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Abstract

Interface delamination is reported to be the dominant mode of failure in the stepped lap joints in

CFRP composites. The load transfer between the patch and panel takes place through thin adhesive

layer. And it being weak link makes it prone to damages. However, not much work was reported in

literature to understand the complex mixed-mode delamination of adhesive layer in CFRP laminates.

Our study aims at modelling mixed-mode delamination under quasi-static loading conditions for

single and double stepped lap unidirectional CFRP composite joint. Modified Cohesive mode-1

Crack and Mixed mode cohesive zone modelling developed by Benzeggagh and Kanane (1995) are

used to model the ductile adhesive failure. The mode-1 and 2 fracture toughness required for

Beneggagh-Kanane model are obtained through standard experiments. We calibrated the numerical

DCB under opening mode loading with the cohesive crack (in method-1) and the mixed mode

delamination (method-2) to obtain the cohesive crack length and mixed mode parameter. Through

the calibration we showed that the mixed-mode delmaination modelling can be either modelled

using the modified cohesive crack or Benzeggagh-Kanane model. The calibrated quantities is used

in understnading the single and double stepped lap joint. Modified cohesive crack is superior of

Benzeggagh-Kanane model in estimating the damage intiation load and ultimate failure load.
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Chapter 1

Introduction

1.1 Overview

From the last decade, the use of composites is increasing in the various industries where high

performance materials are recommended [1]. Composites have applications in various areas such as

aeronautical, automotive, marine, construction, sports equipment etc. The individual components

of a composite remain separate and distinct within the structure, but together they act as one. The

properties of composites are superior as compared to its individual material from which they are

formed. The structural advantage of these materials lie in their high strength and stiffness to weight

ratios compared to the metals [2].

Amongst, several types of composites, laminated composites are widely used in thin structures

due to their high suitablilty [2]. Laminated composites consist of layers i.e. laminae that are bonded

together with thin layers of adhesives. Within a lamina, high strength fibers are combined with a

light weight matrix. By selecting sequence of laminae with various orientations of principal material

directions, a wide range of mechanical properties of the laminated composites can be tailored.

1.1.1 Failure in composites

To promote the potential strength of composites, it is very important to study the failure mecha-

nisms in detail. There are two types of physical failures that occur in laminated composites and they

are intra-laminar and inter-laminar failures. Intra-laminar failures deal with the micro-mechanical

components of lamina and include the damages within the lamina such as matrix cracking and fibre

breakage in tension and compression. This involves the degradation of in-plane material properties

of the lamina. Inter-laminar failures deal with the damages between the two laminae such as de-

lamination. The possibility of failure occurring in composites limits the usage of composites [3, 4].

Structural failure in composite is caused by the evolution of different types of damage mechanisms,

such as matrix transverse cracking, fibre failure, fibre/matrix debonding, fibre pull-out and delami-

nation as shown in Fig 1.1. Amogst all the damage mecahnisms, the tensile rupture due to cracking

of fibre and matrix and delamination are the most dominant in laminated composites [5]. However,

interaction between different damage mechanisms is often observed. This makes the failure analysis

of composites difficult. In the present work we focus mostly on the delamination without directly

modelling the other damage mechanism. However, their affect is mansifested in form mode mixity.
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And in the delamination process due to interactions with other mechanisms, it is observed that fibre

pull-out occurs due to weak adhesive bonding between the fibres and polymer matrix.

Figure 1.1: Different types of damages in composite

Delamination is the failure of interface between the adjacent laminae and it occurs due to lack

of through the thickness reinforcement[3]. Delamination occurs due to several reasons such as high

in-service loading, impacts, edge effects, manufacturing defects or high stress concentration at the

geometrical or material discontinuities[5, 6, 7]. If damaged area in the component is neglected, the

initial delamination associated with it grows and results in degradation of material performance

and ultimately leads to component failure. Delamination growth mechanism depends on the initial

delamination configuration, inter-facial strength and type of loading causing the separation between

the laminae. The loading and boundary conditions of laminated composite structure in structural

applications are complex and thus delamination process, in general, becomes mixed-mode phenomena

[8]. The delamination is a material response of an interface. Experimental methods to determine

inter-facial response under combination loads are time consuming and expensive.

Failure analysis through FEM is useful to technique to predict the behaviour of composites.

Delamination is the dominant failure in composite structures and to model damage appropriate

damage model has to be established a priori. In general an energy based failure damage mechanism

approach is often used to model damage. Damage mechanics deals with the modelling of the damage

of material to predict the initiation, propagation, and fracture of materials. It describes the evolution

of degradation phenomena from initial state up to separation of the material in the element. This

approach is based on the concept of cohesive zone model. In this thesis, formulation of the cohesive

zone element is based on the damage model presented by Turon [4]. This formulation is used to

study the delamination of adhesive joints in CFRP laminate.
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1.2 Literature review on cohesive zone modelling

Delamination is a critical failure mechanism in composites. The model which will predict delami-

nation onset and growth was needed to be developed. Initially delamination growth analysis was

performed using fracture mechanics approach. This method requires pre-existing crack with a sharp

tip within a material for crack initiation [5]. Therefore the alternative approach of cohesive zone

law to describe failure characteristics was introduced. The cohesive zone concept was developed by

Dugdale and Barenblatt to describe the fracture process more realistically in metals, such that stress

singularities found in LEFM, do not arise [9]. In this method, the crack is divided into two parts:

physical crack and cohesive zone. Cohesive zone consists of two cohesive surfaces which are held

together by traction. Cohesive zone law is a phenomenological constitutive relation that describes

separation along cohesive surfaces. The concept of cohesive zone model has been used to examine

different material failure phenomena such as delamination [1, 5], particle debonding [10], matrix

decohesion [11], dynamic fracture [12], multiple cracks in brittle materials [13].

In literature there is a large variety of cohesive zone laws. Most of them are categorized into the

following groups: polynomial law, exponential law, trapezoidal law, bilinear law [14]. Needleman

[10] in 1992 used polynomial type of cohesive laws to simulate particle de-bonding metal matrices.

It is used to predict normal separation. This framework describes the interfacial decohesion process

from initial debonding through complete separation. Traction-separation relation is characterised

to introduce characteristic length. Tvergaard and Hutchinson [15] in 1992 proposed a trapezoidal

cohesive zone model to determine crack growth resistance. They solved the problem for elasto-plastic

material. Parameters involved in the traction separation law are work of separation per unit area

and the peak traction. Cohesive laws can be uncoupled or coupled. Camacho and Ortiz [13] in 1996

used linear cohesive zone model to simulate multiple cracking along arbitrary paths under impact

damage in brittle materials. The normal traction in an uncoupled cohesive law is independent of the

tangential opening displacement and the tangential traction is independent of the normal opening

displacement. Xu and Needleman [11] in 1994 proposed an exponential model to solve the problem

of particle matrix decohesion. It is a coupled cohesive law and it can predict both normal and

tangential separation. In coupled cohesive zone law, both tractions depend on the both normal

and tangential opening displacement. When this law was investigated in mixed-mode loading, only

for q=1 a physically realistic behaviour was obtained. To overcome this limitation of the Xu and

Needleman law a simplified cohesive zone law was proposed by Bosch, Schreurs, and Geers [14] in

2006. It has four independent parameters and it describes mixed-mode decohesion process better.

The traction-separation relation for most of the models are such that, with an increase of inter-

facial separation, the traction across the interface initially increases and reaches a maximum, and

then decreases and finally becomes zero showing complete material separation. There are various

shapes of CZMs based on the factors which describe the shape. The different shapes of traction-

separation law which can be used in the formulation of cohesive zone are shown in the Fig 1.2

[4]. Tvergaard and Hutchinson [15] in 1992 showed that the shape of cohesive zones are relatively

unimportant for elasto-plastic materials.

Composite delamination has been studied by Crisfield et al.(1997) [16], Mi et al.(1998) [17] and

Chen et al.(1999) [18] and they have proposed elastic-damage interface models. Geubelle and Baylor

[12] in 1998 utilized bilinear cohesive zone model to study the impact of induced delamination of

laminated composites. The method captures the locations of the initiation of damage, and the
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various failure processes involved in the delamination event, including the critical matrix cracking

and the spontaneous propagation under mixed-mode conditions of the delamination front.

Figure 1.2: Different forms of Traction-separation laws

Adhesively bonded repairs of structures can offer substantial benefits relatively to mechanical

fastening method. The most used methods to adhesively bond damaged structures consist of single or

double strap, scarf and step configurations. Yang et al. [19] developed a mode-dependent embedded-

process-zone (EPZ) model to simulate the mixed-mode fracture of plastically deforming adhesive

joints. Jian et al. [20] used pull-off tests to characterise the debonding failure of adhesively bonded

structures. These tests are conducted to validate design concept for attaching frames and bulkheads

to the fuselage skin. Z. Q. Qian, A. R. Akisanya [21] in 1998 performed experiments to investigate

the stress singularity near the free edge of the scarf joints. To remove stress singularity, appropriate

scarf angle and material combination can be chosen. The edge failure of a scarf joint is controlled by

the free edge fracture toughness. They also performed investigation of failure initiation in bonded

joints [22]. The joints fail near the interface corner and crack growth occurs along the interface.

Failure initiation criterion is based on small scale yielding near the interface corner. A cohesive

mixed-mode bilinear model was proposed by Campilho et al. [23] for modelling single and double

lap repairs on composite material. They showed that the main parameters affecting the performance

of repair are specimen geometry, patch thickness and stacking sequence. In 2008, they also developed

a trapezoidal cohesive mixed mode model [1] to predict the tensile behaviour of CFRP single-strap

repairs. The model was studied to understand the effect of different overlap lengths and patch

thickness on delamination mechanism.
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In this work we have used the formulation developed by Turon et al. [5]. They have proposed a

damage model for simulation of delamination in advanced composites under variable mode loading.

Delamination initiation criteria is proposed to account for changes in loading mode in thermody-

namically consistent manner. The delamination propagation criteria proposed was based on the

measurement of mixed-mode fracture toughness proposed by Benzeggagh and Kenane [24]. They

developed MMB (Mixed-mode bending apparatus) test to measure the mixed-mode delamination

fracture toughness of unidirectional glass or epoxy composite. It allows characterisation of the de-

lamination initiation and growth for any value of GII

GT
modal ratio. We have used this formulation to

study the delamination onset and growth under static loading conditions. The finite element anal-

ysis is carried out on adhesively bonded single and double stepped CFRP laminates to investigate

its mechanical behaviour.

