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Abstract

The current work examined the rarefied supersonic flow around the different types of nose cone shapes

in high Knudsen numbers. The nose cone shapes involving Conical, Bi-conic, Parabolic, Spherical

Blunt cone and Tangent ogive are considered in evaluating the numerical simulation.These cases have

been investigated with the first order Maxwell slip and Smoluchowski jump boundary conditions for

two different Knudsen numbers(Kn) 0.05 and 0.5 as rarefaction conditions are existed in the outer-

atmosphere. These conditions are implemented into the rhoCentralFoam solver in the OpenFoam

software. The purpose of the work is to obtain the flow field properties about all these leading nose

cone shapes computationally and compare the results with CFD results.Also, aerodynamic forces

had been derived. The drag and lift forces are compared among five nose cone shapes. The results

obtained in the supersonic flow regime show that the parabolic and tangent ogive nose cone shapes

have the low mean shear stress on the surface and the parabolic nose cone shape had minimum tip

temperature. in addition , tangent ogive has minimum mean surface temperature. Further more,

the spherically blunted cone has maximum mean pressure on solid surface and also maximum tip

pressure. Parabolic and Bi-Conic have minimum tip pressure.
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Chapter 1

Introduction

1.1 The Scope of current work

One of the main design factors that affect projectile of rockets, missiles and bullets is nose cone.Nose

cones may have many varieties of shapes, most common of which are conical, ogival, power series

or hemispherical.The shape of the nose cone must be chosen for minimum drag and hence a solid

of revolution is used that gives least resistance to motion. A nose cone can has many shapes which

are used primarily on the missiles traveling at supersonic speeds and are generally selected on the

basis of combined aerodynamic, guidance and structural considerations.the aerodynamic design of

the nose cone section of any vehicle or body meant to travel through a compressible fluid medium

(such as a rocket or aircraft, missile or bullet), an important problem is the determination of the

nose cone geometrical shape for optimum performance. For many applications, such a task requires

the definition of a solid of revolution shape that experiences minimal resistance to rapid motion

through such a fluid medium, which consists of elastic particles.

The accurate simulation of non-equilibrium rarefied gas flows remain very challenging in the

field of computational fluid dynamics (CFD) in the design, analysis, and optimization of flight

systems. The nose of the supersonic missiles especially at high Mach number plays important role

in performance of missile and possibility of severe heating effects beyond the speed of sound speed

(Hypersonic). Therefore a study of aerodynamic of nose shapes in supersonic missiles is required

for increasing the speed upto desired Mach number. Computational simulations of non-equilibrium

rarefied gas flows requires knowledge of the kinetic theory of gases and understanding of different

numerical simulations method such as CFD, Direct Simulation Monte-Carlo (DSMC).

The design of re-entry or air vehicles requires accurate prediction of the surface properties in

flight such as surface temperature, pressure, heat transfer and shear stress.

1.2 Literature review

The accurate simulation of non-equilibrium rarefied gas flows remain very challenging in the field of

computational fluid dynamics (CFD) in the design, analysis, and optimization of flight systems [1,

2].The nose of the supersonic missiles especially at high Mach number plays important role in

performance of missile and possibility of severe heating effects [3] beyond the speed of sound speed
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(Hypersonic). Therefore a study of aerodynamic of nose shapes in supersonic missiles is required

for increasing the speed upto desired Mach number. The design of re-entry or air vehicles requires

accurate prediction of the surface properties in flight such as surface temperature, pressure, heat

transfer and shear stress.

Previous work found that there was a significant difference between the N-S-F and experimental

density fields [4, 5].Wang and Bao investigated the Aerothermodynamics of hypersonic small nose

cone with local rarefied gas effects [6]. Markus Gauer numerically investigated on spike blunted nose

cones at Hypersonic flow [7]. The Bi-conic case has been carefully simulated by many researchers.

Recently Graham V. Candler and Ioannis Nompelis have investigated on Bi-conic nose cone shape

at high enthalpy [8]. Then, E. Titov, J. Burt, E. Josyula, I. Nompelis have implemented the slip

boundary conditions to find the surface flow field properties [9].

Stephen C. Traugott have numerically have obtained Pressure distributions about blunted cones

in Supersonic and Hypersonic flows from the Belotserkovskii Method and also done experimentally,

and these results are used to study convergence to conical flow [10]. Owens and Robert V have

experimentally investigated on Spherically blunted cones at Mach number 0.5 to 5.0 [11]. Burke, G.

