;AX|%> ’ Using [I3) and the first order approximati¢ni(15), we get the

following approximate upper bound when> 0,

x

where Q is the Gaussian tail function. Using the Chernoff Ee (PEP) < L
—x2/2 © ~
bound Q(x) < M, we have the upper bound \/47WSNRN|AXIAX2|

X exp (— "TiNRd(M, AX)) . (16)

PEP < %exp (—ST'TRHRAX@) . (11)

) ) Since the exponential function falls more rapidly than
Denoting the two rows of the matridAX as Ax] and AxJ, SNR™'/2, the highSNR behaviour is dictated by (u, AX).
we obtain the following expression for the squared Euclidea |, this section, we derived bounds 8P for a fixed . In

distance between the codewords at the receiver, SectiongTll and1V we analyze the effects of random rotation
IRAX |2 = nr(HAX1H2 + || Axs|? + 2u Re(ewaIsz)) of the terminals o and error performance.
= nT(HAx1H2 + [|Axa|* + 24 cos 9’|AxIAxQ|) I1l. ERROR PERFORMANCE OF PLANAR RECEIVE ARRAYS

(12) Assume that the receive antenna system is affected by a ran-
where¢’ = 0 + Axt Axs) mod 2 dom three-dimensional rotatioll € R3*3 about its centroid
< arg(Ax; Axp) mod 2. O'. Let the rotationU be uniformly distributed on the set of

1) Worst-case E”F’T Ffrobabﬂny ovep: - For a gVenLL gy 3.dimensional rotations, i.e., the special orthogonal grou
the value offf that minimizes the squared Euclidean distance

|[RAX||2 at the receiver i®* = 7 + arg(Ax] Ax,) since it SO; = {U € R*? | UUT =L det(U) = 1}.

leads tocos’ = —1 in (I2). Using the notation )
In Theorem[dl, we provide a lower bound on the average

d(p, AX) = [|Ax; |2 + [|Axz||® — 2u|Ax]Axs|,  (13) pairwise error probability over a LoS MIMO channel with
planar receive array. To do so, we derive a lower bound on

the worst-case squared Euclidean distance is the probability that a random rotatidd would lead to a ‘bad’

min  |[RAX||Z = n,d(y, AX). channel matrix withu close tol, i.e. u > 1—e for some small
o€[0,2m) positivee. By analyzing thé®EP for this class of bad channels,
Thus the worst-casBEP for a fixed i satisfies and lettinge decay suitably withrSNR, we arrive at a lower

bound for the averagBEP at highSNR.

—ny SNRd(,u,AX)) (14)

1
PEP* (1) < 5 exXp ( 1

2) Average Error Probability ove®: Since® is uniformly
distributed in[0, 27), S0 iSO = © + arg(Ax! Ax,) mod 27.
Using [11) and[{12), the error probability averaged o&er

Theorem 1. Let the receive antenna array be any planar
arrangement of,. antennasp,. > 2, undergoing a uniformly
distributed random rotatiodJ about its centroid. At higBNR,

for any transmit orientatior, we have

for a fixed i1, can be upper bounded as follows exp (_ nyc \A;{Axﬂ)
1 SNR ) E(PEP) >
Ee (PEP) < Ee ( 5 exp ( ———[RAX]|% 21, SNR?\/272| Ax] Ax, | (HAXHF + ﬁ)
_ 2 2
= %exp < SNRnT(HAXi” * 1A% | )> X X exp (—nTiNR d(l,AX)) ) (17)

2w N
1 (_SNznr 2p1cos | Ax] AX2|) g9 Wherec = max?y_, 2mdyd,,,/ R,

— exp
2 .
17T 0 SNRi (Il Axc: 112 - [l Asco 12 Proof: Let {e,, e,, e, } be the standard basisk®. When
= Zexp <_ e (|A%1° + | A% | )) % the receive system undergoes no rotation, i.e., itiea I, let
2 4 the position of then!" receive antenna relative to the centroid

SNRn,. f O’ of the receive antenna system &gr,,, wherer,,, € R? is
Iy p|Ax] Axs] _ _ ) .
2 a unit vector. Since the receive array is planar and the rando
rotationU is uniformly distributed, without loss of generality,

where . .
. o we assume that the vectars, ..., r,, are in the linear span
Ip(z) = l/ exp (zcosf) df’ = i/ exp (zcosf') d¢' Of e; ande.. From Fig[1 we see thdt,, in (3) is the angle
T Jo 27 Jo between the orientatiobr,,, of them!" receiver and the unit

vectorv = [—sin g, 0, cos 8]" along z’-axis, i.e.,cos 6, =

27
0/ /
B 27r/0 exp (~z cos ') df rT UTv. Note thatUT has the same distribution d3, and
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v = UTv is uniformly distributed on the unit sphere &*. In our casezr = /SNR|RAX]|%/2, and we use the exact
The resulting random variable] v| is known to be uniformly value ofz from (12) for the exponent, and the following upper

