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Abstract

Present study focuses on finding the minimum representative volume element (RVE) size for CFRP

laminate using progressive damage modeling (PDM) framework. High fidelity generalized method

of cells (HFGMC) has been used in the first step of PDM for stress analysis. To interpret damage

initiation and propagation in the CFRP laminate, multi-continuum theory (MCT) has been employed

with sudden material property degradation rule. RVE is a smallest component of the composite

material over which average macroscopic properties can be assumed constant as well as macroscopic

failure theories can be easily applied. Therefore, to capture the minimum RVE size, RVE element

has been studied by varying diameter of the fiber (D) to RVE size (H) ratio. Minimum RVE size is

obtained for the CFRP laminate at D/H = 0.4.

The stiffness properties calculated using HFGMC method are validated with analytical results

estimated using Halpin-Tsai model as well as experimental results obtained using digital image corre-

lation technique available in literature. It is observed that CFRP laminate shows transversely isotropic

nature till damage initiation point. After which, it loses its symmetry. The stress-strain curve is also

generated for CFRP laminate for unidirectional loading.
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Chapter 1

Micromechanical Analysis of
Composite Materials

1.1 Overview of Composite Materials

Nowadays, composite materials are an essential part of an aerospace and construction industries.

Aircraft components like rotor blades, spoilers, propellers etc are made up of composite materials.

Composites are formed by combining two or more distinct constituents at a microscopic level. Amongst

all we focus on polymer matrix composites which are reinforced using Fibers. These are generally

constructed using fiber and matrix material as shown in Figure 1.1. In which, fiber material provides

the high strength and stiffness to the composites while the matrix material holds the reinforced fiber

elements together and transfers the load. Reinforcement of the fiber material can be of different forms

like particles, long or short fibers, whiskers, etc. The main advantage of a composite material is

that it shows the best qualities of its constituents and some qualities that neither of the constituents

possesses.

Figure 1.1: Representative micro-structure of polymer matrix composite material.
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In general, composites are famous for their low weight and high strength properties [4]. They

also exhibit enhanced stiffness, corrosion and wear resistance, fatigue life, strength, weight, thermal

conductivity, thermal insulation etc over their constituents. However, for a given composite material

and its functionality, selected material properties needs to be only tailored as per the requirements

of targeted application. Hence, the intention of creating composites is to tailor the material with

the enhanced required characteristics to perform the intended task. On account of their enhanced

properties, composites are highly used in various engineering applications. Composite materials are

generally used in various industries such as marine, aerospace, automobile, electronics, boilers, safety

devices, etc. Figure 1.2 shows the percentage distribution of composites in above mentioned appli-

cations in which, 31% of composites are used in automotive applications, 26% in the construction

industry, 12%, 10% and 8% composites are used in electronics, marine and appliances respectively.

Amongst all industrial usage of composites in automobile industries their usage stands quite high.

Figure 1.2: Percentage distribution of composites in various applications [1]

Composites are classified into: fibrous, particulate, and laminated composites. Fibrous composites

consist of long fiber reinforcement into the matrix material whereas, in laminated composites, layers

of different materials are stacked on each other. While the particles of the fiber material are scattered

inside the matrix in particulate composites. Amongst above, fibrous composites are chosen for further

study as it uses long fibers having greater stiffness and strength properties compared to the same

composite material in the bulk form [4]. Fibrous composites can be made from different types of fiber

materials. Some of the common fiber materials and their strength to density and stiffness to density

ratios are described in the Table 1.1. It can be observed from the values given in the Table 1.1 that

Glass fibers exhibits greater strength to density ratio as shown in the Tab. 1.1, however their stiffness

to density ratio is lower than the carbon and graphite fiber. Carbon fibers are relatively expensive as

compared to the glass fibers but are still preferred as they have high strength, stiffness, low weight
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Table 1.1: Strength to density and stiffness to density ratios for various fiber materials [4]

Material of fiber Strength to density ratio (Km) Stiffness to density ratio (Mm)

Aluminium 24 2.8

Titanium 41 2.5

Steel 54 2.7

E-glass 136 2.9

S-glass 197 3.5

Carbon 123 14

Graphite 123 18

and high corrosion resistance [6]. Therefore, carbon fiber is selected for further analysis in this study.

Further, polymeric matrix is chosen in this analysis.

1.2 Damage Mechanics in Composite Materials

Damage mechanics in the composite materials is complex problem as it consists multi-phase materials.

Therefore, it has challenged many scientists from past few decades. Generally, composite materials

are heterogeneous and anisotropic in nature at microscopic level [3, 4] as they are made up of fibers

embedded in a polymer matrix. In majority cases, failure in composite material starts from some in-

ternal crack point and propagates as time passes. Once the failure propagates, different types of failure

modes are observed in the composites like fiber rupture, matrix cracking, debonding, delamination,

etc.

Matrix cracking as shown in the Figure 1.3a is the most commonly observed failure mode in the fiber

reinforced composites due to overloading. Failure of matrix material due to loading in the direction

perpendicular to matrix material is considered as a transverse matrix cracking. Whereas, failure of

matrix material due to the loading in the matrix direction is called as longitudinal matrix cracking.

Generally, failure initiates at the voids and propagates through the matrix material and reaches to

the fiber which causes fiber-matrix debonding as shown in Figure 1.3b. Fiber matrix debonding is

also caused by lack of adhesion between the fiber and matrix material.

De-lamination can be seen at the interface between the different layers of the laminate as shown in

Figure 1.3c. Generally, delamination initiate from cracks in the matrix which grows towards the inter-

laminar layer. Under certain conditions, delamination can grow when subjected to repeated loading

condition and causes the failure when subsequently loaded in compression. Likewise, fiber fracture is
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(a) Matrix crack (b) Fiber rupture and debonding

(c) Delamination

Figure 1.3: Failure modes observed in the CFRP composite material

shown in Figure 1.3b can be caused due to tensile or compressive loading in the fiber direction. Before

the macroscopic failure of composite, several microscopic failures are observed. Therefore, to capture

the failure modes shown in Figure 1.3, detailed analysis of CFRP composite laminate is essential.

1.3 Analysis of Composite Materials

Composites are heterogeneous and anisotropic in nature, therefore, they show non-local and non-

linear mechanical behavior [2, 7]. Because of their orthotropic nature, shear coupling effect can also

be observed [3]. To examine all these effects, detailed microscopic analysis of CFRP laminate is

unavoidable. There are two main approaches present in the literature which can be used for the

analysis of composites [4]:

1.3.1 Macro-mechanical analysis:

In this approach, composite materials are assumed as homogeneous in nature at macro-level and

average material properties of the component are considered. However, micro-mechanical approach is
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preferred over it due to following reasons:

• Micromechanics approach enables to capture physics of the deformation and damage at more

fundamental scale [8].

