Probability distribution for monthly precipitation data in India

Anumandla Sukrutha¹, Sristi Ram Dyuthi², and Shantanu Desai³

¹Dept. of Electrical Engineering, IIT Hyderabad, Kandi, Telangana 502285, India
 Email:ee14btech11002@iith.ac.in

²Dept. of Electrical Engineering, IIT Hyderabad, Kandi, Telangana 502285, India
 Email:ee14btech11031@iith.ac.in

³Dept. of Physics, IIT Hyderabad, Kandi, Telangana 502285, India Email:shantanud@iith.ac.in

ABSTRACT

We carry out a study of the statistical distribution of rainfall precipitation data for various cites in India, motivated by similar work done in Ghosh et al. 2016, which studied the probability distribution of rainfall in multiple cities in Bangladesh. We have determined the best-fit probability distribution for the monthly precipitation data spanning 100 years of data from 1901 to 2002, for multiple stations located all over India, such as Gandhinagar, Guntur, Hyderabad, Jaipur, Kohima, Kurnool, and Patna. To fit the observed data, we considered the Fisher, Gamma, Gumbel, Inverse Gaussian, Normal, Weibull, Student-t, Beta, and Generalized Extreme Value distributions. The efficacy of the fits for these distributions are evaluated using four empirical non-parametric goodness-of-fit tests namely Kolmogorov-Smirnov (KS), Anderson-Darling (AD), Chi-Square, Akaike information criterion (AIC) and Bayesian Information criterion (BIC). Finally, the best-fit distribution using each of these tests are reported for the various cities.

INTRODUCTION

Establishing a probability distribution that provides a good fit to the monthly average precipitation across years has long been a topic of interest in the fields of hydrology, meteorology,
agriculture, and others. The knowledge of precipitation at a given location is an important prerequisite for agricultural planning and management. Rainfall is the main source of precipitation. Studies of precipitation provide us knowledge about rainfall. For rain-fed agriculture, rainfall is the single most important agro-meteorological variable influencing crop production. In the absence of reliable, physically based seasonal forecasts, crop management decisions and planning have to rely on statistical assessment based on the analysis of historical precipitation records. Therefore, probability distribution of rainfall data in a variety of countries such as New Zealand, Japan, South Korea have been studied (Ghosh et al. 2016). Hirose 1994 found that the daily rainfall distribution in Japan is best fit by a Weibull distribution. Nadarajah and Choi 2007 found that Gumbel distribution provides the most reasonable fit to the data in South Korea. Most recently, Ghosh et al. 2016 fitted the rainfall data from 5 stations in Bangladesh to six probability distributions and used three different tests: Kolmogorov-Smirnov (test, Anderson-Darling test, and chi-square test. They found that the extreme value distribution provides the best fit to the Chittagong monthly rainfall data during the rainy season, whereas for Dhaka, the gamma distribution provides a better fit.

The main objective of the current study is to determine the best fit probability distribution for the monthly average precipitation data of selected stations in India. The best fit probability distribution was evaluated on the basis of several goodness of fit tests. We replicate more or less the same procedure as in Ghosh et al. 2016 (modulo two additional goodness of fit tests using Akaike and Bayesian Information Criterion, not carried out in therein, for these Indian stations. The precipitation-based information generated by this study is expected to be of considerable agronomic importance for the efficient planning and management of rain fed cotton based cropping system. Apart from agriculture point of view, the current study also finds its importance in the estimation of extreme precipitation for design purposes, assessment of rarity of observed precipitation, comparison of methods to estimate design precipitation which is useful for planners. Previous recent studies of rainfall distribution of Indian stations can be found in (Sharma and Singh 2010; Deka et al. 2009).
DATASET

The dataset employed here for our study spans a 100 year period from 1901 to 2002, and is collected by the Indian Meteorological Department and can be downloaded from http://www.indiawaterportal.org/met_data/. The stations used for this study are Gandhinagar, Guntur, Hyderabad, Jaipur, Kohima, Kurnool, Patna. We briefly list the stations below.