L. studied on Pressure distribution and Heat transfer over sharp and blunted elliptic cones at different

angle of attacks and Mach numbers [12]. Wilson F.N. Santos and Mark Lewis have numerically

investigated on the Power Law blunted shaped leading edges situated in rarefied hypersonic flow by

using Direct Simulation Monte Carlo (DSMC) Method [13]

P.A.Newman and J.C. South had used The method of integral relations to calculate supersonic

flow past ogive shaped bodies and Pressure distributions and shock-wave curvature at the tip of

ogive bodies [14].
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Chapter 2

Governing Equations

2.1 Introduction

In this chapter we discuss the Governing equations and their partial differential forms. The dis-

cretization is carried out in Finite Volume Method (FVM).

2.2 Finite Volume Method

The Finite volume method utilizes an integration over a control volume. The control volume is

constructed from a given mesh. Depending on whether the mesh is unstructured or structured the

control volumes for every cell node is created differently. The Gaussian theorem is used to simplify

terms in the governing equations, ∫
CV

∂φi
∂xi

dV =

∫
A

niφidAi (2.1)

where,

CV = Control Volume

A = Area of the control volume

ni = normal vector to the surface integral.

2.3 Partial Differential Equations

Navier-Stokes-Fourier equations can be represented as following.

Continuity Equation (Conservation of mass)

∂ρ

∂t
+∇.(ρV ) = 0 (2.2)

Conservation of momentum with neglecting gravity

∂(ρV )

∂t
+∇.[V (ρV )] +∇p+∇.σ = 0 (2.3)

9



where σ is viscous stress tensor and positive in compression

Conservation of Energy

∂(ρE)

∂t
+∇.[V (ρE)] +∇.(V p) +∇.(σ.V ) = ∇.(k∇T ) (2.4)

where, (ρE) is total energy of the system; k is thermal conductivity; and T is Temperature and

E = e + 1
2 |u

2|, where e = cvT = (γ − 1)RT is specific internal energy and γ =
cp
cv

is the ratio of

specific heats at constant pressure and volume, where p = ρRT and R is gas constant. The value of

temperature is calculated as,

T =
1

cv
(
ρE

ρ
− |u|

2

2
) (2.5)
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Chapter 3

Numerical Simulations

The Navier-Stokes-Fourier (N-S-F) equations are implemented and solved numerically with the high-

resolution central scheme in OpenFOAM as the solver rhoCentralFoam. OpenFOAM [15] is an open

source software developed by OpenCFD Ltd. for computational fluid dynamic simulations with

many different solvers. There are four solvers for single phased highly compressible fluids and one

multiphase solver for slightly and semi-compressible fluids.OpenFOAM is first and foremost a C++

library, used primarily to create executables, known as applications. New solvers and utilities can

be created by its users with some pre-requisite knowledge of the underlying method, physics and

programming techniques involved.

3.1 Turbulence modeling

The prediction of the flow phenomena such as boundary layer separation or shock interactions

depends on the turbulence model.Turbulence is ubiquitous phenomenon. Fluid flows generally en-

countered in engineering applications are turbulent in nature which is characterized by

1. Random and Chaotic nature - temporally and spatially.

2. Diffusivity - intense mixing due to the fluctuating quantities.

3. Large Reynolds number phenomenon - occurs at high Re number regime.

4. Three-Dimensionality 1 - fluctuations are three dimensional even though the mean flow field

is two dimensional.

5. Rotationality - always involves vortices.

6. Dissipative - more energy consuming compared to laminar flow.

7. Continuum - smallest possible eddies in the flow field are larger than the molecular mean free

path

3.1.1 Spalart Allmaras Simulation

Several one-equation transport models for turbulence have appeared over the years. The most

popular one-equation models have been the Baldwin-Barth model [16] and the Spalart-Allmaras

model [17]

We have used Spalart Allmaras [17] one equation turbulence modeling. One equation model such

as the Spalart Allmaras model provides a compromise between algebraic and two equation models.
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The Spalart Allmaras one equation model solves directly a transport equation foe the eddy viscosity,

became popular because of its reasonable results for a wide range of flow problems and its numerical

properties.

The Spalart-Allmaras turbulence model was derived using empirical relationships, dimensional

analysis, and Galilean invariance. The goal was to produce a turbulent transport model that was

fast, numerically stable, and reasonably accurate for both shear layers and boundary layers. The

model uses a turbulence variable ν that has the dimensions of viscosity.The model can be written as

∂ν

∂t
+ Ui

∂ν

∂xi
=

1

σ
[∇.((ν + ν)∇ν) + Cb2(∇ν)2] + P (ν)−D(ν) (3.1)

where the production term is given by

P (ν) = Cb1ν[Ω +
ν

k2d2
fv2 ] (3.2)

The production function for turbulence models are usually functions of the eddy viscosity and the

fluid strain or vorticity.

and the dissipation is given by

D(ν) = Cw1
fw[

ν

d
]2 (3.3)