• Micromechanics approach captures varying local non-proportional, multi-axial stress and strain

states [9, 10].

• In micro mechanics, simpler isotropic constituent constitutive models are utilized [4].

• Simpler and more fundamental failure criteria are sufficient for micro-mechanical analysis of

composite materials.

• Microstructural effects can be explicitly captured using micro-mechanics [11, 12].

1.3.2 Micro-mechanical analysis:

In this analysis, behavior of constituent material has been studied at micro level and interaction effect

of constituent materials is also considered. The presence of long unidirectional fibers reinforced into

the matrix material causes anisotropy in the composite structure. Further, size of the individual

constituents such as fibers, matrix, voids, interfaces, short cracks plays significant role in component

strength. Therefore, to capture the size effects and characteristic material length, accurate modeling

of non-local behavior of the composites at micro-scale is essential [3, 10]. This non-local behavior

significantly depends on the deformation and damage progression at micro-scale. To capture the

size effect, there are three main approaches already discussed in the literature which are Coasserat

deformations/ Micro-polar elasticity [9], gradient theories [13] and non-local theories [8, 10]. Among

these three approaches, first two require the concept of generalized forces and balance laws but physical

understanding of these laws is tricky. Therefore, non-local theory is preferred as it does not require

the concept of generalized balance laws.

1.4 Analytical and Semi-analytical Methods for Micro-mechanical
Analysis

There are different analytical and semi-analytical methods which can be used for micro-mechanical

analysis of composites:

1. Voigt and Reuss Method [7, 14, 15]:

Voigt and Reuss have studied the micro-structure of composites in which fiber material par-

ticles are scattered in a matrix element. They have not considered particle interaction effect.
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Therefore, it becomes a problem of single inclusion immersed in an infinite domain of matrix

hence due to the assumption of non-interacting particles, analysis leads to the unreliable results.

These results are unreliable especially in the case of randomly dispersed fiber particles into the

matrix material.

2. Self-Consistent Method [16, 17]:

This method is an improved version of the Voigt and Reuss method. The main idea of this

analysis is to consider the particle interaction effect. This method enables to produce the

effective shear and bulk responses for inclusions having volume fraction equals to 50 and greater

than that but this method produces infinite effective shear response for volume fraction greater

than 40% and infinite effective bulk response for any volume fraction for rigid inclusions so for

avoiding this problem, the generalized self-consistent method is used in which the particle is

encased in a shell of matrix material which is surrounded by an effective medium.

3. Hashin-Shtrikman Bounds [7, 18, 19, 20]:

Hashin-Shtrikman bounds method considers the bound for material properties of the composites.

This method is only valid for the composites having infinite body, isotropic microstructure

and the materials which show an isotropic effective response. The bounds for the material

properties are sensitive to the size of the sample. This method does not give accurate results for

micromechanical analysis of composites as they generally exhibit orthotropic micro-structure.

4. Mori-Tanaka Method [3, 21]:

This method is based on an averaging scheme which is used to model the elastic and plastic

response of the composites. In this method, properties of the matrix material are used to

compute the Eshelby tensor. This method shows good agreement for less concentration of

particles in particulate composites when compared with the experimental and finite elemental

results. For fibrous composites, it fails to consider the effect of plastic strain under transverse

loading condition. Therefore, this method is not suitable for CFRP composites.

All the analytical and semi-analytical methods which are discussed above tries to capture the size

effects but they are strictly valid only when a body is assumed to be infinite and material is isotropic

in nature. But composites are generally orthotropic and nonlinear in nature as well as they are finite.

While recently some numerical approaches are developed which can be used for constitutive modeling

of non-linear composite materials. We have restricted our focus only on non-local theories as they do

not require the concept of generalized forces and micro-balance theories. The numerical approaches



1.5 Numerical Methods for Micro-mechanical Analysis 7

are less tricky and easy to implement. Some of these numerical approaches are discussed in next

section:

1.5 Numerical Methods for Micro-mechanical Analysis

1. Method of cells (MOC) [22]:

In this method, fiber reinforced composite materials are modeled as a rectangular, double peri-

odic or triply periodic arrays in which, fibers are reinforced continuously or discontinuously. The

periodic structure is called as a repeating unit cell whose properties represent entire composite

structure. Each repeating unit cell is divided into four sub-cells among which, one is a fiber

sub-cell and three matrix subcells. Therefore, the solution for repeating unit cell gives stresses

and strains in the individual sub-cells. This approximate solution obtained is used to calculate

effective macroscopic properties of the composites in an elastic and inelastic region.

2. Generalized method of cells (GMC) [23]:

GMC is an advancement in the method of cells. This method is capable of modeling the multi-

phase composites which were not possible by using the method of cells. The Inelastic thermo-

mechanical response of multi-phase composites can be captured by using this method. Modeling

of various fiber architectures, porosities and damage are possible by this method. The inter-

facial degradation can be used to model the region around inclusions. By using this method,

the composite structure can be divided into any number of sub-cells.

3. High Fidelity Generalized Method of Cells (HFGMC) [3, 23]:

HFGMC is developed from the generalized method of cells. It has many advantages over GMC

such as higher order displacement tensor is used in HFGMC which gives more accurate re-

sults compared to the generalized method of cells since GMC has only implemented first order

displacement theory. The most important advantage of HFGMC is it can capture the shear cou-

pling effect. HFGMC has the ability to couple internal normal and shear deformations within

the phases. It gives more accurate results for stresses developed in repeating unit cell (RUC)

compared to previously mentioned numerical methods.

In here, high fidelity generalized method of cells has been chosen for micro-mechanical analysis

of composites. It gives accurate results compared to above mentioned semi-analytical, analytical and

numerical methods. Further, it has implementation simplicity in handling heterogeneous and non-

linear materials [3, 23]. To find the complete mechanical behavior of composites, the study of damage
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initiation and propagation is essential. In this study, progressive damage modeling (PDM) has been

used to model the damage behavior of composites [24, 25, 26].