1.3 Motivation

Composite materials are being increasingly used in many engineering applications due to their low

specific weight and good mechanical properties. The presence of an interface in the composite af-

fects its strength and stiffness; and therefore changes its fracture behaviour. It’s complex material

behaviour increases difficulty is designing and assessing structural repairs. Bonded repairs are cost

effective, mechanically efficient and can be applied to an inspectable damage tolerant repair. Var-

ious types of bonded joints exist: overlap, scarf and stepped lap repair. Interface delamination is

dominant mode of failure in stepped lap joints in CFRP materials. Scarf and stepped lap repairs are

recommended when high strength recovery is required in composite structures such as astronautic

and aeronautic applications. For these applications, Hart-Smith developed scarf and stepped lap

joints between metal and composite adherands [25].

The interface delamination in adhesively bonded CFRP joints can be studied using experimental

methods. Then based on experimental results, the analytical and numerical models are developed to

model the interface delamination to reproduce experimental results. The numerical models developed

can be applied to more complex structures for their analysis. Cohesive zone modelling is a promising

way to simulate the interface delamination in composites under mixed mode conditions. A cohesive

zone model is to be developed to estimate the damage initiation and ultimate failure under mixed-

mode loading.

1.4 Objective and methodology

The objective of the thesis is to model mixed-mode delamination under static loading condition for

single and double stepped lap uni-directional CFRP joint. In order to achieve the above objective,

methodology used is as follows:

1. Experimental investigation of mode I and mode II fracture toughness of an adhesive layer

embedded in between UD CFRP laminate using DCB and ENF specimen respectively.

2. Based on the experimental results, a traction-separation law is developed using compliance

calibration method to match the load-displacement curve for test specimen.
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3. Mixed mode cohesive zone modelling using two methods: (a) modified mode I cohesive crack

method (proposed) (b) Benzeggagh-Kenane method.

4. Using fracture toughness obtained from experiments modelling single sided and double sided

step lapped joint.
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Chapter 2

Interface damage modelling

2.1 Introduction

Figure 2.1: Delamination in composite

Delamination is the failure of interface between the adjacent laminae. This failure results in

the separation of the laminae as shown in the Fig 2.1. While the composites have good strength

in the fibres direction, they have low resistance to delamination. At microscopic level, the growth

of a delamination is preceded by the formation of a damage zone ahead of the crack tip. The size

and the shape of the zone depends on the material and the loading condition. The three modes

of delamination are observed in composites and the schematic is shown in the Fig 2.2 [9]. They

are (1) Mode I or opening mode: tensile force acts normal to the plane of crack, (2) Mode II or

sliding mode: shear stress acts parallel to the plane of crack and is perpendicular to the crack front,

and (3) Mode III or tearing mode, shear stress acts parallel to the crack plane and parallel to the

crack front. Existence of above modes in its pure state is rarely observed and quite often we observe

combination of multiple modes acting on a delamination which is defined as mode-mixity. Due to

this mode-mixity delamination modelling is a challenging task.

Experimental and modelling research has examined the applicability of fracture mechanics to

the problem of crack growth in composite materials. The modelling approaches for the prediction of

delamination growth in laminated composites were initially based on a direct application of fracture

mechanics and were performed using finite element models of the composite structure [24]. Another

approach involves damage mechanics which based on the concept of cohesive zone model.
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Figure 2.2: Modes of Delamination

2.1.1 Fracture mechanics approach

Fracture mechanics is a field of mechanics which studies the crack propagation in the material. The

traditional fracture mechanics approach determines material failure by energy criteria in conjunc-

tion with strength criteria. Experimental work has involved measurement of the fracture mechanics

parameters that characterise the resistance to delamination growth and their sensitivity to envi-

ronmental conditions. It considers failure to be propagating throughout the structure. Fracture

mechanics approach prominently uses two techniques: (a) Virtual crack closure technique (b) J

integral. In this section subsequently these two methods are discussed at length.

Virtual crack closure technique (VCCT)

Figure 2.3: Energy release rate calculation using VCCT

It is most widely used procedures to predict crack propagation. It gives the total energy release

rate as a function of the direction in which crack was extended virtually, yielding information on the

most likely growth direction. This method is based on the assumption that the energy ∆E released

when the crack is extended by ∆a from a to a+ ∆a is identical to the energy required to close the
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crack from point p to o. It is shown in the Fig 2.3. The mode I, mode II, and mode III energy

release rates, are calculated. The total energy release rate is given by,

GT = GI +GII +GIII (2.1)

Crack propagation is predicted when the computed energy release rate is equal to the fracture

toughness of the material. The advantage of this method is that it is based on the energy and not on

the stress. Limitation is that only crack propagation can be predicted. It cannot be used to predict

the crack initiation.

J Integral

Linear elastic stress analysis of sharp cracks predict infinite stresses at the crack tip. In real materials

stresses at the crack tip are finite because the crack tip radius must be finite. J. Rice in 1968

proposed a fracture parameter called J-integral to capture the elasto-plastic fracture behaviour [26].

The magnitude of J-integral represents the non-linear energy release rate due to crack. J-integral

can be viewed as energy parameter, comparable to G and as a stress intensity parameter comparable

to K.

Figure 2.4: J-integral

The J-integral is carried out along an arbitrary path, which starts from the crack face and ends

upon the other face, while going around the crack tip as shown in the Fig.2.4. J can be calculated

as follows,

J = − ∂π
∂A

(2.2)

In general, π = U − F where, π is potential energy, U is strain energy stored, F is work done by

external force and A is the crack area.

The strain energy stored in elastio-plastic material is not released when the crack grows. The crack

growth in such materials leaves a plastic deformation. Thus, in elastio-plastic materials, the J value

relates the difference in energy absorbed by the specimen with neighbouring crack sizes.
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2.1.2 Damage mechanics approach

Damage models describe evolution of degradation phenomena from initial state up to creation of

crack in the material element. It predicts initiation, propagation and fracture of materials. Damage

evolution does not takes place immediately after initiation, and it requires a damage model to predict

the behaviour. This approach of damage mechanics is based on the concept of cohesive crack model

which is developed near the crack front. The origin of cohesive zone model can be explained on the

basis of strip yield model.

Strip-yield model

The strip yield model was proposed by Dugdale and Barenblatt [9]. The model assumed a long,

slender plastic zone of length ρ at the crack tip as shown in Fig 2.5. A compressive stress equal to

the yield stress is applied at each crack tip. Mathematically stresses at the crack tip are infinite. To

overcome this, they introduced cohesive models.

Figure 2.5: Strip yield model

The crack is divided into two parts: one part which is stress free and the other is loaded with cohesive

stress. The stresses are finite in the strip yield zone and therefore there cannot be stress singularity

at the crack tip. The plastic zone length must be chosen such that the stress intensity factors from

the remote tension and closure compressive stress cancel one another.

Cohesive zone model

Cohesive zones project all damage mechanisms in and around a crack tip on the interface. It leads

to a constitutive relation between the traction and opening displacements [14]. Damage initiation is

related to the inter-facial strength. When the area under the traction-displacement jump relation is

equal to the fracture toughness, the traction is reduced to zero and new crack surfaces are formed [5].

The cohesive zone model does not represent any physical material, but describes the cohesive forces

which occur when material elements are being pulled apart. Cohesive zone model has advantages

over conventional methods in fracture mechanics and it is able to predict the behaviour of un-cracked

structures. The cohesive element is shown in the Fig 2.6.
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Figure 2.6: Cohesive element

The material behaviour at the interface is characterised by the stresses and the separation distances.

The parameters which are required to define cohesive zone law are cohesive strength, cohesive energy,

and cohesive length. Cohesive strength is the maximum resistance offered by the material to fracture.

Cohesive energy is the energy dissipated when the material gets separated. Cohesive length is the

separation value corresponding to the cohesive strength. The constitutive equation for cohesive

zone relates the traction at the interface to the displacement jump and it can have different shapes

depending on the parameters defining it. Among different cohesive zone laws, bilinear law is the

simplest and it resembles closely to the actual delamination process.

2.2 Bilinear cohesive zone model for delamination

2.2.1 Mode I delamination model

Figure 2.7: Traction-separation law for mode I bilinear model

The linear softening model defined by Guebelle [12] is a one-dimensional displacement-traction

relationship. The main characteristic of bilinear cohesive zone law is high initial stiffness followed by

linear softening. Fig2.7 shows the traction-separation law for bilinear model. When the maximum

traction σmax is reached, the interface delamination process starts. This point is termed as onset
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of delamination and is represented by point P in the figure. The area under the traction-separation

curve is equal to the mode I fracture toughness, GIc of the material. When the energy absorbed

by the interface is equal to the fracture toughness, material fails completely and it cannot take any

further load. Point Q represents the completion of the delamination.

Tn = σmax
D

1−D
∆n

δn
(2.3)

where, σmax is the maximum normal cohesive strength, ∆ is current displacement and D is defined

as D = min(∆0,max(0, 1−∆)). D is the damage variable which controls complete material failure

and loading-unloading conditions and When ∆ is less than (1 − ∆0), cohesive traction increases

linearly with separation and it corresponds to artificial initial elastic range in the model. When ∆

is greater than (1−∆0), the cohesive traction is given by:

Tn = σmax
1−∆

∆

∆n

δn
(2.4)

2.2.2 Mode II delamination model

Figure 2.8: Traction-separation law for mode II bilinear model

The linear softening model developed by Guebelle [12] also defines the mode II traction-displacement

relationship. Fig2.8 shows the traction-separation law for bilinear model under shear loading. Similar

to the mode I definitions, bilinear model for shear loading can be defined as follows:

Tt = τmax
D

1−D
∆t

δt
(2.5)

Above equation is valid when ∆ is less than (1−∆0). In the softening region, traction can be written

as:

Tt = τmax
1−∆

∆

∆t

δt
(2.6)
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2.2.3 Mixed-mode (I+II) delamination model

Boundary value problem

Figure 2.9: Boundary value problem

The formulation explained in this section is developed by Turon [4]. Consider a domain with a

crack present in it as shown in Fig 2.9. Γ represents the crack present in the domain. Cohesive

law is active on the some part of the crack denoted by Γcoh and is called as fracture process zone.