Here Ω is the magnitude of the vorticity, d is the distance to the nearest wall, and fv2 and fw are

given by

fv2 = 1− [
∝

1+ ∝ fv1
] (3.4)

fw = g[
1 + C6

w3

g6 + C6
w3

]
1
6 (3.5)

and the remaining functions are given by

fv1 =
∝3

∝3 +C3
v1

(3.6)

∝=
ν

ν
(3.7)

g = r + Cw2
(r6 − r) (3.8)

r =
ν

Ωk2d2 + νfv2
(3.9)

The remaining constants are given in Table below

Table 3.1: Coefficients for the Spalart-Allmaras model

Cb1 Cb1 σ k Cw1 Cw2 Cv1

0.1355 0.622 2/3 0.41 Cb1/k +
1+Cb2

σ 0.3 7.1

The Spalart-Allmaras turbulence model is a very stable and generally reasonably accurate model

for a wide range of turbulent flows. The model is relatively easy to implement in both structured

and unstructured Navier-Stokes codes. One drawback is the model requires the calculation of the

distance to the nearest wall for all field points. This can be an expensive computation, especially

12



for unstructured grid codes. The model has been used extensively for threedimensional geometries

and is well documented. The model has been used with some success for some unsteady flows.

3.2 The rhoCentralFoam

The rhoCentralFoam is the density-based compressible flow solver based on central-upwind schemes

of Kurganov and Tadmor [18, 19]. Christopher et al [20] has provided details of this solver and

validation against standard high viscous flow test cases. Various compressible solvers had been

compared in literature against the rhoCentralFoam, given better predictive capabilities for high

speed flows.

3.2.1 Algorithm for rhoCentralFoam

This solver is solving each of the governing compressible equations separately. First the continuity

equation is solved, providing a new value for ρ. Thereafter the momentum equation is solved in

two steps where first the inviscid part is calculated explicitly for a predicted a variable value and

the values updated and afterwards the viscid part is added by time splitting method. The energy

equation is first solved without the diffusive flux of heat, which is later added when the updated

temperature is calculated. The predicted velocity value is determined explicitly from the momentum

equation like below:

(ρu)− (ρu)n+1

∂t
+∇.u[u(ρu)] +∇p = 0 (3.10)

u =
ρu

ρ
(3.11)

To determine the corrected velocity value implicitly at the next time step (n+1), this predicted

value is used by the viscous momentum equation below:

(ρu)n+1 − (ρu)

∂t
−∇.(µ∇u) = 0 (3.12)

The solution of the energy equation follows the similar procedure. (ρE) the energy predictive value

is calculated from the inviscid energy equation:

∂(ρE)

∂t
+∇.[u(ρE)] +∇.(T.u) = 0 (3.13)

The temperature T is determined and considering the parameter ρ ,u and E which is used to

corrected energy equation:
∂(ρCvT )

∂t
+∇.(K∇T ) = 0 (3.14)

Then the pressure is updated by the equation of state for the ideal gas. To determine the viscosity

Sutherlands law of viscosity is used.

This solver has been validated with supersonic compressible flow around circular cylinder and

backward-facing step.The flow fields are computed by the steady Reynolds-Averaged Navier-Stokes(RANS)

solver with Spalart Allmaras one-equation turbulence model.
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3.2.2 CFL criteria

rhoCentralFoam solver is an explicit solver, we will have time stepping criteria. The Courant-

Friedrich-Lewy condition is a numerical constraint which determines the allowed time step for a

specific grid size. This constraint determines that information can only propagate no further than

one cell away from the original cell. In explicit schemes this constraint is necessary for convergence.If

information propagates with the speed u, then the CFL number is given in equation for a one

dimensional case

u
∆t

∆x
< C (3.15)

where,

∆t is time step,

∆x is grid size,

and C is a number which determines the CFL condition.

For explicit schemes C<1 and for implicit schemes it can be larger [21].

3.2.3 Rarefied flow and Knudsen number

Rarefied gas dynamics is based on the kinetic approach to gas flows. Maxwell [22] gave the origin

to the kinetic theory of gases.Then, Boltzmann deducted the kinetic equation which determines the

evolution of the distribution function for gaseous systems being out of equilibrium. The princi-

pal parameter of rarefied gas dynamics is the Knudsen number (Kn) which characterizes the gas

rarefaction and is defined as the ratio,

Kn =
λ

L
(3.16)

where,

λ is the mean free path,

L is characteristic length of the geometry. The magnitude of the Knudsen number determines the

appropriate gas dynamic regime. When the Knudsen number is small compare to unity, if the order of

Kn<0.001 , the fluid can be treated as continuum regime, the N-S-F equation with standard no-slip

boundary condition can be employed to describe the flow behavior. In slip regime, 0.001<Kn<0.1,

the N-S-F equations should be accompanied with the velocity slip and temperature jump boundary

conditions over the walls. In the transition regime, 0.1<Kn<10,the core flow gradually departs from

the equilibrium and the N-S-F equations are no longer valid. Finally, the flow considered as free

molecular as it goes beyond the limit of Kn>10.