1.6 Introduction to Representative Volume Element (RVE)

Representative volume element is a smallest component of the composite material over which average

macroscopic properties can be assumed as constant. It is the smallest volume over which macroscopic

failure theories can also be applied. The overall modulus tensor which relates the stress to strain

assumed constant over the RVE. Representative volume element is not necessarily same as the re-

peating unit cell (RUC). RVE describes the minimum volume of the material where properties of the

composites are constant while RUC is a repeating periodic structure. Only in some cases, RUC gives

detailed account of the properties of a composite material. In such cases, RUC can be considered

as representative volume element of the material. Drugan et al. [27, 28, 29] have elaborated an

analytical method based on non-local micro-mechanical analysis using Hashin-Shtrikman variational

principle to find the minimum RVE size for composites. But these closed form analytical estimates

are applicability is restricted to isotropic composites. However, CFRP composite generally exhibits

heterogeneous and transversely isotropic nature. The analytical methods specified by Drugan et al.

[27] to find the minimum RVE size for CFRP composite are not that straightforward to apply to

transversely isotropic materials. Therefore, in present work, the high fidelity generalized method of

cells has been used to overcome the downsides of Drugan’s [27] work.

1.7 Literature Review

In this section we present the detailed literature review of stress analysis using HFGMC framework

and progressive damage analysis in composite structures. M Paley et al. [30] have used generalized

method of cells for micro-mechanical analysis of composites. In this study, RUC is divided into an

arbitrary number of sub-cells to model the multiphase periodic composite material. The effective

constitutive response of the elastic-viscous-plastic composite material is added in this paper. Aboudi

et al. [23] studied the micro-mechanical model by using both generalized method of cells (GMC) and

High fidelity generalized method of cells (HFGMC). Both the theories are applicable to thermo-elastic,

viscoelastic, thermo-inelastic and electro-magneto-thermo-elastic materials. The micromechanical ap-

proach has been established in both the theories for predicting the overall behavior of multi-phase

composites. GMC is able to predict the overall response of multi-phase composites however its accu-

racy in predicting local stress and strain fields is less in HFGMC method due to first order displacement
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tensor. HFGMC consists of second-order displacement tensor which increases the accuracy in finding

the inhomogeneous stress-strain fields.

Haj-Ali et al. [3] have used the high fidelity generalized method of cells to study the behav-

ior of a nonlinear elastic, elastic-plastic and viscous-plastic constituents. HFGMC micro-mechanical

modeling formulation increases the computational efficiency with usage of multi-scaling. In this anal-

ysis, a nonlinear finite elemental analysis is implemented using HFGMC formulation which helped

for local-global stress analysis. Traction and displacement continuity conditions are used to derive

the global set of equations. Ivancevic et al. [2] studied the micro-mechanical damage modeling in

composite materials using HFGMC and failure mechanism in a heterogeneous material. Drugan and

Willis [27, 28] analytically estimated the minimum representative volume element size (RVE) for an

isotropic material. They showed that the leading order correction for the macroscopically homoge-

neous constitute requires a second order gradient of the ensemble average of strain. The high fidelity

generalized method of cells also uses second order gradient of strain. Therefore, HFGMC can be

implemented for constitutive modeling of composites.

Tserpes et al. [24, 31] and Shokrieh [25, 32] have studied the progressive damage modeling for

CFRP composites to find the damage initiation and propagation for fatigue loading at meso scale.

Tserpes et al. [24] have estimated fatigue life of CFRP laminate and its influence on initiation

and propagation of edge delamination. Ubaid et al. [33] and Saurabh et al.[26] have used PDM

technique to predict the damage behavior of CFRP laminate containing two holes arranged in different

configurations under tensile and compressive loading respectively. Saurabh et al. [26] have considered

a CFRP panel with multiple interacting holes of various configurations like 1H, 2HL, 2HT and 2HD

to study the interaction effects.

There are three main steps in the PDM: stress analysis, damage detection, damage modeling. In

the first step, high fidelity generalized method of cells has been used to obtain current stress state of

the laminate. Aboudi et al. [22, 34] have applied the micro-mechanical theory to repeating unit cell

(RUC) in which fiber is reinforced in the matrix phase. The analysis is applicable to elastic, thermo-

elastic, viscoelastic, and viscous-plastic composites. The method of cells is used for this analysis so

that RUC is divided into four sub-cells, out of which one consists of fiber material and other three are

made up of a matrix material. The micro-mechanical analysis using MOC considers the interaction

between the neighboring RUCs and sub-cells. Traction and displacement continuity conditions are

imposed on an average basis and the equilibrium condition is also satisfied for each sub-cell. The

effective properties of the RUC are determined using fiber-matrix properties.

P. Nali et al. [35] studied the different failure criteria in two dimensions which can be used for
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damage detection in the second step of PDM. They have compared the popular failure criteria like

Hashin failure criterion, LARC 03, Tsai-Wu, Tsai-Hill, maximum stress and maximum strain criterion

for anisotropic materials. Plane stress condition with finite elemental analysis have been considered for

checking advantages and disadvantages for different failure theories. Steven Mayes et al. [36] studied

the progressive failure analysis of composite materials for uniaxial and multi-axial loading by using

multi-continuum theory. Constituent-based failure is analyzed for fiber and matrix material failure by

using MCT criterion. It is assumed that composite material is multi-continuum in nature and matrix

and fiber material constituent stress and strain fields are estimated. Ivancevic et al. [2] has also

used multi-continuum theory for damage modeling of heterogeneous composite materials. MCT is a

constituent based theory. Therefore, it can be used to find the local damage state of the heterogeneous

material. Therefore, the multi-continuum theory is used for finding the current damage state of the

heterogeneous CFRP composite laminate. Once the damage is detected, material properties of the

damaged sub-cells need to be degraded. Shokreih et al. [25, 32] has focused on two ways of degrading

the material properties, sudden degradation, gradual degradation. In sudden degradation, material

properties of the failed elements are directly reduced to zero. Generally, sudden material property

degradation rule is preferred for static loading condition. In the case of fatigue loading, both sudden

and gradual material property degradation rule are applied.

Tserpes et al. [24, 31] used sudden material property degradation rule for degrading the material

properties of CFRP laminate. Material properties are degraded using sudden degradation rule for

matrix tensile cracking, matrix compressive cracking, fiber tensile cracking, fiber compressive cracking,

fiber matrix shear out, delamination in tension and compression. Shokrieh and Lessard [25, 32] have

explained both the material property degradation rules in their study. The stiffness and strength of

the failed elements are reduced during progressive damage analysis using the expressions given in the

paper. Sourabh et al. [26] and Ubaid et al. [33] have also used sudden material property degradation

rule to carry out the PDM. Sudden material property degradation rule is chosen for further analysis

as the scope of this research work considers static loading.