Consider this crack as a part of material discontinuity which will divide our domain into two parts.

Equilibrium equation is: σij,j = 0 in domain Ω as body forces are zero.

Boundary conditions are:

σijnj = ti tractions are imposed on boundary Γf .

σijn
+
j = τ+i = −τ−i = σijn

−
j on the fracture process zone.

σij is a stress tensor due to external loading. τ+i and τ−i are closing tractions. The relation between

the stress tensor and closing traction is given by the above equations.

The displacement jump across the material discontinuity can be written as

[|ui|] = u+i − u
−
i

where u+i and u−i denotes the displacement of the points on the surface of material discontinuity.

The displacement jump tensor for the interface can be written as

∆m = Θmi[|ui|] (2.7)

where Θmi is an orthogonal rotation tensor relating the local coordinate system to the global coor-

dinate system, and ∆m is displacement jump tensor in the local coordinate system.

Material discontinuity is modelled using a law which relates the cohesive traction to displacement

jump in the local coordinates. The constitutive law is given by,

τj = Dtan
ji (∆i) (2.8)

Dtan
ji is a constitutive tangent stiffness tensor. The constitutive model used here is proposed by

Turon [4] and it is based on the free energy. Free energy is the work done in breaking the bonds
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between a unit area of atoms. Interface free energy is the contribution to the free energy of a system

due to presence of an interface. The free energy per unit surface of interface is

ψ(∆, d) = (1− d)ψo(∆)

where d is scalar damage variable and ψo is convex function in displacement jump space. Damage

variable value ranges from 0 to 1. 0 represents the onset or initial condition and 1 represents the

fully damaged condition or propagation condition.

ψo(∆) =
1

2
∆iD

o
ij∆j

Interpenetration is prevented by the contact and therefore negative values of ∆3 do not have any

physical meaning. The modified free energy equation to prevent interfacial penetration can be

written as

ψ(∆, d) = (1− d)ψo(∆i)− dψo(δ̄3i〈−∆3〉) (2.9)

The constitutive equation for is obtained by differentiating the free energy with respect to displace-

ment jump.

τi =
∂ψ

∂∆i

τi = (1− d)Do
ij∆j − dDo

ij
¯δ3j〈−∆3〉 (2.10)

Do
ij represents the undamaged stiffness tensor and it is a function of penalty stiffness, K.

Do
ij = δ̄ijK

In the Voigt notation the constitutive equation can be written as

τ =


τ1

τ2

τ3

 = (1− d)K


∆1

∆2

∆3

− dK


0

0

〈−∆3〉

 (2.11)

To evaluate the value of damage variable d at every time step of the deformation process norm of

displacement jump tensor is defined.

Norm of displacement jump tensor

Delamination is a mixed-mode phenomena. To account for mode-mixity, displacement jumps in all

the three modes are considered. Norm of displacement jump tensor is used to compare different

stages of displacement jump state so that it is possible to define concepts as loading, unloading and

reloading. The schematic representation of the norm of displacement jump tensor is shown in the

Fig 2.10.

λ =
√
〈∆3〉2 + (∆shear)2 (2.12)

where ∆3 is displacement jump in mode I and ∆shear =
√

∆2
1 + ∆2

2. ∆1 and ∆2 are displacement
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Figure 2.10: Mixed mode delamination

jumps in mode II and mode III. MacAuley’s bracket is used for the mode I displacement jump to

avoid interpenetration.

Damage criterion

When the load applied is pure mode I, mode II or mode III in nature, delamination starts when in-

terlaminar traction exceeds its respective maximum interfacial strength. Under mixed mode loading

interaction between modes take place. Ye’s criterion [5] is used to account for the interaction.

(
〈τ3〉
τo3

)2

+

(
τ2
τo2

)2

+

(
τ1
τo1

)2

= 1 (2.13)

Damage evolution law

Figure 2.11: Bilinear model with damage evolution
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The graph in the Fig 2.11 represents the damage evolution in the material. The change in the

slope from K to (1-d)K represents the change in the stiffness of the material with damage evolution.

The damage variable ’d’ is zero at the start of the delamination(Point P) and it is equal to 1 at

the completion of the delamination. If during the process, loading is stopped at point R and then

unloaded, at the next loading cycle, the traction-separation law will follow O-R-Q path. This is the

result of damage in the previous steps which is irreversible.

The separation value λ can be written as a function of damage variable, traction and initial stiffness

of the material.

λ =
τ

(1− d)K

Substitute the value of penalty stiffness in terms of maximum traction(τo) and onset displacement(∆o).

λ =
τ

(1− d)

∆o

τo

In order to get λ in terms of separations, tractions terms are eliminated.

τ

τo
=

∆f − λ
∆f −∆o

Now λ can be written as

λ =
∆o

(1− d)

∆f − λ
∆f −∆o

Simplify the above equation to get damage evolution law.

G(λ) = d =
∆f (λ−∆o)

λ(∆f −∆o)
(2.14)

Damage propagation criterion

It is known that, when the energy release rate exceeds the critical energy release rate, delamination

grows. Benzeggagh and Kenane [24] carried out experiments to study the delamination growth under

mixed mode loading. Based on that they proposed an expression for critical energy release rate:

Gc = GIc + (GIIc −GIc)
(
Gshear
GT

)η
(2.15)

where η is the characteristic parameter of material. The energy release rate under mixed mode

loading isG = GI+Gshear and energy release rate for shear loading is defined asGshear = GII+GIII .

The area under the traction-displacement jump curve is equal to the fracture toughness. Therefore,

Gc =
1

2
K∆o∆f

Using above two equations, propagation criteria is derived in terms of displacement jump space.

∆f =
∆o

3∆f
3 + (∆o

shear∆
f
shear −∆o

3∆f
3 )
(
Gshear

GT

)η
∆o

(2.16)
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where ∆o
3 and ∆o

shear are pure mode onset displacements and ∆f
3 and ∆f

shear are pure mode final

displacement jumps. The mixed-mode ratio β is the ratio of displacement jumps and is given by

β =
∆shear

∆shear + 〈∆3〉
(2.17)

The ratio Gshear

GT
is defined in terms of displacement jumps as

B =
Gshear
GT

=
β2

1 + 2β2 − 2β
(2.18)

Based on the propagation criteria and damage evolution law, Turon et. al. [4] proposed the criteria

for onset separation. This formulation assures smooth transition for all mixed-mode ratios between

the initial damage surface to the propagation surface through damage evolution.

(τo)2 = (τo3 )2 + ((τoshear)
2 − (τo3 )2)Bη (2.19)

Delamination initiation criterion in terms of displacement jump space can be written as

(∆o)2 = (∆o
3)2 + ((∆o

shear)
2 − (∆o

3)2)Bη (2.20)

This formulation takes into account the mixed mode ratios and therefore is applicable to in general

static loading conditions.
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Chapter 3

Experimental characterisation of

interface properties

3.1 Introduction to fracture toughness

Experimental work involves the measurement of fracture mechanics parameters that characterise

the resistance to delamination growth. These material properties are used as input for FEA. In the

present work, the fracture toughness (mode I and mode II) of unidirectional CFRP are measured

which are then used in cohesive zone modelling. Mode I and Mode II fracture toughness tests,

double cantilever beam (DCB) and end notched flexure (ENF) tests are respectively conducted on

the CFRP laminate. Also, mixed mode bending (MMB) test is carried out the to get the fracture

toughness for a combination of various mode I and mode II loadings. Fracture toughness is an

important factor for CZM. The area under the traction-separation curve is the energy required for

crack propagation and it is equivalent to fracture toughness. Other parameters of CZM can be

derived from fracture toughness, and they are used to model debonding and delamination.

3.1.1 Standard test methods

Delamination in the laminated composites affect their structural performance. The inter-laminar

performance of a composite is identified by weakness under both normal and shear stresses. The

delamination and its growth is described by strain energy release rate and the manner in which load

is applied. A delamination may be loaded in mode I(opening), mode II(sliding), mode III(tearing),

or may be in the combination of these modes. The critical strain energy release rate varies with the

mode of loading. To characterise the delamination resistance for different loading conditions various

test methods are developed. The ASTM standard, ASTM D 5528 [27] describes the use of double

cantilever beam(DCB) specimen to determine the mode I fracture toughness GIC of fibre reinforced

polymer composites under mode I tensile loading. To study delamination failure under mode II

End notch flexure(ENF) and End loaded split(ELS) test are used. The ASTM standard, ASTM

D 7905 [28] recommends the use of end notch flexure(ENF) test to measure the mode II fracture

toughness GIIC of fibre reinforced polymer composite laminates under mode II shear loading. ASTM

D 6671 [29] explains the use of mixed mode bending(MMB) test to detect the inter-laminar fracture
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toughness of fibre reinforced composite materials over a wide range of combinations of various mode I

and mode II loading. The specimen preparation involves two types of methods. One method includes

the use of adhesive to bond the two adherands and other method includes the use of aluminium foil

to create a crack in the laminate.

3.2 Fracture toughness of adhesive layer in CFRP

During service, various damages occur in the CFRP panels. The damage in the composite reduces

the strength of the structures which is associated to the recycling difficulties and replacement costs

[1]. To restore the functioning of component, it is more efficient to repair the structures than

replacing them [23]. The repair of structure with composite patch can be carried out in two ways:

i) Mechanical fastening or ii) adhesive bonding. Mechanical fastening method includes the use of

connectors such as rivets, bolts and nuts. The main disadvantage with their use is that they result

in high stress concentration and galvanic corrosion. This can be avoided by using adhesively bonded

repairs and the benefits associated with it are improved appearance, good sealing properties, high

strength to weight ratio and reduced stress concentration [1, 22]. Adhesively bonded repairs of

structures can offer substantial benefits relatively to mechanical fastening method. The most used

methods to adhesively bond damaged structures consist of single or double strap, scarf and step

configurations. To characterise the debonding failure of adhesively bonded structures experimental

tests are carried out.

