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Abstract

Cyber-security is used to identify cyber-attacks while they are acting on a computer or network

system to compromise security of the system. We discuss the concept of Hidden Markov Model

with the Large Deviation Theory approaches because now a days statistical anomaly detection with

Large Deviation theory approach have been used to find attack signatures in network traffic. We

present two different approaches to characterize traffic: a model-free approach and a model-based

approach. Model free approach is method of types based approach using Sanov’s theorem whereas

model based approach is HMM based approach uses Large deviation theory. We discuss how these

theories can be applied for anomaly detection from network traffic. We study their effectiveness in

anomaly detection. We will discuss how much these statistical methods affective on spatio-temporal

traffic data. We also discuss about how length of traffic data affect our Markov model. How our

estimated model is related with true but unknown model.

vi



Contents

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Approval Sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Nomenclature viii

1 Introduction 1

1.1 Patttern Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Anomaly Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Survey 5

2.1 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 s-step Markov process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Recurrent and Transient states . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.4 spectral radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.5 Canonical Form of a matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Large Deviation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Rate function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Sanov’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Loss function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Sanov’s Theorem for i.i.d. processes . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.5 Large deviation theory for Markov chain . . . . . . . . . . . . . . . . . . . . . 14

2.2.6 Entropy rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.7 Relative Entropy rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.8 Rate function for Markov Process . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Model Free Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Model based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Incorporating spacial information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 spatio-temporal anomaly detection by model free approach . . . . . . . . . . 21

2.5.2 spatio-temporal anomaly detection by model based approach . . . . . . . . . 23

2.6 SVM base approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.1 First approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



2.6.2 Second approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Contribution 27

3.1 Extention of Hoeffding’s Inequality for Markov Process . . . . . . . . . . . . . . . . . 27

3.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Future work 33

References 34

Bibliography 34

viii



Chapter 1

Introduction

A cyber-infrastructure or cloud is a media for exchanging and utilizing information. Cloud contains

digital data and its supporting infrastructure consist of softwares and hardwares, which are being

utilized for traffic flow, data processing, privacy protection, monitoring, supervision and control

etc. This makes it more important to keep it safe. Because many private , national and interna-

tional essential and emergency services needs uninterrupted Internet supply. A cyber attack can

be launched by some anti-social activists, which can compromise the security of any one of the

following systems. Hence it may cause chaos, threat to our economy or national security etc. A

normal or nominal user or a group of users are one who don’t intend to intrude on the cyberspace of

other user. To secure cyberspace of a user or cyber-infrastructure against these anti-social activists

or threats cyber-security professionals and researchers has been engaged in to design a variety of

defense systems. Researchers and Professionals are maintaining confidentiality, availability and in-

tegrity of data from various hackers. The confidentiality refers to the ability to save sensitive data

from third parties, availability refers to do normal tasks like accessing free data or uploading data in

cyberspace. Whereas integrity refers to the a complete cyber-infrastructure without any loopholes.

Generally operating systems like Windows have there own firewall and security system for pro-

tection against malicious cyber attacks or viruses. They have there own cryptography which protects

user information. People also uses anti-virus softwares for their system or infrastructure for pro-

tection against threats. These approaches are used to create a shield for users. However these

methods appears to be not fully protective because of flaws in design or flaws in hardware or soft-

ware infrastructure. Researchers always tries to patch up those flaws but attackers always finds a

way through these security systems. For all these reasons we need better methodology for a reliable

cyber protection. Blocks of a better cyber defense system can be shown as:

As shown in figure 1.1 feature extraction, their analysis and decision making are most important

steps of attack detection. Feature extraction contains all information like IP addresses of source and

destination, protocol, ports of source and destination, time and duration of data, number of packets

etc. Analysis part has different methods to detect anomalous behavior which system haven’t seen

before. The decision statement is made when analysis method catches some anomalous behavior.

Traditionally human analysts watch over these sequence of alerts given by cyber attack identifi-

cation system and signals attack accordingly. But this is a difficult and time consuming task for an

analyst when number of alerts generated are very high. This task becomes more difficult when en-

1



Data source

Capturing
or storing

Processing

Feature
Extraction

Analysis

Decision

Figure 1.1: Steps of Cyber security

vironment changes rapidly. Machine learning is a good approach for cyber attack detection because

it could deal with above problems effectively. First it gathers knowledge from the training data and

then makes predictions on new data based on knowledge gained from previous data. This makes

machine learning approach more efficient.

Cyber attack detection system (CADS) monitors the activities that occurs in a computing resource

to detect violations of security policies of an organization. The intention of CADS can be summarized

as follows:

• Increase attack detection rate also called True Positive (TP) i.e. Detect most of the attacks

(Malicious or non-malicious, external opportunistic or deliberate attacks).

• Reduce false alarm rates also called False Positive (FP) i.e. accuracy of attack detection should

be very high.

• Detect attacks in shortest time, thus to reduce damage caused by the attacks.

The above requirements have involved researchers to develop different machine learning algo-

rithms that fulfill above goals to prevent systems from cyber attack.

Before proceeding lets talk what is machine learning. Machine learning is about automatic learn-

ing of models from sample data. It is a computational process where learning models uses rules or

mathematical functions or logics for finding relationship between input and output. That is suppose

we have an observed dataset X, parameters θ and a model f(θ). Then in machine learning we try

to minimize errors E(f(θ), X) between truth and the learning model f(θ). In general we have a

predicted output from the model f(θ) and observed sample data. We calculate the errors and use

optimization algorithms to find accurate parameters θ for the accuracy of our learning model f(θ).
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A CADS generally has to deal with problems like large network traffic volumes which is continuously

varying with time because of human activity, highly uneven data and the difficulty to realize deci-

sion boundaries between normal and abnormal data and a requirement for continuous adaptation

to a constantly changing environment. Generally the challenge is to efficiently classify behaviors of

network systems. There are two general approaches for classifying behaviors of a network system

for cyber attacks detection:

• Pattern recognition

• Anomaly detection

These two method work in complementation of each other.

1.1 Patttern Recognition

Pattern recognition is a supervised machine learning approach. Pattern-recognition techniques iden-

tify and store signature patterns of known attacks. Then they match the subject’s observed behav-

ior with patterns of known attack signatures and signal attacks when there is a match. Pattern-

recognition techniques have been used in many places. Attack signatures can be characterized as

strings, event sequences, activity graphs, or attack scenarios. Different types of rules, state transi-

tion diagrams or decision trees are used to match or identify pattern of attack signatures. Although

pattern recognition is useful for known attacks but it can’t stop novel or unusual attacks Therefore

attack signature patterns needs to be updated timely manner to remain useful in this dynamic world

where attack scenarios, protocol or configuration always keep on changing.

Pattern recognition approach uses different machine learning algorithms such as artificial neu-

ral networks(ANN), genetic programing (GP), support vector machines(SVM), Fuzzy rules based

methods. Such methods uses Bayesian network (BN), classification and regression tree or decision

tree based approach for feature extraction. These methods are being used for attack detection. But

these all methods as told are ineffective towards novel attacks. These methods also have irregular

performance for different attack types. So we need a different and little more concrete approach for

attack detection which can overcome these characteristics.

1.2 Anomaly Detection

For a subject like a user or host machine or network of interest an anomaly-detection technique is

consisting of establishing a norm profile, observe the activities of the subject and signal attacks when

the subject’s observed activities differ appreciably from its norm profile. So anomaly method can

stop unusual and novel attack but it also have a drawback that it gives false alarm when it comes

across an irregular behavior, which need not to be an anomaly. Pattern recognition and anomaly

detection techniques can improve detection capability when used together. One of the technique is

statistically anomaly detection technique is discussed in this report. It construct a statistical profile

of a subject’s normal activity from historic data. Many cyber-attacks require a series of related

events to accomplish, it is possible to improve attack detection performance by incorporating the

ordering of events. But statistical profile many times do not consider the in which event occurs
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to the subject. In a paper I have studied that Markov model are computationally intensive due to

their use of the Bayes parameter estimation for learning the norm profile and a likelihood ratio test

for inferring anomalies. Considering large amounts and high frequency of events in a computer

and network system, those techniques are not applicable to cyber-attack detection in real time.

Previously they had used Markov Chain (MC) model in [1], [2], for attack detection. But now a

days as our computer’s computational efficiency have been increased they have started researching

with s-step Markov process. Markov chain process with s-step Markov process have been discussed

in chapter 2 of this report.