3.2.4 Sutherland’s Viscosity model

Sutherland’s formula for viscosity gives a relationship between the temperature T and the dynamic

viscosity of fluid [23].It is based on the kinetic theory of gases ( Kinetic Theory ). But it is still

commonly used and gives fairly accurate results.

It is expressed as:

µ = µref ∗ (
Tref + C

T + C
) ∗ (

T

Tref
)1.5 (3.17)

where

14



µ= dynamic viscosity (Pa.s) at input temperature T

µref= reference viscosity (Pa.s) at reference temperature Tref

T= input temperature (K)

Tref = reference temperature (K)

C= Sutherland’s constant for the gaseous material.

Valid for temperatures between 0 <T<555 K with the error due to pressure less than 10 % below

3.45 MPa. T = 110.4 K is the reference temperature. µref = 1.716 × 10−5N.sm2 is the reference

viscosity.

3.3 Boundary Conditions

The continuum regime of gas flows are simulated by solving Navier-Stokes-Fourier (N-S-F)equations

with no-slip velocity boundary condition and no temperature jump boundary conditions. However

in the rarefied flow region the experiments such as performed by Arkilic[24] and Colin[25] shown that

the conventional N-S-F equations may not give accurate results.It is normal practice to determine

the rarefaction degree of gas flows by the Knudsen number (Kn). The N-S-F equations applied with

continuous boundary conditions of velocity and temperature are commonly known to be valid up to

a Knudsen number of 0.001 if no discontinuous boundary conditions are applied[26]. But in non-

equilibrium boundary conditions for Knudsen number Kn ∼ 0.1, slip velocity boundary conditions

and temperature jump conditions are applied[27].

The first order Maxwell slip boundary condition can be expressed as,

Uf − Uw =
2− σv
σv

λ
∂u

∂y
+

3

4

µ

ρT

∂T

∂x
(3.18)

where,

Uf is the fluid velocity,

Uw is the reference wall velocity,

λ is the mean free path of gas,

µ is the dynamic viscosity,

ρ is the density of fluid,

x is the axial co-ordinate,

y is the normal co-ordinate,

σv is tangential momentum accommodation coefficient

T is the temperature.

The Smoluchowski temperature jump boundary condition can be written as,

Tf − Tw =
2− σT
σT

2γ

γ + 1

λ

Pr

∂T

∂y
, (3.19)

and, Pr is non-dimensional Prandtl number , can be defined by

Pr =
µCp
k
, (3.20)

where,

Tf is the fluid temperature,
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Tw is the reference wall temperature,

σT is thermal accommodation coefficient,

γ is specific heat ratio,

Cp is specific heat,

k is thermal conductivity.
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Chapter 4

Validations

We have examined the flow field properties around conical, Bi-conic, parabolic, spherical Blunt and

tangent ogive nose cones. The geometry of these bodies is shown in Figure ?? . The length of fore-

body is 0.3 m. The diameter and length of aftbody circular cylinder are 0.2 m and 1.5 m, respectively.

The simulations are done for two Knudsen numbers(Kn=0.05,0.5) with air. Computational domain

is a 2 dimensional cone shapes which is considered symmetric about axis. Mesh has been created

with ICEM CFD tool with unstructured grids. The same Mesh of all nose cone shapes is used to

obtain results using compressible solver rhoCentalFoam of OpenFOAM and compared with CFD re-

sults. In the first case for the selected Knudsen number (Kn=0.05), both the tangential momentum

and the energy accommodation coefficient are selected equal to 0.85. The incident Mach number,

ambient temperature and wall temperature are considered M=5, T=250 K, T=500 K, respectively.

The pressure at the far field boundaries will be calculated from the following equation:

n =
1√

2Πd2LKn
(4.1)

where, p = nkT

p=pressure (pa)

n=number density

k=Boltzmann constant

Kn=Knudsen number

L=Characteristic length of the flow field

d=Molecular diameter

4.0.1 Case Description

To solve all fluid properties such as pressure, temperature, velocity, a fully unstructured mesh of

the geometry using ICEM CFD will be created first to solve all fluid properties such as pressure,

temperature, velocity by using the rhoCentralFoam. The Geometry that has used for investigation

is 2 Dimensional and shown in Figure 4.0.1

17



Figure 4.1: Geometry of all nose cone shapes

4.1 when Kn=0.05

The flow regime can be defined by Knudsen number. There are four flow regimes.