distributed in the intervalo, 1]. bound for the denominator
For a small positive numbes > 0, consider the event SN SN
& :|eJv[* > 1 —4°. The probability of¢ is r =/ —|RAX||r </— |R|F |AX]|F
2 = \/nTSN IAX ]| .
P(&) =P (leJvl > V1= %) =1 - V1= @ ~ &z
2 Thus, we have the following lower bound for a fixedand
for small values ofs. We will now derive an upper bound®© = ¢,
for the PEP for the case wherf is true. Using the fol- exp (— 3R |RAX|Z)
T " . < PEP > . 18
I;;wzm? .|r'1faq:allt|es, we first show thatosé,,| < 4, for all o (Vi SNRIAX 5 + 1) (18)
) Since the denominator is independent of the pt@see can
|cos | =[], v[? use the same method as in Secfion 1l-C2 to obtain the average
< leIv|? + |eIv|? (sincer,, € span(e,,e.)) of the above lower bound over the uniformly distributed

random variable®. Averaging [I8) over® and using the
approximation to the Bessel functidn {15), we obtain

n.SNR
_mSNRy o, AX
Ee (PEP) 2 exp (277 d(p, AX))
Let ¢, = 27didyy, cos B/ RN and cpax = max{ci,...,cn, }

" ’ . ~ 2 T
From [I0), we have n-SNRy/ 272 1| Ax] Axs| (||AXHF + W)

Using the trivial upper boung < 1 in the denominator,

2
= [IvII* = leJv[?

<1-(1-42)=0%

1 | &
w=— exp (icy, cosb,,)]| . _mSNR 4, AX
T mz::1 o (PEP) > exp (— 2378 d(u, AX)) .
: . _ -SNRy/272|Ax|A AX||p +
We will now show that the value gf is close tol when€& is " | Axa| (” e Vg SN )

true. If ¢, = 1 — exp(ic,, cos 8), then (19)

Sinced(u, AX) is a decreasing function qf, if £ is true,

lem|” = (1 = cos(cm €08 On))? + sin (e €O ) the numerator in the RHS of (119) can be lower bounded
=2 —2cos(cp cosby,) by exp (—2=2NRd(1 — Semax, AX)). The expression(19) is
2, cos?(0) a lower bound on the averag®EP for a givenyu. We now
~2-2 <1 - 5 > derive a lower bound for thBEP when averaged over bofh

= 2 cos?(0) < 2. and© as follows
E(PEP) = P(E)P (X, — Xp|€) + P(E)P (X, — Xp[E9)

vyhere the gpproximation follows. from the Taylor's se- > P(EP (X, — X3/€)

ries expansion of thecos(-) function and the fact that

n,-SNR
|em cos b | < end is small. Now, 6% exp (—Td(l — 0Cmax; AX))

> .
2, SNRy/272| Ax] Axa | (| AX | + e

(za

1 1 -
u:n— Z(l—em):—nr—Zem (20)
11 . ' From the definition[(1I3) ofi(x, AX), we have
1= 21: [em] = 1= Gemas. d(1 = Semans AX) = d(1, AX) + 25eman| Ax! Axal,

Using the above relation and choosifig= SNR™*, which is

Thusp > 1 — depax Wheneverg is true. X .
small for highSNR, we obtain

The pairwise error probability for fixegh and© = 6 is

Q (\/SNRH.I_{AXH%/Q). Since we need a lower bound on exp (_%‘x{ﬁxﬂ) exp (— 2SR (1 AX))
the probability of error, we use the following lower bound foE(PEP) > .
the Gaussian tail function [21] 21, SNR® /272 | Ax] Axs| (IIAXHF + W)
2 x? Usingcos 8 < 11in ¢, = 2rd;d,, cos §/ R\ we obtainc,,., >
> - > 0. = . —
Qz) = /o (x + V22 + 4 4) eXp ( 2 )’ forz >0 max,, 2nd;d,, / RminA. This completes the proof. [ |

We compare the lower bound_{(17) dPEP for planar
Using 22 +4 < (z+2)? for > 0, we obtain a more relaxedreceive arrays undergoing random rotations, with the upper
bound bound [I6) for a channel with fixed = 1. The dominant
1 x? term dictating the rate of decay of error probability for fbot
Qx) > Vo +1) eXp <_7> these channels iscp (—2=2YR minax d(1, AX)), where the
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minimization is over all non-zero codewords difference ma-
trices AX = X, — X, of the code¥. Note thaty = 1 1
minimizes the performance meti¢u, AX), and corresponds
to the worst-case scenario where béihand R have rankl.
While planar receive arrays, such as the well-studied finea
rectangular and circular arrays, provide an array gainn(an
fold increase in receive8NR), their asymptotic coding gain 4
minax d(1, AX) provides no improvement over that of any
rank 1 channel.
Theorent 1L further implies that wheninax d(1, AX) = 0, 2
the error probability is no more exponential BNR, but d,
decays at the most as fast 88R™>. Hence, although the
channel is purely LoS and experiences no fading, the error
performance with a planar arrangement of antennas can decay 3
slowly, similar to a fading channel.