1.3 Note

In this report anomaly detection method is described with some procedures because those papers

contains details regarding anomaly detection method only. And also earlier work has showed that

systems based on pattern matching had detection rates below 70% [3], [4] Furthermore, such sys-

tems need constant (and expensive) updating to keep up with new attack signatures. As a result,

more attention has to be drawn to methods for traffic anomaly detection since they can identify even

novel (unseen) types of anomalies.
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Chapter 2

Literature Survey

A lot of research is done on Network anomaly detection. And still a lot of research is being carried

out to make network anomaly detection perfect. In this section we will discuss approximately all

anomaly detection methods that are in research and has been carried out till now. We will go

through hows their modeling is done, how they work and their efficiency towards network anomaly

detection. Let us start with the statistical approach then we will move towards the deterministic

approach. As per statistical approach [2], [5], [6] and [7], we have found that statistical approach

gives satisfactory result. Though research is being carried out to check whether these satisfactory

results could provide perfect results. We have two types of statistical approaches.

• Model free approach

• Model based approach

In the upcoming sections we will see these approaches in details. Before moving forward let

us see the network topology we need to monitor. We monitor a computer or a router for anomaly

detection. So instead of calling them router, computer or traffic, lets say we are observing a system.

Because these approaches we going to see, can be easily implemented on any of them. There are

four different representations of data to be observed.

• Bytes

• Packets

• Flows

• Windows

A collection of Bytes forms a Packet, a collection of packets forms a flow and a collection of

flow forms a window. We use flow and window based methods for attack detection. The traffic has

variations in data flow due to human activity. Lets take an example of flow representation in traffic.

Each flow consist of IP address (x), transmission time (t), size of the data in flow (d) and duration

of flow (df ). As we know each user is known by its IP address. When number of users becomes very

high then it becomes nearly impossible to characterize the behavior of each user. So as to simplify

this situation we form user groups to manage behavior. We use clustering algorithm to form user
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groups. Each user group has a cluster center and each user has spectral distance from the user.

These clusters can be represented as:

f = (k(x), g(x), d, df ) (2.1)

Where k(x) represents the cluster label and g(x) represents the distance of cluster center from the

user x. Suppose xi = (xi1, x
i
2, x

i
3, x

i
4) ∈ {0, ..., 255}4 and xj = (xj1, x

j
2, x

j
3, x

j
4) ∈ {0, ..., 255}4 are two

i.p. addresses. Then their distance is given by g(xi, xj) =
∑4
k=1 2564−k|xik − x

j
k|. g(x) can be given

as g(x, x̄k). Where x̄k represent kth cluster center. In this representation it is clear that we are using

cluster label, distance between i.p. addresses, download rate or data transfer rate i.e. d/df , data

size and duration of flow as features.

Whereas there is another representation of traffic. As we have seen that IP addresses was one

way to form cluster center. But other then IP address clusters can also be formed based on number

of flows. So we can represent network as:

f = (nf (x), h(x), d, df ) (2.2)

Where nf (x) represents the number of flows user x have with the server or cluster center. h(x)

represents the distance of user from the server or cluster center. So here we can see that this method

can be applied to those systems which work with a The first way of representation is used for

techniques such as statistical and support vector machine anomaly detection. Whereas the second

way of traffic representation is used for some other techniques such as Adaptive resonance theory

based anomaly detection method.

Upcoming sections are arranged as follows. First we go through some important terms of HMM

and LDT in section 2.1 and 2.2. Because these explanation will help us to understand statistical

anomaly detection method. Section 2.3 and 2.4 describes those statistical approach i.e. model

free approach and Markov model based approach for anomaly detection respectively. Section 2.5

describes how the above statistical approaches can be extended from temporal anomaly detection

to spatio-temporal anomaly detection. In section 2.6 we will study about support vector machine

approach for anomaly detection.

2.1 Hidden Markov Model

A stochastic process is defined as a sequence of random variables X = x1, ......, xn for n → ∞. As

we know x takes values in from a finite set. Let’s say the set A is a finite set of cardinality n. Set A

can be written as A = a1, ....., an . Here we will define a Markov chain model and their associated

terms and then s-step Markov model.

2.1.1 Markov Chain

A process {Xt}∞t=0 is said to be a Markov chain if for every t ≥ 0 and every sequence a0, ...., at ∈ N t+1

we can say

Pr{Xt = at|X0 = a0, .......Xt−1 = at−1} = Pr{Xt = at|Xt−1 = at−1} (2.3)
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In a Markov process the length of the tail on which the conditioning is carried out is always one. In

Markov process if the current state i ∈ A, the next state j ∈ A , then we can define the quantity

aij(t) as

aij(t) = Pr{Xt = j|Xt−1 = i}, i, j ∈ A. (2.4)

Where aij(t) is the probability of making transition from the current state i at time t to the next state

j at time t+ 1. A n×n matrix A(t) = aij(t) is said to be state transition matrix of Markov process at

time t. The matrix is said to be homogeneous if it is a constant matrix and independent of time and

non-homogeneous otherwise. A(t) is a stochastic matrix for all t. That is:

aij(t) ∈ [0, 1] and
∞∑
j=1

aij = 1 ∀i, j ∈ A (2.5)

Suppose {Xt} is a Markov process in a state space N and we don’t know state transition matrix.

Let’s say A is the unknown STM. We have observed Markov process sequence as xl1 = {x1, ......., xl}.
Now by this observation we would like to evaluate the terms of state transition matrix that makes

this observed sequence most likely. So we evaluate likelihood of the observed sequence xl1 if A is the

state transition matrix of the underlying Markov processes. The likelihood can be written as:

L(xl1|A) = Pr{x1}
l∏
t=2

Pr{xt|xt−1} = Pr{x1}
l∏
t=2

axt−1xt
(2.6)

Taking log both sides and after further simplification it can be written as:

LL(xl1|A) = logPr{x1}+

l∑
t=2

logaxt−1xt
= logPr{x1}+

n∑
i=1

n∑
j=1

vij logaij

Here vij denote the number of times state sequence ij appears in the sample path xl1. And we are

writing precisely aij = axt−1xt
times. Now we have the constraint equation as well:

∑n
j=1 aij =

1∀i ∈ N . Then the updated objective equation can written with Lagrangian as:

LL(xl1|A) = logPr{x1}+

n∑
i=1

n∑
j=1

vij logaij +

n∑
t=1

λt(1−
n∑
j=1

aij)

Now we want to minimize this objective function. Then we get the following conclusions:

∂J

∂aij
=
vij
aij
− λi = 0

⇒ aij =
vij
λi
.

Now after further solving this equation we can get a closed form solution. Because it is readily

available to us from the constrained equation:

n∑
j=1

aij = 1⇒
n∑
j=1

vij
λi

= 1⇒ λi =

n∑
j=1

vij = vi
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Therefore maximum likelihood estimate of the given matrix A is given by:

aij =
vij
vi

(2.7)

Eq. (2.7) gives the state transition matrix values. But it contains a lot of zeros. To avoid zero entries

in state transition matrix we do some adjustments in the matrix. Because the sample path with zero

entries gives a likelihood zero or log-likelihood of minus infinity. To avoid this anomaly we make

some adjustments. These adjustments are called Laplacian Correction.

2.1.2 s-step Markov process

s-step Markov process is also same as Markov chain with one difference. In s-step Markov process

the length of the tail on which the condition is done is s instead of one as in Markov chain process. A

process {Xt}∞t=0 is said to be a s-step Markov if for every t ≥ 1 and every sequence a0, ......., at ∈ N t+1

we can say:

Pr{Xt = at|X0 = a0, .......Xt−1 = at−1} = Pr{Xt = at|Xt−1
t−s = at−1

t−s} (2.8)

We can convert s-step Markov process to Markov chain process by changing the state space to Ns.

We can define Zt as Zt = Xt
t−s+1. Then Zt is defined over a block of s-states. Therefore Zt is a

Markov Process over state space Ns. Now equation (2.8) can be written as:

Pr{Zt = u|Zt−1 = v} = Pr{Xt = at|Zt− 1 = v} (2.9)

Here u = (at−s+1, ....., at) and v = (at−s, ....., at−1). As v is previously known so first (s − 1)

terms of u are already known. Therefore 2.9 is valid from that point of view. As u, v ∈ Ns. So this

time state transition matrix can be written as ns × ns matrix. Here only n components in a row will

be non-zero and other entries are zero because components corresponding to v are only non-zero.