1.8 Motivation, Scope and Objectives

Drugan et al. [27, 28, 29] have established explicit constitutive equation which relates the average

strain and stresses in a linear elastic composite material by using non-local micro-mechanical approach.

They have used a Hashin- Shtrikman [18, 19, 20] variational formulation to derive the quantitative

estimate for minimum RVE size for two-phase composites analytically But this method is applicable

to only isotropic and statically uniformly distributed composites. However, composite materials are
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generally heterogeneous and anisotropic in nature as well as exhibits the non-local mechanical behav-

ior. Therefore, it is difficult if not possible to find the accurate minimum RVE size for composites

using this analytical approach. Furthermore, the material would exhibit non-linear behavior once the

damage initiates and its possess added complexity in analyzing analytically. Hence, to understand

the interaction effect shown in Figure 5.1, it is essential to find the minimum RVE size for the com-

posite material. Therefore, a numerical method: high fidelity of generalized method of cells has been

implemented to find the minimum RVE size for CFRP laminate along with PDA. The objectives of

the thesis are as follows:

• To obtain the minimum representative volume element size (RVE) for CFRP composite laminate.

• To study the stress-strain behavior of CFRP composite laminate under incremental loading with

micro-structural damage.

• To capture the final failure and stiffness properties of CFRP composite laminate.

1.9 Thesis Layout

This research work spans over 6 chapters. Chapter 1 illustrates various micro-mechanical analysis of

composite materials followed by literature review on progressive damage modeling and high fidelity

generalized method of cells. In Chapter 2 discusses the implementation of stress analysis using high

fidelity generalized method of cells developed by Aboudi [3] through incremental form. Chapter 3 ex-

plicitly focuses on progressive damage modeling [24] used to study the behavior of CFRP laminate. In

Chapter 4 numerical implementation of progressive damage analysis of CFRP laminate are presented.

In Chapter 5 the investigations on finding minimum representative volume element size of different

RVE configurations are illustrated. The minimum RVE size for different RVE configurations illus-

trated in the Figure 5.3 is finalized based on the agreement of results of stiffness properties obtained

by HFGMC method and Halpin-Tsai model within 5 % error. Finally, in Chapter 6 summary on the

results and scope of future work are presented.



Chapter 2

Stress Analysis Using High Fidelity
Generalized Method of Cells

High fidelity generalized method of cells (HFGMC) has been developed by Aboudi et al. [23] in

2004 which overcomes the drawbacks of generalized method of cells (GMC). This framework is used

for micro-mechanical modeling of multi-phase composites with an enhanced computational efficiency

which enables multi-scale analysis also. HFGMC is a strong analytical form which is used to solve

non-linear constituent equations for estimating stress and strain components developed with finite

increments of applied load. It is non-local, micro mechanical analysis method which can capture the

shear coupling effect also. Therefore, for computing stress-strain variables during finite increments in

the loading, high fidelity generalized method of cells has been used.

2.1 General Formulation

HFGMC developed by Aboudi et al. [3] has been used to find the current stress state of CFRP

model. A global co-ordinate system (x1, x2, x3) has been considered as shown in fig. 2.1 in which, x1

is the fiber direction. In HFGMC, a periodic microstructure of CFRP model shown in the Figure 2.1

is divided into a random number of repeating unit cells (RUC). However, RUC does not necessarily

represent representative volume element (RVE) where mean-field homogenization is applied to get the

homogeneous properties.

(y2, y3) is a local co-ordinate system considered for RUC as shown in fig. 2.2a. RUC is further

sub-divided into an arbitrary number of subcells. β and γ are the number of sub-cells in y2 and y3

direction respectively as shown in fig. 2.2b. A local co-ordinate system is introduced in each sub-cell

with a co-ordinate system as
(
y
(β)
2 , y

(γ)
3

)
.
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Figure 2.1: Micro-structure of CFRP composite with (x2, x3) global co-ordinate system

Second order displacement tensor used in the HFGMC framework is given below:

u(βγ) = ε̄.X +W
(βγ)
(00) + y

(β)
2 W

(βγ)
(10) + y

(β)
3 W

(βγ)
(01) +

1

2

(
3y

(β)2
2 −

h2β
4

)
W

(βγ)
(20) +

1

2

(
3y

(γ)2
3 −

l2γ
4

)
W

(βγ)
(02)

(2.1)

where, ε̄ and W
(βγ)
(mn) is externally applied average strain and coefficient variable vector on volume

averaged basis respectively.

(a) RUC (b) Sub-cell

Figure 2.2: Repeating unit cell
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The applied strain vector for each sub-cell is in Voigt notation,

ε̄ = (ε11, ε22, ε33, 2ε23, 2ε13, 2ε12) (2.2)

Total strain in each sub-cell can be calculated using the expression obtained by differentiating the

displacement equation is given by,

ε(βγ) = ε̄+ P(10)W
(βγ)
(10) + P(01)W

(βγ)
(01) + P(20)W

(βγ)
(20) y

(β)
2 + P(02)W

(βγ)
(02) y

(γ)
3 (2.3)

After further simplification, expression for average strain in each sub-cell is obtained which is given

by,

ε̄(βγ) = ε̄+ P(10)W
(βγ)
(10) + P(01)W

(βγ)
(01) (2.4)

Where, P(10), P(01), P(02) and P(20) are as follows:

P(10) =


0 0 0
0 1 0
0 0 0
1 0 0
0 0 0
0 0 1

 P(01) =


0 0 0
0 0 0
0 0 1
0 0 0
1 0 0
0 1 0



P(20) = 3P(10) and P(02) = 3P(01)

The stress influence matrix P (βγ) can be calculated using following expression, which is needed for

calculating the effective stiffness matrix for the RUC element.

