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Abstract

With India focussing even more on Aerospace applications, research and devel-

opment in compressible flow has received a boost in the country. We aim to

develop a general-purpose and robust compressible flow solver to help in research

in Aerospace problems.

In this thesis we aim to develop a general-purpose and robust compressible

flow solver using the implicit MacCormack scheme in finite volume formulation. A

system of unsteady Navier-Stokes equations are integrated to a steady state solu-

tion utilizing MacCormack’s implicit numerical scheme. A new implicit boundary

treatment was introduced in the MacCormack implicit scheme. The scheme is un-

conditionally stable and does not require solution of large systems of linear equa-

tions. It is shown that the upgrade from explicit MacCormack scheme, previously

implemented in the solver, to an implicit one is very simple and straightforward.



Contents

Declaration i

Approval i

Acknowledgements ii

Abstract iii

Contents iv

Nomenclature viii

1 Introduction 1

1.0.1 IITK-DAE ANUPRAVAHA Compressible Solver . . . . . 4

1.0.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . 5

1.0.3 Objective of present work . . . . . . . . . . . . . . . . . . 7

2 Governing Equations 9

2.1 The Flow and its Mathematical Description . . . . . . . . . . . . 9

2.1.1 Continuity Equation . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Momentum Equation . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Energy Equation . . . . . . . . . . . . . . . . . . . . . . . 12



CONTENTS v

2.2 Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Discretization Techniques and Grid Generation . . . . . . . . . . 14

2.3.1 Finite Difference Method . . . . . . . . . . . . . . . . . . . 17

2.3.2 Finite Volume Formulation . . . . . . . . . . . . . . . . . . 20

2.4 Time Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Navier Stokes Equation and Matrix Form 25

3.1 Navier Stokes Equation . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Matrix Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Implicit Approach to Solve Navier Stokes Equation 31

4.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Discretization of Governing Equation . . . . . . . . . . . . . . . . 32

4.3 Explicit MacCormack Finite Difference Scheme . . . . . . . . . . 38

4.4 The Implicit Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Implicit MacCormack scheme in FVM . . . . . . . . . . . . . . . 40

4.5.1 Artificial Viscosity . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Solution Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7.1 Wall Boundary Condition . . . . . . . . . . . . . . . . . . 51

4.7.2 Inflow Boundary Condition . . . . . . . . . . . . . . . . . 51

4.7.3 Outflow Boundary Condition . . . . . . . . . . . . . . . . 51



CONTENTS vi

4.7.4 Symmetry Boundary Condition . . . . . . . . . . . . . . . 52

4.8 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Results and Discussion 53

5.1 Time comparision . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Subsonic Case . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.2 Subsonic Case:Mach 0.5, Angle of Attack (α = 0◦ ) . . . . 69

5.2 Results of Implicit Scheme . . . . . . . . . . . . . . . . . . . . . . 73

5.2.1 Subsonic Flow over a Flat Plate Ma=0.5 . . . . . . . . . . 73

5.2.2 Supersonic Flow over a Flat plate Ma=2.06 . . . . . . . . 75

5.3 Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Conclusions and future work 79

A Jacobian Matrix Formulation 81

B Artificial Viscosity Formulation 84

References 86





Nomenclature viii

Nomenclature

ρ Density of gas

α Angle of attack

γ Ratio of specific heat

δ Implicit operator

4 Explicit operator

4+,4− forward and backward finite differencing operator respectively

β γ - 1

A inviscid Jacobian, ∂Fx

∂W

B inviscid Jacobian, ∂Fy

∂W

C inviscid Jacobian, ∂Fz

∂W

c Speed of sound

Cv Specific heat of gas at constant volume

Cp Specific heat of gas at constant pressure

DA, DB, DC Characteristic Diagonal matrix

e Total internal energy

Fx x direction flux vector

Fy y direction flux vector

Fz z direction flux vector

I Identity Matrix

M Mach no.

P Pressure(N/m2)

R Universal gas constant



Nomenclature ix

Sx Right eigen vector for x direction

Sx−1 left eigen vector for x direction

Sy Right eigen vector for y direction

Sy−1 left eigen vector for y direction

Sz Right eigen vector for z direction

Sz−1 left eigen vector for z direction

T Absolute Temperature

u x component of velocity

v y component of velocity

Vp Volume of cell p

w z component of velocity

W Conservative vector

x Cartesian coordinate

y Cartesian coordinate

z Cartesian coordinate



Chapter 1

Introduction

The fundamental basis of almost all CFD problems are the Navier–Stokes equa-

tions, which define many single-phase (gas or liquid, but not both) fluid flows.

These equations can be simplified by removing terms describing viscous actions to

yield the Euler equations. Further simplification, by removing terms describing

vorticity yields the full potential equations. Finally, for small perturbations in

subsonic and supersonic flows (not transonic or hypersonic) these equations can

be linearized to yield the linearized potential equations. The basic mathematical

model of fluid flow takes the form of partial differential equations which express

the laws of conservation of mass, momentum and energy. While analytical solu-

tions to these equations are possible for a few simple cases, in most cases, specially

for complex geometry, the only alternative is to obtain approximate numerical

solutions. Computational Fluid Dynamics (CFD, in short) is a powerful bridge

between the calculus describing flow physics and high–speed computing. CFD

methodology has matured over the years to an extent that it has found its way

into most fluid flow research applications, notably in the aerospace industry.
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Computational Fluid Dynamics (CFD) methods must satisfy stringent con-

straints because of the wide range of scales and frequencies in the target flows.

To deal with those requirements, higher order, low dispersion and low dissipation

schemes are needed. However, these schemes are also more sensitive to spurious

waves generated by numerical boundary conditions.

In aerodynamics, the compressibility of a fluid is a very important factor. In

nature, all the fluids are detectably compressible, but we define incompressible

flows for our convenience of study. A compressible fluid will reduce its volume in

the presence of an external pressure. Compressible flows (in contrast to variable

density flows) are those where dynamics (i.e pressure) is the dominant factor in

density change. Generally, fluid flow is considered to be compressible if the change

in density relative to the stagnation density is greater than 5 %. Significant com-

pressible effects occur beyond a Mach number of 0.3 and greater. Compressible

effects are observed in practical applications like high speed aerodynamics, mis-

sile and rocket propulsion, high speed turbo compressors, steam and gas turbines,

etc.

Compressible flow is divided often into four main flow regimes based on the

local Mach number (M) of the fluid flow

• Subsonic flow regime (M ≤ 0.8)

• Transonic flow regime (0.8 ≤M ≤ 1.2)

• Supersonic flow regime (M > 1)

• Hypersonic flow regime (M > 5)
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Compressible flow may be treated as either viscous or inviscid. Viscous flows are

solved by the Navier-Stokes system of equations and inviscid compressible flows

are solved by Euler equations. The physical behavior of compressible fluid flow

is quite different from incompressible fluid flow. The solutions of Euler equation

are different, due to their hyperbolic (wave-like) nature, from the solutions of the

elliptic governing equations of incompressible flows. Compressible flow can have

discontinuities such as shock waves. So for compressible flows special attention is

required for solution methods which will accurately capture these discontinuities.

A major difference between solution methods for compressible flow and incom-

pressible flow lies in the boundary conditions that are imposed. In compressible

flow, boundary conditions are imposed based on the characteristic waves coming

into the domain boundary, which is very different from the Elliptic-type boundary

conditions used for incompressible flows.

For over a decade our research group has been continuously developing and

modifying a CFD software called IITK-DAE ANUPRAVAHA, a genaral purpose

CFD solver. The solver uses the finite volume method with a structured grid ar-

rangement originally developed for incompressible flows, the solver was extended

by previous M.Tech students (Nikhil Kalkote 2013, Ashwani Assam 2014) to com-

pressible flows by using explicit methods. However, using an unsteady solver to

obtain steady-state solutions by the false transient method is inefficient, especially

if explicit time steping with time-step constraints due to numerical stability, is

used. To achieve fast convergence to the steady state, an implicit time marching

scheme is thought to be much better to solve the Euler equations. This the-
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sis implements a scheme based on the MacCormack implicit scheme [22] so that

higher courant number can be used and get faster convergence compared to the

explicit method. In this thesis the results for Euler equation using the implicit

scheme is validated and an efficient matrix form solving discretized equations is

implemented for the code to run faster. The implicit scheme Euler equations are

then extended to the Navier Stokes equations

1.0.1 IITK-DAE ANUPRAVAHA Compressible Solver

The ANUPRAVAHA Compressible solver was separated from the original

ANUPRAVAHA incompressible solver to cater to aerospace applications exclu-

sively. In this solver, the flow equations have been previously solved using the

explicit MacCormack and AUSM+ schemes.The explicit MacCormack scheme,

with artificial viscosity, proved to have very good accuracy and efficiency. It has

been applied successfully for calculations of subsonic, transonic and supersonic

flows over profiles and wings.

The main drawback of the explicit scheme is its time-step limitation due to the

numerical stability condition. It becomes inefficient for unsteady flows where the

global time-scale (e.g. period of oscillation of a wing) can be much larger than the

time-step, and for the high-Reynolds viscous flows, where the mesh refinement in

boundary layers results in extremely small time-steps. A computation with an

explicit scheme requires substantial computer time.

Some implicit schemes have the advantage of being unconditionally stable,

i.e., without CFL restrictions. Since the convergence to steady-state depends
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on the propagation speed of the error waves, large CFL numbers accelerate the

convergence to steady state. The implicit MacCormack scheme, therefore, is

implemented in this thesis to facilitate faster convergence of unsteady and steady

compressible flows.

1.0.2 Literature review

Hirsch (2007) has discussed the general methodology to analyze the nature of

systems of partial differential equations. This systematic procedure to deter-

mine the nature of equations and the propagation of their solution is key to the

understanding the implementation of boundary conditions. The second volume

of Hirsch (2007) discusses almost all basic numerical schemes. such as central,

upwinding and high-resolution schemes pertaining to Euler and Navier-Stokes

equations. Euler equations are solved in conservative form but with boundary

conditions prescribed in primitive form. In Chapter 19 Hirsch discusses the imple-

mentation of boundary conditions (both physical and numerical) from character-

istic extrapolation for conservative and primitive variables, along with different

extrapolation methods.

Implicit and semi-implicit schemes require a very powerful linear solver since

the Jacobians usually lack diagonal dominance at least at high CFL numbers.

This has an adverse effect on the convergence of many iterative solvers. Implicit

solvers are still rarely used for the computation of stationary solutions to the

Euler equations. However, their development has been pursued by several groups

[ [14], [15], [12], [22]]. Many existing schemes employ linearizable/differentiable
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limiters, and are conditionally stable, and the rate of steady-state convergence

deteriorates if the CFL number exceeds a certain upper bound. The scheme

presented here converges for arbitrary CFL numbers despite oscillatory correction

factors and the rate of steady-state convergence does not deteriorate for large

CFL numbers. The implicit algorithm used in this work, avoids computationally

expensive nonlinear iterations.

The development of robust and accurate boundary conditions is of primary

importance, and sufficient care must be taken in the numerical implementation.

The accuracy, robustness, stability, and convergence of an implicit solver are

strongly influenced by the boundary treatment. A strong form of the governing

equations along with boundary conditions states the conditions at every point

over a domain, solution must satisfy. On the other hand a weak form states

the condition that the solution must satisfy in an integral sense. Strongly im-

posed boundary conditions may inhibit convergence to a steady state. Thus, it

is worthwhile to use flux boundary conditions of Neumann type. The weak type

of boundary conditions turns out to be much more stable and flexible than its

strong counterpart. When boundary conditions are prescribed in a weak sense,

only the boundary integral of the weak formulation is affected by the boundary

conditions, while the volume integrals remain unchanged. This is similar to the

boundary treatment, which is usually implemented in finite volume schemes. In

the finite volume framework the boundary fluxes are directly overwritten by the

imposed boundary conditions.