3.3 DCB test - mode I fracture toughness of adhesive layer

The test method deals with the determination of mode I inter-laminar fracture toughness of carbon

epoxy composite material using the double cantilever beam (DCB) specimen. Another aspect of the

test is to determine the cohesive law that can accurately characterise the fracture behaviour. The

test procedure is followed as given in ASTM D5528 [27].

3.3.1 Specimen preparation

Figure 3.1: Schematic representation of DCB specimen with adhesive bonding

19



The CFRP laminates are prepared from unidirectional carbon fibre mat of 200 gsm weight through

vacuum bagging procedure. The matrix is composed of epoxy resin CY 200 and hardener HY 951

in proportion of 10:1 by weight according to the ASTM D5528 standard [27]. The laminate is made

up of 8 unidirectional layers. The carbon fibre fabric layers were stacked in the 0◦ direction. The

mechanical properties of CFRP composite laminate are given in the Table 3.1. A ductile epoxy

adhesive is used to bond the adherends at room temperature. Araldite 2015 is used as a adhesive

and a constant thickness, t of 0.2mm was ensured. The dimensions of the DCB specimen are given

in the Table 3.2. After cutting the specimens as per the given dimensions from the laminates, hinges

are bonded on the top and bottom surfaces of the end of DCB specimen arm. With the help of

razor blade initial crack is introduced in the specimen such that initial delamination length of 50

mm was obtained. The schematic of DCB specimen in as shown in Fig 3.1. Random speckle pattern

is created on thickness side of the specimen to measure displacements through DIC.

Table 3.1: CFRP composite laminate properties

Material property Value
Longitudinal modulus, E11 (GPa) 82.56
Transverse modulus, E22 = E33 (GPa) 4.98
In-plane shear modulus, G12 = G13 (GPa) 3.30
Out-of-plane shear modulus, G23 (GPa) 2.47
In-plane Poisson’s ratio, ν12 = ν13 0.31
Out-of-plane Poisson’s ratio, ν23 0.43

Table 3.2: Dimensions of DCB specimen

Dimension Value
Length (L) 130 mm
Width (B) 25 mm
Thickness (h) 2 mm
Initial delamination length (ao) 50 mm
Thickness of adhesive layer (t) 0.2 mm

3.3.2 Experimental setup

Experimental setup for the DCB test is shown in the Fig 3.2. The experiment is performed on 10kN

Instron machine. 2D-DIC system is used to track the through the thickness full displacement and

strain field. It has single Grasshopper CCD camera coupled with Schneider Xenoplan lenses. It is

mounted on tripod and aligned with the specimen so that it can capture the images accurately. Two

white light LED sources are used on both the sides of camera to ensure the proper illumination of

the specimen. Aperture of the lens is adjusted to get fine field view. Camera is connected to the

laptop with pre-installed image capturing software. The images on the surface of an object, before

and after delamination are recorded, digitized and stored in a computer as digital images with the

help of this software. First image is taken at zero load and called as reference image. In DIC post-

processing, all the displacement and strain calculations are carried out with respect to this image.

The tensile load is applied on the specimen through the hinges in displacement control mode. The

load is applied at the rate of 2.5 mm/min as suggested in ASTM D5528. Load-displacement data is
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Figure 3.2: Experimental setup for DCB test

recorded continuously. Total 3 specimen are tested and the experimental image of DCB specimen

is as shown in Fig 3.3.

Figure 3.3: Experimental image of DCB specimen

3.3.3 Results and discussion

Digital image correlation with Ncorr

Experimental method of material characterisation depends on the surface displacement field mea-

surement. Digital image correlation technique compares undeformed images and deformed images to

get the deformation of the surface. The surface of the specimen is observed using CCD camera with
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an imaging lens. The images of the surface before and after deformation, are captured, digitized and

then recorded in the computer. These images are compared to detect displacements by searching a

matched point from one image to other. This matching process uses area with a multiple matching

points.

An open source 2D DIC software, Ncorr was used to perform DIC analysis. Ncorr provides a

correspondence between points in the undeformed reference image and deformed current images. It

is achieved by comparing the position of subsets in reference and current images. After getting the

images, DIC is performed which includes following steps:

1. Set reference image.

2. Set current images: This includes the images on which DIC is to be performed.

3. Set region of interest(ROI): It describe the region of the image where deformation occurs.

4. Set DIC parameters.

5. DIC analysis: The seed points are used as a starting point for the calculation of displacement.

6. Format displacements and calculate strains: It is done by removing noisy displacement data

by setting the cut-off.

The ncorr settings for the analysis are given in the Table 3.3 and its is used for extraction of near

crack tip displacement field.

Table 3.3: Ncorr settings for DIC

Parameters Value
Solver type Inverse compositional Gauss-Newton solver
Subset radius 25
Subset spacing 5
Diffnorm cutoff 1e-6
Iteration cutoff 50
Number of seeds 2
Correlation coefficient cut-off 1.9984
Strain radius 15
Step analysis Disabled

Estimation of effective delamination length using SIF estimator

Modified form of least square algorithm is used for estimation of mixed-mode SIF and calculation

of crack tip location from the whole field displacement field [30].

Two-dimensional displacement field equations for the general mixed mode crack tip displacement

field are given by Atluri and Kobayashi.
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where ux is displacement along x direction and uy along y direction, r and θ are polar coordinates of

data points with respect to crack tip, n is number of parameters and G is shear modulus. Consider

xc and yc as a location of crack tip relative to the arbitrary cartesian coordinate frame. The crack

tip location is related to r and θ as:

r =
√

(x− xc)2 + (y − yc)2

θ = tan=1

(
y − yc
x− xC

)
After considering rigid body motion for a single point p and n parameters, above equations can be

written in matrix form as

{
uxp

uyp

}
=
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(3.3)

where Tx and Ty are rigid body translations in x and y directions and R is the rigid body rotation.

fI , gI , fII and gII are trigonometric functions of polar coordinates. In a compact form we can write,

up = QTp a

For a set of m collected data points surrounding crack tip, the assembled set of matrices for n

parameter solution can be written as

u = C(xc, yc)a (3.4)

where u is the vector of displacements obtained from experimental data, C is a rectangular matrix

dependent on crack tip location and a is vector consisting unknown mode I and II parameters along

with translation and rotation terms. The values of xc, yc and a are obtained by minimizing following

objective function:

J(xc, yc, a) =
1

2
(u− C(xc, yc)a)T (u− C(xc, yc)a) (3.5)
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For every known xc and yc, the objective function becomes quadratic in parameters and the closed

form solution exists for the unknown parameters (a) at which the objective function attains a global

minimum.

a = (CTC)−1CTu (3.6)

Select the multiple locations around the crack tip and calculate unknown parameters ’a’ for each

location. For every location, calculate J. Out of all the grid points as shown in Fig 3.4, select the

crack tip location and unknown parameters corresponding to the location at which J attains lowest

value.

Figure 3.4: Schematic diagram of square grid used to get optimal crack tip location

In the Fig 3.4, xc1 and xcp are the minimum and maximum x-coordinate values and yc1 and ycp are

the minimum and maximum y-coordinate values.

SIF estimation module is used for automated data collection and processing. Steps involved in the

estimation of SIF are given below:

1. Specify material properties: Define the elastic modulus and poison’s ratio for the material.

2. Load DIC data: DIC data from Ncorr 2D DIC software is taken as input. Input file should be

.mat format.

3. Load calibration image: Load the calibration image in the GUI and select two points for

distance calibration. Enter the distance between them in mm.

4. Crack tip selection: Crack tip can be selected using the graphical user interface (GUI).

5. Data collection: Data is collected from an annular region surrounding crack tip. Annular region

is defined by starting and limiting radius in the graphical user interface. Starting radius: 1.5,

Limit radius: 2, Step size:0.1

6. Crack tip search parameter: A square with 0.2 mm side length and 0.02 mm grid size is used

to get the crack tip.

7. Solution parameter: 7 parameters are recommended for SIF estimation. Now calculate the

SIF.

Result obtained from SIF Estimator is given in the Table 3.4.
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Table 3.4: SIF Estimator result

Parameter Value
Mode I SIF 9065.032
Recalculated crack tip x coordinate 58.37 mm
Recalculated crack tip y coordinate 81.50 mm
Number of parameters used for solution 7
Convergence error 0.0318

Mode I fracture toughness calculation

From experimental load versus displacement curve it can be observed that, after reaching maximum

load value delamination starts and therefore load curve starts dropping. The interlaminar fracture

toughness can be evaluated by three methods as mentioned in ASTM D5528 [27]. They are i)

Modified beam theory (MBT), ii) Compliance calibration (CC) method, iii) Modified compliance

calibration (MCC) method. In this study, compliance beam theory is used. The method is suggested

by Moura [31] and uses equivalent crack length.

Figure 3.5: Experimental load vs displacement curve for DCB specimen

The experiments are performed at 3 crack lengths: 30 mm, 40 mm and 50 mm. The load-

displacement curves for the three delamination lengths is shown in the Fig3.5. To get the correction

length generate the least square plot of the cube root of compliance as a function of delamination

length. Crack length correction corresponds to the intercept of the line fitted to the 3 data points

as shown in the Fig3.6. The equation is:

y = 0.0094x+ 0.0746

∆ is found out to be 7.936 mm. Considering crack length correction, equivalent crack length is

estimated which is used for mode I fracture toughness calculation.

In this study, compliance beam theory with equivalent crack is used to get the fracture toughness.
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Figure 3.6: Compliance1/3 vs a curve for DCB specimen

In this method, the crack tip opening displacement(CTOD) is expressed as a function of the strain

energy release rate. The cohesive is obtained by differentiating the relationship with respect to

CTOD.

GI =

∫ w

0

(σ)dw (3.7)

Differentiate the above equation

σ(w) =
dGI
dw

(3.8)

Using Timoshenko beam theory, the specimen compliance can be written as

C =
8a3

E1Bh3
+

12a

5BhG13
(3.9)

where E1 and G13 are the elastic properties of the specimen arm. Consider initial crack length

as a0 and initial compliance as C0. The equivalent flexural modulus can be obtained as

Ef =

(
C0 −

12(a0 + h∆)

5BhG13

)−1
8(a0 + h∆)3

Bh3
(3.10)

where ∆ is crack length correction.