The parameted(1, AX) satisfies the following tight in- Fig. 4. The receive antennas are placed at the vertiges.,4 of the
equality tetrahedron. Also shown in the figure are the centrGid the distancesis
andd, of the antennag and4 from O’, and the inter-antenna distande.

d(1,AX) = [[Axy |2 + [ Axa? — 2| Ax] Ax,|

> [|Axq |2 + [|Axa | — 2[|Axq || |Ax2| receive array ag,, = \/3/8d,, m = 1,...,4. Let us define
= (|| Ax1] — || Ax2|)?. (21) thedeviation factory as in [3], [4] as follows
. ) ) B R
The second line follows from the Cauchy-Schwarz inequality n= 2d,d, cos B (22)

which is tight if and only if Ax; and Ax, are linearly )
dependent. Thusi(1, AX) = 0 if and only if Ax; and Axs In the case of a tetrahedral receiver, using (10) (22),

are linearly dependent afid\x; | = || Ax,||, i.e., if and only if K - I3

Ax; = aAxy for some complex number of unit magnitude. W= 1 Z exp (i—\/gcos 9m>
We use this observation in Examjile 4 below to show that the m=1 K

widely used spatial multiplexing coding scheme suffersifro The parametes captures both the distanégand the transmit
such a slowly decaying error probability with planar reeeivorientationj3, while the variable®, . .., 6, jointly determine
arrays. the receive orientatio®J. In order to upper bound the error
Example4. Performance of Spatial Multiplexing with PlanarProbability using[(14), we need the maximum valueuofver

Receive ArrayThe codeword difference matrices of the SMl possiblen andU. Let
scheme are of the form

(23)

As, w0 = goax 122
ASQ ’ m=

u:[
be the maximum channel correlation over all receive orien-
where Asy, Ass € AAd andAA = {z —y|z,y € A} is the tations as a function of;. If one is aware of the range of
set of pairwise differences of the complex constellatidn values thatR and 5 may assume, then one can upper bound
When As; = Ass the two rows of the codeword differencethe worst-caséEP using [14) as
matrix AX are equal resulting iml(1, AX) = 0. Hence, for 1 n.. SNR
the SM schemeninax d(1, AX) = 0, and from Theoreril 1, PEP" < —ex <— . d(max p*(n), AX))
. . 2 4 7

the rate of decay of the average error probability will be no
faster tharBNR™>. Note that this result is valid for any number
of antennas,. used in any planar arrangement of the receive
array. This theoretical result is validated by our simwulas
(see Fig[ID and Fig.13) in Sectibn V. m A. An upper bound op*(n)

In this sub-section we derive an upper bound,difr) for
all n > 1. This result will allow us to show that the higiNR
error performance of the tetrahedral array is better than an
planar receive array whem > 1 and the receiver undergoes

The smallest number of antennas that can form a non-plaaauniformly random rotation. To derive this upper bound, we
arrangement id. In this section we consider the case wherfirst show that when; > 1, irrespective of the receive array
n, = 4 receive antennas are placed at the vertices of a regudaientation, thet x 2 channel matrixH contains at least one
tetrahedron, see Fifl] 4. The inter-antenna distahces the 2 x 2 submatrixHg,;, such that the correlations,;, between
same for any pair of receive antennas, and this is relatedtbe two columns o, is at the mostos (77/2\/577). This
the distancel,, of each antenna from the centraidl of the latter problem is equivalent to finding the maximum distamti

%exp <—SNR d(m;ixu* (n), AX)) . (24)

IV. ERRORPERFORMANCE OFTETRAHEDRAL RECEIVE
ARRAY



8 TO APPEAR IN IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

dm = d¢ = +/3/8d,, the correlation between the columns of
H,,, can be written as

1 12wdidy, cos Bl v
Msub = 5‘ exp +

R
(7;27Tdtdg cos 3 r}v) ‘
exp

R

1 i27dydyy, cos B(ry, —1e)TV
=y [t (B )

1 i27didmA/8/3 cong
= 3 1+ exp < X ) |
zl 1+ exp (zﬁg lv)‘

2 n o
= |cos (2—77 gV ) ’ (25)

Fig. 5. The tetrahedron arrangement illustrating the cesti, ..., 4, the
referenceO’ at the centroid of the tetrahedron, and the directions ofva fewhere the fourth equality follows from{(22) and the last

of the unit vectorsr,, and gy, ¢ equality uses straightforward algebraic manipulationse
an ‘orientation’v, we intend to find the submatrild,,;, with

the least correlatiop,,. If n > 1, we have
when a unit vector inR? is quantized using a codebogk

consisting of12 unit vectors that correspond to thieedges of < —.

the tetrahedron along with the polaritied. The computation 2

of this maximum distortion is then simplified by showing thaBince cos is decreasing function in the intervdd, = /2],

G is agroup code[22]. from (28), the problem of finding.s,, translates to finding
We first introduce some notation to capture the geometridhe edgeg,, , of the tetrahedron that has the largest inner

properties of the tetrahedral array. Consider the tetnatmed product withv.