The Neumann type of boundary conditions, based on the weak formulation,
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can be treated implicitly and incorporated into the matrix in a physical way. It

improves the convergence rates and does not affect the matrix properties or give

rise to stability restrictions in contrast to the strong type of boundary conditions.

According to [29], [27] a stability restriction of CFL number of 0.6 applies for an

explicit implementation of weak wall boundary conditions, while the stability is

significantly enhanced with a semi-implicit version up to a CFL number of 100.

This emphasizes the importance of an implicit treatment of boundary conditions

for the numerical performance, which is presented in this study. We recommend

a boundary Riemann solver to compute the boundary fluxes in the boundary

integrals to avoid unphysical effects particularly at large CFL numbers. To define

a boundary Riemann problem the concept of ghost nodes is introduced. We show

that a suitable treatment of boundary conditions makes it possible to achieve

unconditional stability.

In the following chapters, the design procedure of an unconditionally stable fi-

nite volume scheme for the Euler equations are addressed. In the Euler equations,

the treatment of boundary conditions based on a boundary Riemann solver is de-

scribed, and the implicit solver is presented. Furthermore, the design procedure

of implicit solver for Eulers and Navier Stokes equations are described. Finally,

the numerical performance and accuracy of the proposed scheme are analyzed.

1.0.3 Objective of present work

The objectives of this thesis are manifold:

• To convert the system of governing equations to matrix form in the ANUPRAVAHA
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solver, for more efficient computations

• To implement the implicit MacCormack methodology for the Euler Equa-

tions and to validate it for 2-D and 3-D geometries in sub-sonic, transonic

and supersonic flows.

• To extend the implicit method solutions of Navier Stokes equations and

validate the methods with solutions of supersonic wall-bounded flows.

• To integrate the explicit and Implicit Euler and Navier Stokes solvers into

one general purpose code.

• To validate this solver for the three different regimes i.e., subsonic, transonic

and supersonic flows.



Chapter 2

Governing Equations

2.1 The Flow and its Mathematical Description

Fluid dynamics is defined as the investigation of the interactive motion of a large

number of individual particles (molecules or atoms). So, we can assume the

density of the fluid is high enough and it can be approximated as a continuum.

This means, even an infinitesimally small (in the sense of differential calculus)

element of the fluid contains a sufficient number of particles, in terms of molecule

or atoms, for which we can specify mean velocity and mean kinetic energy. In

this way, we are able to define velocity, pressure, temperature, density and other

important quantities at each point of the fluid.

The derivation of the principal equations of fluid dynamics depends upon the

dynamical behaviour of a fluid, is determined by the following conservation laws:

1. The conservation of mass.

2. The conservation of momentum.

3. The conservation of energy.
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The conservation of a certain flow quantity is based on the total variation of

flow quantity inside an arbitrary volume and the net effect of the amount of the

quantity being transported across the boundary due to any internal forces and

sources and/or the external forces acting on the volume. The amount of the

quantity crossing the boundary is called the Flux. The flux can be divided into

two different parts: one due to the convective transport and the other one due to

the molecular motion present in the fluid at rest.

Consider a general flow field as represented by streamlines in Fig. 2.1. An

arbitrary finite region of the flow, bounded by the closed surface ∂υ and fixed in

space, defines the control volume υ. We also consider a surface element dS and

its associated, outward pointing unit normal vector ~n of the control surface which

enclose the control volume υ.

Figure 2.1: Definition of a finite control volume (fixed in space)

Let the conservation law applied to an scalar quantity per unit volume φ. Its

variation in time within ∂υ can be written as,

∂

∂t

∫
υ

φ dυ

This is equal to the sum of the contributions due to the convective flux which is

the amount of the quantity φ entering the control volume through the boundary
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with the velocity ~u.

−
∮
∂υ

φ(~u.~n)dS

The integral formulation of the conservation law is given by

∂

∂t

∫
υ

φ dυ +

∮
∂υ

φ(~u.~n)dS = 0 (2.1)

2.1.1 Continuity Equation

If we consider only single-phase fluids, the law of mass conservation expresses as:

mass cannot be created in such a fluid system, nor it can disappear. For the

continuity equation, the conserved quantity φ is the density ρ. According to the

general formulation of Eqn. 2.1, we can write the continuity equation as:

∂

∂t

∫
υ

ρ dυ +

∮
∂υ

ρ(~u.~n) dS = 0

2.1.2 Momentum Equation

The derivation of the momentum equation is based on the particular form of

Newton’s second law which states that the variation of momentum is caused by

the net force acting on an mass element. The momentum of an infinitesimally

small portion of the control volume υ given by ρ~u dυ. The variation in time of

momentum within the control volume equals

∂

∂t

∫
υ

ρ~u dυ

Here ρ~u = [ρu ρv ρw]T , where u, v, w are the x, y and z components of the

velocity, respectively.
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In the conservation of momentum, the contribution of the convective tensor

is given by

−
∮
∂υ

ρ~u(~u.~n) dS

Two types of forces act on the control volume: external volume or body forces

and surface forces. Surface forces result from only two sources:

a) The pressure distribution, imposed by the outside fluid surrounding the vol-

ume.

b) The shear and normal stresses, resulting from the friction between the fluid

and the surface of the volume.

Now sum up all the above contributions according to the general conservation

law (Eqn. 2.1), and finally obtain the expression for momentum conservation

equation

∂

∂t

∫
υ

ρ~u dυ +

∮
∂υ

ρ~u(~u.~n) dS =

∫
υ

ρ~fe −
∮
∂υ

p~n dS +

∮
∂υ

(~τ .~n) dS

where ~fe body force per unit mass, p is the static pressure, τ is the stress tensor.

2.1.3 Energy Equation

The energy equation is based on the first law of thermodynamics. It states that

the rate of change in the total energy inside the volume is equal to the rate of

work of forces acting on the volume and by the net heat flux into it. The total

energy per unit mass is defined E and we can write:

E = e+
u2 + v2 + w2

2
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where e is internal energy per unit mass.

Similar to the momentum conservation equation we can write a conservative

equation for the heat energy by accordingly for the rate of heat addition by

conduction and volumetric heating and the work done by surface and body forces.

The energy conservation equation according to the general conservation law (Eq.

2.1) is

∂

∂t

∫
υ

ρE dυ +

∮
∂υ

ρE(~u.~n) dS =

∮
∂υ

k(OT.~n) dS +

∫
υ

(ρ~fe.~u+ q̇h)−∮
∂υ

p(~u.~n) dS +

∮
∂υ

(~τ .~u).~n dS

where q̇h is the rate of heat addition per unit volume and k is the thermal con-

duction of the fluid.

2.2 Euler Equations

The most general flow configuration for a non-viscous, non-heat conducting fluid

is described by the set of Euler equations, obtained from the Navier Stokes equa-

tions by neglecting all shear stresses and heat conduction terms. If we collect the

conservation laws of mass, momentum and energy into one system of equations

neglecting the body forces and stress forces, we obtain the Euler Equations. The

time-dependent Euler equations, in conservation form and in an absolute frame

of reference, for the conservative variables U is:

∂

∂t

∫
υ

U dυ +

∮
∂υ

O. ~F dυ = 0 (2.2)
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which form a system of first order hyperbolic partial differential equations, where

U is the solution vector

U =


ρ

u

v

w

E


and the flux vector F has the Cartesian components ( f , g, h) given by equation

2.2

f =


ρu

ρu2 + p

ρuv

ρuw

(e+ p)u

 g =


ρv

ρuv

ρv2 + p

ρvw

(e+ p)v

h =


ρw

ρuw

ρvw

ρw2 + p

(e+ p)w


Assuming the Control Volume (CV) is fixed in space, the governing integral

equation can be written as,

∮
∂υ

(
∂U

∂t
+ O. ~F ) dυ = 0 (2.3)

and further, as the CV is arbitrary, we can write,

∂U

∂t
+ O. ~F = 0 (2.4)

2.3 Discretization Techniques and Grid Gener-

ation

In mathematics, discretization concerns the process of translating continuous

functions, models and equations into discrete counterparts. This process is usu-

ally carried out as a first step toward making them suitable for numerical evalua-

tion and implementation on digital computers The discretization techniques use
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grids in order to discretize the governing equations 2.2, 2.4. Basically, there are

two different types of grids:

• Structured Grids: each grid point (vertex, node) is uniquely identified by the

indices i, j, k and the corresponding Cartesian coordinates xi,j,k, yi,j,k, andzi,j,k.

The grid cells are quadrilaterals in 2D and hexahedral in 3D.

• Unstructured Grids: grid cells as well as grid points have no particular

ordering, i.e., neighbouring cells or grid points cannot be directly identified

by their indices (usually, only a single index is used). In the past, the grid

cells were triangles in 2D and tetrahedral in 3D. Nowadays unstructured

grids usually consist of a mix of quadrilaterals and triangles in 2D and of

hexahedral, tetrahedral, prisms and pyramids in 3D.

Here we use structured grids to solve the governing equations. The main advan-

tage of structured grids is that the indices i, j, k represent a linear address space,

since it directly corresponds to how the flow variables are stored in the computer

memory. This property allows it to access the neighbours of a grid point very

quickly and easily, just by adding or subtracting an integer value to or from the

corresponding index (e.g. (i + 1), (j − 3), etc . see Fig. 2.2). The evaluation

of gradients, fluxes, and also the treatment of boundary conditions is simplified

by this feature. The same holds for the implementation of an implicit scheme,

because of the well-ordered, banded flux Jacobian matrix.

But there is also a disadvantage. The disadvantage is the time-consuming

and complicated task required for the generation of structured grids for complex
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Figure 2.2: Structured, body-fitted grid approach (in two dimensions)

geometries. Another difficulty is that generating good grids with regular cells

of moderate skewness and aspect ratios, is very difficult if the entire complex

domain is fitted with a single block grid. To overcome this disadvantage we can

divide the physical space into a number of topologically simpler parts or blocks

(see 2.3), which can be more easily meshed. This is called the multiblock mesh.

In this thesis we use multiblock approach to generate the mesh.

Figure 2.3: Structured, multiblock grid

The advantage of this approach is that, grid lines can be chosen separately for

each block as required to be close to rectangular, or orthogonal, which increase
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numerical accuracy and convergence. The another advantage of the multiblock

methodology is that it allows for the possibility of using parallel computation by

means of domain decomposition.

The discretization schemes used in CFD can be divided into the following main

categories:

• Finite Difference Method: which can be applied to rectangular structured

mesh configurations.

• Finite Volume Method: which can be applied to both structured and un-

structured mesh configurations.

• Finite Element Method: which is the common method in solid mechanics,

but is also applicable to fluid mechanics, which is applied to unstructured

grids.

2.3.1 Finite Difference Method

The finite difference method was the first approaches applied to the numerical

solution of differential equations. It was first utilized by Leonhard Euler in 1768

[17]. This method is directly applied to the differential form of the governing

equations 2.4.