2.1.3 Recurrent and Transient states

A state is said to be recurrent state in a Markov process if during transition from one state to another

state, the process attain a state where it can’t further attain any other state and form a loop for all

t ≥ k. Here k represents the time instant at which the state attains recurrent state. Set of all states

excluding recurrent states are called transient states. Now as it was discussed earlier that {Xt} is a

Markov process assuming values in a finite set N of cardinality n and A(t) denote the state transition

matrix at time t. If c0 is its initial distribution. Then state A(t) is distributed according to

A(t) = c0A(1)A(2), ....., A(t− 1) (2.10)

Now if the system attains a recurrent state at time T . If π is that stationary state or vector then for

all t ≥ T we can write the above equation as:

π ×A(T ) = A(t)

8



Here π is called the stationary distribution of A(t). Now we want to know whether a given stochastic

matrix A have a stationary distribution and if it have then how to determine the set of all stationary

distributions. For that we need to follow a theorem given in [ [8], Theorem 4.7]. Some part of it is

described here. For full details please go through the reference.

2.1.4 spectral radius

Given a matrix A, the spectrum of A consists of all eigenvalues of A and is denoted by spec(A). If

spec(A) = λ1, ........, λn, then

ρ(A) = max{|λi| : λi ∈ spec(A)}

is called the spectral radius of A. Spec(A) can’t contain negative and complex numbers. ρ(A) is

always real and non-negative.

2.1.5 Canonical Form of a matrix

Suppose A ∈ <n×n+ is a non-negative matrix. Then to capture the location of positive elements in

the matrix we form an incidence matrix T corresponding to A:

T ∈ {0, 1}n×n, tij = 1 ∀aij > 0

= 0 ∀aij = 0

Since A has n rows and columns, we can think of N := 1, ....., n as the set of nodes of a directed

graph and place a directed edge from node i to node j if and only if tij = 1. A path length l from

node i to node j is a sequence of length l + 1 of the form {i0, ........, il}, where i0 = i, il = j, and in

addition aisis+l
> 0 for all s = 0, 1, .....l. Now if alij denote the ijth element of Al. Therefore from

matrix multiplication formula:

alij =

n∑
s1=1

......

n∑
sl−1=1

ais1as1s2 .......asl−1j

Now it is obvious that alij > 0 if and only if there is a path from node i to node j. A node i is

said to be inessential if there exists a node j (of necessity, not equal to i) such that i → j, but

j 6→ i. Otherwise, i is said to be essential. With the above definition, we can divide the set of nodes

N = {1, ...., n} into two disjoint sets: ι denoting the set of inessential nodes and ε denoting the set

of essential nodes. Now after similarity transformation A can be converted in such a way that all

nodes in ε comes first, followed by all nodes in ι. Let Π denote the permutation matrix then the

matrix A can be written as:

Π−1AΠ =

ε ι

ε P 0

ι R Q

(2.11)

Then from [ [8], Theorem 4.7, statement 8] it can be written as: If c ∈ Sn be an arbitrary initial

distribution. If ι is non-empty, permute the component of c to be compatible with eq. (2.10), and

write c = [cεcι]. Partition ct = cAt as ct = [c
(t)
ε c

(t)
ι ] . Then c(t)ι →∞ as t→∞, irrespective of c.

9



To proof this as its written above if ι is non-empty, and m = |ι| denote the cardinality of ι. Then

partition Am as:

Am =

ε ι

ε Pm 0

ι R(m) Qm

Then we can say that each row of R(m) contains a nonzero element. Then we can say each row

sum of Qm is strictly less than one. Now as we have seen earlier that ρ(A) ≤ r(A) = µ(A) ≤ 1 [8].

Where A is a stochastic matrix with each row sum equal to one. In this case µ(Qm) ≤ 1. So we can

say that ρ(A) ≤ 1. Since ρ(Qm) = ρ(Q)
m, it follows that ρ(Q) ≤ 1. If A is in the form eq. (2.10) and

ι is non-empty, then At has the form:

At =

ε ι

ε P t 0

ι R(t) Qt

Now we know that ρ(Q) ≤ 1 from the above explanation. And also Qt →∞ as t→∞. Hence if we

write ct = cAt , then it implies that:

ctι = cιQ
t → 0 ∀t→∞

Irrespective of the value cιhave initially. Therefore we can conclude that the states in ι are referred

as transient states and those in ε are referred as recurrent states. Therefore we can conclude that

irrespective of the initial distribution of the Markov chain, we have:

Pr{Xt ∈ ι} → 0 ∀t→∞

Pr{Xt ∈ ε} → 1 ∀t→∞

So we can say that set ε are recurrent states, and these disjoint equivalence classes ε1, ........, εs are

referred as communicating classes.

2.2 Large Deviation Theory

In this section we will discuss about Sanov’s theorem [8] for i.i.d. sequence as well as Markov

chain sequence. For that earlier we need to define a few things, which are as follows. Suppose

A = {a1.......an} is a finite set. M(A) denote the set of all probability distributions on the set A.

µ ∈ M(A) is a fixed but possibly unknown probability distribution and X is a random variable

assuming values in A with distribution µ. In order to estimate µ we generate independent samples

x1.....xl...., where each sample xi belongs to set A, and distributed according to µ and independent

of xj for j 6= i. Let we have generated samples from first l experiments. Then we used to construct

empirical distribution as follows:

(µ̂l1)i =
1

l

l∑
j=1

I{xj = ai} (2.12)

10



Where I denote the indicator function. Now (µ̂)lx=1 is also a probability distribution on A and a

random element of M(A). Thus we think as l → ∞ the process converges to the true measure

µ that is generating the samples. Let us define γ ∈ M(A) is some set of probability distribution

and (µ̂)lx=1 ∈ γ is a sequence of real numbers. Now suppose that µ 3 γ̄, where set γ̄ denotes the

closure of set γ in the total variation metric. Thus the true measure µ that is generating the random

samples does not belong to the closure of set γ. If µ 3 µ̂ then we can say that the sequence of real

numbers Pr{µ̂}lx=1 converges to zero. Large deviation theory tells us the rate at which the sequence

converges to zero and how the rate depends on γ and µ. Suppose this sequence converges to zero

at an exponential rate, that is

Pr{µ̂(xl1) ∈ γ} = c1exp(−lc2)

Here c2 is called rate of convergence. Now taking log both side we can write:

1

l
logPr{µ̂(xl1) ∈ γ} =

logc1
l
− c2

As we can see that as l → ∞ the negative of this quantity approaches to c2. Now let us define the

rate function.

2.2.1 Rate function

Let µ̂(xl1) be defined as in (2.12). Then the function I : M(A)→ <+ is said to be a rate function of

the stochastic process µ̂(xl1) if

• I is lower semi-continuous.

• For every set γ ⊆M(A), the relationship holds:

− inf
v∈γ0

I(v) ≤ lim
l→∞

inf
1

l
logPr{ ˆµ(xl1) ∈ γ} ≤ lim

l→∞
sup

1

l
logPr{µ̂(xl1) ∈ γ} ≤ − inf

v∈γ̄
I(v)

(2.13)

Where γ0 denote interior of the set γ. Again a function f : M(A) → < is said to be lower semi-

continuous if

vi → v∗ → f(v∗) ≤ lim
i

inf f(vi)

2.2.2 Sanov’s theorem

Let us first understand method of types. Let us fix the integer l denote the length of the multi-sample.

So now empirical distribution can take finite values as shown in equation (2.12), and every element

of µ̂(x)l1 is a rational number with l in denominator. Let ε(l, n) denote the set of all possible empirical

distribution that can result from the multi-sample of length l and set A = a1......an has cardinality

n. And we define two multi-sample to be equivalent if their empirical estimates are equal. T (v, l)

represent type class v of the multi-sample. Then we can say that [8]:

11



• Cardinality of |ε(l, n)| is given by:

|ε(l, n)| = (l + n− 1)!

l!(n− 1)!
(2.14)

• The log likelihood of each multi-sample in T (v, l) is given by:

logP lµ{x} = −lJ(v, µ) (2.15)

Where J(v, µ) known as loss function. (Defined below.)

• The cardinality of T (v, l) is given by:

|T (v, l)| = l!∏n
i=1 li

(2.16)

• Lower and upper bound of |T (v, l)| is given by:

|ε(l, n)|−1
exp[lH(v)] ≤ |T (v, l)| ≤ exp[lH(v)], ∀v ∈ ε(l, n) (2.17)

Where H(v) denote entropy of distribution v.