Gandhinagar Gandhinagar is the Capital of Gujarat and located in the western part of India. Its geographical coordinates are 23.223 deg N, 72.650 deg E. It covers a total area of 177 sq.km. It is located at an elevation of 81 m. The average annual rainfall is around 803.4 mm.

Guntur Guntur is the Capital of Andhra Pradesh, located in the southern part of India. Its geographical Coordinates are 16.3008 deg N, 80.4428 deg E. It covers a total area of 168.41 square km. It is located at an elevation of 30 m. The average annual rainfall is around 906 mm.

Hyderabad Hyderabad is the Capital of Telangana, also in the southern part of India. Its geographical Coordinates are 17.37 deg N, 78.48 deg E. It covers a total area of 650 sq.km. It is located at an elevation of 505 m. The average annual rainfall is around 828 mm.

Jaipur Jaipur is the capital and the largest city of the Indian city of Rajasthan, in the western part of India. Its geographical Coordinates are 26.9 deg N, 75.8 deg E. It covers a total area of 484.64 sq.km. It is at an elevation of 431 m. The average annual rainfall is around 635.4 mm.

Kohima Kohima is the hilly Capital of India’s north eastern border state of Nagaland. Its geographical Coordinates are 25.67 deg N, 94.12 deg E. It covers a total area of 20 sq.km. It is at an elevation of 1261 m. The average annual rainfall is around 1831.3 mm.

Kurnool Kurnool is a city, former princely state and the headquarters of Kurnool district in the Indian state of Andhra Pradesh. Its geographical Coordinates are 15.83 deg N, 78.05 deg E. It
covers a total area of 65.91 sq.km. It is at an elevation of 274 m. The average annual rainfall is around 737.2 mm.

Patna Patna is the capital and largest city of the state of Bihar in India. Its geographical coordinates are 25.6 deg N, 85.1 deg E. It covers a total area of 99.45 sq.km. It is at an elevation of 53 m. The average annual rainfall is around 1019.4 mm.

METHODOLOGY

The probability distributions considered for fitting the rainfall data are gamma, Fisher, Inverse Gaussian, Normal, Student–t, LogNormal, Generalized Extreme value, Weibull, and Beta. The mathematical expressions for the probability density functions of these distributions can be found in Table 1. The distribution of rainfall for all the seven stations along with the best fit distributions is shown in Figs.1-7.

Model Comparison tests

We use multiple model comparison methods to carry out hypothesis testing and select the best distribution for the precipitation data. The test is performed in order to select among the following hypotheses:

- H₀ : The amount of monthly precipitation data follows a specified distribution.
- H₁ : The amount of monthly precipitation data does not follow the specified distribution. In other words, H₁ is the complement of H₀.

The goodness of fit tests conducted herein include non-parametric distribution-free tests such as Kolmogorov–Smirnov Test, Anderson-Darling Test, Chi–square test and information-criterion tests such as Akaike and Bayesian Information Criterion. For each of the probability distributions, we find the best-fit parameters for each of the stations using least-squares fitting and then carry out the different model comparison tests discussed below.

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (K-S) test (Vetterling et al. 1992) is a non-parametric test used to decide if a sample comes from a population with a specific distribution. The K-S test compares the
empirical distribution function (ECDF) of two samples. Given N ordered data points y_1, y_2, \ldots, y_N, the ECDF is defined as

$$E_N = n(i)/N, \quad (1)$$

where $n(i)$ indicates the total number of points less than y_i after sorting the y_i in increasing order. This is a step function that increases by $1/N$ for each sorted data point.

The K-S test is based on the maximum distance between the empirical distribution function and the normal cumulative distributive function. An attractive feature of this test is that the distribution of the K-S test statistic itself does not depend on the statistics of the parent distribution from which the samples are drawn. Some limitations are that it applies only to continuous distributions and tends to be more sensitive near the center of the distribution than at the tails.