For a function U(x), the Taylor series expansion of Ux0+∆x in x can be written

as

U(x0+∆x) = U(x0) + ∆x

(
∂U

∂x

)
x0

+
∆x2

2

(
∂2U

∂x2

)
x0

+ .....
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From the above equation, the first derivative of U can be approximated as

(
∂U

∂x

)
x0

=
Ux0+∆x − Ux0

∆x
+©(∆x) (2.5)

The above approximation is of first order, since the truncation error (abbreviated

as ©(∆x)), which is proportional to the largest term of the remainder, goes to

zero with the first power of ∆x.

To apply this general definition 2.5, we consider an one-dimensional space,

the x-axis, and the space discretization is done with N discrete mesh points xi, i

= 0,...,N (Figure 2.4).

Figure 2.4: One-dimensional uniform FDM grid on the x-axis [17]

Let Ui is the value of the function Ux0 at the point xi , i.e. Ui = Uxi and

the spacing between the discrete points is constant and equal to ∆x. Apply-

ing the above relation 2.5 at point i, we obtain the following finite difference

approximation

(Ux)i =

(
∂U

∂x

)
i

=
Ui+1 − Ui

∆x
− ∆x

2

(
∂2U

∂x2

)
i

− ∆x2

6

(
∂3U

∂x3

)
i

+ ....︸ ︷︷ ︸
Truncation error

(2.6)

=
Ui+1 − Ui

∆x
+©(∆x) (2.7)
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As this formula involves the point (i + 1) to the right of point i, it is called the

first order forward difference for the first derivative Uxi .

Now if ∆x is replaced by −∆x, then the finite difference approximation is

(Ux)i =

(
∂U

∂x

)
i

=
Ui − Ui−1

∆x
+

∆x

2

(
∂2U

∂x2

)
i

− ∆x2

6

(
∂3U

∂x3

)
i

+ .....︸ ︷︷ ︸
Truncation error

(2.8)

=
Ui − Ui−1

∆x
+©(∆x) (2.9)

This formula is called the first order backward difference for the derivative Uxi as

it involves the point (i-1) to the left of point i. If we add this two equations (eqs

2.6 and 2.8), we obtain a second order approximation

(Ux)i =
Ui+1 − Ui−1

2∆x
− ∆x2

6

(
∂3U

∂x3

)
i

+ ... (2.10)

=
Ui+1 − Ui−1

2∆x
+©(∆x2) (2.11)

Equation 2.10 involves the points to the left and to the right of point i, is therefore

called a central difference formula.

The important advantages of the finite difference methodology are its simplicity

and the possibility to obtain high-order approximations easily to achieve greater

accuracy of the spatial discretization. The main disadvantage of this method is,

it requires a structured rectangular grid, so the range of application is restricted.

Furthermore, the finite difference method cannot be directly applied in body-

fitted i.e curvilinear coordinates. So first we have to transform the governing

equations into a rectangular grid system or in other words transform the physical
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to the computational space. Thus, the finite difference method can be applied

only to rather simple geometries.

2.3.2 Finite Volume Formulation

The finite volume method directly makes use of the conservation laws, the integral

formulation of the Euler equations(eq 2.2). It was first employed by McDonald

for the simulation of 2-D inviscid flows [17]. The finite volume method discretizes

the governing equations by first dividing the physical space into a number of

arbitrary polyhedral control volumes. The surface integral is Equation 2.2 is then

approximated by the sum of the fluxes crossing the individual faces of the control

volume. The accuracy of this spatial discretization depends on the particular

scheme with which the fluxes are evaluated.

Additionally, complicated boundary conditions for complex flow domains can

be implemented in a relatively straight-forward manner.

Figure 2.5: 1d (left) and 2d (right) Finite Volume discretization of an expanding

domain

Figure 2.5 shows an example of a 1-D and 2-D finite volume discretization for

an expanding flow domain. Algebraic equations can be obtained for each con-

trol volume by approximating the volume and surface integrals using quadrature
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formulae. Volume integrals can be evaluated with second order accuracy by the

product of the mean value of φ, assumed to be at the cell centroid, and the cell

volume whilst surface integrals are calculated by summation over the sides of the

cell. The integral on each face being approximated by the midpoint rule. The

semi-discrete form of the governing equations are written for each cell as

∂Ucell−centered
∂t

= − 1

V

∑
if

FifAif

with A and V being the cell edge interface area and cell volume respectively. The

discretized equations applied to each control volume can be advanced in time

from an initial solution once a technique for determining the interface fluxes is

specified.

There are two basic approaches of defining the shape and position of the

control volume with respect to the grid:

• Cell centered scheme (Fig: 2.6(a)): Here the flow quantities are stored at

the centroids of the grid cells. So, the control volumes are identical to the

grid cells. We use the cell-centered scheme in this thesis.

• Cell vertex scheme (Fig: 2.6(b)): Here the flow variables are stored at the

grid points. The control volume can then either be the union of all cells

sharing the grid point, or some volume centered around the grid point.

The main advantage of the finite volume method is that the spatial discretization

is carried out directly in the physical space. Thus, there are no problems associ-

ated with transformation between the physical and the computational coordinate
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Figure 2.6: Control volume of cell centered (a) and cell vertex (b) scheme

system, as in the case of the finite difference method. Another advantage of the

finite volume method, compared to the finite difference method is that it is very

flexible, and can be rather easily implemented on structured as well as on un-

structured grids. This makes the finite volume method particularly suitable for

the treatment of flows in complex geometries.

The finite volume method is based on the direct discretization of the inte-

gral conservation laws, mass, momentum and energy, which are also conserved

by the numerical scheme. So it has the ability to compute weak solutions of

the governing equations correctly. This is the another important feature of the

method, However, one additional condition is needed to be fulfilled in the case

of the Euler equations, known as the entropy condition. It is necessary because

of the non-uniqueness of the weak solutions. The entropy condition prevents the

occurrence of unphysical features like expansion shocks, which violate the second

law of thermodynamics (by decrease of entropy).

Under certain conditions, the finite volume method can be shown to be equiv-
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alent to the finite difference method, or to a low-order finite element method.

2.4 Time Integration

For a given current flow state, the discretized equations can be advanced in time

by selecting an appropriate numerical integration technique. Schemes are classi-

fied as being either explicit, implicit or a mixture of the two. Explicit integration

uses knowledge of only the current flow state to determine the new state at the

next time-step and as such is not very computationally intensive. The equations

are advanced in small time steps governed by strict stability criteria. For exam-

ple, a wave starting at a cell interface should not cross more than half of the

cell width during a time step. Implicit integration uses knowledge of both the

(known) current flow state and the (unknown) next time step state. So each

time step is computationally more expensive than an explicit method because

the equations for all cells have to be solved simultaneously. But implicit meth-

ods have advantages in stability, allowing larger time-steps to be used in the

computations.

Mathematically, if Y (t) is the current system state and Y (t+ ∆t) is the state

at the later time (∆t is a small time step), then for an explicit method for the

PDE

∂Y

∂t
= F (y)

is

Y (t+ ∆t) = Y (t) + F (Y (t))
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while for an implicit method one solves an equation

Y (t+ ∆t) = Y (t) + F (Y (t+ ∆t))

The main drawback of explicit schemes is that the stability requirements can

result in very short time steps and correspondingly long computation times. Im-

plicit methods are used because many problems arising in practice are stiff, for

which the use of an explicit method requires impractically small time steps to

keep the error in the result bounded. For such problems, to achieve given accu-

racy, it takes much less computational time if we use an implicit method with

larger time steps.

For the flows considered in this thesis, we use an implicit technique for time in-

tegration to reduce the computational time and compare it with explicit scheme’s

computational time.

2.5 Closure

In this chapter we discussed the basic nature of the governing equations for the

flow problems and different discretization techniques of solving these governing

equations. We also discussed the way of time integration.



Chapter 3

Navier Stokes Equation and

Matrix Form

3.1 Navier Stokes Equation

The Navier-Stokes equations represent in three dimensions a system of five equa-

tions for the five conservative variables ρ, ρu, ρv, ρw, and ρE. But they contain

seven unknown flow field variables, namely: ρ, u, v, w, E, p, and T . Therefore, we

have to supply two additional equations, the first is the equation of state which

prescribes the thermodynamic relations between the state variables, the second is

an equation relating the total energy, E with the temperature, T . For example,

for an ideal gas the pressure can be expressed as a function of the density and

temperature, and the total energy as a function of the temperature. Beyond this,

we have to provide the viscosity coefficient µ and the thermal conductivity coef-

ficient k as functions of the state of the fluid. Clearly, the relationships depend

on the kind of fluid being considered. In the following, we shall therefore show

methods of closing the equations for two commonly encountered situations.
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The Navier-Stokes and energy equations for compressible flow of an ideal gas

are :

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0 (3.1)

∂ρu

∂x
+
∂(ρu2 + P − τxx)

∂x
+
∂(ρuv − τxy)

∂y
+
∂(ρuw − τxz)

∂z
= 0 (3.2)

∂(ρv)

∂t
+
∂(ρuv − τyx)

∂x
+
∂(ρv2 + P − τyy)

∂y
+
∂(ρvw − τyz)

∂z
= 0 (3.3)

∂(ρw)

∂t
+
∂(ρwu− τzx)

∂x
+
∂(ρwv − τzy)

∂y
+
∂(ρw2 + P − τzz)

∂z
= 0 (3.4)

∂(Et)

∂t
+
∂((Et + p)u+ qx − uτxx − vτxy − wτxz)

∂x
+

∂((Et + p)v + qy − uτyx − vτyy − wτyz)
∂y

+

∂((Et + p)w + qz − uτzx − vτzy − wτzz)
∂z

= 0 (3.5)

where P = ρRT ,Et = ρ(CvT + u2+v2+w2

2
),H = E + P

ρ

The mathematical nature of steady and unsteady nature of Navier-Stokes

equations are stated below

• Compared to the Euler equations, the presence of viscosity and heat con-

duction transforms the conservation laws of momentum and energy into

second-order partial differential equations

• The unsteady continuity equation is hyperbolic, for compressible flow where

it is considered as an equation for the density, on the other hand, the steady

continuity equation is elliptic
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• Unsteady momentum and energy equations are parabolic and steady mo-

mentum and energy equations have elliptic behavior

• The coupled system of the Navier-Stokes equations is therefore a hybrid sys-

tem, being parabolic-hyperbolic for the unsteady case but becoming elliptic

for the stationary formulation

From the computational point of view, usually we are more interested in steady

state than transient solutions. Therefore, while solving the steady state equations

we have to check for the sonic condition, as the numerical schemes for each type

of PDE are different.Till date no scheme has been developed for the steady state

solution which can work well for all these types of PDEs. So there need to be

completely separate modules to be developed for subsonic and supersonic flows,

while for transonic flows it would be even more difficult to obtain solutions since

the domain will contain all three types of PDEs.

However, by retaining the time derivative term in this system of equations

makes it hyperbolic / parabolic independent of the speed of flow. Therefore,

even if we are interested in only in the steady state solution, it is best to solve the

transient set of equations to reach steady state. This is called the false-transient

approach and is used in this work.
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3.2 Matrix Form

These system of equations can be solved one by one or all at once. In the previous

version of the ANUPRAVAHA solver for explicit Euler Navier Stokes equations,

each equation was solved one at a time. It was found that the time taken for each

time step is almost three to four times slower than it should be when the equations

are solved at once. So in order to speed up the code the system of equations are

changed to matrix form which means the equations are solved simultaneously in

vector / matrix from and thereby reduce the time taken for each iteration.