1. Continuum regime for Kn <0.01

2. Slip-flow regime for 0.01 <Kn <0.1

3. Transition flow regime for 0.1 <Kn <10

4. Free-molecular flow regime for Kn >10.

In this case the Knudsen number is 0.05 have been used to calculate the flow parameters such

as Pressure, Temperature, Velocity, Shear Stress and Pressure coefficient. As we mentioned above

the flow is slip-flow regime. In slip flow regime first order slip boundary conditions are applicable.

Maxwell slip-velocity boundary conditions and Smoluchowski temperature jump boundary condi-

tions over wall are used.

We have numerically investigated flow field parameters around all nose cone shapes such Conical,

bi-conic,Parabolic, Spherically blunted cone and Tangent ogive with Knudsen numbers(Kn) 0.05 and

compared with CFD results. The Pressure contours are in the excellent agreement but the velocity

contours illustrate some differences.
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4.1.1 Effect of Pressure and Velocity effects on Nose cone shapes

Parabolic nose cone

For the selected Knudsen number (Kn=0.05) we have applied Maxwell’s velocity slip and Smolu-

chowski temperature jump boundary conditioned.

The below Figure 4.2 shows the pressure and velocity variation on parabolic nose cone surface.

(a) Pressure (b) V elocity

Figure 4.2: Pressure distribution (a) and velocity (b) comparison between solution of rhoCentral-
Foam with slip BC and CFD results on solid surface

The below Figure 4.3 shows the pressure and velocity contours on the parabolic nose cone.

(a) Pressure (b) V elocity

Figure 4.3: Pressure distribution (a) and velocity (b) contours parabolic nose cone

The mean pressure of the solid surface is 1.412 Pa which is lowest pressure among all the nose cone

shapes. The mean velocity is of 210.9 m/s which is higher among all cone shapes.
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Spherically blunted nose cone

For the selected Knudsen number Kn=0.05 as it is slip-flow regime, we have applied Maxwell’s

velocity slip and Smoluchowski temperature jump boundary conditions.

The below Figure 4.4 shows the Pressure distribution and Velocity variations on Spherically

Blunted nose cone.

(a) Pressure (b) V elocity

Figure 4.4: Pressure distribution (a) and velocity (b) comparison between solution of rhoCentral-
Foam with slip BC and CFD results on solid surface

The below Figure 4.5 shows the Pressure and Velocity contours.

(a) Pressure (b) V elocity

Figure 4.5: Pressure distribution (a) and velocity (b) contours on Spherically blunted cones

The mean pressure on the solid surface is 1.99 Pa which the maximum mean Pressure in all and

also, from the plots spherically blunted nose cone has maximum tip pressure.
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Tangent ogive nose cone

For the selected Knudsen number (Kn=0.05), slip-flow regime so that we have applied Maxwell’s

velocity slip and Smoluchowski temperature jump boundary conditions.

The below Figure 4.6 shows the pressure distribution and Velocity on the solid surface of Tangent

Ogive shape.

(a) Pressure (b) V elocity

Figure 4.6: Pressure distribution (a) and velocity (b) comparison between solution of rhoCentral-
Foam with slip BC and CFD results on solid surface

The below Figure 4.7 shows the pressure and velocity contours.

(a) Pressure (b) V elocity

Figure 4.7: Pressure distribution (a) and velocity (b) contours on Tangent Ogive shape

The mean Pressure distribution on Tangent Ogive solid nose cone surface is 1.96 Pa and the mean

velocity on the solid surface is 195.33 m/s.
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Biconical nose cone

For the selected Knudsen number (Kn=0.05) we have applied Maxwell’s velocity slip and Smolu-

chowski temperature jump boundary conditiones.

The below Figure 4.8 shows the Pressure distribution and velocity on the solid surface of Bi-

conical nose cone shape.

(a) Pressure (b) V elocity

Figure 4.8: Pressure distribution (a) and velocity (b) comparison between solution of rhoCentral-
Foam with slip BC and CFD results on solid surface

The minimum tip Pressure distribution is of 1.53Pa which is almost equal to parabolic shape. The

mean velocity on the solid surface is 205.3 m/s.
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Conical nose cone

For the selected Knudsen number (Kn=0.05) we have applied Maxwell’s velocity slip and Smolu-

chowski temperature jump boundary conditions.

The below 4.9 shows the pressure distribution and velocity on the Conical solid nose cone shape.

(a) Pressure (b) V elocity

Figure 4.9: Pressure distribution (a) and velocity (b) comparison between solution of rhoCentral-
Foam with slip BC and CFD results on solid surface

The below Figure 4.10 shows the pressure and velocity contours.