R curve i.e. the evolution of strain energy release rate as a function of the equivalent crack length

can be obtained by

GI =
P 2

2B

dC

da

GI =
6P 2

B2h

(
2a2e
Efh2

+
1

5G13

)
(3.11)
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The equivalent crack method discussed above is used to obtain the R-curves. Energy release rate

for mode I for all the specimen is calculated.

Figure 3.7: R curve for DCB specimen with adhesive layer

The equivalent crack method is used to get the R-curve for a specimen as shown in the Fig3.7. In

the images obtained from DIC, the location of initial crack tip was identified. The pair of points to

calculate CTOD was selected on left and right side of the crack tip location. To extract the cohesive

law from the experiments, plot the curve fracture toughness vs crack tip opening displacement.

Figure 3.8: G-CTOD relation for DCB specimen with adhesive layer

After that, fit the six degree polynomial to the curve as shown in the Fig 3.8. The equation is:
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y = −970.01x6 + 1501x5 − 768.72x4 + 138.1x3 − 1.399x2 + 0.3381x− 0.0004

Differentiate the with respect to CTOD to get the relation between traction and crack tip opening

displacement. Plot the traction equation against CTOD. That will give the traction-separation law

for the given case as shown in the Fig 3.9.

Figure 3.9: Mode I cohesive law for adhesively bonded CFRP

The mode I fracture parameters for the adhesive are given in the Table 3.5 as obtained through the

experiment.

Table 3.5: Cohesive law parameters obtained from experiment: Mode I

Parameter Value
Mode I fracture toughness 0.44 N/mm
Maximum normal traction 2.75 N
Normal separation 0.32 mm

The onset displacement is obtained as 0.17 mm. The stiffness of the material comes out to be 16.176

N/mm. Due to low stiffness value the disturbance is observed in the load-displacement curve.

Turon [4] has established a procedure to determine the optimal CZM parameters for delamination.

The initial stiffness of the bilinear law is defined by transverse young’s modulus, thickness of laminate

and scalar parameter controlling overall stiffness in transverse direction. The initial stiffness should

be high so that it will not affect overall elastic properties of composite.

K =
αE3

t
(3.12)

After matching the whole field displacement for experiment and numerical method, the stiffness is

found out to be 1000. The length of a cohesive zone is defined as the distance from the crack tip
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where maximum traction is observed [4]. The length of cohesive zone can be calculated as:

lcz = ME3
Gc

(τo)2
(3.13)

where, M is a parameter corresponding to the shape of the cohesive zone model. The length of

the cohesive zone comes out to be 3.185 mm. In order to obtain accurate FEM result using CZM

there should be enough number of elements present in the cohesive zone. When cohesive zone is

represented by too few elements, the distribution of traction ahead of crack tip is not represented

clearly. It is recommended to include 5 elements in the cohesive zone [4]. The length of cohesive

element in the delamination direction is recommended as 0.637 mm. The mode I fracture parameters

for CFRP are given in the Table 3.6 as obtained through the experiment and the traction-separation

law is shown in the Fig 3.10.

Figure 3.10: Modified mode I cohesive law for adhesively bonded CFRP

Table 3.6: Mode I cohesive law parameters for Araldite 2015

Parameter Value
Mode I fracture toughness 0.44 N/mm
Maximum normal traction 2.75 N
Penalty stiffness 1000
Onset displacement 0.00275 mm
Normal separation 0.32 mm

3.4 ENF test - mode II fracture toughness of adhesive layer

This test method deals with the determination of the mode II inter-laminar fracture toughness, GIIC

of carbon epoxy composite material under mode II shear loading using the end-notched flexure

29



test. Six types of specimen are available for mode II fracture toughness testing. These are end

notched flexure(ENF) specimen, stabilized end notched flexure(SENF) specimen, four point bend

end notched flexure(4ENF) specimen, end load split(ELS) specimen, over notched flexure(ONF)

specimen, and the tapered end-notched flexure specimen. Among these methods ENF test is widely

used as recommended by ASTM D 7905.

3.4.1 Specimen preparation

Figure 3.11: Schematic representation of ENF specimen with adhesive bonding

The method used in ENF specimen preparation is same as the method used for DCB specimen

preparation. The schematic of ENF specimen is as shown in the Fig 3.11. The dimensions for the

ENF specimen are given in the Table 3.7.

Table 3.7: Dimensions of ENF specimen

Dimension Value
Overall length 130 mm
Length (L) 100 mm
Width (B) 25 mm
Thickness (h) 2 mm
Initial delamination length (ao) 30 mm
Adhesive thickness (h) 0.2 mm

3.4.2 Experimental setup

Experimental setup for the ENF test is shown in the Fig3.12. The experiment is performed on 100kN

MTS universal testing machine. Three point bending loading condition is used to perform the test.

Support rollers are kept 100 mm away and loading roller is centred between the two. Loading of the

specimen is performed in displacement control mode at the rate of 0.5 mm/min as given in ASTM

D7905 [28]. The experiment is performed in two stages which are precracked and non-precracked. To

calculate the fracture toughness in mode II, compliance calibration is carried out. First non-precrack

test is performed. The specimen is fixed to get the the delamination length of 20 mm away from one

of the support rollers and then load is applied. The load-displacement data for the test is recorded.

This same test is performed with delamination length of 40 mm. After that specimen is arranged
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Figure 3.12: Experimental setup for ENF test

to get the delamination length of 30 mm. Load is applied on the specimen till delamination starts

to grow. With delamination propagation, reduction in load is observed. The new position of the

delamination front is marked and non-precracked fracture toughness is calculated from extracted

data. In the second stage, precracked test is performed with the same procedure followed in the first

stage.

3.4.3 Results and discussion

Mode II fracture toughness calculation

The experimental load vs displacement curve for the three tested specimens is shown in the Fig3.13.

From the curve it can be observed that, after reaching maximum load value delamination starts

and load starts dropping. The interlaminar mode II fracture toughness can be calculated by using

compliance calibration (CC) method as mentioned in ASTM D7905[28]. From load-displacement

curve compliance of the specimen can be found out. GIIc will be the minimum of the values

calculated from PC and NPC tests. From load-displacement curve, stiffness of the specimen can be

found out. Compliance is a reciprocal of stiffness.

Plot the graph of compliance vs cube of delamination length. Compliance in ENF is directly pro-

portional to the cube of delamination length as shown in Fig3.14. Fit the curve for the equation

below:

C = A+ma3

A and m are compliance calibration coefficients. The value of compliance calibration coefficient are
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Figure 3.13: Load-displacement curves for adhesively bonded ENF specimen

obtained as A = 0.0025 and m = 4× 10−8.

Figure 3.14: Compliance vs a3curve for adhesively bonded ENF specimen

The fracture toughness can be calculated as

GIIc =
3mP 2

maxa
2

2B
(3.14)
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Mode II fracture toughness for all specimen is calculated using the above equation. The result

is given in the Table 3.8.

Table 3.8: Mode II fracture toughness

Specimen 1 2 3 Average
GII 2.96 2.59 2.73 2.76

Numerical analysis

The ENF specimen with the given dimensions is modelled in the ANSYS15. The number of simula-

tions are performed to get the match between experimental and numerical load-displacement curve.

The mode II fracture parameters for adhesive are given in the Table3.9 as obtained through the

experiment. The maximum tangential traction is assumed to be equal to the shear strength of the

material and from that displacement jump is evaluated.

Table 3.9: Mode II cohesive law parameters for Araldite 2015

Parameter Value
Mode II fracture toughness 2.76 N/mm
Maximum shear traction 25 N
Shear separation 0.1104 mm

3.5 MMB test - mixed mode (I+II) fracture toughness of

adhesive layer

This test method deals with the determination of interlaminar fracture toughness, Gc of carbon

epoxy composite material at various mode I to mode II loading ratios using the mixed mode bend-

ing test. There are various types of specimen available for mixed mode (I+II) fracture toughness

testing. These are asymmetrical load double cantilever beam(ALDCB) test, cantilever beam opening

notch(CBON) test, imposed displacement cantilever beam(IDCB) test, mixed mode flexure(MMF)

test, and mixed mode bending(MMB) test. Among these methods MMB test is used as recommended

by ASTM D6671.

The MMB test designed by Benzeggagh and Kenane [24] is used to get the material characteristic

parameter. The method involves the characterisation of delamination initiation and growth on the

basis of a strain energy release concept. Experiments are to be performed at various mode ratios

including mode I and II. Total fracture toughness is plotted against modal ratio to get the material

parameter. Due to lack of facilities and shortage of time we could not perform this test. The material

parameter characterisation is carried out using numerical method.

3.5.1 Material parameter calibration

The study deals with the characterisation of delamination initiation and growth on the basis of a

strain release rate concept. To consider for mode-mixity and to predict GTc as a function of GII/GT
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modal ratio, the relationship suggested by Benzeggagh and Kenane[24] is used.

GTc = GIc + (GIIc −GIc)
(
GII
GT

)η
(3.15)

where, GTc is a total critical fracture toughness, GIc is mode I fracture toughness, GIIc is mode II

fracture toughness, η is a characteristic parameter of material. Various simulations are performed

by varying η. The load-displacement curves obtained with various η values is shown in the Fig

3.15. From that we observe, the best match between the experimental curve and numerical curve is

obtained for the value η = 3.

Figure 3.15: Load-displacement curves for DCB specimen varying η values

3.6 Fracture toughness of CFRP

The procedure used for fracture toughness characterisation of CFRP is same as followed in the

previous section. For mode I characterisation DCB test is performed, for mode II ENF test is

used. As delamination is a mixed-mode phenomena, MMB test is performed for characterisation of

inter-laminar fracture toughness of CFRP at various mode I to mode II loading ratios.

3.6.1 DCB test - mode I fracture toughness of CFRP

Specimen preparation

The DCB specimen is prepared considering 8 plies of unidirectional 0◦ layups of carbon fibre(200GSM),

epoxy CY 230-1 and hardener HY-951 according to the ASTM D5528 standard. The aluminium foil

is inserted along the mid-plane of the laminate to create a delamination length of 50 mm. The foil

is coated with wax on both the sides so that it does not stick with the laminae. The dimensions of

the DCB specimen are given in the Table 3.2. The rest of method used for specimen preparation is

same as described in the section 3.2.1. The schematic of the DCB specimen is shown in the Fig3.16.
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Figure 3.16: Schematic representation of DCB specimen

Mode I fracture toughness calculation

The experimental method followed is same as the method used for DCB test in the previous section.