The Kolmogorov-Smirnov test statistic is defined as:

$$D = \max_{1 \leq i \leq N} (F(y_i) - \frac{i - 1}{N}, \frac{i}{N} - F(y_i)), \quad (2)$$

where F is the cumulative distribution function of the samples (or a probability distribution function) being tested. If the probability that a given value of D is very small (less than a certain critical value, which can be obtained from tables) we can reject the null hypothesis that the two samples are drawn from the same underlying distributions at a given confidence level.

Anderson-Darling Test

The Anderson-Darling test (VanderPlas et al. 2012) is another test (similar to K-S test), which can evaluate whether a sample of data came from a population with a specific distribution. It is a modification of the K-S test and gives more weight to the tails compared to the K-S test. The K-S test is distribution free in the sense that the critical values do not depend on the specific distribution being tested. The Anderson-Darling test makes use of the specific distribution in calculating critical values. This has the advantage of allowing a more sensitive test. However, one disadvantage is that the critical values must be calculated separately for each distribution. The Anderson-Darling test
statistic is defined as follows (VanderPlas et al. 2012):

$$A^2 = -N - \sum_{i=1}^{N} \left(\frac{2i - 1}{N} \right) \left[\log F(y_i) + \log(1 - F(y_{N+1-i})) \right]$$ \hspace{1cm} (3)

F is the cumulative distribution function of the specified distribution. y_i denote the sorted data. The test is a one-sided test and the hypothesis that the data is sampled from a specific distribution is rejected if the test statistic, A, is greater than the critical value. For a given distribution, the Anderson-Darling statistic may be multiplied by a constant (depending on the sample size, n). These constants have been tabulated by Stephens (Stephens 1974).

Chi-Square Test

The chi-square test (Vetterling et al. 1992) is used to test if a sample of data is obtained from a population with a specific distribution. An attractive feature of the chi-square goodness-of-fit test is that it can be applied to any univariate distribution for which you can calculate the cumulative distribution function. The chi-square goodness-of-fit test is applied to binned data. The value of the chi-square test statistic is dependent on how the data is binned. Another disadvantage of the chi-square test is that it requires a sufficiently large sample size in order for the chi-square approximation to be valid. The chi-square goodness-of-fit test can be applied to discrete distributions such as the binomial and the Poisson distributions. The Kolmogorov-Smirnov and Anderson-Darling tests are restricted to continuous distributions. For the chi-square goodness-of-fit computation, the data are divided into k bins and the test statistic is defined as follows:

$$\chi^2 = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i},$$ \hspace{1cm} (4)

where O_i is the observed frequency for bin i and E_i is the expected frequency for bin i. The expected frequency is calculated by

$$E_i = N(F(Y_{u}) - F(Y_{l})).$$ \hspace{1cm} (5)
where F is the cumulative distribution function for the distribution being tested, Y_u is the upper limit for class i, Y_l is the lower limit for class i, and N is the sample size.

This test is sensitive to the choice of bins. There is no optimal choice for the bin width (since the optimal bin width depends on the distribution). Most reasonable choices should produce similar, but not identical results. For the chi-square approximation to be valid, the expected frequency of events in each bin should be at least five. This test is not valid for small samples, and if some of the counts are less than five, you may need to combine some bins in the tails. The test statistic follows, approximately, a chi-square distribution with $(k - c)$ degrees of freedom where k is the number of non-empty cells and c is the number of estimated parameters (including location, scale, and shape parameters) for the distribution + 1. Therefore, the hypothesis that the data are from a population with the specified distribution is rejected if:

$$
\chi^2 \geq \chi_{1-\alpha, k-c}^2,
$$

where $\chi_{1-\alpha, k-c}^2$ is the chi-square critical value with $k - c$ degrees of freedom and significance level α.

AIC and BIC

The Akaike Information Criterion (AIC) (Liddle 2004; Kulkarni and Desai 2017) is a way of selecting a model from a set of models. It can be derived by an approximate minimization of the Kullback-Leibler distance between the model and the truth. It is based on information theory, but a heuristic way to think about it is as a criterion that seeks a model that has a good fit to the truth but few parameters. It has been extensively used in Astrophysics for model comparison (Liddle 2007).