2.2.3 Loss function

Loss function between two probability measure µ and v is defined as:

J(v|µ) =

n∑
i=1

vi log
1

µi

Where n represents cardinality of set A = a1, .....an. This function have minimum value Jmin when

v = µ. Otherwise the difference between this Jmin and J (when v 6= µ) is known as Kullback

Laibler divergence i.e.

D(v||µ) = J(v|µ)− J(v|v)[whenv = µ, Jmin]

2.2.4 Sanov’s Theorem for i.i.d. processes

The stochastic process µ̂(x)l1 satisfies Large deviation property with the rate function I(v) = D(v||µ).

Where D(v||µ) is called Kullback Laibler Divergence. Proof: As first condition for rate function is it

should be lower semi-continuous function. But here I(v) is not only lower semi-continuous but in

fact its continuous function v. So now we need to proof the second criteria i.e. inequality criteria as

told in section 2.1 point 2. Suppose v ∈ ε(l, n). Now we need to evaluate the probability of empirical

distribution µ̂(xl1) to be equal to v.

Pr{µ̂(xl1) = v} = Prlµ(T (v, l)) = |T (v, l)|Prlµ({xl1})

Here the sequence x1......xl is generated by some unknown frequency µ we are trying to estimate

and v is the estimated frequency, i.e. {xl1} ∈ T (v, l). Now from equation (2.14) and from right

12



inequality of equation (2.17) we can write:

Pr{µ̂(xl1) = v} = |T (v, l)|Prlµ({xl1}) ≤ exp |lH(v)| exp−lJ(v, µ) = exp [−lD(v||µ)] (2.18)

Similarly using (2.15) and the left inequality (2.17) we can write:

Pr{µ̂(xl1) = v} = |T (v, l)|Prlµ({xl1}) ≥ |ε(l, n)|−1
exp |lH(v)| exp−lJ(v, µ) = |ε(l, n)|−1

exp [−lD(v||µ)]

(2.19)

Combination of equation (2.18) and (2.19) we can write it as:

|ε(l, n)|−1
exp [−lD(v||µ)] ≤ Pr{µ̂(xl1) = v} ≤ exp [−lD(v||µ)]

This above equation gives the lower limit and upper limit for µ̂(xl1) ∈ T (v, l). Now since γ ∈ M(A)

is any probability distribution on A. Then using (2.19)

Pr{µ̂(xl1) ∈ γ} =
∑

v∈γ∩ε(l,n)

Pr{µ̂(xl1) = v}

≤ |γ ∩ ε(l, n)| sup
v∈γ∩ε(l,n)

Pr{µ̂(xl1) = v}

≤ |ε(l, n)| sup
v∈γ

exp [−lD(v||µ)]

Hence it can be written by taking log both sides and divide by l throughout the equation:

1

l
logPr{µ̂(xl1) ∈ γ} ≤ 1

l
log |ε(l, n)|+ sup

v∈γ
−D(v||µ) (2.20)

As we know the number of experiments should be a large number. So we can write that l >> n. So

we can write that |l + n − 1| ≤ |2l|. But if we think that l must be at least equal to n. Then (2.14)

can be modified as:

|ε(l, n)| = (l + n− 1)!

l!(n− 1)!
≤ (2l)!

(n− 1)!l!
=

(2l)(n−1)

(n− 1)!
∀l ≥ n

So we can say from above equation that as l→∞ first term of equation 2.20 approaches zero. Since

γ ⊆ γ̂ so the rest of the equation can be written as:

lim
l→∞

sup
1

l
logPr{µ̂(xl1) ∈ γ} ≤ sup

v∈γ
−D(v||µ) ≤ − inf

v∈γ̂
D(v||µ)

This constitutes the right hand part of the (2.13) as given in the definition of the rate function. Now

to prove left hand part of the definition as given in (2.13) we assume φ is a probability distribution in

M(A). We have got this distribution after performing l experiments. So we are assuming φ ∈M(A)

is same as v ∈ M(A), but two outcome of same experiment. So we can say that every φi ∈ φ and

every vi ∈ v is a rational number with denominator l. Now lφi and lvi both are integer values. Now

let us define qi = dlφie and ri = blφic. Now if we assume ci equal to either qi or ri for each index

i. Then we can say that
∑n
i=1 ci = l. Then we can say that type class v can be written as vi = ci/l.
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Now from the above equation it can be written as radius of total variation metric φ as:

ρ(φ, v) =
1

2

n∑
i=1

|φi − ci| ≤
n

2l

Now suppose v is an interior point in γ and B(v) represents open ball in γ that contains v. Let there

exists a sequence {vl} ∈ ε(l, n) for all l. And vl → v as l → ∞. Also vl ∈ (v) for sufficiently large l.

Then from (2.19) we can write:

Pr{µ̂(xl1) ∈ γ} ≥ Pr{µ̂(xl1) = vl} ≥ |ε(l, n)|−1
exp [−lD(vl||µ)]

1

l
logPr{µ̂(xl1) ∈ γ} ≥ −1

l
log |ε(l, n)| −D(vl||µ)

As seen earlier that the first term on the right hand side approaches zero as l → ∞. Now suppose

γ0 ⊆ γ.Then we can write:

− inf
vl∈γ

D(v||µ) ≥ − inf
vl∈γ0

D(v||µ)

So as l→∞ we have seen earlier that vl → v. Then above equation can ve written as:

lim
l→∞

1

l
logPr{µ̂(xl1) ∈ γ} ≥ − inf

v∈γ0
D(v||µ)

This proves the left inequality of the definition of the rate function. Therefore it can be concluded

that Kullback-Laibler is the rate function for finite alphabets.

2.2.5 Large deviation theory for Markov chain

Previously we studied Sanov’s theorem for an i.i.d. sequence. Here we will discuss Sanov’s theorem

for Markov chain sequence. Because Sanov’s theorem is key in cyber security project. As we have

seen earlier that if we have s-step Markov process of cardinality N . Then we can transform that

s-step Markov process into Markov chain process of cardinality Ns. In this new Markov chain only

transition matrix gets converted from n× n to ns × ns.

2.2.6 Entropy rate

Suppose {Xt}t≥0 is a stationary stochastic process assuming values in finite alphabetA = {a0, ......, an}.
Then entropy rate of the process is given by Hr(Xt), and defined as [8]:

Hr({Xt}) = lim
t→∞

H

(
Xt

Xt−1
0

)
(2.21)

Where H(.) is the conditional entropy. Suppose X and Y are random variables assuming values in

finite set A = a1......an and B = b1......bm respectively. φ ∈ Snm denote their joint probability distri-

bution. φx ∈ Sn and φy ∈ Sm denote the marginal probabilities of variables X and Y respectively.
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Then conditional entropy of Y with respect to X is given by:

H

(
Y

X

)
=

n∑
i=1

(φx)iH(φY |x=ai)

It can also be written as:

H(Y/X) = H(X,Y )−H(Y )

Therefore as per given definition of Entropy rate and property of conditional probability it can be

written as:

Hr({Xt}) = lim
t→∞

H(Xt/X
t−1
0 ) = lim

t→∞
H(Xt

0)−H(Xt−1
0 )

Here we need to know that if {Xt}t≥0 is a stationary stochastic process assuming values in a finite

alphabet A. Time average of Entropy rate approaches a constant value c ≥ 0 as t→∞. That is [8]:

H

(
Xt

Xt−1
0

)
→ c ∀t→∞ (2.22)

Entropy rate for a Markov process is given by [8]:

Hr(v) =

n∑
i=1

viH(ai) (2.23)

2.2.7 Relative Entropy rate

Suppose {Xt} and {Yt} are two stationary stochastic processes assuming values in a common finite

set A. Then the relative entropy rate is defined as:

Dr({Xt}||{Yt}) = lim
t→∞

D(Xt
0||Y t0 )

t
(2.24)

If limit exists then only relative entropy rate will be defined otherwise not defined. Like entropy

rate, relative entropy rate can also be written as [8]:

Dr(v||µ) = D(v||µ)−D(v̄||µ̄)

Here v, µ ∈ M(Ak) probability distribution on Ak. Whereas v̄, µ̄ ∈ Mk−1 are probability distribu-

tion on Ak−1. There is a difference of one dimension in between them. Mathematically it can be

represented as:

v̄i =
∑
j∈A

vij =
∑
j∈A

vji

Like entropy rate, relative entropy rate of Markov process is given by [8]:

Dr(v||µ) =

n∑
i=1

v̄iD(ai||bi) (2.25)
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Where ai and bi are ith row of transition matrix A and B.