From experimental load versus displacement curve it can be observed that, after reaching maximum

load value delamination starts and therefore load curve starts dropping. The DCB specimen with

the given dimensions is modelled in the ANSYS15. The number of simulations are performed to

get the match between experimental and numerical load-displacement curve. SIF at the crack tip

is matched with the SIF obtained from experimental data. Also, the simulations are performed at

initial delamination length of 30 mm and 40 mm. The curves obtained from these simulations are

used for fracture toughness calculations.

Figure 3.17: Load vs displacement curve for 3 delamination lengths: 30, 40 and 50

In this study, compliance beam theory with equivalent crack length is used. The strain energy release

rate is calculated as follows:

GI =
6P 2

B2h

(
2a2e
Efh2

+
1

5G13

)
(3.16)
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Figure 3.18: Compliance beam theory for fracture toughness of CFRP

The above expression overestimates the fracture toughness value. To account for that consider

crack length correction. ∆ can be determined by generating least squares plot of the cube root of

compliance, C1/3, as a function of delamination length. Compliance is the ratio of displacement to

the applied load. Crack length correction corresponds to the intercept of the line fitted to the 3 data

points as shown in the Fig 3.18. The equation is:

y = 0.0075x+ 0.0699

∆ is found out as 9.32 mm. The equivalent crack method is used to obtain R-curves.

Figure 3.19: R curve for DCB specimen

The equivalent crack method is used to get the R-curve for a specimen as shown in the Fig3.19. In

the images obtained from DIC, the location of initial crack tip was identified. The pair of points to

calculate CTOD was selected on left and right side of the crack tip location. To extract the cohesive

law from the experiments, plot the curve fracture toughness vs crack tip opening displacement.
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Figure 3.20: G-CTOD relation for DCB specimen

After that, fit the six degree polynomial to the curve as shown in the Fig 3.8. The equation is:

y = −970.01x6 + 1501x5 − 768.72x4 + 138.1x3 − 1.399x2 + 0.3381x− 0.0004

Differentiate the with respect to CTOD to get the relation between traction and crack tip opening

displacement. Plot the traction equation against CTOD. That will give the traction-separation law

for the given case as shown in the Fig 3.21.

Figure 3.21: Mode I cohesive law for CFRP

The mode I fracture parameters for the adhesive are given in the Table 3.10 as obtained through

the experiment.

Table 3.10: Cohesive law parameters obtained from experiment: Mode I

Parameter Value
Mode I fracture toughness 0.041 N/mm
Maximum normal traction 3.25 N
Normal separation 0.025 mm

37



3.6.2 ENF test - mode II fracture toughness of CFRP

Specimen preparation

Figure 3.22: Schematic representation of ENF specimen

The method used in ENF specimen preparation is same as the method used for DCB specimen

preparation as described in previous section. The schematic of ENF specimen is as shown in the

Fig3.22 and dimensions are mentioned in Table3.7.

Mode II fracture toughness calculation

The experimental load vs displacement curve for the three tested specimens is shown in the Fig

3.23. From the curve it can be observed that, after reaching maximum load value delamination

starts and load starts dropping. The interlaminar mode II fracture toughness can be calculated by

using compliance calibration (CC) method as mentioned in ASTM D7905[28].

Figure 3.23: Load-displacement curves for ENF specimen
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GIIc will be the minimum of the values calculated from PC and NPC tests. From load-displacement

curve, stiffness of the specimen can be found out. Compliance is a reciprocal of stiffness. Plot the

graph of compliance vs cube of delamination length. Compliance in ENF is directly proportional to

the cube of delamination length as shown in Fig 3.24. Fit the curve for the equation below:

C = A+ma3

A and m are compliance calibration coefficients. The value of compliance calibration coefficient are

obtained as A = 0.0021 and m = 2× 10−8.

Figure 3.24: Compliance vs a3 curve for ENF specimen

The fracture toughness can be calculated as

GIIc =
3mP 2

maxa
2

2B
(3.17)

Mode II fracture toughness for all specimen is calculated using the above equation. The result is

given in the Table 3.11.

Table 3.11: Mode II fracture toughness

Specimen 1 2 3 4 Average
GII 0.844 0.615 0.673 0.715 0.711
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3.7 Conclusion

In this chapter, cohesive zone model for adhesive and CFRP is presented. This model is derived for

mixed-mode delamination in case of static loading condition. Experimental characterisation is done

for interlaminar fracture toughness of araldite 2015 for CFRP specimen under mode I and mode II

loading. Mode I fracture toughness is obtained as 0.44 N/mm. It is calculated using compliance

beam theory with equivalent crack method. The mode II fracture toughness is obtained as 2.76

N/mm. It is calculated using compliance calibration method. The formulation is implemented in

FEA to get the characteristic parameter of material for mixed-mode delamination. For the given

case it is found out to be 3.

Similar experiments are performed to get the interlaminar fracture toughness of CFRP panel. Mode

I fracture toughness is obtained as 0.921 N/mm. It is calculated using compliance beam theory

with equivalent crack method. The mode II fracture toughness is obtained as 0.711 N/mm. It is

calculated using compliance calibration method. MMB test is performed to characterise mixed-mode

delamination.

40



Chapter 4

Delamination modelling in

unidirectional CFRP Laminate

under static loading using FEA

4.1 Introduction

Adhesives are commonly used to bond structural component into assemblies or to bond layers of

materials into composite laminates. Simulations are performed to model the progressive separation of

the adhesive as it reaches critical stress limit. Mechanical APDL supports two methods i.e. cohesive

zone model and virtual crack closure technique to define the failure criteria. In these methods,

separation occurs along predefined interface. In this thesis, cohesive zone model has been used to

simulate the separation mechanism of two surfaces. There are two methods to represent interface

surfaces of the material: i) Interface elements and ii) Contact elements.

Interface elements

Figure 4.1: 3D 16-node interface element

The interface elements represent the cohesive zone between the components and they account

for the separation across the interface. It is a zero thickness element. Interface failure is detected
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by elemental traction and separation. An interface element is composed of bottom and top surfaces.

Fig4.1 shows a 3-D 16-node quadratic interface element.

Contact elements

The cohesive zone between components can be modelled with bonded contact. One surface is

treated as contact surface and other is treated as target surface. Interface separation is detected by

separation of contact and target surfaces and it is defined in terms of contact gap and tangential

slip distance.

4.2 FEM modelling of DCB test

3D Finite element model is developed using finite element package, ANSYS 15. To model a DCB

specimen with length 130 mm and width 25 mm, solid186 element is used. It is a 20-noded brick

element. This specimen has 8 layers giving total thickness of 4 mm. In x-y-z coordinate system,

length, width and the thickness of the specimen are oriented in x, z, and y-direction respectively.

The mesh pattern in the ligament portion is kept finer as compared to the cracked portion to capture

the accurate delamination process. The mesh parameters for the model are given in the Table 4.1.

As discussed in section 3.3.3 the length of cohesive zone element is 0.637 mm. Here, we have taken

length as 0.5 mm to be on safer side. Material properties mentioned in the Table 3.1 are applied

to the specimen. To simulate the DCB test condition, one end of the specimen is fixed and at the

other end displacement is applied.

Figure 4.2: Finite element model for DCB test

Table 4.1: Mesh parameters for DCB specimen

Dimension Number of elements
Ligament length 144
Cracked length 29
Width 25
Half-thickness 4
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4.2.1 Interface elements modelling

In-built CZM model with actual crack length

The ligament length in the model represents the bonded part of the DCB specimen. To simulate

delamination, interface elements INTER204 are introduced along the ligament length. The geometry

of the standard interface element with 16 nodes is shown in the Fig 4.1. The initial delamination

length is taken as 50 mm. The cohesive zone model is implemented through in-built bilinear cohesive

zone model. The properties of the cohesive zone are defined in the Table 4.2. The load-displacement

curve for the finite element model with actual crack length is shown in the Fig. ??.

Table 4.2: Cohesive zone properties for in-built bilinear model

Material property Value
Mode I fracture toughness,GIc 0.45 N/mm
Mode II fracture toughness,GIIc 2.75 N/mm
Mode I interfacial strength, Tn 2.76 MPa
Mode II interfacial strength, Tt 25 MPa
Ratio of onset separation to normal separation, α 0.00174

4.2.2 Contact pair modelling

To model the cohesive zone along the ligament length contact pair is used. For simulation, surface

to surface CONTA174 elements are used along with TARGE170 elements. Contact pair consists of

one contact surface and one target surface. Four different contact algorithms are available in APDL

which are pure penalty method, augmented lagrangian method, pure lagrange multiplier method

and lagrange multiplier on contact normal and penalty on frictional direction. Here augmented

lagrangian method is used. It is an iterative series of penalty updates and is less sensitive to

the magnitude of the contact stiffness coefficient. The contact tractions are augmented during

iterations. The equilibrium iterations are continued till final penetration is less than allowable

tolerance. Contact parameters required to define the contact pair are defined in Table4.3. Numerical

simulations are performed using inbuilt and user defined model. The inbuilt cohesive zone law uses

CBDE. It describes the bilinear material behaviour with tractions and separation.

Table 4.3: Contact pair parameters for DCB test model

Parameter Value
Contact algorithm Augmented lagrange method
Contact detection At nodal point
Contact stiffness factor 1.0
Penetration tolerance factor 0.1
Pinball region factor 0.5
Contact stiffness update At each iteration
Initial gap Included
Contact adjustment Initially closed
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4.2.3 Result and discussion

The load-displacement curve obtained by interface elements shows a match with the curve obatined

by contact elements. The disparity between the numerical and experimental curves is either due to

inaccurate measurement of the physical crack or due to modelling mixed mode delamination as pure

mode I delamination. For modelling DCB specimen two methods are used: (a) Modified cohesive

mode I crack method and (b) Benzeggagh-Kenane model. These two methods are subsequently

discussed at length in this chapter.