(a) Pressure (b) V elocity

Figure 4.10: Pressure distribution (a) and velocity (b) contours on Conical shape
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4.2 Effect of Drag and Lift forces

4.2.1 Aerodynamic Forces

The principal forces acting on a missile in level flight are thrust, drag, weight, and lift. Like any

forces, each of these is a vector quantity.

Figure 4.11: Principal forces acting on flight/missile

Thrust force is directed along the longitudinal axis of the missile and is the force which propels it

forward at speeds sufficient to sustain flight.

Drag is the resistance air offers to the passage of the missile through air, and is directed rearward.

Drag is a horizontal force acting to the flight/missile path and is opposed to thrust

Gravity/Weight of the missile is the pull of gravity on the missile, and is directed downward

toward the center of the earth.

Lift is opposed to the force of gravity. The Lift force is perpendicular direction to the Drag force’

direction.

4.2.2 Drag effects on each nose cone shape

Drag is an unavoidable consequence of an object moving through a fluid. Drag is the force generated

parallel and in opposition to the direction of travel for an object moving through a fluid. Drag can

be broken down into the following two components:

1. Form drag (or pressure drag) - dependent on the shape of an object moving through a fluid.

2. Skin friction - dependent on the viscous friction between a moving surface and a fluid, derived

from the wall shear stress.

The shape of the nose cone must be chosen for minimum drag and hence a solid revolution is

used that gives least resistance to motion. Given the problem of the aerodynamic design of the nose

cone section of any vehicle or body meant to travel though a compressible medium (such as rocket or

aircraft, missile or bullet), an important problem is the determination of the nose cone geometrical

shape for optimum performance. For many applications, such as a task requires the definition of a

solid of revolution shape that experiences minimal resistance to rapid motion through such a fluid

medium, which consists of elastic particles.

The drag force acting on a body in fluid flow can be expressed as

FD = CD ∗
1

2
∗ ρ ∗ V 2 ∗A (4.2)
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where

FD = drag force(N)

CD = drag coefficient

ρ = density of fluid (kg/m3)

V = flow velocity (m/s2)

A = body area (m2)

The drag force have been investigated at different angle of attacks such as 4, 10, 16 and 20. The

below plots shown the variations of drag force on the solid surfaces of each nose cone shapes at

different angle of attacks.

Increasing angle of attack is associated with increasing drag coefficient up to the maximum drag

coefficient, at small angle of attacks the drag force is nearly constant. When the boundary layer

separates, the wing is said to be stalled (Critical angle f attack) and both drag and lift become

unsteady. Determining the drag is very difficult under stalled conditions. At and beyond the critical

angle, drag increases enormously and lift drops to nearly zero.

4.2.3 Coefficient of Pressure

The pressure coefficient is a dimensionless number which describes the relative pressures throughout

a flow field in fluid dynamics. The pressure coefficient is used in aerodynamics and hydrodynamics.

Every point in a fluid flow field has its own unique pressure coefficient, Cp.In many situations in

aerodynamics and hydrodynamics, the pressure coefficient at a point near a body is independent of

body size.

The Pressure coefficient Cp shows the dynamic relative pressure on the critical wall, which is

defined as below

Cp =
p− p∞
1
2ρ∞U

2
∞

(4.3)

Where

p = Static Pressure on the critical wall,

ρ∞ = Freestream density,

U∞ = Freestream Velocity,

U∞ is calculated from chamber conditions. We define it as

U∞ =
√
γRT0 (4.4)

Where

γ = Specific heat ratio

R = Gas constant for air

T0 = Stagnation temperature
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4.3 Effect of Pressure, Temperature and Velocity on parabolic

cone shape

The below Figure 4.12 shows how the Pressure, Temperature and Velocity varies for different angle

of attacks on the parabolic nose cone solid surface.

The below Figure 4.12 shows the Pressure, Temperature and Velocity on the Parabolic nose cone

at different angle of attacks such as 4, 10, 16, 20.

(a) Pressure (b) Temperature (c) Velocity

Figure 4.12: Pressure, Temperature and Velocity variations for different AOA on Parabolic nose
cone solid surface

In the Pressure plot, as the angle of attack increase the pressure on the surface increases. In the

Temperature plot, all the temperatures for all angle of attacks such as 4, 10, 16, 20 are almost

similar. In the Velocity plot, as the angle of attack increase the velocity on the surface decreases.
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4.4 when Kn=0.5

The flow regimes are defined based on the Knudsen number. For 0.01<Kn<0.1 the flow is called to

be slip flow, for 0.1<Kn<10 then the flow is called as Transition flow, and for Kn>10 then the flow

is called free-molecular flow. The transition flow is the most difficult to treat, is the subject of the

present study.In transition regime (according to the literature present) higher order slip boundary

conditions may be valid. Transition regime with high Knudsen number and free molecular regime

need molecular dynamics.