The Euler equations which describes the inviscid compressible fluid motion

can be presented in conservation form as

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0 (3.6)

∂ρu

∂x
+
∂(ρu2 + P )

∂x
+
∂(ρuv)

∂y
+
∂(ρuw)

∂z
= 0 (3.7)

∂(ρv)

∂t
+
∂(ρuv)

∂x
+
∂(ρv2 + P )

∂y
+
∂(ρvw)

∂z
= 0 (3.8)

∂(ρw)

∂t
+
∂(ρwu)

∂x
+
∂(ρwv)

∂y
+
∂(ρw2 + P )

∂z
= 0 (3.9)

∂(ρE)

∂t
+
∂(ρuH)

∂x
+
∂(ρvH)

∂y
+
∂(ρwH)

∂z
= 0 (3.10)

where P = ρRT ,E = CvT + u2+v2+w2

2
,H = E + P

ρ

Now for changing to matrix form consider

W ≡


ρ

ρu

ρv

ρw

ρE
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Fx ≡


ρu

ρu2 + P

ρuv

ρuw

ρuH

 , Fy ≡


ρv

ρuv

ρv2 + P

ρvw

ρvH

 , Fz ≡


ρw

ρuw

ρvw

ρw2 + P

ρwH


And so the equations in compact form become

∂ {Wi}
∂t

+
∂ {Fxi}
∂x

+
∂ {Fyi}
∂y

+
∂ {Fzi}
∂z

= 0 (3.11)

Now solving this equation with the matrices of conservative variables and

fluxes in x,y,z directions, the time taken for each timestep is reduced by a sig-

nificant amount. The results of time comparision will be discussed in the results

section.

3.3 Boundary Conditions

Specification of boundary conditions are different for hyperbolic problems com-

pared to that of parabolic and elliptic problems, and the flow of characteristics

into or out of the computational domain affects the specification of the boundary

conditions.

The key to understand the issue of number of boundary conditions that are

needed at the boundary is that characteristics convey information in the x − t

space formed by the local normal direction and time. When information is in-

troduced from outside into the computational domain, this information has to

enter through a boundary condition; it can be shown that this occurs when the

eigenvalue λ of the matrix of fluxes is positive at the boundary, and a physical
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boundary condition has to be imposed [11]. On the other hand, when the eigen-

value λ is negative and the propagation occurs from the interior of the domain

outwards from the boundary, this means that a boundary condition cannot be

imposed from the outside. Such variable will be handled through “numerical

boundary conditions”, by extrapolating interior information to the boundary.

In summary, the number of physical conditions to be imposed at a boundary

with inward normal vector ~n , pointing into the computational domain, is defined

by the number of characteristics entering the domain. For subsonic domain one

of the eigenvalue will be less than zero and so one boundary condtion will be

numerical and all others will be physical boundary conditions.

3.4 Closure

In this chapter Euler and Navier-stokes equations are discussed. The advantage

of the matrix form of governing equation over the non-matrix form is mentioned

and lastly how to specify boundary conditions is discussed.



Chapter 4

Implicit Approach to Solve

Navier Stokes Equation

Real flow includes rotational, non-isentropic, and non-isothermal effects. Com-

pressible inviscid flow including such effects requires simultaneous solution of

continuity, momentum, and energy equations. Special computational schemes

are required to resolve the shock discontinuities encountered in transonic flow.

Another basic requirement for the solution of these equations is to ensure that

solution schemes provide an adequate amount of artificial viscosity required for

correct and rapid convergence towards a solution. In the present work, the Im-

plicit MacCormack scheme has been chosen to solve the Navier stokes equations,

since it is a very robust and tested scheme.

4.1 Governing Equations

The equations which describes the compressible fluid motion can be presented in

conservation form as,
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∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0 (4.1)

∂ρu

∂x
+
∂(ρu2 + P − τxx)

∂x
+
∂(ρuv − τxy)

∂y
+
∂(ρuw − τxz)

∂z
= 0 (4.2)

∂(ρv)

∂t
+
∂(ρuv − τyx)

∂x
+
∂(ρv2 + P − τyy)

∂y
+
∂(ρvw − τyz)

∂z
= 0 (4.3)

∂(ρw)

∂t
+
∂(ρwu− τzx)

∂x
+
∂(ρwv − τzy)

∂y
+
∂(ρw2 + P − τzz)

∂z
= 0 (4.4)

∂(Et)

∂t
+
∂((Et + p)u+ qx − uτxx − vτxy − wτxz)

∂x
+

∂((Et + p)v + qy − uτyx − vτyy − wτyz)
∂y

+

∂((Et + p)w + qz − uτzx − vτzy − wτzz)
∂z

= 0 (4.5)

where P = ρRT , Et = ρ(CvT + u2+v2+w2

2
), H = E + P

ρ

4.2 Discretization of Governing Equation

The equations can be written in compact form as

∂ {W}
∂t

+
∂ {Fx}
∂x

+
∂ {Fy}
∂y

+
∂ {Fz}
∂z

= 0 (4.6)

{W} ≡


ρ

ρu

ρv

ρw

ρE



{Fx} ≡


ρu

ρu2 + P − τxx
ρuv − τxy
ρuw − τxz

(Et + p)u+ qx − uτxx − vτxy − wτxz

 ,
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{Fy} ≡


ρv

ρuv − τyx
ρv2 + P − τyy
ρvw − τyz

(Et + p)v + qy − uτyx − vτyy − wτyz

 ,

{Fz} ≡


ρw

ρuw − τzx
ρvw − τzy

ρw2 + P − τzz
(Et + p)w + qz − uτzx − vτzy − wτzz


Note that the {Fx}, {Fy}, {Fz} column vectors are used just for notational con-

venience. where W , Fx, Fy, Fz will represent the values of these column vectors

for a given row. It is to be noted Fx, Fy, Fz can be treated as components of a

physical vector
−→
F we can write

∂W

∂t
+∇ · F = 0 (4.7)

which applies to each row of the equation(4.2).

The finite volume method uses the integral form of the equations while the

governing equation above is in differential form. The corresponding integral form

of the equation can be obtained by taking the integral of the equation over a

control volume.

∮
V

(
∂W

∂t
+∇ · F

)
dV = 0

where V is the fluid domain under analysis. Using the divergence theorem,∮
V
∇ · −→v dV =

∮
S
−→v · d

−→
S we get

∮
V

∂W

∂t
dV +

∮
S

F · d
−→
S = 0
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Assuming the control volume is not changing with time, the equation can be

written as,

∂

∂t

∮
V

WdV +

∮
S

F · d
−→
S = 0

The equation can be divided into the temporal and convective parts, as shown,

and we will now do the finite volume discretization of each part to get the full

discretized equation.

∂

∂t

∮
V

WdV︸ ︷︷ ︸
Temporal Part

+

∮
S

F · d
−→
S︸ ︷︷ ︸

Convective part

= 0

Temporal term:

The volume averaged value of conservative variable can be written for the pth

cell as:

∮
Vp

WdV = VpWp

where, Vp is the volume of the pth cell, and Wp is the value of its cell center.

Using this volume averaged value we can get the discretized form of the tem-

poral term as:

∫
dV

∂W

∂t
= Vp

W n+1
p −W n

p

∆t
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Convective term:

There are two methods to calculate the value of convective part at the new time

level depending upon time value of the flux as,

1. Implicit: where the flux variable are taken to be at the new (unknown)

time-level.

2. Explicit: where the flux variable are taken to be at the old (known) time-

level.

In this study the implicit method is applied to discretize the convective part.

Equation 4.7 is integrated in time by using implicit method and written as,

V
W n+1 −W n

∆t
+

∫
V

dV O.(Fn+1) = 0 (4.8)

with a time step of size ∆t. The superscript n refers to current time level and

the result is a nonlinear system of algebraic equations, which calls for nonlinear

iterations in each time step. But nonlinear iterations are computationally expen-

sive and have poor convergence. To overcome this problem, we assumes sufficient

smoothness and linearizes the equations around the current solution W n by a

Taylor series expansion of the fluxes

Fn+1 = Fn +

(
∂F

∂W

)n
(W n+1 −W n) + ©(

∥∥W n+1 −W n
∥∥2

) (4.9)

Substitution of equation 4.9 into the nonlinear equations 4.8 leads to a linear
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algebraic system

VP
W n+1 −W n

∆t
+

∫
V

dv O.

(
Fn +

(
∂F

∂W

)n (
W n+1 −W n

))
= 0

or VP
W n+1 −W n

∆t
+

∫
V

dv O.

(
∂F

∂W

)n (
W n+1 −W n

)
=

∫
V

dv (−O.Fn)

Consider

δW n+1 ≡ W n+1 −W n

Substituting δW n+1 in main equation,

VP
δW n+1

∆t
+

∫
V

dv O.

(
∂F

∂W

)n
δW n+1 =

∫
V

dv( −O.Fn)[
I +

∆t

V

∫
V

dv O.

(
∂F

∂W

)n]
δW n+1 = −∆t

V

∮
S

Fn · dS

where ∂F
∂Wj

is the Jacobian of flux F.

In the convective term, the explicit term 5.Fn the integral is carried out

over the full surface of the control volume, without any approximation it can be

divided into six parts over the east(e), west(w), north(n), south(s), top(t) and

bottom(b) faces as follows:

∮
Sf

F · d
−→
S =

∮
e

Fe · dSe +

∮
w

Fw · dSw +

∮
n

Fn · dSn +

∮
s

Fs · dSs+∮
t

Ft · dSt +

∮
b

Fb · dSb

where each face integral can be divided, without approximation, into 3 scalar

parts:

∮
Sf

F · dSf =

∮
S

FxdSx +

∮
S

FydSy +

∮
S

FizdSz
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The value of flux variable may change over the surface. For each scalar com-

ponent, we now approximate the surface averaged value of the variable by its

face-centroid value Fif :

1

Sf

∮
Sf

Fid
−→
S f = Fif

Therefore we can write,

∮
Sf

F · d
−→
S f = FxSfx + FySfy + FzSfz

where Sfi is the ith component of face vector
−→
S f . Repeating the procedure for

each of the faces we can write

∮
Sf

−→
F · d

−→
S f = FexSex + FeySey + FezSez + FwxSwx + FwySwy + FwzSwz

+ FnxSnx + FnySny + FnzSnz + FsxSsx + FsySsy + FszSsz

+ FtxStx + FtySty + FtzStz + FbxSbx + FbySby + FbzSbz

Now, putting the discretized convective terms together, the explicit term can

be written in discretized form as:

∆F n = −
∑
f

(FfxSfx + FfySfy + FfzSfz) (4.10)

MacCormack [22] proposed a two-step approach to solve the wave equation,

with a finite-difference method. It is known to be a robust scheme that gives

stable results with good accuracy when provided with some artificial dissipation.

As the scheme is a finite-difference method, we need to modify it for the finite-
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volume method, which shall be done below. First, however, we will introduce the

MacCormack finite-difference scheme for the wave equation, and then extend it

to the finite-volume method for full Navier-Stokes equations in the later sections.

4.3 Explicit MacCormack Finite Difference Scheme

MacCormack′s scheme solves hyperbolic problems in two steps, popularly known

as the predictor-corrector approach. It falls in the category of multi-step central

schemes.