2.2.8 Rate function for Markov Process

Here we discuss about the doublet frequency because every frequency can be further transformed

into doublet frequency. {Xt} is a Markov process from a finite set called A ∈ Sn. After observing

l experiments we have an output x1......xl. Let φl1 denote the empirical estimate of l observations.

Then we can write:

φi(x
l
1) =

1

l

l∑
j=1

Ixj=i ∀i ∈ A (2.26)

Here φ is an approximation of stationary distribution of the Markov chain. Since we are working on

doublet frequency. So we can define:

θij =
1

l − 1

l−1∑
k=1

IxkXk+1=ij (2.27)

Here we can say that θ ∈M(A2) is an estimate of the true estimate φ ∈M(A2) which are generating

doublet frequencies. As defined earlier that as θ ∈ S2
n, therefore θ̄ ∈ Sn. But θ̄ is not a stationary

distribution. Because as per definition of stationary distribution:

θ̄i =

n∑
j=1

θij 6=
n∑
j=1

θji

As we can see that its a non-stationary function. We make this a stationary function by making an

assumption that the outcome of (l+ 1)th is the first observation and make it a cyclic path. Therefore

the sample path-length will be l + 1. So the new estimate is given by:

vij =
1

l

l∑
k=1

Ixkxk+1=ij (2.28)

Here v is a always stationary unlike θ. Here again we start with method of types to evaluate rate

function for Markov process. Suppose µ̂(xl1) is the empirical measure as defined in (2.28). If two

observations have the same empirical estimates then we can say that they are of same type. Let us

define ε(l, n, 2) ⊆ ε(l, n2). Since every distribution in ε(l, n2) are not stationary. So we have selected

ε(l, n, 2) of sample length l and of finite alphabet of length l. As earlier defined T (v, l) define the

type class v = µ̂(xl1) ∈ ε(l, n, 2). Therefore we can say [8]:

• The cardinality of ε(l, n, 2) is given by:

|ε(l, n, 2)| ≤ (l + 1)n
2

(2.29)

• The cardinality of type class T (v, l) is given by:

(2l)2n2

exp lHr(v) ≤ |T (v, l)| ≤ l exp lHr(v) (2.30)

Where Hr(.) is the entropy rate function.
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• The log likelihood of T (v, l) is given by:

logPrX l
1 = xl1 = l[J(v|µ)− J(v̄|µ̄)] (2.31)

Here v represents v(xl1) and v̄ represents v̄l1 as defined in 2.28.

From (2.30) and (2.31) we can tell that:

log |T (v)| ≤ lHr(v)

log |T (v, l)| ≤ l(J(v|µ)− J(v̄|µ̄))

So from the above equations if we write that:

δ(v, l) =
1

l
logPr{µ̂(xl1) = v}

Then it can be written as:

δ(v, l) ≤ Hr(v)− J(v|µ) + J(v̄|µ̄) + o(1/l)

= H(v)−H(v̄)− J(v|µ) + J(v̄|µ̄) + o(1/l)

= −Dr(v||µ) + o(1/l)

(2.32)

similarly it can be written using the left inequality of (2.30) and (2.31) as:

δ(v, l) ≥ −Dr(v||µ) + o(1/l) (2.33)

Therefore we can say that if γ ⊆ M(A2) be any set of the probability distribution in A2. Then we

can write:

Pr{µ̂(xl1) ∈ γ} =
∑

v∈ε(l,n,2)∩γ

Pr{µ̂(xl1) = v}

≤ |ε(l, n, 2) ∩ γ| sup
v∈ε(l,n,2)∩γ

Pr{µ̂(xl1) = v}

1

l
logPr{µ̂(xl1) ∈ γ} ≤ 1

l
log |ε(l, n, 2)|+ sup

v∈γ
δ(l, v)

lim sup
l→∞

1

l
logPr{µ̂(xl1) ∈ γ} ≤ sup

v∈γ
−Dr(v||µ) = − inf

v∈γ
Dr(v||µ)

This is the right inequality of the rate function as given in (2.13). Now suppose v ∈ γ. B(v) is an

open ball in M(A2) that contains v. Now there exists a sequence of elements {vl} ∈ γ ∩ ε(l, n, 2).

Now as we know as l→∞,vl → v. Therefore we can write that:

Pr{µ̂(xl1) ∈ γ} ≥ Pr{µ̂(xl1) = vl}
1

l
logPr{µ̂(xl1) ∈ γ} ≥ δ(l, vl)

≥ −Dr(vl||µ) + o(1/l)
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Therefore it can be written that:

lim inf
l→∞

1

l
logPr{µ̂(xl1) ∈ γ} ≥ −Dr(v||µ) ∀v ∈ γ0

lim inf
l→∞

1

l
logPr{µ̂(xl1) ∈ γ} ≥ sup

v∈γ0

−Dr(v||µ) = − inf
v∈γ0
−Dr(v||µ)

Where γ0 ⊆ γ. So this proves the left inequality of the rate function as given in (2.13). Therefore

we can conclude that relative entropy rate (Dr(v||µ)) act as a rate function in Markov processes.

2.3 Model Free Approach

Model free approach is a statistical approach. Here we treat the sequence of data flow through

the system is an i.i.d. sequence. As per this approach sliding window is applied on the sequence

of data. Let f i = (k(xi), g(xi), di, dif ) represents a flow attribute in the sequence of data flow

as discussed earlier in network traffic data representation part. Lets say Fj = {f1, f2, ...., fFj}
represents sequence of flows in jth window. Similar to Fj we assume that we have used Fref for

training or as reference. Now first we quantize each reference flow of reference windows to to

a closest symbol in discrete alphabet say
∑

. Lets say these discrete symbols are represented as∑
(ω) = {σ(f1), σ(f2), ....., σ(fFj )}.

Now empirical measure of current flow sequence F = {f1, f2, ...., fF } is evaluated as frequency

distribution vector:

EF (ρ) =
1

|F |

|F |∑
i=1

1{σ(f i) = ρ} (2.34)

Where 1{.} denotes the indicator function and σ(f i) denotes the flow state in
∑

that f i maps to.

Now as we know that we have probability vector from reference flows Fref . And just now we have

calculated probability vector from empirical measure using (2.34). Lets say that µ(σ) is the reference

probability measure of flow state σ. Then we use Sanov’s theorem [8] to compare these probability

vectors.

Suppose ν is the estimated probability vector after quantization of flows. Then with the help of

Sanov’s theorem we can check normality with the equation as:

H(ν|µ) =
∑
σ∈

∑ ν(σ)log(ν(σ)/µ(σ) (2.35)

The above equation is also known as relative entropy of ν with respect to µ. Now if we say that ε is

the tolerable false alarm rate. Then the model free anomaly detector is given by:

I(F ) = 1{I1(EF ) ≥ η} (2.36)

Here η is given by η = − 1
n logε. I1(EF ) is given by relative entropy of estimated probability vector ν

with respect to µ. It has been shown in [5] that (2.36) is asymptotically Neyman-Pearson optimal.
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2.4 Model based approach

In model based approach we will discuss about another statistical approach for anomaly detection

i.e. Markov based approach. In Markov model we are using Markov chain rule to form a model of

the given flow data.

Markov chain process is a stochastic process to be a sequence of random variables {X0, X1, X2, ....}
or {Xt}∞t=0 assuming values in finite alphabet A = {a1, ...., an}. We will discuss here about finite

state Markov process. A process {Xt}∞t=0 is said to be a Markov chain process if for t ≥ 1 and every

sequence a1, ...., at ∈ N t, we can say that

Pr{Xt = at|X1 = a1, ...., Xt−1 = at−1} = Pr{Xt = at|Xt−1 = at−1} (2.37)

So in Markov Chain model state transition occurs in one step. And again if state transition from

time t to time t + 1 is independent of time then Markov Chain becomes stationary Markov chain.

Here in this method model is formed assuming state transition as stationary one. A stationary state

transition MC probability is given as:

Pr{Xt = it|Xt−1 = it−1} = Pr{Xt = j|Xt−1 = i} = pi,j (2.38)

Therefore pi,j represents probability of the system in state j at time t such that it was at state i at

time t− 1. Therefore state transition matrix for this n number of state MC can be written as:

P =

p1,1 p1,2 · · · p1,n

p2,1 p2,2 · · · p2,n

...
...

. . .
...

pn,1 pn,2 · · · pn,n

Whereas we have some initial probability distribution represented as:

Q = [q1, q2, ...., qn]

qi is defined as the probability that the system is in state i at time zero.