4.4.1 Effect of Pressure and Velocity effects on Nose cone shapes

Parabolic nose cone

For the selected Knudsen number (Kn=0.5) we have applied Maxwell’s velocity slip and Smolu-

chowski temperature jump boundary conditioned. In this case for Kn = 0.5, the wall surface is

considered to be adiabatic and all other parameters are selected the same as the first case (Kn =

0.05).

The below Figure 4.13 shows the pressure and velocity variation on parabolic nose cone surface.

(a) Pressure

Figure 4.13: Pressure distribution (a)comparison between solution of rhoCentralFoam with slip BC
and CFD results on Parabolic shape solid surface

The below Figure 4.14 shows the pressure and velocity contours on the parabolic nose cone shape.
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(a) Pressure (b) V elocity

Figure 4.14: Pressure distribution (a) and velocity (b) contours of parabolic nose cone

This Parabolic nose cone shape has min tip pressure.
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Spherically blunted nose cone

The below Figure 4.15 shows Pressure and Velocity distribution on Spherically blunted nose cone.

(a) Pressure (b) V elocity

Figure 4.15: Pressure distribution (a) and velocity (b) comparison between solution of rhoCentral-
Foam with slip BC and CFD results on Sp.Blunted shape solid surface

The below Figure 4.16 shows the Pressure and Velocity contours.

(a) Pressure (b) V elocity

Figure 4.16: Pressure distribution (a) and velocity (b) contours on Spherically blunted cones
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Tangent Ogive nose cone

The below Figure 4.17 shows Pressure and Velocity distribution on Spherically blunted nose cone.

(a) Pressure

Figure 4.17: Pressure distribution (a) comparison between solution of rhoCentralFoam with slip BC
and CFD results on Tangent ogive shape solid surface

The below Figure 4.18 shows the Pressure and Velocity contours.

(a) Pressure (b) V elocity

Figure 4.18: Pressure distribution (a) and velocity (b) contours on Tangent Ogive cone
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Bi-conical nose cone

The below Figure 4.19 shows Pressure and Velocity distribution on Spherically blunted nose cone.

(a) Pressure (b) V elocity

Figure 4.19: Pressure distribution (a) and velocity (b) comparison between solution of rhoCentral-
Foam with slip BC and CFD results on Bi-conical shape solid surface

The below Figure 4.20 shows the Pressure and Velocity contours.

(a) Pressure (b) V elocity

Figure 4.20: Pressure distribution (a) and velocity (b) contours on Bi-conical nose cone
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Conical nose cone

The below Figure 4.21 shows Pressure and Velocity distribution on Spherically blunted nose cone.

(a) Pressure (b) V elocity

Figure 4.21: Pressure distribution (a) and velocity (b) comparison between solution of rhoCentral-
Foam with slip BC and CFD results on Conical shape solid surface

The below Figure 4.22 shows the Pressure and Velocity contours.

(a) Pressure (b) V elocity

Figure 4.22: Pressure distribution (a) and velocity (b) contours on Conical nose cone
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4.4.2 Pressure Distribution Comparison on all nose once shapes

As the Knudsen number is 0.5 in which the flow regime is called as transition flow. In this flow

regime the non-equilibrium molecules will be unsteady and to obtain the aero-dynamic parameters

would be very difficulty.

At high altitudes the pressure is less in the rarefied regime but which effect the designing factors

of missiles and flights. The nose cone should posses less pressure which is desirable for the designing.

The below Figure 4.4.2 shows the comparison of Pressure among all the nose cone shapes such as

Conical, Bi-conical, Spherically blunted, Parabolic and Tangent ogive shapes. From the above

Figure 4.23: Variations in Pressure on various nose cone shapes at Kn = 0.5

graph Spherically blunted cone has maximum tip pressure and also has maximum mean pressure.

The minimum tip pressure possessed by Parabolic nose shape and Bi-conical nose shape
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4.4.3 Wall Shear Stress

Wall shear stress is also one of the most considerable factor while designing the missile/bullet/wing

because if the wall shear stress is high gives maximum temperature which leads damage the the

missile and carrying things in it. So the nose cone shape also play vital role in the reduction of shear

stress on the missile. Whatever shapes give minimum wall shear stress we prefer that shape for the

designing of missile. The below Figure 4.4.3 shows the comparison of wall shear stress on each nose

cone shapes

Figure 4.24: Variations in Wall Shear on various nose cone shapes at Kn = 0.5

From the above graph Parabolic nose cone shape and Tangent Ogive nose cone shape have

minimum average shear stress. So those two cone shapes are preferable while designing the mis-

sile/bullet/wing.
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4.4.4 Temperature Variations on all nose cone shapes

Temperature distribution over the missile/bullet/flights should be minimum for not to damage the

vehicle and the things which carries inside it. While for re-entry vehicles, the temperature have to

be maintained at minimal condition. The nose cone shape is considerable factor to maintain the

minimum temperature at tip (nose) and should posses less temperature at desired velocity. The

below Figure 4.4.4 shows the all nose cone temperatures.