P (βγ) =
[
I + P10D̄

(βγ)
(10) + P01D̄

(βγ)
(01)

]
(2.5)

where, I is a identity matrix, D̄
(βγ)
(10) and D̄

(βγ)
(01) can be calculated using following expression:

D̄
(βγ)
(10) ∆ε̄ = ∆W

(βγ)
(10) , D̄

(βγ)
(01) ∆ε̄ = ∆W

(βγ)
(01)

The linear expansion of stress vector can be written as,

σ(βγ) = σ̄(βγ) + σ
(βγ)
(10) y

(β)
2 + σ

(βγ)
(01) y

(γ)
3 (2.6)

In Eq. 2.6, σ̄(βγ) is an average stress for the sub-cell and can be obtained using following mathematical

equation:

σ̄(βγ) = C(βγ)ε̄+ C(βγ)P(10)W
(βγ)
(10) + C(βγ)P(01)W

(βγ)
(01)
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Stress components σ
(βγ)
(10) and σ

(βγ)
(01) are calculated using,

σ
(βγ)
(10) =

12

h2β
S
(βγ)
(10) , σ

(βγ)
(01) =

12

l2γ
S
(βγ)
(01) (2.7)

where, C(βγ) is a constitutive matrix for (βγ) sub-cell. CFRP composite material generally shows

transversely isotropic nature in 2-3 plane. Therefore, constitutive matrix can be calculated using,

C
(βγ)
(ijkl) = λδijδkl + µ (δikδjl + δilδjk) (2.8)

C(βγ) =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C22 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C55

 (2.9)

For calculating S(10) and S(01) components, stress moment equation needed is given by,

S
(βγ)
(mn) =

1

hβ

1

lγ

∫ hβ
2

−hβ
2

∫ lγ
2

−lγ
2

σ(βγ)y
(β)
2

m
y
(γ)
3

n
dy

(β)
2 dy

(γ)
3 (2.10)

By putting the values of m and n, we can get S
(βγ)
(mn) and by using the value of S

(βγ)
(mn), we can calculate

the stress components as explained in the eq. 2.6. Derivation of stress components has been described

in the section A.1.

2.2 Equilibrium and Continuity Conditions:

We have considered only two surfaces, surface 1 and surface 2, represented by green and red color in

Figure 2.2b respectively. Symmetrical boundary conditions are assumed therefore, it is sufficient to

apply continuity conditions only on two surfaces.

2.2.1 Equilibrium condition:

The equilibrium equation for HFGMC is [3],

L2σ
(βγ)
(10) + L3σ

(βγ)
(01) = 0 (2.11)

where, L2 =transpose(P(10)) and L3 =transpose(P(01))

By putting the values of σ
(βγ)
(10) and σ

(βγ)
(01) obtained previously and solving eq. 2.11,

L2C
(βγ)P(20)∆W

(βγ)
(20) + L3P(02)∆W

(βγ)
(02) = 0 (2.12)
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This equation can be written as,

A
(βγ)
2(20)∆W

(βγ)
(20) +A

(βγ)
3(02)∆W

(βγ)
(02) = 0 (2.13)

where,

A
(βγ)
i(mm) = LiC

(βγ)P(mn), A
(βγ)
i(00) = LiC

(βγ)

2.2.2 Displacement continuity conditions:

The displacement continuity equation on the surface 1 as shown in the Figure 2.2b is,∫ hβ
2

−hβ
2

[
u(βγ)|

y
(γ)
3 =

lγ
2

− u(βγ1)|
y
(γ1)
3 =

lγ1
2

]
dy

(β)
2 = 0 (2.14)

By putting the value of displacement (u) from eq. 2.1 in the eq. 2.14 and solving, we will get (detailed

in section A.2)

[
∆W

(βγ)
(00) +

lγ
2

∆W
(βγ)
(01) +

lγ2

4
∆W

(βγ)
(02)

]
−
[
∆W

(βγ1)
(00) −

lγ1
2

∆W
(βγ1)
(01) +

lγ2
1

4
∆W

(βγ1)
(02)

]
= 0 (2.15)

This is the final expression for displacement continuity condition on surface 1. Similarly, the expression

for displacement continuity condition on surface 2 is as follows:∫ lγ
2

−lγ
2

[
u(βγ)|

y
(β)
2 =

hβ
2

− u(β1γ)|
y
(β1)
2 =

hβ1
2

]
dy

(γ)
3 = 0 (2.16)

By solving eq. 2.16, we will get

[
∆W

(βγ)
(00) −

hβ
2

∆W
(βγ)
(10) +

hβ2

4
∆W

(βγ)
(20)

]
−
[
∆W

(β1γ)
(00) +

hβ1

2
∆W

(β1γ)
(10) +

hβ2
1

4
∆W

(β1γ)
(20)

]
= 0 (2.17)

This is the final expression for displacement boundary condition on surface 2.

2.2.3 Traction boundary condition:-

Now, let’s consider the traction boundary condition on surface 1 as shown in the Figure 2.2b,∫ hβ
2

−hβ
2

[
L3σ

(βγ)|
y
(γ)
3 =− lγ

2

− L3σ
(βγ1)|

y
(γ1)
3 =− lγ1

2

]
dy

(β)
2 = 0 (2.18)

Putting eq. (2.6) in eq. (2.18) and solving, (explained in the section A.2)[
A

(βγ1)
3(00) −A

(βγ)
3(00)

]
∆ε̄ =

[
A

(βγ)
3(10)∆W

(βγ)
(10) +A

(βγ)
3(01)∆W

(βγ)
(01) +

lγ
2
A

(βγ)
3(02)∆W

(βγ)
(02)

]
−
[
A

(βγ1)
3(10)∆W

(βγ1)
(10) +A

(βγ1)
3(01)∆W

(βγ1)
(01) +

lγ1
2
A

(βγ1)
3(02)∆W

(βγ1)
(02)

]
(2.19)
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This is the final expression for traction continuity on surface 1.

Similarly applying traction boundary conditions on the surface 2, we got the following expression:∫ lγ
2

−lγ
2

[
L2σ

(βγ)|
y
(β)
2 =−

hβ
2

− L2σ
(β1γ)|

y
(β1)
2 =−

hβ1
2

]
dy

(γ)
3 = 0 (2.20)

By solving this expression,[
A

(β1γ)
2(00) −A

(βγ)
2(00)

]
∆ε̄ =

[
A

(βγ)
2(10)∆W

(βγ)
(10) +A

(βγ)
2(01)∆W

(βγ)
(01) −

hβ
2
A

(βγ)
2(20)∆W

(βγ)
(20)

]
−
[
A

(β1γ)
2(10) ∆W

(β1γ)
(10) +A

(β1γ)
2(01) ∆W

(β1γ)
(01) +

hβ1

2
A

(β1γ)
2(20) ∆W

(β1γ)
(20)

]
(2.21)