It is defined as (Kulkarni and Desai 2017):

$$
AIC = -2(\log(L)) + 2K
$$

where L is the likelihood which denotes the probability of the data given a model, and K is the number of free parameters in the model. AIC scores are often shown as ΔAIC scores, or difference
between the best model (smallest AIC) and each model (so the best model has a \(\Delta \text{AIC} \) of zero).

The bias-corrected information criterion, often called AICc, takes into account the finite sample size by, essentially, increasing the relative penalty for model complexity with small data sets. It is defined as (Kulkarni and Desai 2017):

\[
\text{AICc} = -2(\log(L)) + 2 \frac{K(K + 1)}{N - K - 1} \tag{8}
\]

where \(L \) is the likelihood and \(N \) is the sample size. For this study we have used AICc for evaluating model efficiency.

Bayesian information criterion (BIC) is also an alternative way of selecting a model from a set of models. It is an approximation to Bayes factor between two models. It is given by (Kulkarni and Desai 2017):

\[
\text{BIC} = -2(\log(L)) + K \log(N) \tag{9}
\]

When comparing the BIC values for two models, the model with the smaller BIC value is considered better. In general, BIC penalizes models with more parameters more than AICc does.

RESULTS AND DISCUSSION

Some basic statistics for the amount of monthly precipitation data for the above mentioned stations are summarized in Table 2, where the minimum, maximum, mean, standard deviation (SD), coefficient of variation (CV), skewness and kurtosis are shown. The monthly rainfall dataset indicates that the monthly rainfall was strongly positively skewed for Gandhinagar and Jaipur stations. The distributions listed above are fitted for the each of the selected locations. Figures [1-7] illustrate the fitted distribution for Kurnool, Hyderabad, Jaipur, Patna, Kohima, Gandhinagar, Guntu respectively.

The test statistics for K-S test (D), Anderson-Darling Test \((A^2) \), Chi-square test \((\chi^2) \), Akaike information criterion (AIC) and Bayesian information criterion (BIC) for monthly rainfall data were computed for ten probability distributions. The probability distribution fits a given data the best according to each of the above criterion is shown in Table 3.
Our results from the various model comparison tests are as follows:

- Using K-S test (D), we find that the Fisher distribution provides a good fit to the monthly precipitation data at Guntur, Jaipur, Gandhinagar, Patna, Kurnool and Hyderabad. For Kohima, Weibull distribution provides good fit.
- Using Anderson-Darling Test (A^2), it is observed that the Fisher distribution provides the best distribution for all the cities except Kohima, for which the Beta distribution gives the best fit.
- Using Chi-square test (χ^2), it is observed that the Fisher distribution provides best distribution for Guntur. Beta distribution fits best for Gandhinagar, Kohima and Kurnool. Inverse Gaussian distribution provides the best fit for Jaipur and Hyderabad and generalized extreme value distribution provides good fit to the monthly precipitation data at Patna.
- Using Akaike information criterion (AIC), it is observed that the Fisher distribution provides best distribution for Guntur, Jaipur, Patna, Kurnool and Hyderabad. Generalized extreme value distribution provides good fit for Gandhinagar and Weibull distribution provides good fit for Kohima.
- Using Bayesian information criterion (BIC), it is observed that beta distribution provides best distribution for all districts except Gandhinagar. Student-t distribution provides best fit for Gandhinagar.

IMPLEMENTATION

We have used the python2.7 environment. In addition, Numpy, pandas, matplotlib, scipy packages are used. Our codes to reproduce all these results can be found in https://drive.google.com/drive/u/0/folders/0By2cFqN1jWi_Qkx0aXNHal1aFk.

COMPARISON TO PREVIOUS RESULTS

We now briefly compare our results to two recent papers which studied probability distribution of rainfall at various locations in India. Deka et al (Deka et al. 2009) used five distributions Generalized Extreme Value, Generalized Logistic, Generalized Pareto, Lognormal and Pearson
distribution. The method they used is similar to the one which we followed. However, instead of estimating the parameters using L-moments method they followed LQ-moment. For goodness of fit, they didn’t use AIC, BIC, or χ^2. Instead they used RRMSE, PPCC, RMAE. Their analysis was applied to data from only the eastern states.