shown in Fig.[5 with the centroid. Let r,, € R® be  We will now show that for anw € S? there exists @&,

the unit vector in the direction of thex!" receive antenna such that,/1/2 < gT ,v < 1. Since

with respect to the referena@’. Hence, the position vector

of the m!" receive antenna ig,r.,. If one applies a3- [V = 8m.ell” = [VII* + lgm.ll* — 28], ,v = 2(1 - gjn,e")

dimensional rotatiolJ € R3*3 on the receive system abou

O', the position of them!” receive antenna igd,,Ur,,. It

is straightforward to show that the polar anglg of the m"

rotated receive antenna (cf. Hig. 1) satisfies6,, = r7 UTV,

where the unit vecto? = [—sin 3, 0, cos 8] . SinceU is an

arbitrary rotation matrix, the set of all possible valuesuased

by the vectorv = UTv is the spher&? consisting of all unit Proposition 1. For anyv € S, there existn, ¢ € {1,2,3,4},

vectors inR®. From [I0), the correlatiop. for a tetrahedral m # ¢, such thatg! ,v > /1/2.

™

2,'7 g;rn,év

this is equivalent to finding the maximum squared Euclidean
error when the set of vectos = {g, ¢ | m # ¢} is used as

a codebook for quantizing an arbitrary unit vectorin R3.
The setG contains12 vectors, corresponding to theedges

of the tetrahedron together with the polariby.

receveris Proof: With some abuse of notation we will denote the
elements oG asgy,...,g12. Foreachi =1,...,12, let
1 12mdyd,y, cos B cos 6 81 812
r=7 ZGXP R\ , D;={veS|glv>glv, forall j#i} (26)
m=1 !

be the set of unit vectors that are closergtothan any other
wherecosf,, = rJ, UTv = r]v, andv € S? captures the g; € G. SinceU;D; = S?, it is enough to show that
effect of the rotation undergone by the receive array. Fgr an

m # ¢, the unit vectors,,, andr, satisfy||r,, —r¢|| = \/8/3. min min gfv = 1.
Let i veD; 2
As we now show, the regiorBy, ..., D15 are congruent to
_ Tm T _ \/g(r “ 1) each other. Le#/ be the symmetry group of the tetrahedron,
Bm,¢ It — x| gum ! i.e., the set of all orthogonal transformations & that map

the tetrahedron onto itself. It is known that the gro#p
be the unit vector along,,, — r, i.e., along the edge of theis isomorphic to the symmetric grou$, of degree4, and
tetrahedron between the verticesand/ (see FigLh). every element of{{ is uniquely identified by its action on
Let Hg,, be the2 x 2 submatrix ofH formed using the the set of vertices, which is isomorphic to the action of the
m!" and ¢** rows. Note thatH,,, is the channel responsecorresponding element if; on the set{1,2, 3, 4}; see [23].
seen through the receive antenmagnd/. Using the fact that Since for any two given pair$mi,¢;) and (ms,¢2), with
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S and are related t®; as

Dy = SN R1, whereR, = 011227)1

The group cod&; and thell half-spacesP; can be explicitly
calculated starting from the geometry of the tetrahedrod,it
can be verified thak ;, and hencé, is bounded by exactly
planes arising froné of the eleven half-spacé®;. The region
- R, is a convex cone [22] generated from thedges running
Ry along the vectorg;, . . . , qg that are the intersections between
the 6 hyperplanes, i.e.R; is the infinite cone generated

origi
from the convex hull of the sefqi,...,q¢}. Fig.[8 shows

Fig. 6. An illustration of the conesS and R used in the proof of an illustration of the geometry considered in this prook(th

PropositiorL]L. The con§ is circular with axisg; (dashed line). The corgy depiction qul, ., Q6 is not exact)_ Since

is bounded by hyperplanes, and its edges are along the segfor. ., ge.

The edgeqs is the farthest from the axig; and lies on the surface df. Tx
min glv = min >—, (27)
veD, XER1 HXH

my # £ and my # [y, there exists a permutation onand sincegTx/||x|| is the cosine of the angle betwesrand
{1,2,3,4} that mapsm; to m, and {; to {3, we see that g, our problem is to find a vector ifR; which makes the
there exists an orthogonal transformatidhe 7 such that  |argest angle withg;. The set of points that make a constant
angle withg; form the surface of an infinite circular cone
with g; as its axis. Thus[(27) is equivalent to finding the
This can be extended to a group action®mas smallest circular coné, with g; as the axis, that contains the

3 conical regionR;. SinceR; is generated byy;,...,qs, S'isS
) = \/%M (rml - rll)

Im, = Mr,,, andr,, = Mry,.