Consider a simple one dimensional model initial value problem in 1D:

∂u

∂t
+ c

∂u

∂x
= ν

∂u2

∂2x
(4.11)

with an initial condition u(x,0) = u0(x) The explicit MacCormack scheme is

realized in two steps:

Predictor:

4uni = − c4t
4x

(
uni+1 − uni

)
+

∆tν

∆x2

(
uni+1 + 2uni + uni−1

)
un+1
i = uni + 4uni

(4.12)

where un+1
i is the so-called “predicted” value of the solution at the n + 1 time-

level, obtained explicitly in step 1 and 4uni ≡ un+1
i − uni ,

Corrector:

4un+1
i = − c4t

4x

(
un+1
i − un+1

i−1

)
+

∆tν

∆x2

(
un+1
i+1 + 2un+1

i + un+1
i−1

)
un+1
i =

1

2

(
uni + un+1

i + 4un+1
i

) (4.13)
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The explicit scheme is stable under the CFL condition:

4t ≤ 1

(c/4x) + 2ν/4x2

4.4 The Implicit Scheme

MacCormack also propesed an implicit version of the above scheme, that is not so

commonly used. The implicit scheme is obtained by replacing one-sided difference

in the convective terms

un+1
i = uni − (1− α)

c4t
4x

(
uni+1 − uni

)
+ α

c4t
4x

(
un+1
i+1 − un+1

i

)
+
ν∆t

∆x2
(un+1

i+1 − 2un+1
i + un+1

i−1 )

or

(
1 +

λ4t
4x

)
δun+1

i+1 =
c4t
4x

∆+u
n
i +

λ4t
4x

δun+1
i +

ν∆t

∆x2
(un+1

i+1 − 2un+1
i + un+1

i−1 )

where

δun+1
i ≡ un+1

i − uni , ∆+u
n
i = uni+1 − uni , λ = α |c|

where α is the implicit blending parameter which is greater than 0.5.

Considering ν =0 for simplicity, the predictor and corrector steps of the implicit

scheme are:

Predictor:

4uni = − a4t
4x

(
uni+1 − uni

)
(

1 + λ
4t
4x

)
δun+1

i = 4uni + λ
4t
4x

δun+1
i+1

un+1
i = uni + δun+1

i

(4.14)
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Corrector:

4un+1
i = − a4t

4x

(
un+1
i − un+1

i−1

)
(

1 + λ
4t
4x

)
δun+1

i = 4un+1
i + λ

4t
4x

δun+1
i−1

un+1
i =

1

2

(
uni + un+1

i + δun+1
i

) (4.15)

The predictor step is evaluated starting at the greatest index i using an ap-

propriate boundary condition and going to the lowest index. The corrector step

is evaluated in the similar manner starting with boundary condition for lowest

index and going to greatest one.

The linear scheme is unconditionally stable provided that the implicit blend-

ing parameter λ is chosen such that

λ ≥ 1

2
max

(
|c| − 4x

4t
, 0

)
(4.16)

All three steps in predictor can be evaluated together during one backward sweep

through the mesh, i.e. it is not necessary to solve any system of linear equations.

The same is valid for the corrector, which can be again realized by one forward

sweep.

4.5 Implicit MacCormack scheme in FVM

In this section we will see how to apply the MacCormack scheme in the finite

volume methodology. Since the MacCormack scheme is second order accurate in

space and time, oscillations are observed in solution having abrupt step-changes

in value.
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The implicit MacCormack scheme in finite volume formulation is

Predictor:

4W n
i,j,k = −∆t

(
∆+F

n
xi,j,k

∆x
+

∆+F
n
yi,j,k

∆y
+

∆+F
n
zi,j,k

∆z

)
(4.17)

[
I − 4t
4x

D+
I |A|

n
i,j,k

] [
I − 4t
4y

D+
J |B|

n
i,j,k

] [
I − 4t
4z

D+
K |C|

n
i,j,k

]
δW n

i,j,k = 4W n
i,j,k

(4.18)

W n+1
i,j,k = W n

i,j,k + δW n+1
i,j,k (4.19)

Corrector:

4W n+1
i,j,k = −∆t

(
∆−F

n+1
xi,j,k

∆x
+

∆−F
n+1
yi,j,k

∆y
+

∆−F
n+1
zi,j,k

∆z

)
(4.20)

[
I +
4t
4x

D−I |A|
n+1
i,j,k

] [
I +
4t
4x

D−J |B|
n+1
i,j,k

] [
I +
4t
4z

D−K |C|
n+1
i,j,k

]
δW n+1

i,j,k = 4W n+1
i,j,k

(4.21)

W n+1
i,j,k = (W n

i,j,k +W n+1
i,j,k + δW n+1

i,j,k )/2 (4.22)

Where the operators δ and ∆ denote the implicit and explicit temporal differ-

ence operators, respectively. The first steps of predictor and corrector steps are

equivalent to equation 4.10 which is FVM formulation of the fluxes.

Operators D+
I , D

−
I , D

+
J , D

−
J , D

+
K , D

−
K are one-sided forward and backward

differences in each index dimension. |A| , |B| and |C| are diagonalized jacobian

matrices. All these operators are explained later.
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The values of ∆+

∆x
, ∆−

∆x
, ∆+

∆y
, ∆−

∆y
, ∆+

∆z
, ∆−

∆z
operators are:

∆+Fxi,j,k = Fxi+1,j,k
− Fxi,j,k

∆+Fxi,j,k = Fxi,j,k − Fxi−1,j,k

∆+Fxi,j,k = Fxi,j+1,k
− Fxi,j,k

∆+Fxi,j,k = Fxi,j,k − Fxi,j−1,k

∆+Fxi,j,k = Fxi,j,k+1
− Fxi,j,k

∆+Fxi,j,k = Fxi,j,k − Fxi,j,k−1

The values of D+
I , D

−
I , DJ+, D−J , D

+
K , D

−
K operators are:

D+
I Ai,j,k =

|A|i+1,j,k − |A|i,j,k
∆x

D−I Ai,j,k =
|A|i,j,k − |A|i−1,j,k

∆x

D+
J Bi,j,k =

|B|i,j+1,k − |B|i,j,k
∆y

D−J Bi,j,k =
|B|i,j,k − |B|i,j−1,k

∆y

D+
KCi,j,k =

|C|i,j,k+1 − |C|i,j,k
∆z

D−KCi,j,k =
|C|i,j,k − |C|i,j,k−1

∆z

Here the Jacobians of flux F is written as matrices A, B, C so that

∂Fx
∂W

= A
∂Fy
∂W

= B
∂Fz
∂W

= C

Matrices |A| , |B| and |C| have positive eigenvalues and are related to the

Jacobians A, B and C in a manner that will be explained below.
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The inviscid jacobians A, B and C can be diagonalize by Sx, Sy, Sz. The

matrices A, B, C can be witten as,

A = S−1
x ΛASx B = S−1

y ΛBSy C = S−1
z ΛCSz

The matrices Sx, Sy and Sz are each expressed as the product of two matrices.

They can be written as,

Sx =


1 0 0 0 −1

c2

0 ρc 0 0 1

0 0 1 0 0

0 0 0 1 0

0 −ρc 0 0 1




1 0 0 0 0
−u
ρ

1
ρ

0 0 0
−v
ρ

0 1
ρ

0 0
−w
ρ

0 1
ρ

0 0

αβ −uβ −vβ −wβ β

 (4.23)

Sy =


1 0 0 0 −1

c2

0 1 0 0 1

0 0 ρc 0 0

0 0 0 1 0

0 0 −ρc 0 1




1 0 0 0 0
−u
ρ

1
ρ

0 0 0
−v
ρ

0 1
ρ

0 0
−w
ρ

0 1
ρ

0 0

αβ −uβ −vβ −wβ β

 (4.24)

Sz =


1 0 0 0 −1

c2

0 1 0 0 1

0 0 1 0 0

0 0 0 ρc 0

0 0 0 −ρc 1




1 0 0 0 0
−u
ρ

1
ρ

0 0 0
−v
ρ

0 1
ρ

0 0
−w
ρ

0 1
ρ

0 0

αβ −uβ −vβ −wβ β

 (4.25)

ΛA =


u 0 0 0 0

0 u+ c 0 0 0

0 0 u 0 0

0 0 0 u 0

0 0 0 0 u− c

 , ΛB =


v 0 0 0 0

0 u 0 0 0

0 0 v + c 0 0

0 0 0 v 0

0 0 0 0 v − c

 (4.26)

ΛC =


w 0 0 0 0

0 w 0 0 0

0 0 w 0 0

0 0 0 w + c 0

0 0 0 0 w − c

 (4.27)

and where c =
√
γp/ρ is the speed of sound, α = 1

2
(u2 + v2 + w2) andβ = γ−1.
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The inverses S−1
x , S−1

y and S−1
z are simply the inverse matrix of Sx, Sy and Sz

respectively.

The matrices |A| and |B| are defined by

|A| = S−1
x DASx |B| = S−1

y DBSy |C| = S−1
z DCSz

where DA, DB and DC are diagonal matrices defined by

DA =


λA1 0 0 0 0

0 λA2 0 0 0

0 0 λA3 0 0

0 0 0 λA4 0

0 0 0 0 λA5

 (4.28)

DB =


λB1 0 0 0 0

0 λB2 0 0 0

0 0 λB3 0 0

0 0 0 λB4 0

0 0 0 0 λB5

 (4.29)

DC =


λC1 0 0 0 0

0 λC2 0 0 0

0 0 λC3 0 0

0 0 0 λC4 0

0 0 0 0 λC5

 (4.30)

and

λA1 = max

{
|u|+ 2ν

ρ∆x
− 1

2

∆x

∆t
, 0

}
λA2 = max

{
|u+ c|+ 2ν

ρ∆x
− 1

2

∆x

∆t
, 0

}
λA3 = max

{
|u|+ 2ν

ρ∆x
− 1

2

∆x

∆t
, 0

}
λA4 = max

{
|u|+ 2ν

ρ∆x
− 1

2

∆x

∆t
, 0

}
λA5 = max

{
|u− c|+ 2ν

ρ∆x
− 1

2

∆x

∆t
, 0

}
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λB1 = max

{
|v|+ 2ν

ρ∆y
− 1

2

∆y

∆t
, 0

}
λB2 = max

{
|v|+ 2ν

ρ∆y
− 1

2

∆y

∆t
, 0

}
λB3 = max

{
|v + c|+ 2ν

ρ∆y
− 1

2

∆y

∆t
, 0

}
λB4 = max

{
|v|+ 2ν

ρ∆y
− 1

2

∆y

∆t
, 0

}
λB5 = max

{
|v − c|+ 2ν

ρ∆y
− 1

2

∆y

∆t
, 0

}

λC1 = max

{
|w|+ 2ν

ρ∆z
− 1

2

∆z

∆t
, 0

}
λC2 = max

{
|w|+ 2ν

ρ∆z
− 1

2

∆z

∆t
, 0

}
λC3 = max

{
|w|+ 2ν

ρ∆z
− 1

2

∆z

∆t
, 0

}
λC4 = max

{
|w + c|+ 2ν

ρ∆z
− 1

2

∆z

∆t
, 0

}
λC5 = max

{
|w − c|+ 2ν

ρ∆z
− 1

2

∆z

∆t
, 0

}
ν = max

{
µ, λ+ 2µ,

γµ

PrandtlNumber

}
The Jacobian matrix formulation is explained in Appendix A.