2.3 Boundary Conditions Applied on Repeating Unit Cell
(RUC):-

The two sub-cells at opposite corner points A and B have been fixed as shown in the Figure 2.3a

to constrain the displacement of RUC. The four edge center points C1, C2, C3 and C4 are fixed for

both the sub cells as shown in the Figure 2.3b. Therefore, additional constrained equations needed

for solving the global system of equations are given below:

(a) Additional constrain on RUC
(b) Additional constrain for the sub-cell at
point A and B

Figure 2.3: Additional constraint

(
y
(β)
2 , y

(γ)
3

)
is a local co-ordinate system for sub-cell. Co-ordinates of points C1, C2, C3 and C4 are

as follows:

C1 =
(

0,− lγ2
)

, C2 =
(

0,
lγ
2

)
, C3 =

(
−hβ2 , 0

)
and C4 =

(
hβ
2 , 0

)
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Therefore, putting these values of C1, C2, C3 and C4 in Eq. 2.1,

u(βγ)|C1
=
[

0 ∗ I3
(
− lγ2

)
∗ I3 I3

(
−hβ28

)
∗ I3

(
lγ2

4

)
∗ I3

]

u(βγ)|C2 =
[

0 ∗ I3
(
lγ
2

)
∗ I3 I3

(
−hβ28

)
∗ I3

(
lγ2

4

)
∗ I3

]

u(βγ)|C3
=
[ (
−hβ2

)
∗ I3 0 ∗ I3 I3

(
hβ2

4

)
∗ I3

(
− lγ28

)
∗ I3

]

u(βγ)|C4 =
[ (

hβ
2

)
∗ I3 0 ∗ I3 I3

(
hβ2

4

)
∗ I3

(
− lγ28

)
∗ I3

]
2.4 Global Residual Vector

Residual vector can be calculated using following expression:

∆R(βγ) = T
(βγ)
1 ∆X(βγ) +T

(β1γ)
2 ∆X(β1γ) +T

(βγ1)
3 ∆X(βγ1)−D(βγ)

1 ∆ε̄−D(β1γ)
2 ∆ε̄−D(βγ1)

3 ∆ε̄ (2.22)

Where,

∆X(βγ) =
{

∆W
(βγ)
(10) ,∆W

(βγ)
(01) ,∆W

(βγ)
(00) ,∆W

(βγ)
(20) ,∆W

(βγ)
(02)

}
(2.23)

T
(βγ)
1 , T

(β1γ)
2 , T

(βγ1)
3 , D

(βγ)
1 , D

(β1γ)
2 and D

(βγ1)
3 can be calculated by using following expressions:

T
(βγ)
1 =


A2(10) A2(01) 0 −hβ2 A2(20) 0

A3(10) A3(01) 0 0 − lγ2 A3(02)

0 0 0 A2(20) A3(02)

−hβ2 I 0 I
h2
β

4 I 0

0
lγ
2 I I 0

l2γ
4 I



T
(β1γ)
2 =


−A2(10) −A2(01) 0 −hβ2 A2(20) 0

0 0 0 0 0
0 0 0 0 0

−hβ2 I 0 −I −h
2
β

4 I 0
0 0 0 0 0



T
(βγ1)
3 =


0 0 0 0 0

−A3(10) −A3(01) 0 0
lγ1
2 A3(02)

0 0 0 0 0
0 0 0 0 0

0
lγ1
2 I −I 0

l2γ1
4 I
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D
(βγ)
1 =


−A2(00)

−A3(00)

0
0
0

 , D
(β1γ)
2 =


A2(00)

0
0
0
0

 and D
(βγ1)
3 =


0

A3(00)

0
0
0



The final system of tangential governing equations is obtained by assembling the contributions made

by all the sub-cells (Nβ , Nγ). The global TG and DG matrices are obtained by assembling T and D

matrices for all the sub-cells as shown in the Figure 2.4.

∆X =
{

∆X(11),∆X(12),∆X(13),∆X(14), ....∆X(NβNγ)
}

(2.24)

Figure 2.4: Global system of equations

Therefore, by solving the following expression displacement micro-variables can be estimated.

S = T−1
G (DG) (2.25)

∆W = S∆ε̄ (2.26)

The overall tangential stiffness matrix for RUC is calculated using the following expression:

Ceff =
1

HL

Nβ∑
β=1

Nγ∑
γ=1

hβlγC
(βγ)S(βγ) (2.27)
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Figure 2.5: Stress integration points on the sub-cell [2]

The residual vector is calculated for every sub-cell by,

R(βγ) =


L2σ

(βγ)1 − L2σ
(β1γ)3

L3σ
(βγ)2 − L3σ

(βγ1)4

L2σ
(βγ)
(10) − L3σ

(βγ)
(01)

0
0

 (2.28)

First two terms in the eq. 2.28 represent traction residual whereas third term represents equilibrium

residual. Last two terms in residual vector represent displacement residual which is zero as these

equations do not consider stiffness variables. The stresses required to calculate the residual vector are

total stresses at stress integration points shown in fig. 2.5 (described in the section A.3)

By assembling residual vectors of each sub-cell, global residual vector is obtained as:

RGlobal =
{
R(11), R(12)....R(βγ)....R(NβNγ)

}
(2.29)

If absolute value of global residual vector is within the tolerance, there is no need to find the correction

variables otherwise jacobian matrix is estimated to correct these variables using following expression:

∆Xi
corrected = −

[
∂RGlobal
∂W

]−1

i−1

RiGlobal (2.30)

where, i denotes the number of iteration and J is a jacobian matrix given by following expression:

J = −
[
∂RGlobal
∂W

]−1

(2.31)

Displacement micro-variables (∆W ) are calculated using the corrected (∆Xcorrected) vector.
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2.5 Newton - Raphson Iteration Scheme

Newton- Raphson iteration scheme has been used to obtain the solution within error limit. The Figure

2.6 describes steps in the Newton-Raphson iteration scheme. A number of load steps are used to apply

the strain in small incremental steps. In this method, it is required to recall the solution of previous

iteration or load-step in which assumed solution is to be added. If it is the first iteration of a load

step then converged solution of previous load step is added otherwise solution of current iteration is

considered.