Figure 4.25: Variations in Wall Shear on various nose cone shapes at Kn = 0.5

From the above graph Parabolic shape has minimum tip temperature and Tangent Ogive nose

cone shape has minimum mean surface temperature.
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4.4.5 Velocity Variations on all nose cone shapes

The missile and flights should not effect with more drag and they have to move desired velocity. If

Flight and missile go down below desirable velocity which could effect them.

The below Figure 4.4.5 shows the velocity variation around the solid surface of all nose cone

shapes.

Figure 4.26: Variations in Slip Velocity on various nose cone shapes at Kn=0.5

As flow is transition, it is very difficult to treat the flow properties.
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Chapter 5

Grid Independence

Grid convergence is the term used to describe the improvement of results by using successively

smaller cell sizes for the calculations. A calculation should approach the correct answer as the mesh

becomes finer, hence the term grid convergence. In this section we look at the three runs of the

same problem but on very different grids. These show how well the software copes with a changing

scale and how very close it is to having grid independence.

The Grid Independence test has been imposed on both Conical and Bi-conical nose cone shapes with

coarse mesh and finer mesh. The flow parameters such as Pressure coefficient and pressure has tested

to know about grid independence. The values have excellent agreement for the grid independence

test.

5.1 Grid independence test on Conical and Bi-conical nose

cone

As we mentioned above we have found the grid independence on Conical and Bi-conical nose cone

shapes with different cells.

The below Figure shows the grid independence test on conical nose cone shape with the parameter

Pressure Coefficient.
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Figure 5.1: Variations in Pressure Coefficient on Conical nose cone

and also, we have found flow parameter pressure for grid independence test with different cells,

and given good agreement.

The below Figure shows the grid independence test on conical nose cone shape the flow parameter

Pressure.

Figure 5.2: Variations in Pressure on Conical nose cone
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The below Figure shows the grid independence test on Bi-conical nose cone shape with the pa-

rameter Pressure Coefficient.

Figure 5.3: Variations in Pressure Coefficient on Bi-Conical nose cone

and also, we have found flow parameter pressure for grid independence test with different cells,

and given good agreement.

The below Figure shows the grid independence test on Bi-conical nose cone shape the flow parameter

Pressure.

Figure 5.4: Variations in Pressure on Bi-Conical nose cone
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5.2 Time independence

Time Independence test is keeping the grid fix, and refine the time-step. Since the time-step-size

and cell-size are connected via Courant number so that the solution is time-step indpendend for the

current mesh-size. We have performed the time-independence test on Conical nose cone shape by

considering the Pressure coefficient as flow parameter. We have increased the end time and took

Cp on each end time plot the graph among them and reasonably got agreement among them. The

below Figure shows the time-independence on Conical nose cone shape by considering the pressure

coefficient as flow parameter.

Figure 5.5: Variations in Pressure Coefficient on Conical nose cone

We got reasonably agreement on each end time.
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Chapter 6

Conclusion and Future work

We have presented aero-dynamics parameters on five critical nose cone shapes such as Conical,

Bi-conical, Spherically blunted, Parabolic and Tangent Ogive in rarefied flow. TherhoCentralFoam

have validated against CFD results.We have carried out detailed investigations to report the non

equilibrium effects on the drag and lift coefficients and wall shear stresses.

We have arrived that Parabolic nose cone has minimum mean temperature and pressure. Even

Tangent Ogive nose cone shape too reasonably minimum mean surface temperature. So, both nose

cone shapes are desirable for the flights, missiles and bullets. As can be seen, the pressure contours

are in the excellent agreement but the velocity contours illustrate some differences. the source of this

discrepancy is related to the inaccuracy of Maxwell’s velocity slip boundary condition.This boundary

condition valid for the Knudsen number Kn between 0.01 and 0.1 and, therefore with increasing

Knudsen number Kn from 0.01, the accuracy of this boundary condition is reduced.

The first-order non-equilibrium boundary conditions are not sufficient to accurately describe

the non-equilibrium gas flow physics. We may need to incorporate both the higher order boundary

conditions as well as the non-linear constitutive relations into the Navier-Stokes equations framework

to report better predictions. This can be done as a future work to this current work. This is very

important from the numerical simulations perspective as particle methods are still computationally

intensive for simple gas flows and indeed expensive for 3-D complex geometries.
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