For regions of the flow in which ∆t satisfies the following explicit stability

conditions

∆t ≤ 1

2

∆x(
|u|+ c+ 2ν

ρ∆x

) ∆t ≤ 1

2

∆y(
|v|+ c+ 2ν

ρ∆y

) ∆t ≤ 1

2

∆z(
|w|+ c+ 2ν

ρ∆z

)
(4.31)

all λA, λB and λC vanish and the set of Implicit equations reduces to the explicit

equations with simple solution. For other regions in which neither relation is sat-

isfied, the resulting difference equations are either upper or lower block bidiagonal

equations with fairly straightforward solutions.
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4.5.1 Artificial Viscosity

The MacCormack method operates satisfactorily in the regions where the vari-

ations of properties is smooth. But there is oscillations occurring around dis-

continuities, i.e., around a shock wave or in the boundary layer. So, artificial

smoothing terms must be introduced, to damp these oscillations.

From the basic CFD theory we know that modified equation of a PDE gives

us some information on the behaviour to be expected of the numerical solution

of the difference equation. The modified equation of first order upwind scheme

for the one-dimensional wave equation

∂u

∂t
+ a

∂u

∂x
= 0 (4.32)

is shown below

∂u

∂t
+ a

∂u

∂x
=
a∆x

2
(1− ν)

∂2u

∂x2
+
a(∆x)2

6
(3ν − 2ν2 − 1)

∂3u

∂x3

+O[(∆t)3, (∆t)2(∆x), (∆t)(∆x)2, (∆x)3]

(4.33)

The dissipative term in the above equation, i.e., even-order derivative terms ∂2u
∂x2

is

actually the artificial viscosity term implicitly embedded in the numerical scheme.

It prevents the solution from going unstable due to the oscillations caused by the

dispersive terms i.e. odd-order derivative terms ∂3u
∂x3

. But for variable velocity

problems, the MacCormack scheme often does not have enough artificial viscosity

implicitly in the algorithm, and the solution will become unstable unless more

artificial viscosity is added explicitly to the calculation, which makes the solution

more inaccurate. Therefore, there is a trade off involved. The artificial viscosity

formulation is explained in Appendix B.
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4.6 Solution Procedure

Predictor: To solve first the predictor step of Eqs. 4.17 and 4.18 assuming ∆t

satisfies neither of Eqs. 4.31, we do the following:

4W n
i,j,k value can be found explicitly using 4.10.

4W n
i,j,k = F n

exSex + F n
eySey + F n

ezSez + F n
wxSwx + F n

wySwy + F n
wzSwz

+ F n
nxSnx + F n

nySny + F n
nzSnz + F n

sxSsx + F n
sySsy + F n

szSsz

+ F n
txStx + F n

tySty + F n
tzStz + F n

bxSbx + F n
bySby + F n

bzSbz

To solve the equation 4.18 consider

δW ∗
i,j,k =

(
I − ∆t

∆y
D+
J |B|i,j,k

) (
I − ∆t

∆z
D+
K |C|i,j,k

)
δW n+1

i,j,k (4.34)

Substituting eqn. 4.34 value to 4.18 we get,[
I − 4t
4x

D+
I |A|

n
i,j,k

]
δW ∗

i,j,k = 4W n
i,j,k (4.35)

Now substituting D+
I value in this equation we get[

I − 4t
4x

(
|A|ni+1,j,k − |A|ni,j,k

)]
δW ∗

i,j,k = 4W n
i,j,k (4.36)

Rearranging equation 4.36 we can write(
I +
4t
4x
|A|ni,j,k

)
δW ∗

i,j,k = 4W n
i,j,k + +

4t
4x
|A|ni+1,j,k δW

∗
i+1,j,k (4.37)

It is an upper bidiagonal equation. The solution for δW ∗
i,j,k can be obtained for

each j and k by sweeping in the decreasing i direction.

After obtaining δW ∗
i,j,k for all i, j, k then substituting this value in Eqn. 4.34

and we get(
I − ∆t

∆y
D+
J |B|i,j,k

) (
I − ∆t

∆z
D+
K |C|i,j,k

)
δW n+1

i,j,k = δW ∗
i,j,k (4.38)
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Let us consider

δW ∗∗
i,j,k =

(
I − ∆t

∆z
D+
K |C|i,j,k

)
δW n+1

i,j,k (4.39)

Substituting this value into Eqn. 4.38 we get,(
I − ∆t

∆y
D+
J |B|i,j,k

)
δW ∗∗

i,j,k = δW ∗
i,j,k (4.40)

Substituting D+
J value in this equation we get[
I − 4t
4y

(
|B|ni,j+1,k − |B|ni,j,k

)]
δW ∗∗

i,j,k = 4W ∗
i,j,k (4.41)

Rearranging equation 4.41 we can write(
I +
4t
4y
|B|ni,j,k

)
δW ∗∗

i,j,k = 4W ∗
i,j,k + +

4t
4y
|B|ni,j+1,k δW

∗∗
i,j+1,k (4.42)

We can get the solution for δW ∗∗
i,j,k for each i and k by sweeping in the decreasing

j direction.

After obtaining δW ∗∗
i,j,k for all i, j, k then substituting this value in Eqn. 4.39

and we get (
I − ∆t

∆z
D+
K |C|i,j,k

)
δW n+1

i,j,k = δW ∗∗
i,j,k (4.43)

Substituting D+
K value in this equation we get[
I − 4t
4z

(
|C|ni,j,k+1 − |C|ni,j,k

)]
δW n+1

i,j,k = 4W ∗∗
i,j,k (4.44)

Rearranging equation 4.44 we can write(
I +
4t
4z
|C|ni,j,k

)
δW n+1

i,j,k = 4W ∗∗
i,j,k + +

4t
4z
|C|ni,j,k+1 δW

n+1
i,j,k+1 (4.45)

We can get the solution for δW n+1
i,j,k for each i and j by sweeping in the decreasing

k direction.
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Then we can go to the third step and calculate

W n+1
i,j = W n

i,j + δW n+1
i,j

In the above procedure, the solution of the block bi-diagonal systems is carried

out making use of the known decomposition of |A|, |B|, |C| which reduces the

computation in the inversion of the block matrices. For example, to solve Eq.

4.37 in the predictor, the equation is rewritten as

Sx−1
i,j,k

(
I +
4t
4x
|DA|ni,j,k

)
Sxi,j,k δW

∗
i,j,k = 4W n

i,j,k +
4t
4x
|A|ni+1,j,k δW

∗
i+1,j,k

and can be easily solved as

δW ∗
i,j,k = Sx−1

i,j,k

(
I +
4t
4x
|DA|ni,j,k

)−1

Sxi,j,k

[
4W n

i,j,k +
4t
4x
|A|ni+1,j,k δW

∗
i+1,j,k

]

Note that the block matrix inversion is trivial because Sx−1
i,j,kandSxi,j,k are known

and
(
I + 4t

4x |DA|ni,j,k
)

is diagonal. This in fact means that a block bidiagonal

matrix inversion is reduced to a scalar bidiagonal matrix inversion.

The procedure to solve this equation 4.37 is as follows:

For each j, k and for i = I, I-1, I-2..... 2, 1

1. W = 4W n
i,j,k + 4t

4x |A|
n
i+1,j,k δW

∗
i+1,j,k

2. X = SxW

3. DA is calculated using 4.28

4. Y =
(
I + 4t

4x |DA|ni,j,k
)−1

X
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5. δW ∗
i,j,k = Sx−1 Y

6. Z = DA Y

7. |A|i,j,kδW ∗
i,j,k = Sx−1 Z

where X, Y , Z are the vectors assumed for the sake of simplicity to solve the

equation in steps 2,4 and 6.

Since this W is a matrix, all the variables are calculated with one full sweep

of i,j,k. Each of the above seven steps requires to calculate δW ∗
i,j,k for each i, j,

k. The matrix inversion of step 4 is trivial because the matrix is diagonal. So we

use the inversion of a diagonal matrix formula. Let D is a diagonal matrix and

D =


a11 0 0 0 0

0 a22 0 0 0

0 0 a33 0 0

0 0 0 a44 0

0 0 0 0 a55


Then according to this formula its inverse is given by:

D−1 =


1
a11

0 0 0 0

0 1
a22

0 0 0

0 0 1
a33

0 0

0 0 0 1
a44

0

0 0 0 0 1
a55


Note that the solution δW ∗

i,j,k at grid point i,j,k is obtained at step 5. The

flux |A|i,j,kδW ∗
i,j,k to be used in the calculation at grid point i−1, j, k is obtained

at step 7.
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4.7 Boundary Conditions

4.7.1 Wall Boundary Condition

The boundary condition for the wall follows no slip condition unlike the invisid

flow i.e., u=0, v=0, w=0. In the solver, no slip condition is given to the bound-

aries which are given as walls. For example, if j=0 is wall, then ‖B‖ δui, 0, k,

‖B‖ δvi, 0, k, ‖B‖ δwi, 0, k are given no slip condition. The computed end flux

terms (in this case) ‖B‖ δUi, 2, k are to be used as a boundary condition for the

corrector step that sweeps away from this boundary in the increasing j direction

and for the predictor step the value of the conservative variables W is given as

the input to start the sweep.

4.7.2 Inflow Boundary Condition

The boundary conditions of all primitive variable for flow coming into the domain

should physical if the flow is supersonic. If the flow is subsonic, one variable

is given numerical boundary condition and others are given physical boundary

conditions.

∂u

∂t
= 0,

∂v

∂t
= 0,

∂w

∂t
= 0

4.7.3 Outflow Boundary Condition

We can get δW values by interpolating between the outflow plane and the first

interior points.

δWboundary = Winterior
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4.7.4 Symmetry Boundary Condition

When the operator passes information away from the wall incoming values of δW

are set equal to zero. When the operator passes information towards the wall,

the outgoing flux is mirrored about the wall plane and propagated back into the

flow using inward operator.

4.8 Closure

In this chapter we have seen the detailed formulation of the implicit MacCormack

scheme which can be used for the study of compressible flows.



Chapter 5

Results and Discussion

5.1 Time comparision

In this section we compare time taken for explicit MacCormack (matrix form) and

implicit MacCormack schemes for Euler equations for the following test cases.

The test cases are:

• Shocktube Problem

• Supersonic flow over a wedge

• Subsonic flow over a circular bump

• Subsonic flow over a airfoil

• Flow over re-entry capsule

The following tables compares the results of implicit MacCormack and explicit

MacCormack Schemes in terms of time, CFL number and their validation.
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Shock Tube:

This problem ( [5], (pg-352),) comprises of a tube initially containing two

regions of a stationary gas at different pressures, separated by a diaphragm. At

t = 0, the diaphragm is removed instantaneously so that the pressure imbalance

causes a unsteady flow containing a moving expansion fan, shock and contact

discontinuity. The problem can be solved analytically as a 1-D case [25]. However,

we solve the computational problem as a 2-D case, and compare it with the 1-D

analytical solution.The computational results were obtained on a uniform grid of

∆x= 0.1m . A Courant number of 1.1 has been used.

Figure 5.1: Shocktube

It contains two zones, first zone supports high pressure fluid and second zone

supports low pressure fluid. The details of the geometry are:

• four slip walls

• two symmetric boundary surface
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IC Part 1 Part 2

Pressure 100000 Pa 10000 Pa

Temperature 300K 300K

u velocity 0 0

v velocity 0 0

w velocity 0 0

Initial Condition

Boundary Conditions

All boundaries are (slip) walls, while symmetry boundary condition are imple-

mented on surfaces on the z-plane.