After estimating the modified micro-variables, strain and stress components are calculated using the

solution obtained from previous load step. The local residual vector is calculated for each sub-cell

using its corresponding stress variables and by assembling local residual vectors of all the sub-cells,

the global residual vector is constructed. If the norm of a global residual vector is within the limit of

convergence given by the user then those micro-variables are finalized. Otherwise, the jacobian matrix

is given by Eq. 2.31 is calculated which is used for updating the micro-variables and again the same

procedure is repeated for next iteration as shown in the Figure 2.6.
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Figure 2.6: Newton Raphson iteration method [3]
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2.6 Summary

High fidelity generalized method of cells has been discussed in this chapter which is used to calculate

the stress and strain variables in the model. Newton-Raphson iteration scheme has been discussed in

this chapter to check the convergence at the time of solving global system of equations shown in the

Figure 2.4.



Chapter 3

Progressive Damage Modeling of
Composites

3.1 Introduction to PDM

Progressive damage modeling (PDM) is widely employed to study the constitutive behavior of CFRP

composite laminate with damage. It allows a detailed study of failure from damage initiation to the

final catastrophic failure. It is generally defined in three steps [24, 25, 26, 31, 32, 33] as described

below:

1. Stress analysis

2. Damage detection

3. Damage modeling

In the present work, PDM is studied for static loading case. Figure 3.1 describes the steps involved

in progressive damage analysis of composite materials. For stress analysis of CFRP model, high fidelity

generalized method of cells (HFGMC) has been used which is described in the chapter 2. The second

step in the PDM is a damage detection. There are different failure criteria which can be used for

damage detection. Amongst which, MCT is used for detecting the damage in the CFRP model.

The choice of selection for this failure criteria is in its convenience to provide unified damage index.

The different failure modes observed in composites like fiber failure due to tensile or compressive

loading, matrix failure due to tensile or compressive loading, shear failure can be captured using

multi-continuum theory [37]. Once the damage is detected, properties of the failed elements are to be

degraded using certain material property degradation rule. There are mainly two material property

degradation rules mentioned in literature review, sudden degradation and continuous degradation
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[24, 25, 26, 31]. Here, sudden material property degradation rule is used for damage modeling of

composites.

Figure 3.1: Steps in progressive damage modeling

3.2 Damage Detection

In progressive damage modeling, second step is to predict the damage in composite material. There

are different failure criteria which can be used for damage detection such as:

1. Maximum stress criterion [4, 38]

2. Maximum strain criterion [4, 35]

3. Tsai-Wu-Hill criterion [39]

4. Hashin’s failure criterion [26, 33]

5. Multi-continuum theory [36, 37]

6. LARC 03 criterion [35]

These failure criteria can be broadly divided into two groups, failure criterion which include inter-

actions and criterion which neglect the interaction effect due to different stress components. Maximum

stress and maximum strain criterion does not consider the effect due to interaction between different

stress components. While, Tsai-Wu, Hoffmann, Hashin, LARC 03 and MCT consider the effect of

interaction of stress components [35]. Further, these criteria are divided into two groups:

• Criteria which consider single inequality to define the fracture index
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• Criteria which consider a combination of interactive and non-interactive conditions for calculat-

ing the fracture index

The Hoffman and Tsai-Wu are quadratic criteria and they belong to the first group. While, Hashin,

MCT and LARC 03 criteria belong to second group [35]. Among the above-mentioned criteria, we

have focused on MCT.

3.2.1 Multi-continuum theory

In this theory, it is assumed that fibers are linear elastic in nature and matrix material exhibits

nonlinear elastic behavior. It is assumed that fiber and matrix material are perfectly bonded. This

is a constituent based failure criterion used to construct a nonlinear progressive failure algorithm for

investigating the material failure strengths of composite laminates. MCT is mainly developed for

linear elastic and viscoelastic materials. The homogenized value used to characterize the stress tensor

at a point in a single continuum material is obtained by taking a volume average of all stresses in the

specified region. Composite material is made up of two constituents, fiber and matrix. Stress values

for those two materials over specified region are as follows [36, 37, 40]:

σf =
1

Vf

∫
Df

σxdV

σm =
1

Vm

∫
Dm

σxdV (3.1)

Where, Vf and Vm are the volume fraction of fiber and matrix respectively.

Now, stress (σ) and strain (ε) in the composite material are as follows:

σ = σfφf + σmφm

ε = εfφf + εmφm (3.2)

Where, φf and φm are the volume fractions of fiber and matrix respectively.

The stress and strain components in the fiber and matrix material are defined below:

Stress Strain

Fiber σf = Cf εf εf = 1
φf

(ε− εmφm)

Matrix σm = Cmεm εm = (φm [I] + φf [A])
−1 ( σ

C

)
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Where,

[A] = −φm
φf

([C]− [Cf ])
−1

([C]− [Cm]) (3.3)

Where, Cf and Cm are the stiffness matrix of the fiber and matrix material respectively.

Using the obtained strain components, we can calculate strength variables for matrix and fiber

material as follows:

Matrix material

smt22 Matrix transverse tensile strength

smc22 Matrix transverse compressive strength

sms12 Matrix in-plane shear strength

Fiber material

Sft11 Fiber longitudinal tensile strength

Sfc11 Fiber longitudinal compressive strength

Sfs12 Fiber in-plane shear strength

For transversely isotropic material, the five stress invariants are as follows:

I1 = σ11

I2 = σ22 + σ33

I3 = σ2
22 + σ2

33 + 2σ2
23

I4 = σ2
12 + σ2

13

I5 = σ22σ1212 + σ33σ
2
13 + 2σ12σ13σ23

The general form for a stress interactive failure criterion,

K1I
2
1 +K2I

2
2 +K3I3 +K4I4 = 1 (3.4)

Where, the constants K1 , K2, K3 and K4 are calculated using following expressions:
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K1 K2 K3 K4

Fiber tension 1
S2
11ft

- - 1
S2
12fs

Fiber compression 1
S2
11fc

- - 1
S2
12fs

Matrix tension - 1
(S22mt+S32m)2 (1− S2

22mt+S
2
33m

2S2
23m

) 0.5
S2
22mt

1
S2
12ms

Matrix compression - 1
(S22mc+S32m)2 (1− S2

22mc+S
2
33m

2S2
23m

) 0.5
S2
22mc

1
S2
12ms

Fiber failure criterion is,

When σ11 ≥ 0 When σ11 < 0

K1ftI
2
1f +K4ftI4f = 1 K1fcI

2
1f +K4fcI4f = 1

Matrix failure criterion is,

When σ22 + σ33 ≥ 0 When σ22 + σ33 < 0

K3mtI3m +K4mtI4m = 1 K3mcI3m +K4mcI4m = 1

3.3 Damage Modeling

Damage modeling explains how to degrade stiffness and strength properties of the failed sub-cells.