Mg, ., =M <M the smallest circular cone that contains the veatgrs. ., gg,

[tmy = e, and hagg; as the axis. It follows tha$ contains on its surface
_ /3 (Emy — 10,) = the vectorq;, from amongqy, .. ., q¢, that makes the largest
T\ g \Wme T ) T Bmate angle withg,. Thus,
Thus we see that the grodp acts transitively org, i.e., T T
. T . . g1X o . glx
. min g1V— min ——- = min —-
G ={Mg,|M e H} foreveryi=1,...,12. veD, xeRy [|x||  xes [|x]|
This makesG a group code, and consequently, the regiorhe numerical valuenin,c (1, ¢y g7q; / [laill = 1/v/2 is ob-
D., ..., Dy are congruent to each othér [22], i.e., for evertained by a direct computation of the half-spaggs. .., P11,
1 <i<j <12, there exists an orthogonal transformatioand the resulting vectorgs, . .., qg¢ arising from the tetrahe-
M € H such that dral geometry. ]
D; =MD, ={Mv|v e D;}. Proposition 2. If a tetrahedral array is used at the receiver

andn > 1, then for every receive orientatiotd, there exists

Since orthogonal transformations conserve inner procauds a2 x 2 submatrixH,,,, of the channel matritI such that

sinceg; € D; for all 7, we have

. . o, 7T
min glv = 3211711] gjv foranyi # j. 0 < pgup < cos (m) ,
Thus, to complete the proof it is enough to show that where s, is the correlation between the two columns of
) T 1 Hsub-
min VvV = —. . .
veD; &1 2 Proof: From Propositiofi 1, there exist # ¢ such that

We now restrict ourselves to one particular regibp and 8.V = V/1/2. Let Hyy;, be the submatrix offl formed
find the smallest value of]v. Note that whenv € S2, the by them'™ and ¢ rows. From [(25) and the hypothesis that
inner product ofv with g; decreases with increasing distance > 1, we haveug,;, = ‘Cos (;—77 gjn_lv)‘ < cos (% \/g) ]

v — gill- Thus, from [2B),D; is the intersection o6 with  The following upper bound op*(n) follows immediately
the set of all points ifR? that are closer tg; than any other fom Propositior 2.

gi € G. The regionD; is called afundamental regiorof

the group codef and is bounded by two-dimensional planedheorem 2. For a tetrahedral receive array ang > 1,
passing through the origin [22]. The half-spa@gshat define 1 -

this fundamental region are w (n) <= (1 + cos (m)) )

-2
;= R?|||x — g1 < [|x — g .
P {X < 3|HX ngT_ e —g ”} Proof: Let H = [h,,,»] be the4 x 2 channel matrix.
= {X cR’|(g1—gi) x> O} ) From Proposition2, assume without loss of generality that t
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2 x 2 submatrix formed from the first two rows has correlation tx,
fsub < cos (m/2v/2n). Then,

Ll i i i t21 b1.3
r=7 ‘h1,1h172 + hy 1ho2 + hy 1 hs 2 + h4,1h472‘

1 1
<37 ‘hI,IhLQ + h;lhz,z‘ +1 ‘hg,lh&? + hl1h4,2‘
1 1
= —lsup + — ’h;lhg_Q + hjl,lh472‘ txo - = txs
2 4 ' t3.0
1 ( T > N 2
—cos | ——— -,
-2 2\/577 4 Fig. 7. Triangular arrangement of transmit antennas.

where the last inequality follows from Propositibh 2 and the
fact that allh,,, ,, have unit magnitude. m LoS MIMO system guarantees a minimum channel quality i.e.,
The upper bound1 + cos (7/2v/2)) /2 on p*(n) is less # < Hmax, fOr SOMeumayx < 1. Using [24), for such a system,
thanl for n > 1. Sinced(u, AX) is a decreasing function of L 1 n, SNR
w, we haved(u*(n), AX) > d(1, AX). Hence, the geometry E(PEP) < PEP" < 9 P\ T d(ptmax, AX) | -
of the tetrahedral arrangement allows the error probgtitit Using union bound, the average codeword error rate and bit
decay faster than that of rank LoS MIMO channels, and
. . error rate of the system can be upper bounded by
provides performance improvement over any planar arrange-

mentnT_ =4 of antennas_, irre_spective of the code used at the @ exp (_ n, SNR i d(fimes, AX)) .
transmitter. Note that this gain of the tetrahedral arramgya 2 4 A
over planar arrays is not due to larger inter-antenna dis&n Hence, the coding gain of an arbitrary coding scheshever
d; andd,.. this LoS MIMO system isninax d(fimax, AX).
From [21), we havel(1, AX) > (||Ax; || — [|Axz[)*. Us-  When the number of transmit antennas= 2, by choosing
ing u* < 1, we obtain B = 7 /2, we observe from(10) that the worst case correlation
9 Umax = 1 irrespective of the array geometry used at the
d(p*, AX) > d(1,AX) > ([[Ax || — [|Axz[))” = 0. receiver. Hence, in order to haye,,, < 1, we need more