The calculation was done to compare with analytical results previously derived

for the shocktube problem [25]. The analytical solution to the shock-tube prob-

lem at t = 0.0061s is compared to the computational result at the centerline of

the tube (see Fig. 5.1). The explicit and Implicit MacCormack schemes are com-

pared. The advantage of using an implicit scheme compared to a explicit scheme

is the computation time. The expansion shock occurring on the left has been cap-

tured accurately as in explicit one with less computation time. The results from

Implicit MacCormack and Explicit MacCormack scheme (with artificial viscosity)

are presented.

Results
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Figure 5.2: Density Contour at 6.1 ms with pressure ratio of 10 with constant

Courant No = 1.1

Figure 5.3: Velocity Contour at 6.1 ms with pressure ratio of 10 with constant

Courant No = 1.1
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Figure 5.4: Density Plot at 6.1 ms
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Figure 5.5: U Velocity Plot at 6.1 ms
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Method CFL Total CPU Time Time Steps End time

Explicit MacCormack 0.75 13.5 s(before 24 s)* 121 0.0061

Implicit MacCormack 1.1 15.28 s 83 0.0061

Table 5.1: Computational time comparison

(* Computational time taken before implementing matrix form)

15o Wedge:

We now consider the supersonic flow over a 2-D wedge with wedge angle 15◦

, as shown in figure. The inflow conditions are summarized in following table 5.2

and the present results have been compared with the analytical solution obtained

from the standard (θ−β−M) chart and the analytical oblique shock relationships.

Courant number of 0.3 and 1.1 are used for explicit and implicit MacCormack,

respectively.

Figure 5.6: Computational domain

*Note: The solver explicitly asks for an outflow pressure but imposes this

condition if and only if the flow is subsonic there.
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Quantity Inflow Outflow

Pressure 101353 Pa 101353 Pa*

Temperature 288.9 K -

U velocity 2.5 Mach -

V velocity 0 -

W velocity 0 -

Table 5.2: Boundary conditions for supersonic wedge

Boundary Conditions

The steady-state contours of Mach number and static pressure using implicit

MacCormack Scheme shown in figures below. Under the same flow condition the

contours obtained by numerical computation done in Hirsch’s book [6] is also

shown in Fig. 5.4. The results downstream of the shock has been tabulated in

Table 5.3 where, P2/P1 corresponds to the downstream and upstream pressure

ratio. Point P refers to the point (1.495, 0.3) on the outflow plane. The analyt-

ical results are also presented. Pressure, density, mach and temperature values

are extracted along x = 1.2 line for both the schemes and plotted along y axis.

The plots are compared for explicit and implicit MacCormack schemes in figures

5.12, 5.1, 5.14, 5.15. Both the Explicit MacCorMack and Implicit MacCormack

gives similar results and both have high accuracy, corresponding with the ana-

lytical results. Implicit MacCormack scheme however gives a solution within less

computational time.
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Figure 5.7: Pressure Contour with Implicit MacCormack Scheme

Figure 5.8: Pressure Contour with Explicit MacCormack Scheme
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Figure 5.9: Mach Contour with Implicit MacCormack Scheme

Figure 5.10: Mach Contour with Explicit MacCormack Scheme
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Figure 5.11: Mach Contour from Reference Hirsch [6]
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Figure 5.12: Variation of pressure along y co-ordinate
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Figure 5.13: Variation of Mach Number along y co-ordinate
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Figure 5.14: Variation of Density along y co-ordinate
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Figure 5.15: Variation of Temperature along Y co-ordinate

Validation:

Ratio’s Analytical Implicit Explicit

MacCormack MacCormack

P2/P1 2.468 2.477 2.468

T2/T1 1.322 1.325 1.322

ρ2/ρ1 1.867 1.869 1.866

Mach 1.874 1.864 1.873

Shock angle(in degree) 36.945 37.954 38.66

Table 5.3: Validation with analytical solution
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Computational Time comparison:

Method CFL Total CPU Time Time Steps

Explicit MacCormack 0.3 330764 s 632573

91.9(before 154 hrs)*

Implicit MacCormack 1.1 997.3 s 1075

(17 min)

Table 5.4: Computational time comparison

(* Computational time taken before implementing matrix form)
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Circular Bump:

We now take a case considering internal flow. It consists of a channel of

height L and length 3L, with a circular arc of length L and thickness equal to

0.1L, along the bottom wall, as shown in Fig. 5.18. For the subsonic case we

use a pressure-driven inlet boundary condition. For initializing the flow-field, we

have used free-stream conditions. The inlet x-velocity is calculated by numerical-

extrapolation from the interior domain. Its specification in the problem below is

indicative for Mach Number of the flow at the inlet and is used in the numerical

algorithm. We used a Courant number of 1.1 for cases below. The implicit

MacCormack has convergence difficulty for the subsonic case if we want to use

residual which is less than 10−8. So we are using the convergence criteria upto

10−6.

5.1.1 Subsonic Case

The inlet Mach number is chosen equal to 0.5. We provide total pressure and

total temperature at inlet with respect to the static condition, so as to get inlet

Mach Number equal to 0.5. At outflow we use the free-stream condition (static

condition). The boundary conditions are summarized in Table 5.5 and the solver

results have been compared with the study done by Rincon and Elder et al. [20].

Boundary Conditions

The comparison for Mach contours for Explicit MacCormack, Implicit MacCor-

mack and the reference is shown. Comparison of computational times are shown.
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L

3L

Inflow

Wall

Wall

Outflow

0.1 L

Figure 5.16: Computational domain [2]

Quantity Inflow Outflow

Pressure 120141.8 Pa 101300 Pa

Temperature 302.4 K 288 K

U velocity 174.287 -

V velocity 0 -

W velocity 0 -

Table 5.5: Boundary Condition for subsonic bump
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Figure 5.17: Variation of Mach number along lower and upper wall (M = 0.5)

Method CFL Total CPU Time Time Steps Residual

Explicit MacCormack 0.4 197384 s 396418 3.3368e−6

54.8(before 87.03 hrs)*

Implicit MacCormack 1.1 16750.75 s 31518 3.3368e−6

(4.6 hrs)

Table 5.6: Computational time comparison

(* Computational time taken before implementing matrix form)
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Aerofoil To validate the code for complex geometry, we have taken the case

of NACA 0012 airfoil. We study the external flow at Mach number of 0.5. The

computational domain for the NACA Aerofoil considered is shown below.

Figure 5.18: Computational domain [2]

5.1.2 Subsonic Case:Mach 0.5, Angle of Attack (α = 0◦ )

This is a subsonic case involving external flow. We have used velocity-driven

boundary condition for inlet and far-field. The boundary conditions are tabulated

in Table 5.7

Boundary Conditions

The comparison for Mach and pressure contours for Explicit MacCormack, Im-

plicit MacCormack and the reference is shown in Fig. ?? and ?? respectively.
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Quantity Inflow Outflow

Pressure 100000 Pa 100000 Pa

Temperature 300 K 288 K

U velocity 173.594 -

V velocity 0 -

W velocity 0 -

Table 5.7: Boundary conditions for NACA 0012 M = 0.5, α = 0◦
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Figure 5.19: Variation of Mach number along airfoil wall (M = 0.5)

Aerofoil:

Method CFL Total Time Time Steps

Explicit MacCormack 0.3 263336 s 597819

(73.1 hrs)(before 114.9 hr)*

Implicit MacCormack 1.1 21522.67 s 41728

(5.7 hrs)

Table 5.8: Computational time comparison

(* Computational time taken before implementing matrix form)
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Capsule:

A ballistic reentry capsule has been considered to validate the solver for a

complex geometry. The vehicle consists of a blunt bicone with 20/25 degree cone

angles. All the dimensions are shown in Fig. 5.20. Inlet, outlet and inviscid

wall has been shown through red, green and blue colour respectively. The free-

stream pressure and temperature are 833Pa and 63K, respectively. Free-stream

Mach number is taken as 5.0 with angle of attack of 4.66. We specify free-stream

pressure at outflow, which actually has no role to play for a supersonic exit. The

boundary conditions based on these are summarized in Table 5.9. We validate

the result with the study done by [30]. In this study, the wind tunnel data [28]

has been used for validation. We have also compare the two MacCormak scheme

results.

Figure 5.20: Re-entry vehicle model dimensions

Boundary Conditions

The plot of Cp distribution along the capsule wall is shown in Fig. 5.21.
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Quantity Inflow Outflow

Pressure 833 Pa 833 Pa

Temperature 63 K -

U velocity 792.88 -

V velocity 64.63 -

W velocity 0 -

Table 5.9: Boundary Condition

 

Windward side 

Leeward side 

Figure 5.21: Variation of coefficient of pressure along the capsule wall

Method CFL Total Time Time Steps End Time

Explicit MacCormack 0.4 199441 s 396418 1 s

(55 hrs)(before 87hrs)*

Implicit MacCormack 1.1 10038.25 s 26617 0.003934 s

(2.8 hrs)

Table 5.10: Computational time comparison
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5.2 Results of Implicit Scheme

The implicit scheme for Navier-Stokes equations are validated for flow over a flat

plate.

5.2.1 Subsonic Flow over a Flat Plate Ma=0.5

We now consider the subsonic flow over a 2-D flatplate. Present results have

been compared with analytical results. Courant number of 1.1 is used. The

inflow conditions are summarized in the above table.

Computational Domain:

LH = 1m

δ =
5LH√
ReL

Lv = 5δ

Lv = 0.25

ReL =
ρuL

µ

µ =
ρuL

ReL

µ = 0.0208445651kg/m− sec

Pr = 0.71

k =
µCp
Pr

Boundary Conditions:

Wall:
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Initial Conditions Part

Pressure 101325 pa

Temperature 288.16 K

U Velocity 170.134 m/s

V Velocity 0 m/s

W Velocity 0 m/s

No slip: u=0 , v=0 , w=0 , ∂T
∂n

= 0 (adiabatic wall)

Non-Dimensional Y-distance:

ȳ =
y

x

√
Rex

Input and Farfield Boundary Conditions:

Input and farfield conditions are same as intial conditions in this case

For outlet or trailing edge x=L and thus ȳ becomes

ȳ =
y

L

√
ReL

Flat Plate results are validated with the standard results from [32]. Here the

plot for non-dimesional u velocity and non-dimensional ȳ is shown.
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Figure 5.22: Plot for velocity x wrt y co-ordinate

5.2.2 Supersonic Flow over a Flat plate Ma=2.06

We now consider the supersonic flow over a 2-D flatplate. Present results have

been compared with analytical results. Courant number of 1.1 is used. The inflow

conditions are summarized in the table below.
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Initial Conditions Part

Pressure 101325 pa

Temperature 288.16 K

U Velocity 700.953 m/s

V Velocity 0 m/s

W Velocity 0 m/s

Computational Domain:

LH = 1m

δ =
5LH√
ReL

Lv = 5δ

ReL =
ρuL

µ

µ =
ρuL

ReL

µ = 0.002202041kg/m− sec

Pr = 0.71

k =
µCp
Pr

Boundary Conditions:

Wall:

No slip: u=0 , v=0 , w=0 , ∂T
∂n

= 0 (adiabatic wall)

Non-Dimensional Y-distance:

ȳ =
y

x

√
Rex
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Input and Farfield Boundary Conditions:

Input and farfield conditions are same as intial conditions in this case

For outlet or trailing edge x=L and thus ȳ becomes

ȳ =
y

L

√
ReL

Flat plate results are validated with the standard results from [32]. Here the

plot for non-dimesional u velocity and non-dimensional ȳ is shown.