Sharma et al (Sharma and Singh 2010) did their analysis on the daily, weekly, monthly, seasonal, and annual data for 37 years, whereas we did the same analysis on 100 years data. There goodness of fit parameters are similar to ours but they did not use BIC for model comparison. The distributions they selected are normal, lognormal (2P,3P), gamma (2P, 3P), generalized gamma (3P,4P), log-gamma, weibull (2P,3P), pearson 5 (2P,3P), pearson 6 (3P, 4P), log-pearson 3, and generalized extreme value. Their method of calculating best fit is bit different. Rankings are given to the distributions based on the goodness of fit values and the top four distributions are selected. Random numbers are generated and the four distributions. Then the residuals (Least-Squares) are calculated for each distribution. The distribution having minimum sum of residuals was considered to be the best-fit probability distribution for that particular data set.

CONCLUSION

We carried out a systematic study to identify the best fit probability distribution for the monthly precipitation data at seven selected stations of India. The data showed that the monthly minimum and maximum precipitation at any time at any station ranged from 0 to 802 mm, which obviously indicates a large dynamic range. So identifying the best parametric distribution for the monthly rainfall data could have a wide range of applications in agriculture, hydrology, engineering design, and climate research. For each station, we fit the precipitation data to 10 distributions described in Table 1. To determine the best fit among these distributions, we used five model comparison tests, such as K-S test, Anderson-Darling test, chi-square test, Akaike and Bayesian Information criterion. The results from these tests are summarized in Table 3. We find that no one distribution can adequately describe the rainfall data for all the stations. Also, sometimes there is no consensus between the different model comparison tests for the same data. According to K-S, Anderson-Darling and AIC, the Fisher distribution is preferred for most of the cities. According to BIC, the
beta distribution best fits the data for all cities except Gandhinagar.

REFERENCES

List of Tables

1 Probability density functions of different distributions used to fit the rainfall data are listed in this table. The mathematical expressions for each of these can be found in any statistics textbook. .. 13

2 Summary Statistics of the monthly precipitate data for the selected stations during the year (1901-2002) ... 14

3 Station wise first ranked probability distribution using different goodness of fit tests. F stands for the Fisher distribution. 15
Distribution	Probability density function
Normal | \(f(x) = \frac{1}{\sqrt{2\pi \sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) \)
Lognormal | \(f(x) = \frac{1}{x\sqrt{2\pi \sigma^2}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \)
Gamma | \(f(x) = \frac{1}{x\sqrt{2\pi \sigma^2}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \)
Inverse Gaussian | \(f(x) = \frac{A}{2\pi x^3} \exp\left(-\frac{A(x-\mu)^2}{2\mu^2}\right) \)
GEV | \(f(x) = \frac{1}{\sigma} [1 - k \frac{x-\mu}{\sigma}]^{1/k-1} \exp\left[-(1 - k \frac{x-\mu}{\sigma})^{1/k}\right] \)
Gumbel | \(f(x) = \frac{1}{\beta} \exp\left(-z + \exp(-z)\right), z = \frac{x-\mu}{\beta} \)
Student-t | \(f(x) = \frac{\Gamma\left(\frac{v+1}{2}\right)}{\sqrt{v\pi} \Gamma\left(\frac{v}{2}\right)} \left(1 + \frac{x^2}{v}\right)^{-\frac{v+1}{2}} \)
Beta | \(f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{\Gamma(\alpha) \Gamma(\beta)} \)
Weibull | \(f(x) = \frac{k}{\lambda} \left(\frac{x}{\lambda}\right)^{k-1} \exp\left(-\left(\frac{x}{\lambda}\right)^k\right) \)
Fisher | \(\frac{(d_1 x + d_2)^{d_2}}{x \Gamma(d_1) \Gamma(d_2)} \)

TABLE 1. Probability density functions of different distributions used to fit the rainfall data are listed in this table. The mathematical expressions for each of these can be found in any statistics textbook.
TABLE 2. Summary Statistics of the monthly precipitate data for the selected stations during the year (1901-2002)