_ - than2 antennas at the transmitter.
Hence, unlike t_he planar case, the error probability of aSuppose the transmitter uses an array:0f> 3 antennas.
tetrahedral receiver is exponential S?NR for any code?’. Based on the transmit array orientation, one can chaase
Example5. Performance of Spatial Multiplexing with Tetra-the n, antennas for signal transmission so that the argle
hedral Receive Array Consider the SM scheme signalledorresponding to the chosen pair of antennas is minimum. For
over n; = 2 antennas using-QAM symbols. Let the trans- example, letn, = 3 antennas be placed at the vertices of an
mit orientation = 0 be fixed, the inter-terminal distanceequilateral triangle with inter-antenna distaneas shown in
R =10 m, A = 42 mm, andd; = d, = 0.145 m. Fig.[d. Lett,, ,, be the unit vector irR? in the direction of
Then,n = RM/(2d,d, cos3) = 1, and from Theorenf]2, the position of transmit antenna with respect to the position
w*(n) < 0.722. An exhaustive numerical computation oveof transmit antenna. Note that the vectors,, ,, vary with
all pairs of codewords yieldsinax d(0.722, AX) = 0.556. changes in the transmit array orientation. If antenmaand
Using [23), the pairwise error probability of SM for fixedn are used for transmission andiif € R? is the unit vector
transmit orientation and random receive orientation can lkéng the directio0O’ of transmission, thegin 8 = uTt,, ,

upper bounded as (cf. Fig.[d, wheretx; and tx, correspond tax,, and tx,,
] respectively). The six vectors in the set
E(PEP) < PEP* < 5 exp (~SNRu"(1)) T = [t | mon = 1,2,3, m # n}
< %exp(—SNR x 0.556) . are arranged symmetrically in a two-dimensional plane at

regular angular intervals ofr/3. Let u; and u, be the
On the other hand, as shown in Example 4, for any plang@mponents ofu parallel and perpendicular to the plane of

receiver array, the error rate is not better tisR . m 7, respectively. Since the vectors h divide the plane into
regular conical regions of angular widtty3, there exists at

least one vectot,, ,, € 7 such that the angle betweep, ,,

B. System design for arbitrary array orientations andu lies in the interval—7/6, +-7/6], i.e.,
In Sectior V-8, we assumed thatwas fixed, i.e., the trans- uftmnl  x 1
mit orientationg and inter-terminal distanc® were fixed, and ] < (g) 9

we studied the effect of an arbitrary rotati@h of the receive
array ony and error probability. We now design a system thale can thus upper bour
allows arbitrary transmit and receive array orientationd a

range of valuesRi, < R < Rpax- It is desirable that the

dTt,, ,|? as follows

1 1
|uTtm,n|2 = |u1tm,n|2 + |u\1\-tm,n|2 <0+ ”U-HHQZ < 1
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\II l@f A
it ,1,%5
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0.9} *ﬁk \‘\
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0.8} \\
K ®
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\ ’ d 1+v5
o6l \ /) , — 35— bound t dy
' A 7 e 2
® // \\ /-/ - *G - M[‘Jent
05| k- o fhmax = 2/3 Fig. 9. Left: any pair of neighbouring antennas in a pentaganray has an
‘ ; inter-antenna distance ef;. Right: Any pair of non-neighbouring antennas
0 1 2 3 has distancé1 + v/5)d: /2.
m 2 3

(14 V/5)/2 because of the larger inter-antenna distance. Thus
Fig. 8. The functiong:*, ... upper bound op* and the lineumas = 2/3. the maximum correlation with pentagonal transmit array is

Hpent (1) = min < p* (), i Vi)
Thus there exists &, , such that|sin(8)| = [uTt,, | <

1/2, i.e., B € [-m/6,7/6]. Hence, if the transmit array is anwherey™(n) is given in [28). From Figl18, the value @f,.x
equilateral triangle, by appropriately choosidgut of the3 —improves from, to 73, thereby widening Rumin, Rmax]-
available antennas for signalling, one can enggdte< /6. Example?7. As in Example®, lefuma.x = 2/3, A = 4.2 mm,
The upper bound op*(n) of Theoreni2 is not tight and isd, = 6 cm and d, = 25 cm. With a pentagonal transmit
available only fom > 1. Since this bound can not be used asarray, By.x = 7/10, and using the functionp;e,,, we
good estimate of.*(n) and the analytical computation of thehave 7, =7 = 0.62 and 7,., = 173 = 2. Using [28),

exact expressioh (23) of*(n) appears to be difficult, we use R;, = 4.43 m and Rpax = 12.7 m. ]
numerically computed values of (n) for system design. The
function p*(n) and the upper bound of Theorém 2 are shown V. SIMULATION RESULTS

in Fig.[8. Using the exact functiop*(n), the requirement on
channel qualityu < umax €an be translated into a criterion
7 € [Mmin, Tmax)- From [22), for fixedd,, d,., A\, and |3| <
Bmax, We have

We use the system parametevsd;, d,, Rmax and Ry,
from Example[7. We assume that the transmit and receive
arrays undergo independent uniformly randdrdimensional
rotations about their centroids, and the distaRdeetween the