This is an alternate method for anomaly detection. In model free approach we assumed that the

sequence of flows are i.i.d. i.e. all states are independent of each other. Whereas in this approach

we have an assumption states are dependent on it predecessor state. As we have seen earlier in

section 2.3 the states are same. But in quantized flow state
∑

(F ) = {σ(g1), σ(g2), ...., σ(gF )} each

state σ(gi) is dependent on state σ(gi−1). Hence in this model as per the above matrix equations

flow state transitions can be formed under Markovian assumption as:

EFB(σi, σj) =
1

|F |

|F |∑
l=2

1{σ(f l−1) = σi, σ(f l) = σj} (2.39)

In eq.(2.39) 1{.} represents indicator function. Where σ(f l) denotes a flow state in
∑

which f l

gets mapped to. Here we use Fref to form a finite state transition matrix. This reference finite state

transition matrix can be formed using eq. (2.39). The matrix can be written as:

π = {π(σi, σj)}1,j=1,....,|
∑
|
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As we can see that state transition matrix is a
∑
×
∑

. And again empirical measurement is evaluated

using same formula (2.39) with support
∑
×
∑

. Lets say P is the estimated state transition matrix

given by:

P = {p(σi, σj)}1,j=1,....,|
∑
|

Each state transition matrix under Markovian assumption is associated with probability matrix of

the form {p(σj |σi)}1,j=1,....,|
∑
| where p(σj |σi) = p(σi, σj)/p(σi). Where p(σi) =

∑|∑ |
i=1 p(σi, σj)

denotes the marginal probability of flow state in P. Now following a similar procedure as in i.i.d.’s

model free approach we apply Sanov’s theorem under Markovian assumption is given in [6] and [8],

we have:

H(P|π) =

|
∑
|∑

i,j=1

p(σi, σj)log
p(σj |σi)
π(σj |σi)

(2.40)

The above equation (2.40) is also known as relative entropy of P with respect to π. Therefore in

model based anomaly detection method the false alarm indication rate for F is given by:

IB(F ) = 1{I2(EFB) ≥ η} (2.41)

As said earlier η depends on the tolerable false alarm rate. η is given as η = 1
n logε. Where ε is the

tolerable false alarm rate. I2(EFB) is the relative entropy rate of the estimated probability matrix P

with respect to true probability matrix π. Again as said earlier it has been proved in [5] that model

based detector is asymptotically Neyman-Pearson optimal.

2.5 Incorporating spacial information

Till now we have studied only about temporal information. Yet, activity traces of interest can be

collected in many locations and attacks at one place may be precursors or aftershocks of attacks

elsewhere. So we introduce spacial information as well in the previous models. Consider a traffic

activity as X1, .....Xn where Xi ∈ <d. Where Xi represents the network feature of interest in slot i

at all d locations we would like to monitor. Previous method can be extended from a scalar Xi to a

vector Xi. For large d one would need to estimate for longer time to estimate its parameters and the

anomaly detection algorithm would need longer samples to identify an anomaly. The only additional

requirements in order to incorporate spatial information in the manner suggested is that the network

elements must be synchronized and being able to exchange the time series of the network features

they monitor.

2.5.1 spatio-temporal anomaly detection by model free approach

We will first decide that we want to monitor d number of network elements. Now Y b
∗,j

t = Y b
∗,j

(t−w+1), ......., Y
b∗,j
t

represents w most recent partial sums of packet data of size b∗ with j = 1, ....., d. Now for each net-

work element we apply the temporal approach as discussed in section 2.3 to evaluate underlying

alphabet and empirical measure.

• Now create the multi-dimensional alphabet
∑d

= {α(1)
1 , ....α

(1)
N1
}......{α(d)

1 , ....α
(d)
N1
}. Then com-

pute the associated empirical measure (law) µd from past (anomaly-free) observations.
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matrix and initial probability

Sequence of event of cer-
tain window size is se-
lected from recent past

Evaluate the probability of
this event sequence from

STM and initial probability

Threshold

Stop

AnomalyNO Anomaly

Figure 2.2: Model based approach
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• For every t we compute Y b
∗

t of w most recent partial sums and compute its measure as εY
b∗
t

w,b∗ =

vdt,w where d represents the network element. And this represents the fraction of occurrence

of
∑d letters in the trace Y b

∗

t .

• Same as scalar case we evaluate ρt,w and approximates the probability that the trace Y b
∗

t is

drawn from the probability law µd. We can use the same test as (2.36) for anomaly.

The parameters w, b∗ can be selected to improve the performance of the algorithm. After working

with the statistics as fiven in [8] it is found that b∗ = 3 and w = 20 are good values to work with.

2.5.2 spatio-temporal anomaly detection by model based approach

As before we assume d represents network elements or features we want to monitor. Suppose time

series of network activity is represented as Xj
n = {Xj

1 , ......., X
j
n}, where j = 1, ...., d. For each time

series we split it into Mj subintervals or states for every j as discussed in section 4.2. Every Mj

is selected using AIC criteria [?]. By using this Mj we form a multi-dimensional Markov chain.

For example if sj1, .....s
j
M represents the states of every network element then by putting it together

we can form s1, ...., sd. Where Sj ∈ {sj1, s
j
2, ....}, i.e we are cascading every network elements

state in a series. In this way we form a trace Xn = {X1
n, ......., X

d
n}. Yt denote the output of the

multidimensional network at time t. Then:

• We will use past anomaly free data to form transition probability vector P d.

• Now for each consecutive time slot t we observe the output vector Yt,n = (Yt−n+1, ......, Yn)

and their empirical measures as εYt,n

n,2 = ddt,n. Where d represents dimension of the Markov

chain vector.

• Then ρt,napproximates the probability that the trace Yt,n is drawn from the Markov model

with transition probability matrix pd. and then compare using (2.40) for anomaly testing.

2.6 SVM base approach

This is also a model based approach. We can say it as decision boundary based approach. Because

in this approach SVM forms a decision quadratic boundary between normal or regular activity and

unusual or irregular activities. This technique is also popular by the name of 1st class SVM. Lets

represent our dataset as X = {x1, ....., xX }. X can have values either +1 or −1. We have to find a

hyperplane

f(x) = wTφ(x)− b (2.42)

such that we can correctly classify a point x by its sign. Where w and b are constant vector and a

constant. φ(x) is a function that maps the test point to a hyperplane to get more accurate classifica-

tion. Suppose X data is not linearly separable then φ(·) takes it to some higher dimension where it

becomes linearly separable. Lets take an ideal case where every training data in X gets mapped by

φ(xX ) to a linearly separable hyperplane where

wTφ(x)− b = 1 and wTφ(x)− b = −1 (2.43)
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separates data in X such that

yi(w
Tφ(xi)− b) ≥ 1 ∀i = 1, ..., |X | (2.44)

Where yi ∈ {+1,−1} for all xi ∈ X . So per given in (2.43) and (2.44) the hyperplane can be found

by minimizing 1
2w

Tw. But in practice we hardly get a hyperplane linearly separable. So we try to

find a hyperplane with lowest possible misclassification error. To complete this task we update our

(2.44) as

yi(w
Tφ(xi)− b) ≥ 1− ξi ∀i = 1, ...., |X | (2.45)

Where ξi > 0. This allows a few misclassification error. Therefore we can find a hyperplane by [9]

min
1

2
wTw + c

|X |∑
i=1

ξi (2.46)

such that (2.45) satisfied and ξi ≥ 0. Here c is a positive constant. Therefore it can be written as

L(w, b, ξ, α, β) =
1

2
wTw + c

|X |∑
i=1

ξi −
|ξ|∑
i=1

αi[yi(w
Tφ(xi)− b) + ξi − 1]−

|ξ|∑
i=1

βiξi (2.47)

Where α and β are Lagrange multiplier vectors and are non-negative. Therefore by taking derivatives

we get

w =

|X |∑
i=1

αiyix
i (2.48)

Therefore from (2.46) and (2.48) we can say from [9]

|X |∑
i=1

αi −
1

2

|X |∑
i,j=1

αiαjyiyjφ
T (xi)φ(xj) ∀i = 1, ...., |X | (2.49)

such that
∑|X |
i=1 αiyi = 0 and c ≥ αi ≥ 0. Therefore we can find our optimizer named α∗. Then

we can find w∗ by finding vector normal to the hyperplane. Since the inner product φT (xi)φ(xj) is

there we can use kernel function to replace that product. Using the kernel function [10] the above

(2.42) can be written as

f(x) =

|X |∑
i=1

yiα
∗
iK(x, xi)− b∗ (2.50)