Figure 4.3: Load-displacement curve for DCB specimen using interface modelling and contact pair
modelling

Interface elements vs. Contact elements

Previously we have discussed the two methods which are used to represent interface surface of the

material. The results obtained by interface elements shows match the result obtained by contact

elements. Interface elements are not able to show actual material separation. In contact elements,

actual material separation is observed by debonding the interface surfaces. The main problem with

contact elements is that the contact algorithms in FEA are complicated and thus it takes much

longer time to get the converged solution. Interface elements are easy to implement and it takes
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less time to get converged solution. To visualise and model the actual material separation, contact

elements are used in this thesis for further study.

4.2.4 Method 1 - Modified cohesive mode I crack

The modelling details of DCB specimen are same as in the previous case and cohesive zone properties

are given in the table 4.2. In the section 3, effective crack length evaluation from SIF estimator has

been discussed. The effective crack length obtained is 58 mm. Simulations are performed considering

the effective crack length of the specimen. The load-displacement curve obtained is shown in the

Fig 4.6.

4.2.5 Method 2 - Benzeggagh and Kenane model

To consider for mode-mixity, mixed mode cohesive zone model is implemented through user pro-

grammable subroutine function. The formulation is based on the method developed by Benzeggagh

and Kenane[24]. The properties of the user defined cohesive zone are given in the table 4.4.

Table 4.4: Cohesive zone properties for UserCZM model

Material property Value
Mode I fracture toughness,GIc 0.45 N/mm
Mode II fracture toughness,GIIc 2.75 N/mm
Mode I interfacial strength, Tn 2.76 MPa
Mode II interfacial strength, Tt 25 MPa
Penalty stiffness, K 1000 N/mm
Mode interaction parameter, η 3

4.2.6 Result and discussion

Fig. 4.4 shows the contact gap distance for DCB specimen of CFRP panel. In the figure, blue

rgion represents the complete material separation and red region indicates bonded contact. Fig.

4.5 shows contact stress distribution for the boundary value problem shown in the Fig. 4.2. In

the figure, nagative contact stress indiacates completely separate region and positive contact stress

represnets bonded contact. The maximum contact stress is observed at fixed end of the specimen

and its value is 2.717 N/mm2. The load-displacement curve is obtained as shown in the Fig. 4.6.

Figure 4.4: Contact gap for DCB specimen
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Figure 4.5: Contact stress for DCB specimen

Figure 4.6: Load-displacement curve for DCB specimen using contact modelling
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4.3 FEM modelling of ENF test

3D Finite element model is developed using finite element package, ANSYS15. ENF specimen with

length 165 mm and width 25 mm is modelled using the same method as used for DCB specimen.

This specimen has 8 layers giving total thickness of 4 mm. The mesh parameters used are given in

Table 4.5.

Figure 4.7: Finite element model for ENF test

Table 4.5: Mesh parameters for ENF specimen

Dimension Number of elements
Ligament length 168
Cracked length 30
Width 25
Half-thickness 4

4.3.1 Contact pair modelling

To model the cohesive zone along the ligament length contact pair is used. For simulation, surface to

surface CONTA174 elements are used along with TARGE170 elements. There are two contact pairs

created. One contact pair for cracked region and one for ligament region. Each contact pair consists

of contact surface and target surface. Out of the four available contact algorithms, augmented

lagrangian is used here. The contact parameters for the two pairs are given in the table 4.6.

Table 4.6: Contact pair parameters for ENF test model

Parameter Contact pair 1 Contact pair 2
Contact algorithm Augmented lagrangian Augmented lagrangian
Contact detection At gauss point At nodal point
Contact stiffness factor 0.1 0.000683
Penetration tolerance factor 0.05 0.05
Pinball region factor 2 0.25
Contact stiffness update At each iteration At each iteration
Initial gap Included Included
Contact adjustment Initially closed Initially closed

47



4.3.2 Results and discussion

Figure 4.8: Deformed shape of ENF specimen using contact modelling

The deformed ENF specimen using contact pair modelling is shown in the Fig 4.8. Fig 4.9 shows

the contact gap distance and Fig 4.10 contact stress distribution for the boundary value problem

shown in the Fig 4.7. The load-displacement curve is obtained as shown in the Fig 4.11.

Figure 4.9: Contact gap for ENF specimen

Figure 4.10: Contact stress for ENF specimen
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Figure 4.11: Load-displacement curve for DCB specimen using contact modelling

4.4 Conclusion

In this chapter, numerical study is carried out to and the results obtained are validated with the

experiments performed. Here, both DCB and ENF specimen are studied. Two methods namely,

interface modelling and contact pair are compared and contact pair method is selected for its ad-

vantages. The load-displacement curves obtained with user developed cohesive zone model for both

the specimen are found to be in close match with experimental results.
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Chapter 5

Analysis of single and double

stepped lap joint of CFRP

laminate under tensile loading

5.1 Damage repair in composites

The damage in the composite reduces the strength of the structures which is associated to the

recycling difficulties and replacement costs[1]. It is more ecologically efficient to repair the structures

than replacing them[23]. The repair of structure with composite patch can be carried out in two

ways: i) Mechanical fastening or ii) adhesive bonding. Mechanical fastening method includes the

use of connectors such as rivets, bolts and nuts. The main disadvantage with their use is that they

result in high stress concentration and galvanic corrosion. This can be avoided by using adhesively

bonded repairs and the benefits associated with it are improved appearance, good sealing properties,

high strength to weight ratio and reduced stress concentration[1, 22]. There are different types of

boded joints such as: single lap joints, scarf joints, tapered joint and stepped-lap joints.

The schematic for different types of repair is shown in the Fig 5.1. Scarf joint repair involves the

removal of damaged area by drilling a hole and then adhesively bonding the patch layers to fill the

damaged portion. A step lap joint is similar to the scarf joint. The only difference is that it has a

series of uniform steps that form taper. A stepped-lap bonded joint is generally used in composite

structure with thickness more than 4mm, as the load transfer through step-lap joint is more uniform

through shear loading. Scarf joint panel behaviour is complex as compared to stepped lap joint.

In this work, analysis of single and double sided stepped lap joint of CFRP laminate under

tensile load is studied. Experimental results for the same are compared with a numerical estimates.

The cohesive law for the adhesive interface with CFRP is determined for mode I and mode II

loading conditions experimentally. This cohesive law is given as input to the FEA fot estimating

the mechanical behaviour of bonded stepped lap CFRP laminate under tensile loading condition.
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Figure 5.1: Different forms of Composite damage repairs

5.2 Analysis of single stepped lap joint

5.2.1 Specimen preparation

The CFRP laminates for single sided stepped lap joint specimen are prepared from unidirectional

carbon fibre mat of 200 gsm weight through vacuum bagging procedure. The matrix is composed

of epoxy resin CY 230 and hardener HY 951 in proportion of 10:1 by weight ratio. The plates were

cured at room temperature with a curing time of 24 hours. The panel is made of 8 unidirectional

layers. The carbon fibre fabric layers were stacked in the 0◦ direction. The bonding surfaces of the

specimen are roughened using emery paper and then cleaned with acetone. A ductile epoxy adhesive

is used to bond the two parts at room temperature. A constant thickness of 0.2 mm was ensured

for the adhesive layer. The schematic of the specimen is shown in the Fig 5.2 and the dimensions of

the specimen are given in the table 5.1. Random speckle pattern is created on thickness side of the

specimen to measure displacements through DIC.
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Table 5.1: Dimensions of single stepped lap joint of CFRP panel

Dimension Value
Overall length ( L) 140 mm
Free length (lf ) 45 mm
Width (B) 45 mm
Thickness (h) 2.6 mm
Step height (hs) 0.52 mm
Step length (ls) 12.5 mm
Taper angle (α) 1◦

Figure 5.2: Schematic representation of single stepped lap joint of CFRP panel

5.2.2 Experimental setup

Figure 5.3: Experimental setup for testing single stepped lap joint in a CFRP laminate

Experimental setup for the single stepped lap joint test is shown in the Fig. 5.3. The experiment is

performed on 100kN MTS universal testing machine. 2D-DIC system is used to track the through

the thickness full displacement and strain field. It has single Grasshopper CCD camera with a

spacial resolution of 2448 x 2048 pixels. Tamron lens is used to capture the entire length of the

specimen. Camera is mounted on tripod and aligned with the specimen so that it can capture the

images accurately. Two white light LED sources are used on both the sides of camera to ensure
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the proper illumination of the specimen. The tensile load is applied at a loading rate of 1mm/min

and the load displacement data is obtained. Five images are captured per second and stored in a

computer using Vic 2D software.

5.2.3 Finite element analysis

Finite element analysis of single stepped lap joint in CFRP panel under tensile loading condition is

carried out in FEA software ANSYS 15. To model a single stepped lap CFRP panel with length 140

mm and width 45 mm, solid 186 element is used. This specimen is modelled with 8 unidirectional

layers and total thickness of 2.6 mm. Adhesive layer is modelled using contact elements. TARGE170

and CONTA174 elements are used to represent contact pair and the contact algorithm used is

augmented lagrangian. In XYZ coordinate system, length, width and the thickness of the specimen

are oriented in x, z, and y direction respectively. The CFRP panel is fixed at bottom edge and

centre node is fixed to avoid the motion in the normal direction. Along the x-direction at the top

edge tensile load is applied. Finite element model for a single stepped lap CFRP panel is shown

in the Fig 5.4. The mesh parameters for the model are given in the table 5.2. Material properties

mentioned in the table 3.1 are applied to the specimen.

Figure 5.4: Finite element model of single stepped lap joint of CFRP panel

Table 5.2: Mesh parameters for single stepped lap joint of CFRP panel

Dimension Number of elements
Free length 30
Step length 60
Width 15
Step height 2

To model the cohesive zone along the bonded length contact pair is used. For simulation surface

to surface CONTA174 elements are used along with TARGE170 elements. Contact pair consists of

one contact surface and one target surface. Out of the four available contact algorithms, augmented

lagrangian is used. Contact parameters required to define the contact pair are defined in Table

5.3. Numerical simulations are performed using user defined cohesive zone model. It describes the

bilinear material behaviour. The cohesive zone properties for UserCZM model are given in Table

4.4.
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Table 5.3: Contact pair parameters for a single stepped lap joint of CFRP panel test model

Parameter Value

Contact algorithm Augmented lagrange method

Contact detection At nodal point

Contact stiffness factor 1.0

Penetration tolerance factor 0.1

Pinball region factor 0.5

Contact stiffness update At each iteration

Initial gap Included

Contact adjustment Initially closed

5.2.4 Results and discussion

Local behaviour:

The Fig. 5.5 shows the contact gap distance for single stepped lap joint of CFRP panel. In the

figure, red region represents the contact distance of 0. The contact and target surfaces are still in

contact with each other. The delamination process starts at the step height. After completion of

delamination at step height, delamination starts along the length. In the length direction, delam-

ination starts in the first and last step. The onset point is 0.0027 mm and the region indicating

green-blue area is already separated. Delamination front is travelling towards the centre.