Figure 5.23: Plot for velocity x wrt y co-ordinate
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5.3 Closure

In this chapter, time comparison between explicit scheme and implicit scheme are

shown and implicit Navier-Stokes solver is validated with flow over flat plate for

subsonic and supersonic flows.



Chapter 6

Conclusions and future work

Building on the earlier work of Sutrisha [21] and Rakesh [2], we have created

a stand-alone version of the AnuPravaha Solver for computation of invisid and

viscous flows using implicit schemes. An compressible flow module was created

for the general-purpose CFD solver ANUPRAVHA, which uses the implicit Mac-

Cormack scheme with artificial viscosity in finite-volume form to solve the Euler

and Navier-Stokes system (continuity, momentum and energy) of equations on a

structured non-orthogonal multi-block grid.

The above method is stable for CFL of 1.1 , and is second order accurate in

both space and time. In addition to this, the following features of this scheme

should be pointed out.

a) For regions of the flow satisfying explicit stability criteria, the implicit method

reduces to the corresponding explicit method and therefore no more com-

puting time than the explicit scheme is needed in these regions. Due to this

feature, the implicit MacCormack scheme is also called explicit-implicit or

hybrid in some literature.
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b) Viscous effects are included in the implicit operator in an approximate and

very simple way to enhance the stability for viscous flows. Therefore the

computation of the implicit operator and its inversion can be done with

the help of the knowledge of the inviscid Jacobians. Two block bi-diagonal

matrix inversions are reduced to two scalar bi-diagonal matrix inversions,

a fact which greatly reduces the computation.

c) Although the scheme is unconditionally stable in von Neumann’s sense, 4t is

still limited in practical computation, which is considered to be mainly due

to the error created by approximate factorization taken in the procedure

and the approximate linearization.

d) An intrinsic property of the two- step MacCormack type schemes, explicit or

implicit, is the time step dependence of the steady state solution. Thus,

convergent steady state solutions may only be reliable with sufficiently small

4t. Therefore one measure to achieve spatial accuracy is to reduce time

step towards the end of the marching until variation of the solution with

this reduction diminishes. This is obviously a disadvantage of the scheme

for steady state solutions.

Future work can be in the direction of

1. Further validation of the present code can be made on complex geometries

and for subsonic and transonic flow regimes.

2. Turbulence models like Spalart Allmaras, k-ε and k-ω can be implemented.



Appendix A

Jacobian Matrix Formulation

The inviscid Jacobians |A|, |B| and |C| can be diagonized by Sx, Sy and Sz

respectively. i.e.

A = S−1
x DASx B = S−1

y DBSy C = S−1
z DCSz

Sx =


1 0 0 0 −1

c2

0 ρc 0 0 1

0 0 1 0 0

0 0 0 1 0

0 −ρc 0 0 1




1 0 0 0 0
−u
ρ

1
ρ

0 0 0
−v
ρ

0 1
ρ

0 0
−w
ρ

0 1
ρ

0 0

αβ −uβ −vβ −wβ β


We use Mathematica to calculate the multiplication and inverse of the matricies.

So,

Sx =



(
1− αβ

c2

)
uβ
c2

vβ
c2

wβ
c2

−β
c2

−uc+ αβ c− uβ −vβ −wβ β
−v
ρ

0 1
ρ

0 0
−w
ρ

0 0 1
ρ

0

uc+ αβ −c− uβ −vβ −wβ β


and

S−1
x =


1 1

2c2
0 0 1

2c2

u c+u
2c2

0 0 u−c
2c2

v v
2c2

0 0 v
2c2

w w
2c2

0 ρ w
2c2

a51 a52 vρ wρ a55
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where

a51 = u2 + v2 + w2 − α,

a52 =
1

2β
+

u

2c
+

u2 + v2 + w2 − α

2c2

a55 =
1

2β
− u

2c
+

u2 + v2 + w2 − α

2c2

Sy =


1 0 0 0 −1

c2

0 1 0 0 1

0 0 ρc 0 0

0 0 0 1 0

0 0 −ρc 0 1




1 0 0 0 0
−u
ρ

1
ρ

0 0 0
−v
ρ

0 1
ρ

0 0
−w
ρ

0 1
ρ

0 0

αβ −uβ −vβ −wβ β



=



(
1− αβ

c2

)
uβ
c2

vβ
c2

wβ
c2

−β
c2

−u
ρ

1
ρ

0 0 0

−vc+ αβ −uβ c− vβ −wβ β
−w
ρ

0 0 1
ρ

0

vc+ αβ −uβ −c− vβ −wβ β


and

S−1
y =


1 0 1

2c2
0 1

2c2

u ρ u
2c2

0 u
2c2

v 0 v+c
2c2

0 v−c
2c2

w 0 w
2c2

ρ w
2c2

a51 uρ a53 wρ a55


where

a51 = u2 + v2 + w2 − α,

a52 =
1

2β
+

v

2c
+

u2 + v2 + w2 − α

2c2

a55 =
1

2β
− v

2c
+

u2 + v2 + w2 − α

2c2
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Sz =


1 0 0 0 −1

c2

0 1 0 0 1

0 0 1 0 0

0 0 0 ρc 0

0 0 0 −ρc 1




1 0 0 0 0
−u
ρ

1
ρ

0 0 0
−v
ρ

0 1
ρ

0 0
−w
ρ

0 1
ρ

0 0

αβ −uβ −vβ −wβ β



=



(
1− αβ

c2

)
uβ
c2

vβ
c2

wβ
c2

−β
c2

−u
ρ

1
ρ

0 0 0
−v
ρ

0 1
ρ

0 0

−wc+ αβ −uβ −vβ c− wβ β

vc+ αβ −uβ −vβ −c− wβ β


and

S−1
z =


1 0 0 1

2c2
1

2c2

u ρ 0 u
2c2

u
2c2

v 0 ρ v
2c2

v
2c2

w 0 0 w+c
2c2

w−c
2c2

a51 uρ vρ a54 a55


where

a51 = u2 + v2 + w2 − α,

a52 =
1

2β
+

w

2c
+

u2 + v2 + w2 − α

2c2

a55 =
1

2β
− w

2c
+

u2 + v2 + w2 − α

2c2



Appendix B

Artificial Viscosity Formulation

The following explains the artificial viscosity formulation which has been fre-

quently used in connection with the MacCormack technique. We show here the

formulation for an unsteady, two-dimensional equation.

∂U

∂t
= −∂U

∂x
− G

y
+ J (B.1)

where U is the solution vector, U =
[
ρ ρu ρv ρ(e+ V 2/2)

]
.

At each step of the time-marching solution, a small amount of artificial vis-

cosity can be added in the following form:

Sti,j = Cx

∣∣pti+1,j − 2pti,j + pti−1,j

∣∣
pti+1,j − 2pti,j + pti−1,j

(U t
i+1,j − 2U t

i,j + U t
i−1,j)

+Cy

∣∣pti,j+1 − 2pti,j + pti,j−1

∣∣
pti,j+1 − 2pti,j + pti,j−1

(U t
i,j+1 − 2U t

i,j + U t
i,j−1)

(B.2)

where we have taken, Cx = Cy = Cz = 0.12

Eq. B.2 is a fourth order numerical dissipation expression. On the predictor

step Sti,j is evaluated based on the known quantities at time t. On the corrector

step, the corresponding value of Sti,j is obtained by using the predicted (barred)

quantities as S̄ti,j.
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S̄ti,j = Cx

∣∣p̄ti+1,j − 2p̄ti,j + p̄ti−1,j

∣∣
p̄ti+1,j − 2p̄ti,j + p̄ti−1,j

(Ū t
i+1,j − 2Ū t

i,j + Ū t
i−1,j)

+Cy

∣∣p̄ti,j+1 − 2p̄ti,j + p̄ti,j−1

∣∣
p̄ti,j+1 − 2p̄ti,j + pti,j−1

(Ū t
i,j+1 − 2Ū t

i,j + Ū t
i,j−1)

(B.3)

where we have taken, Cx = Cy = Cz = 0.12

The value of Sti,j and S̄ti,j are added at various stages of MacCormack scheme as

shown below with the help of calculation of density from the continuity equation.

For this U = ρ.

On the predictor step,

ρ̄t+∆t
i,j = ρti,j +

(
∂ρ

∂t

)t
i,j

∆t+ Sti,j (B.4)

On the corrector step,

ρt+∆t
i,j = ρti,j +

(
∂ρ

∂t

)
a

v∆t+ S̄t+∆t
i,j (B.5)



Bibliography

[1] Amit Shivaji Dighe, “Numerical Computation of Compressible Fluid

Flows”, Thesis for the Degree of Master of Technology, Department

of Mechanical Engineering, Indian Institute of Technology Hyderabad,

2012.

[2] Ashwani Assam, “Development of a General-Purpose Compressible

Flow AnuPravaha Based Solver”, Thesis for the Degree of Master of

Technology, Department of Mechanical Engineering, Indian Institute of

Technology Hyderabad, 2014.

[3] Axel Rohde, “Eigenvalues and Eigenvectors of the Euler Equations in

General Geometries”, AIAA journal, Vol. 20, number 9 pp. 2001-2609.

[4] B. Engquist and A. Majda, “Radiation boundary conditions for acoustic

and elastic wave calculations.”, Communications on Pure and Applied

Mathematics 32, pp- 313–357, 1979.

[5] C. B. Laney, “ Computational gasdynamics”, Univ. Press, Cambridge

u.a, 1998



BIBLIOGRAPHY 87

[6] C. Hirsch., “Numerical computation of internal and external flows

fundamentals of computational fluid dynamics.”, Elsevier, Amster-

dam,2007.

[7] D. H. Rudy and J. C. Strikwerda, “A nonreflecting outflow boundary

condition for subsonic navier-stokes calculations”, Journal of Computa-

tional Physics 36, pp- 55–70. Cited by 0234, 1980.

[8] D. L. Whitfield and J. M. Janus, “Three-dimensional unsteady Euler

equations solution using flux vector splitting”, 00121, 1984.

[9] Eswaran V. and Prakash S., “A finite volume method for Navier Stokes

equations”, Proc. Third Asian CFD Conference,Vol. 1, pp. 127-136,

Bangalore, India, July 1998.

[10] Eswaran V. et al., “Development of a General Purpose Robust CFD

Solver”, Project Report No. 1, Department of Mechanical Engineering,

Indian Institute of Technology Kanpur, December, 2005.

[11] G. Hedstrom, “Nonreflecting boundary conditions for nonlinear hyper-

bolic systems”, Journal of Computational Physics 30, pp- 222–237, 1979.

[12] Gurris, Marcel and Kuzmin, Dmitri and Turek, Stefan, “Implicit fi-

nite element schemes for the stationary compressible Euler equations”,

International Journal for Numerical Methods in Fluids, vol-69, No-1,

pp=1-28, Wiley Online Library, 2012



BIBLIOGRAPHY 88

[13] Harten Ami, “Numerical Solution of the Navier–Stokes Equations by

Semi–Implicit Schemes”, Journal of Computational Physics, vol. 49, pp.

357–393

[14] Hozman, J, “High resolution schemes for hyperbolic conservation laws”,

Charles University, Faculty of Mathematics and Physics, Prague, Czech

Republic. Wds, vol. 6, pp. 59-64

[15] Feistauer, Miloslav and CESENEK, JAN, “ON NUMERICAL SIMU-

LATION OF AIRFOIL VIBRATIONS INDUCED BY COMPRESS-

IBLE FLOW”, Thesis for the Degree of Master of Technology, Proceed-

ings of ALGORITMY, pp. 22-31, 2012.
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