- _ RainA d - RaxA o8 terminals is uniformly distributed ifiRmin, Rmax]. In all the
Thmin = 5 g, AN max = 5 cos Bmax (28) " simulations the channel matriéd was synthesized usinfl(1)
. and the exact distancegr,, ,} between the transmit and
The range fimin, fimax] can thu§ be obtained froﬂZS). the receive antennas. V?/gcon}sider the following three gpdin
Example6. Suppose we requirgimax = 2/3 With A = gchemes with the transmission ratedobits per channel use:
4.2 mm. Using a triangular transmit array we ha¥@.x = (i) the Golden code[19] using-QAM alphabet, ) spatial
/6. From Fig.[8, the criterion.”(n) < 2/3 is equivalent to piiplexing (SM) [15]-[17] with4-QAM, and i) uncoded
Mmin = 1 = 0.62 and nmax = 72 = 1.22. If each side of 15.0AM transmitted using only one transmit antenna (single-
the triangular transmit array has length =6 cm, and the

‘ input multiple-output SIMO). Gray mapping is used at the
tetrahedral receive array has = 25 cm, then from[(2B) we (ansmitter to map information bits to constellation psjrend
have Ryin = 4.43 m andRyax = 7.75 m. [ |

unless otherwise stated, maximum-likelihood (ML) decgdin
The narrow range OfRuyin, Rmax] in Example[6 can be is performed at the receiver. While we used pairwise error
attributed to the small value af — n; in Fig.[8. This can be probability for performance analysis in Sectioa$ Tl I1IcHIV]
improved by using a pentagonal transmit array as follows. Age simulate the bit error rate to compare the average error
shown in Fig[®, with a regular pentagon, the choice of thgerformance.
transmit antenna pair can be divided into the following two
cases: (i) the two antennas are the neighbouring vertices yof
the pentagon with inter-antenna distance equal to the hengt _. .
dy ofpthe e%lge of the regular pentagon, or (ii)qthe antennas gr Ig._EO shows the performan_ce_.of th_e three_ schemes with
non-neighbouring with inter-antenna distar(de+ \/5) d; /2. two different antenng geometrles.) (unlformlllnear array
Irrespective of the class from which the antenna pair LA) at the transmitter W.'thnt - 2, and umf_orm rect.an—
chosen, it is straightforward to show thgt| < 7/10 can gular array (URA) at recei@rwith n, = 4, (ii) selecting

_be "fllways guaranteed. While the Vall_JenOfOI’ the first case  2ype performance of uniform linear array at receiver is wats that of
is given by [22), in the second case it reduces by a factor @A, and hence has been omitted.

Error performance withn, = 4
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Fig. 10. Comparison of PerfTetr with ULAXURA. Fig. 12. Performance of different tx arrays with tetrahédxaarray.
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Fig. 11. Coding gain for bit rate of bits per channel use. Fig. 13. Error probability of spatial multiplexing with #&gular transmit

array when the receive array (§ three-dimensional, andi) rectangular.
Results are shown fat,, = 16 andn, = 64 antennas.
2 antennas from a pentagonal array at the transmitter, and
using a tetrahedral array at the receiver. The valued,pf
d, are ideal for the ULAURA configuration [[5] at the

distangeR = 2d;d,/\ = 7.14 m, which is near the mid-point 4 — 1, from Fig.[T1 we observe that SIMO has the largest
of the interval[ Ruin, fimax]. The performance of the single-¢,4ing gain followed by the Golden code and then SM. The
antenna transmission scheme is independent of the recelye, performances in Fig_1L0 show this same trend for the
antenna geometry since, froni] (1), all the channel gaipéctangular array at higNR

0:1 the iIMO ;:hannel ha;/eh ur_1(|jt Ta%nltud?. Allio’ F{@ 10 Fig.[12 compares the performance of different transmityarra
shows the per ormance ol the ideal channel witk= 0, .., geometries when a tetrahedral array is used at the receiver.
R = : /n- Iz, which is a pair of para_llel AWGN channels ea_‘Chl'he n, =2 case (ULA) performs poorly SinC@umay — 1.
carrying a4-QAM symbol. From FigLID, we see that, WIthWhiIe the triangular array with the Golden code achieves

ULA xURA, the performance of b‘?th SM and the GOlde%ost of the available gain, the pentagonal array has neat ide
code are worse than SIMO at higbNR. Further, since performance

minax d(1, AX) =0 for SM, the error probability decays

slowly with SNR, confirming our theoretical results. With the

proposed pentagortetrahedron geometry both codes sho- Error Performance with large number of receive antennas

improved performance, close to that of the ideal channel.  The LoS MIMO system analysed in Sectfod IV employs the
The above error performance is succinctly captured by tketrahedral receive array — a three-dimensional antemag ar

coding gainminax d(u, AX) shown in Fig[Ill as a function for n,. = 4 antennas — to enable smaller error rates than planar

of . From Examplé€l7y < 2/3 for the new antenna geometry.arrays. The geometry of the receive array is relevant even

From Fig.[I1 we see that the coding gains of SM and tliethe number of receiving antennas. is large. Theorerf]1