Figure 5.5: Contact gap distance for single stepped lap joint of CFRP panel

The Fig. 5.6 shows the contact stress for single stepped lap joint of CFRP panel. In the figure,

contact stress 0 indicates bonded region. At both the ends of step length, light blue region is observed

indicating the start of the delamination process. The maximum stress is observed at the first step

and the value is 288.29 N/mm2.
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Figure 5.6: Contact stress for single stepped lap joint of CFRP panel

Global behaviour:

The load-displacement curve is obtained as shown in the Fig 5.7. The load transfer between the

adherends is by shear deformation mechanism. The failure starts near the step corners and then

propagates towards the centre of the step. Ultimate failure of the CFRP panel occurs along the

adhesive layer and panel splits into two. Load-displacement data obtained by experiment and

numerical method shows good match.

Figure 5.7: Load-displacement curve for single stepped lap joint of CFRP panel using contact
modelling
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5.3 Analysis of double stepped lap repair

5.3.1 Specimen preparation

The rectangular laminate plate with three layers is made of CFRP composite with the fibre orien-

tation of 0◦ along x-axis. CFRP laminates are prepared from unidirectional carbon fibre mat of 200

gsm weight through vacuum bagging procedure. The matrix is composed of epoxy resin CY 230 and

hardener HY 951 in proportion of 10:1 by weight ratio. The plates were cured at room temperature

with a curing time of 24 hours. The laminate is made up of 12 unidirectional layers. The mechanical

properties of CFRP are given in the table 3.1. The bonding surfaces of the specimen are roughened

using emery paper and then cleaned with acetone. A ductile epoxy adhesive is used to bond the two

parts together. A constant thickness of 0.2 mm was ensured for adhesive layer. The schematic of

the specimen is shown in the Fig 5.8 and the dimensions are given in the table 5.4. Random speckle

pattern is created on thickness side of the specimen to measure displacements through DIC.

Table 5.4: Dimensions of double stepped lap joint of CFRP panel

Dimension Value
Overall length ( L) 220 mm
Width (B) 45 mm
Thickness (h) 2.4 mm
Step height (hs) 0.8 mm
Step length (ls) 13 mm
Adhesive thickness (t) 0.2 mm

Figure 5.8: Schematic representation of double stepped lap joint of CFRP panel

5.3.2 Experimental setup

The experimental setup is same as used for the single stepped lap joint test.The experimental setup

consists of 100 kN MTS universal testing machine. Experimental setup for the tensile testing of

double stepped lap joint is shown in the fig 5.3. 2D-DIC system is used to track the through the

thickness full displacement and strain field. The system consists of single CCD camera having spatial

resolution of 2448 x 2048 pixels coupled with tamron lens. Camera is mounted on the tripod and

aligned with the specimen so that it can capture the images accurately. Magnified optics involving

InfiniProbe TS-160 lens is used to capture the local strain over the adhesive layer closer to step
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corners. It gives magnification range of 0-16X. Two white light LED sources are used on both the

sides of camera to ensure the proper illumination of the specimen. The tensile load is applied at a

loading rate of 1mm/min and the load displacement data is obtained. Five images are captured per

second and stored in a computer using Vic 2D software.

5.3.3 Numerical analysis

Finite element analysis of double stepped lap joint in CFRP panel under tesnile loading condition

is carried out in FEA software ANSYS 15. The cohesive law defined in the previous sections is used

for the analysis. The cohesive zone parameters used for simulations are given in the table 4.4. The

CFRP laminate is modelled with a 12 unidirectional layers. Total thickness of the specimen is 2.4

mm and step height is 0.8 mm. The specimen is modelled such that each step consists of 4 UD

layers. The mechanical properties for the CFRP are given in the table 3.1. The specimen of the

model are same as the experimental specimen. 20 noded brick element, SOLID186 is used to model

the laminates and adhesive layer is modelled using contact elements. TARGE170 and CONTA174

elements are used to represent contact pair and contact pair consists of one contact surface and one

target surface. Out of the four available contact algorithms, augmented lagrangian is used. Contact

parameters required to define the contact pair are defined in Table 5.3. The length of the cohesive

zone is determined to be 3.185 mm based on the formulation defined by Turon. To obtain accurate

FEM results using CZM, it is recommended to use five elements in the cohesive zone. Considering

this, the mesh size in the adhesive layer is taken as 0.5 mm. In XYZ coordinate system, length,

width and the thickness of the specimen are oriented in x, z and y direction. The CFRP panel is

fixed at bottom edge and centre node is fixed to avoid the motion in the normal direction. Along

the x-direction at the top edge tensile load is applied. Finite element model for a double stepped

lap CFRP panel is shown in the Fig 5.9. The mesh parameters for the model are given in the table

5.5.

Figure 5.9: Finite element model of double stepped lap joint of CFRP panel

Table 5.5: Mesh parameters for double stepped lap joint of CFRP panel

Dimension Number of elements
Free length 58
Step length 26
Width 30
Step height 4
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5.3.4 Results and discussion

Local behaviour:

(a) Initial contact gap

(b) Delamination propagation along step height

(c) Delamination propagation along step length

Figure 5.10: Contact gap distance for double stepped lap joint of CFRP panel

The Fig. 5.10 shows the contact gap distance for double stepped lap joint of CFRP panel. In

the figure, (a) represents the initial contact gap and red region represents the contact distance

of 0. Initially contact and target surfaces are bonded together. (b) represents the delamination

propagation along step height. The delamination process starts at the step height. Step height
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corners are separated initially and delamination propagates towards the centre of step. (c) represents

the delamination along step length. After completion of delamination at step height, delamination

starts along the length. In the length direction, delamination starts on the upper steps and then

grows towards the central step. The onset point is 0.0027 mm and the region indicating green-blue

area is already separated.

(a) Initial contact stress

(b) Contact stress along step height

(c) Contact stress along step length

Figure 5.11: Contact stress for double stepped lap joint of CFRP panel

The Fig. 5.11 shows the contact stress for double stepped lap joint of CFRP panel. In the figure,
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(a) represents initial contact stress which is 0 and it indicates bonded region. (b) represents the

contact stress along step height. The red region at the step corners corresponds to maximum stress

and separation starts from corners and travels towards centre. (c) represents the contact stress along

step length. At both the ends of step length, light blue region is observed indicating the start of the

delamination process. The maximum stress is observed at the upper steps and it travels from upper

step to central step.

Global behaviour:

The load-displacement curve is obtained as shown in the Fig 5.12. The load transfer between the

adherends is by shear deformation mechanism. The failure starts near the first step corners on both

the sides and then propagates towards the central step. Ultimate failure of the CFRP layer occurs

along the adhesive layer.

Figure 5.12: Load-displacement curve for double stepped lap joint of CFRP panel using contact
modelling

5.4 Summary

In this chapter, experimental analysis of single and double stepped lap joint of CFRP panel under

tensile loading is carried out. The load transfer between the adherends is by shear deformation

mechanism. The failure starts near the step corners and then propagates towards the centre of the

step. Ultimate failure of the CFRP panel occurs along the adhesive layer and panel splits into two.

Load-displacement data obtained by experiment and modified modified mode I cohesive law show

good match. Benzeggagh-Kenane method shows little deviation from experimental method. The

material characterisation is performed for DCB specimen using numerical method which may not

give accurate results. To get accurate results using B-K law, material parameter should be calibrated

using experiments.
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Chapter 6

Conclusion and future scope

6.1 Conclusion

In present work is focused on the analysis of single stepped lap joint of CFRP panel under tensile

loading condition. Benzeggagh and Kenane formulation for mixed mode delamination is used to

predict the debonding using contact pair modelling in ANSYS 15.

UserCZM found to capture the debonding mechanism of the panel accurately. The cohesive zone

law is derived based on the static loading of the CFRP panels. To get mode I fracture toughness of

an interface DCB test is carried out. For calculation of fracture toughness compliance calibration

method with equivalent crack is used and the value obtained is 0.44 N/mm. For cohesive law char-

acterisation the method used by Moura is followed. But the limitation involved is it cannot predict

the onset of the delamination accurately. To get the onset of delamination whole field displacement

obtained from DIC is used. By comparing the displacement and strain data, onset of delamination

is obtained and initial stiffness is calculated. This completes the calibration of mode I cohesive law.

For mode II fracture toughness calculation ENF test is used as recommended by ASTM D7905. For

calculation of fracture toughness compliance calibration method is used and the value obtained is

2.76 N/mm. For mode II cohesive law characterisation various simulations are performed with vary-

ing traction-separation values at constant fracture toughness value. The load displacement curve for

numerical method is matched with experiments to get the exact values of maximum shear traction

and shear separation.

The main objective deals with the implementation of Benzeggagh and Kenane criteria for delam-

ination. As the delamination process involves mode-mixity, mixed mode formulation is required.

The Benzeggagh and Kenane criteria involves the characterisation of characteristic parameter of

material, η. The parameter is obtained by performing various simulations with different η values.

Numerical load-displacement curve for DCB specimen is matched with experimental curve. The

match is obtained for the value η = 3.

The cohesive zone parameters obtained by above method are used in UserCZM. Analysis of single

sided stepped lap joint of CFRP laminate under tensile loading is carried out. Experimental re-

sults are compared with numerical estimates and good match between load-displacement curve is

obtained. The limitations involved in the process are: it is very time consuming and it requires high
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computational power. The law is validated for static loading condition but its application for fatigue

loading is still under question.

6.2 Suggestions for future work

It is observed that the present work can predict interface delamination failure in CFRP composites

under static loading condition. The model can be extended to predict delamination failure under

fatigue loading of constant amplitude.
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