Where k(u, v) = exp(−γ(u− v)T (u− v) and α∗ > 0. Those elements of X for which α > 0 are called

support vectors. These points define the decision boundary. Lets say Xsv ∈ X represents sets of all

points which supports hyperplane. Therefore b∗ is recovered by subset of those support vectors as

b∗ =
1

|X̂sv|
=

|X |∑
i=1

1{xi∈X̂sv}(

X∑
j=1

α∗jK(xj , xi)− yi)

Now suppose training set X have only data of one type i.e. whose labels are all +1. Then the chal-

lenge comes how to separate outliers by using one-class SVM. So to do that we search a furtherest
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point from support vector points and consider it in outliers. Mathematically we are searching for a

hyperplane for a set of non-negative margins {ξ1, ...., ξ|X |}, represented by w and b i.e.

wTφ(xi) ≥ −ξi ∀i = 1, ..., |X |

We can find this hyperplane by QP [11]

min
1

2
wTw +

1

v|X |

|X |∑
i=1

ξi − b ∀i = 1, ..., |X | (2.51)

Where wTφ(xi) − b ≥ −ξ and ξi > 0. Where v is a tunable parameter. It is used for separating

anomaly. It is used for effectively tuning false alarm rate. As we know SVM uses binary classification.

Therefore the binary classification can be written as

min
1

2

|X |∑
i,j=1

αiαjK(xi, xj) (2.52)

Such that
∑|X |
i=1 αi = 1 and 0 ≤ αi ≤ 1

v|X | . Here optimal α∗ represents those support vectors in X
which are used for anomaly detection.

2.6.1 First approach

For network anomaly detection flow based method is used for SVM. Consider a sequence of norm

flows for training purpose F = {f1, ...., f |F |}. Where each flow is represented as f i = {ki, d(wi), bi, ti, dit}.
We don’t use time element in flow because in flow base SVM importance of time of transmission is

very low. Time is important when we use time specific SVM where we see which server has how

much at that specific time. But in this case time has low importance. So we ignore time for the time

being. And we also omit cluster center from flow sequences for SVM operation because each cluster

center represents a normal user. And distance from a normal user is more important than name of

cluster center. Now the new data set can be written as Z = z1, ...., z|Z|. Where zi = d(wi), bi, dit.

Therefore the redial basis vector compares test data against normal dataset. The anomaly detector

can be represented as

sgn(f(z)) = sgn(

|Z|∑
i=1

α∗iK(zi, z)− b∗) (2.53)

Where K(·, ·) can be written as:

min
1

2

|Z|∑
i,j=1

αiαjK(zi, zj) (2.54)

such that
∑|Z|
i=1 αi = 1 and 0 ≤ αi ≤ 1

v|Z| . Here v is the allowable false alarm rate. And b∗ is given

by

b∗ =
1

|Ẑsv|

|Z|∑
i=1

1{zi∈Ẑsv}

|Z|∑
j=1

α∗jK(zi, zj) (2.55)

Where Ẑsv = {zi ∈ Z : 0 < α∗i <
1

v|Z|}
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2.6.2 Second approach

Here in second approach we use combination of model free approach and model based approach

along with SVM to find anomalies from traffic. It is a window based anomaly detection approach.

For each window i with flows Fi, we evaluate model free empirical measures as discussed in section

3. So for each Fi we get an empirical measure EFi . Same sequence of flows are used in Markov

model based approach as discussed in section 4 and we evaluate empirical estimates EFi

B . Then we

create a sequence of feature vector for window i as

Y j = {EGi ,EGi

B , |Gi|}

Then we use a series of windows say Y = {Y 1, ....., Y |Y|}. Now we apply SVM approach on these

windows to find anomalies. Since the dimensionality of the Y j is to high so we use PCA first to

reduce the dimensionality.
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Chapter 3

Contribution

In statistical approach with Markov models we always assume that samples or events generated by

Markov process. We use sample path from traffic for estimating State transition matrix(STM) and

stationary distribution. The sample path for training models always have some length l. Because

when we start using our model for a system we have a time constraint with us for training those

models. Sample path of length l does not give true STM which generating those samples. So when

we have finite sample length l we always get estimated parameters of the model. This true values

and estimated values has some difference. Lets call these differences an error. This error can be

positive or negative. Because suppose aij is true value of STM element and âij is the estimated

value of estimated STM. Then the error can be given by aij − âij . So we want to know how this

length of sample path effect the modulus of the error. In 1963 W. Hoeffding had given a theorem or

inequality called Hoeffding’s Inequality [12] and [13] for i.i.d. sequence. But the theorem was given

only for i.i.d. sequences. Here we have a markov process and the sample data in these sequences

are not i.i.d. So we want to extend this inequality theorem to find a relationship between maximum

error and length of sample path.

3.1 Extention of Hoeffding’s Inequality for Markov Process

Suppose {Xt} is a Markov process assuming values in [1, N ]. Denote these by {1, ...., N}, where

these are not integers but just labels. Suppose we look at a path of length l. Denote the sample path

by x1, ...., xl. Where xi ∈ Xt. To create a close path or cycle we create a ghost transition xl+1 = x1.

Based on this sample path, we form two estimates named as stationary distribution and STM. For

each index i ∈ [1, N ], we count how many times the state i occurs in the sample path for stationary

distribution and for each pair (i, j), we count how many times the pair ij occurs in the sample path

for STM. In symbols,

π̂ =
1

l

l∑
t=1

Ixt=i âij =
1

l

l∑
t=1

I(xtxt+1)=(ij)
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Here âij represents elements of estimated STM Â. where we take xl+1 = x1, to make these estimates

consistent; that is

π̂ = π̂Â

We would like to estimate how quickly these estimates of STM Â and stationary distribution π̂

converge to their true values, namely true transition matrix A and the true stationary distribution

π. For this purpose we would like to use Hoeffding’s inequality [12]. Lets say li = lπ̂i, that is the

number of times that state i occurs in the sample path of length l. We know from the Hoeffding’s

inequality that

Pr{li > l(πi + γ)} = Pr{π̂i > πi + γ} ≤ exp(−2lγ2)

On the other side we can also write

Pr{li < l(πi − γ)} = Pr{π̂i < πi − γ} ≤ exp(−2lγ2)

Where γ ≥ 0 and γ ≤ πi. So now with probability 1− p we can say that

li ≥ l(πi − γ), ∀i ∈ [N ]

Where q = Nexp(−2lγ2). Now we can bound how close each estimate π̂i is to the true value πi.

Now we know that each transition is independent of every other transition. So we can treat all of

these transitions as independent. Therefore, again by using Hoeffding’s inequality, we can say that

Pr{|π̂i − πi| > γ} ≤ 2Nexp(−2lγ2) (3.1)

Since we can say with confidence of at least 1 − q, that li ≥ l(πi − γ) for every index i ∈ [N ].

Moreover, if li ≥ l(πi − γ), then

exp(−2liε
2) ≤ exp[−2l(πi − γ)ε2] ∀i ∈ [N ] (3.2)

Since we know for a Markov process that

N∑
j=1

aij = 1 ∀(i, j) ∈ [N ]

The above equation is also valid for the estimated value âij . Now as we know state i occurs li
times in the sample path of length l. Therefore as we each transition is independent of every other

transition we can write

Pr{âij > aij + ε} ≤ exp(−2liε
2)

Where ε ≥ 0.Similarly

Pr{âij > aij − ε} ≤ exp(−2liε
2)
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Similar to the previous method by using Hoeffding’s inequality, we can say that

Pr{|âij − aij | > ε} ≤ 2Nexp(−2liε
2) ∀(i, j) ∈ [N ]

By using the previous eq. (3.2) we can say that

Pr{|âij − aij | > ε} ≤ 2Nexp(−2l(πi − γ)ε2) ∀(i, j) ∈ [N ] (3.3)

Therefore by combining all these estimates leads to the following final conclusion. Suppose

γ < min
i
πi

Then, for every ε ≥ 0 (accuracy parameter) and length l, we can say from eq. 3.1 and 3.3 with

confidence of at least 1− r that

Pr{|âij − aij | ≤ ε} ≤ 1− 2Nexp(−2l(πi − γ)ε2)− 2Nexp(−2lγ2) ∀(i, j) ∈ [N ] (3.4)

Where r can be written as

r = 2Nexp(−2l(πi − γ)ε2) + 2Nexp(−2lγ2)

Therefore the final inequality for Markov estimates and true values can be given as

Pr{|âij − aij | > ε} ≤ 2Nexp(−2l(πi − γ)ε2) + 2Nexp(−2lγ2) ∀(i, j) ∈ [N ] (3.5)

This inequality can be extended for a s-step Markov processes as well. As studied earlier in

subsection 2.1.2 a s-step Markov process can be represented as one step Markov process. As we

have seen that in s step Markov process the dimension of STM becomes ns × ns. And stationary

distribution also becomes ns dimensional. To proof Hoeffding’s inequality for s-step Markov process

lets assume all the notations are same as in Markov chain case. So l represents sample path length.