<table>
<thead>
<tr>
<th>Descriptive measure</th>
<th>Guntur</th>
<th>Jaipur</th>
<th>Gandhinagar</th>
<th>Kohima</th>
<th>Patna</th>
<th>Kurnool</th>
<th>Hyderabad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum(mm)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Maximum(mm)</td>
<td>438.45</td>
<td>517.613</td>
<td>694.200</td>
<td>802.431</td>
<td>534.685</td>
<td>374.527</td>
<td>544.261</td>
</tr>
<tr>
<td>Mean</td>
<td>65.664</td>
<td>48.595</td>
<td>56.421</td>
<td>196.331</td>
<td>90.959</td>
<td>45.185</td>
<td>70.063</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>74.581</td>
<td>83.527</td>
<td>105.181</td>
<td>177.670</td>
<td>121.896</td>
<td>53.927</td>
<td>89.412</td>
</tr>
<tr>
<td>Co-efficient of variation</td>
<td>1.136</td>
<td>1.719</td>
<td>1.864</td>
<td>0.905</td>
<td>1.340</td>
<td>1.193</td>
<td>1.276</td>
</tr>
<tr>
<td>Co-efficient of Skewness</td>
<td>1.444</td>
<td>2.281</td>
<td>2.329</td>
<td>0.770</td>
<td>1.394</td>
<td>1.851</td>
<td>1.525</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>2.235</td>
<td>5.256</td>
<td>5.355</td>
<td>-0.238</td>
<td>0.897</td>
<td>4.688</td>
<td>2.186</td>
</tr>
</tbody>
</table>
TABLE 3. Station wise first ranked probability distribution using different goodness of fit tests. F stands for the Fisher distribution.

<table>
<thead>
<tr>
<th>Study location</th>
<th>KS test</th>
<th>AD test</th>
<th>Chi square</th>
<th>AIC</th>
<th>BIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gandhinagar</td>
<td>F</td>
<td>F</td>
<td>Beta</td>
<td>GEV</td>
<td>Student-T</td>
</tr>
<tr>
<td>Guntur</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>Beta</td>
</tr>
<tr>
<td>Hyderabad</td>
<td>F</td>
<td>F</td>
<td>InvGau</td>
<td>F</td>
<td>Beta</td>
</tr>
<tr>
<td>Jaipur</td>
<td>F</td>
<td>F</td>
<td>InvGau</td>
<td>F</td>
<td>Beta</td>
</tr>
<tr>
<td>Kohima</td>
<td>Weibull</td>
<td>Beta</td>
<td>Beta</td>
<td>Weibull</td>
<td>Beta</td>
</tr>
<tr>
<td>Kurnool</td>
<td>F</td>
<td>F</td>
<td>Weibull</td>
<td>F</td>
<td>Beta</td>
</tr>
<tr>
<td>Patna</td>
<td>F</td>
<td>F</td>
<td>GEV</td>
<td>F</td>
<td>Beta</td>
</tr>
</tbody>
</table>
List of Figures

1. Distribution fit for monthly precipitate data at Kurnool. 17
2. Distribution fit for monthly precipitate data at Hyderabad. 18
3. Distribution fit for monthly precipitate data at Jaipur. 19
4. Distribution fit for monthly precipitate data at Patna. 20
5. Distribution fit for monthly precipitate data at Kohima. 21
6. Distribution fit for monthly precipitate data at Gandhinagar. 22
7. Distribution fit for monthly precipitate data at Guntur. 23
Fig. 1. Distribution fit for monthly precipitate data at Kurnool.
Fig. 2. Distribution fit for monthly precipitate data at Hyderabad.
Fig. 3. Distribution fit for monthly precipitate data at Jaipur.
Fig. 4. Distribution fit for monthly precipitate data at Patna.
Fig. 5. Distribution fit for monthly precipitate data at Kohima.
Fig. 6. Distribution fit for monthly precipitate data at Gandhinagar.
Fig. 7. Distribution fit for monthly precipitate data at Guntur.