Golden code are both equal tbfor all © <1/2 and are and Examplé4 show that the probability of error of the SM

larger than the SIMO coding gain far < 2/3, which explains scheme is lower bounded up to a constant factoSNR >

their superiority to SIMO. On the other hand, the coding
gain for linear and rectangular arraysisnax d(1, AX). For
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for any value ofn,, if a planar receive array is used. On|[2] E. Torkildson, U. Madhow, and M. Rodwell, “Indoor millieter wave
the contrary from ExamplE]S the SM scheme can achieve MIMO: Feasibility and performance EEE Trans. Wireless Commun.

tial rat f d f bability if. — 4 vol. 10, no. 12, pp. 4150-4160, Dec. 2011.
exponential rate or decay or error probability M, = [3] F. Bohagen, P. Orten, and G. Oien, “Construction and cigpanalysis

antennas are placed at the vertices of a regular tetrahedron of high-rank line-of-sight MIMO channels,” ivireless Communications

.gl] ——, “Design of optimal high-rank line-of-sight MIMO clmmels,”
arrangement of,, antennas can ensure that the error rate iS” |zgg Trans. Wireless Communol. 6, no. 4, pp. 1420-1425, Apr. 2007.

exponential inSNR. For instance, if the three-dimensional[5] —, “Optimal design of uniform rectangular antenna g&dor strong
arrangement includes a subset #fantennas that form a  line-of-sight MIMO channels,"EURASIP J. Wirel. Commun. Nefw.

L . no. 2, Jan. 2007, article 1D 45084.
tetrahedron, it immediately follows from ExamﬂEa 5 that a[6] I. Sarris and A. Nix, “Design and performance assessnuénhigh-

sub-optimal decoder that bases its decision only on thealign capacity MIMO architectures in the presence of a line-ghsicompo-
received by thesd antennas achieves exponential error rate. nent’ I[EEE Trans. Veh. Technolvol. 56, no. 4, pp. 2194-2202, Jul.

: N : 2007.
Hence, the optimal ML decoder that utilizes all thereceive 7 1" cella and P. Orten, “Improving coverage in mm-Wave teys

antennas achieves an exponential error probability as well by optimized MIMO geometry,” inWireless Communications Signal
F|g @ compares the error performance of SM scheme Processing (WCSP), 2013 International Conference @ct. 2013, pp.
. . . 1-6.
under planar and th_ree-dlmensmn_al receive antenna AITaY%$ b Wang, Y. Li, X. Yuan, L. Song, and B. Vucetic, “Tens ofggbits
whenn,. = 16, 64. A triangular array is used at the transmitter, ~ wireless communications over E-band LoS MIMO channels wit
4-QAM is chosen as the modulation scheme and ML decoding form linear antenna arrays/EEE Trans. Wireless Communvol. 13,

. £ datth . For both val f id no. 7, pp. 3791-3805, Jul. 2014.
IS perrormed at the receiver. For both valuesipiwe consider [9] ——, “Millimeter wave wireless transmissions at E-barfthonels with

a URA (rectangular arrangement of receive antennas) for the uniform linear antenna arrays: Beyond the Rayleigh dist#ria Proc.
planar arrangement of antennas. The three-dimensioraf arr _ 'EEE Int. Conf. Commun. (ICCYune 2014, pp. 5455-5460.

. h t of int th £ f h 10] C. Hofmann, A. Knopp, and B. Lankl, “Indoor LoS MIMO chael
IS chosen as a set @l poInts on the surface of a sphere s measurements with a focus on antenna array desig&labal Telecom-

that the minimum distance between the points is large. Aetabl  munications Conference (GLOBECOM), IEABec. 2010, pp. 1-5.

of such arrangements of points, which are knowsgtserical [11] B. N. Getu and J. B. Andersen, “The MIMO cube - a compacMai

. . , , : tenna,IEEE Trans. Wireless C ol. 4, no. 3, pp. 1136-1141,
codes is available online[[24]. For fairness, the diameter of i,lnaf,nzngoa rans. THreless ~ommunoL 2, o. = pp

the sphere is set equal to the width of the rectangular arrgyz] c. Y. Chiu, J. B. Yan, and R. D. Murch, “24-port and 36-pantenna
The coordinates of the,. points on the sphere were obtained cubes suitable for MIMO wireless communicationtfEE Trans. An-

. . . . tennas Propag.vol. 56, no. 4, pp. 1170-1176, Apr. 2008.
from [24]. As with previous simulations, we set the valueﬁ3] D. T. Le, M. Shinozawa, and Y. Karasawa, “Novel compacteanas

of di, A\, Rmax and Ry as in Examplé]7. The inter-antenna ~ for MIMO wireless communication systems,” Fhe 2010 International
distancel, of the URA is chosen to b&2.5 cm whenn,. = 16 Conference on Advanced Technologies for Communications 2010,
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terminal distance? — 7.14 m 15] [15] G. J. Foschini, “Layered space-time architecture fareless commu-
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It is evident from Fig[_IB that array geometry is an important  Bell Labs Technical Journahol. 1, no. 2, pp. 41-59, 1996.
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