Xt is a Markov process assuming values in same label index [N ]. Here also we create closed path by

using ghost transition xl+1 = xl. But here in this case lets say u = Xt
t−s+1 and v = Xt−1

t−s . And lets

say Zt is a new representation of Markov process Xt as Zt = Xt
t−s+1. So in this case we can say Zt

is a Markov process as :

Pr{Zt = u|Zt−1 = v} = Pr{Xt = u|Xt−1
t−s = v} (3.6)

So each index (u, v) ∈ Ns. So we count how many times u occurs in sample path to estimate

stationary distribution and how many times u v pair occurs in sample path. Here u v = Xt
t−s. In

symbols,

π̂u =
1

l

l∑
t=1

Izt=u
ˆbu v =

1

l

l∑
t=1

I(ztzt+1)=(u v)

Here lets say π and B represents true matrices of Markov process. As we can see (3.1) it does not

affected by matrices dimension. So it remains same as above. Because |π̂ − π| represents infinity
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norm of that vector which is independent of length of the vector. So though length of vector changed

because of s-step Markov process, max difference between its element remains unaffected. So we

are using the same notions for s-step Markov process except for STM matrix B and its element bij .

So from (3.2) and (3.3) it can be written as:

exp(−2luε
2) ≤ exp[−2l(πu − γ)ε2] ∀u ∈ [Ns] (3.7)

Pr{|b̂u v − bu v| > ε} ≤ 2Nsexp(−2l(πu − γ)ε2) ∀(u, v) ∈ [Ns] (3.8)

For ε ≥ 0 and γ < minu πu. From (3.7) and (3.8) we can say with confidence 1− q that

Pr{|b̂u v − bu v| ≤ ε} ≤ 1− 2Nsexp(−2l(πu − γ)ε2)− 2Nsexp(−2lγ2) ∀(u, v) ∈ [Ns] (3.9)

Where q can be written as

r = 2Nsexp(−2l(πu − γ)ε2) + 2Nsexp(−2lγ2)

Therefore from above inequality (3.9), we can write final inequality for s-step Markov process by

this equation.

Pr{|ât−s,t − at−s,t| > ε} ≤ 2Nsexp(−2l(πi − γ)ε2) + 2Nsexp(−2lγ2) (3.10)

Where ât−s,t = ât−s.....ât and similarly at−s,t = at−s.....at. But here in the above equation

stationary distribution πi is different from the the previous one. Here our state transition matrix is

of Ns ∗Ns. So we can say practically we have Ns states. So stationary distribution can be written as

πi ∈ Ns. Eq.(3.6) gives the final representation of Hoeffding’s inequality of a s-step Markov process.

3.2 Simulation

We have checked this inequality with simulation as well. We first create a state transition matrix

with N = 4 and N = 5. Then we generate sample path from that state transition matrix. And from

the generated samples we would like to see change in error ε as length of the samples l varies We

have plotted the errors ε for 1000, 10000, 100000 and 1000000. We run the simulation for 100 times

for each l to see the differences. We have plotted log(l) along x-axis and error ε along y-axis. We

can see from Figure3.1 that error decreases as no. of samples increases. Figure3.1 gives us an idea

of errors Markov processes estimates with 4 and 5 states i.e. N = 4 and N = 5.

It seems obvious that error reduces as sample path length for training increases. But here in

above simulation we have chosen some probability where stationary distribution have some sort of

equal probability. That means occurrence of a state i in the process is approximately uniform. But

that does not happens in network process. Sometimes some states have much higher probability

whereas some states have very less probability. With this assumption a stationary distribution is

created as an experiment with 4 states. 3.2a and 3.2b shows the true STM and stationary distribution

which generates samples.

As we can see in stationary distribution that 2nd state has very low probability of occurrence. So

this probability can be referred as a very rare event. It don’t need to be an anomaly. But as we take
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(a) For N=4 (b) For N=5

Figure 3.1: error ε vs. log(sample path length) log(l)


0.7778 0.0087 0.1918 0.0218
0.0010 0.0010 0.9900 0.0080
0.9900 0.0010 0.0080 0.0010
0.0010 0.0010 0.0080 0.9900


(a) STM[

0.2903 0.0032 0.0645 0.6419
]

(b) Stationary distribution

Figure 3.2: Example

samples generated by this Markov process shown in fig. 3.2. For 10, 000 training samples we get an

estimated matrix as shown in fig. 3.3. As we can see in fig. 3.3 that estimates are not good. Some

of the transition probabilities are even zero. There is also lot of variation in stationary distribution

probabilities as well. So we estimated these matrices with sample path of lengths 100000, 1000000

and 10000000. As we see in fig. 3.4 number of samples increased to 10000000, We have got a good

estimate. Those small transition probabilities like 0.0010 are also estimated approximately. Finally,

fig. 3.5 shows plot of the same matrix shown in fig. 3.2. Simulation has been done for this irregular

matrix with varying probabilities to check a graph of error vs. sample path length. Here in fig. 3.5

error is plotted w.r.t. log(l).

As its been given in [2] and [1] that MIT’s cyber data consist of 284 event types. That means

they have 284 states for Markov process. Then they have 3019 audit events in total from which

they have used around 1613 audit events for training of Markov model. As seen earlier that through

simulation data were generated from a known Markov process with known parameters depends

on the length of training samples. It has been shown that 3019 samples are very small for a 284

state Markov process. In that case Markov process will give many false alarms because it could not

separate anomaly with rare events. For an effective detection we need a lot more training data.
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0.7731 0.0101 0.2001 0.0167
0.0000 0.0000 0.9773 0.0227
0.9897 0.0000 0.0091 0.0011
0.0010 0.0010 0.0107 0.9874


(a) STM[

0.3843 0.0044 0.0876 0.5237
]

(b) Stationary distribution

Figure 3.3: Example:10000 samples estimates


0.7780 0.0087 0.1916 0.0217
0.0009 0.0012 0.9897 0.0082
0.9898 0.0010 0.0081 0.0010
0.0010 0.0010 0.0081 0.9899


(a) STM[

0.2927 0.0033 0.0650 0.6391
]

(b) Stationary distribution

Figure 3.4: Example:10000000 samples estimates

Figure 3.5: Error vs. log of sample length (log(l)) for N = 4

32



Chapter 4

Future work

Machine learning is playing a larger role in cyber security, which can in theory help identifying risks

and anticipate problems before they occur. The idea is to create a software which can adapt as per

changing attack strategies. Traditional security mechanism have leverage rules, patterns, signatures

and algorithms based approaches to detect threats. This is a problem, because these approaches

needs constant care and feeding to identify threats. But machine learning can change the game.

The benefit of machine learning is it works fast, detection rate is also high and can detect attack

vectors that are previously undetectable.

Up till now cyber security systems worked based on creating rules for detecting attacks. These

rules were created based on events happened in past. So it is something like ”what we know, not

what we don’t know”. So what we have till now best describes some machine learning i.e. algorithms

learn from data. But in future ”user behavior analytics” will come in picture. Where most of the

security breaches will be self discovered. This ”user behavior analytics” can also be known by some

other names. In this approach we predict attacks before happening by analyzing changes in user

behavior and predicting risks and breaches before they happen. Well anomaly detection methods

does the same thing. Because in pattern recognition we use signatures of known attacks to detect

attacks or threat to our system. So in that case we could not find the novel attacks or those attacks

which are previously unseen. But in anomaly detection approach we keeps user’s norm profile.

When a system detects something different from normal then it hikes alarm. Till now a few methods

of attack detection have been shown for anomaly detection. These methods are giving some false

alarms. Which needs to be treated. Statistical methods have low resolution because they can’t

exactly detect anomalous flows in the stream of data. But they provide stable results and they

have high detection rate. Whereas deterministic methods may have higher false alarm rates and

gives unstable results. They have high resolution. These observations suggest that as we need all

characteristics we have to find a way for handshaking those methods to work together. Because an

individual method can’t yield better result.
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