Sudden degradation rule has been used for damage modeling in this study. In the current problem

the load is increased monotonically, and at critical load point, material fails by one or more failure

modes. Depending upon the failure mode detected the material is degraded as per the given in the

Table 3.1, the corresponding stiffness properties are degraded for relevant failure mode.

3.3.1 Sudden material property degradation rule (MPDM)

Once the failure is detected in any sub-cell, the properties of that sub-cell is degraded. That is, the

failed sub-cell is replaced by an identical sub-cell with degraded material properties. There are various

degradation rules available in literature [25, 32] like sudden degradation, continuous degradation, etc.
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The degradation rule proposed by Tserpes et.al. [31] is used in this study which is summarized in the

Table 3.1 below:

Table 3.1: Degradation rules for various modes of failure

Failure mode E11 E22 E33 G12 G23 G13 ν12 ν23 ν13

Tensile fiber failure X X X X X

Compressive fiber failure X X X X X X

Tensile matrix failure X X X X

Compressive matrix failure X X X X

More than 1 failure X X X X X X X X X

When the tensile or compressive fiber failure takes place, sub-cell fails to take the load in the fiber

direction as the fiber is the main load carrying member in that direction. Thus all the properties in

that direction must be degraded. While when matrix cracks are generated along the fiber direction.

Thus the material loses load carrying capacity in 2 and 3 direction but all the properties in 1 direction

are retained.

3.4 Summary

The progressive damage modeling has been explained to study the behavior of CFRP composites.

Multi-continuum theory given by Steven [36] has been described to detect the damage in CFRP lam-

inate. Once damage is detected, damage modeling is essential. Therefore, sudden material property

degradation rule has been presented for damage modeling.



Chapter 4

Prediction of Failure and
Stress-strain Behavior of CFRP
Laminate

4.1 Input Parameters Required for PDM of CFRP Laminate

Carbon fiber reinforced polymer (CFRP) composites are made up of carbon fiber and epoxy resin ma-

terial. It is assumed that carbon fiber and epoxy resin matrix material are isotropic and homogeneous

in nature. Generally, a diameter of the carbon fiber varies between 5-10 micrometer as described by

Satish et.al. [6]. Therefore, the average value which is 7.5 µm is chosen for further analysis. The ma-

trix material i.e. epoxy resin is prepared from a mixture of LY-556 epoxy resin and HY-951 hardener

by Kashfuddoja [5]. The material properties of carbon fiber and epoxy resin which are given in Table

4.1 are obtained experimentally [5] using the digital image correlation (DIC) technique. Further, the

dimensions of the RUC configuration are calculated using the properties given in Table 4.1.

Table 4.1: Properties of fiber and matrix material [5]

Material property carbon fiber epoxy resin

Shear modulus 88461 MPa 1477 MPa

Poisson’s ratio 0.35 0.34

Volume fraction 0.35 0.65

Volume fraction of fiber (Vf ) can be calculated by using the following expression,

Vf =

(
π
4

)
D2

L×H
(4.1)

Here, it is assumed that cross section of carbon fiber is circular and RUC is a square. Therefore,
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D is the diameter of fiber, L and H are the width and height of the RUC respectively as shown in

the Figure 2.2a.

By substituting the values in Eq. 4.1 and assuming a square RUC, we obtained L = H = 11.235mm

Figure 4.1: RUC Dimension and loading condition (all the dimensions are in mm)

RUC is fixed at the two points as shown in the Figure 4.1 and divided as shown in Figure 2.2a

into 2500 number of sub-cells. The applied strain is increased from 0 to 3.715× 10−3. Using the Eq.

2.27 given by HFGMC method, effective stiffness matrix for RUC is obtained. Further, the material

properties of the CFRP composites are calculated using the effective stiffness matrix obtained and

compared with the material properties of the CFRP composites calculated using experimental and

analytical approach.

4.2 Numerical Implementation

The Figure 4.2 describes the steps in progressive damage analysis CFRP laminates. The input pa-

rameters required for PDM analysis of CFRP composites are applied strain (ε), dimensions of RVE,

constituent properties and the number of sub-cells in y2 and y3 direction. In the step of material

discretization, sub-cells are divided into two groups, fiber and matrix sub-cells based on the distance

of sub-cell center from the fiber center. The coordinate system defined for the micromechanical model

is a material coordinate system for a composite material. x1 denotes the fiber direction, x2 is used for

defining ply plane and x3 describes the perpendicular to ply plane. For visualization of results, (x2, x3)

plane is used. Further, local stiffness matrix is calculated for each sub-cell depending on a material of

that sub-cell. Fiber and matrix material used are assumed as isotropic and homogeneous in nature. In

this step, the constitutive matrix is calculated for each sub-cell considering its isotropic nature. Global

TG and DG matrix are formed using local T and D matrices which are calculated using P , L and A

matrices derived in the mathematical formulation of HFGMC. Sparse system solver is used for solving
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the global system of equations. Benefits of the sparse implementation are finer unit cell discretiza-

tion as well as significant improvement of computational effectiveness. By solving the global system

equations, displacement, strain and stress components are obtained for each sub-cell. Further, if the

solution is in convergence limit, MCT is used for finding the damage state of the sub-cell. Newton-

Raphson iteration scheme described by Figure 2.6 is used to obtain the solution in convergence limit.

Once the damage is detected, material properties of the failed sub-cells are degraded using sudden

material property degradation rule. This process is repeated till the final failure of CFRP composite

material. Once the global system has been solved, output variables such as homogenized mechanical

properties, strain concentration tensors and failure indexes of the micromechanical failure criteria are

plotted. During this PDM analysis described by using Figure 4.2, the residual limit given as 10−10

and the final failure is considered when one-third of a total number of sub-cells are failed.
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Figure 4.2: Flowchart for HFGMC method [2]
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4.3 Validation of Numerical Results using Experimental and
Analytical Approach

4.3.1 Analytical approach

There are two different analytical approaches, rule of mixture and Halpin-Tsai model, which can be

used for calculating the material properties of the CFRP composites:

1. Rule of mixture [4, 5]

Rule of a mixture is based on the assumption that property of the composite material is a

volume-weighted average of its constituent properties i.e. fiber and matrix. The longitudinal

elastic modulus (E1) of CFRP composite can be obtained by using,

E1 = EfVf + EmVm (4.2)

Where, Ef and Em are elastic modulus for fiber and matrix respectively.

The transverse elastic modulus (E2) is obtained by using,

E2 =
EfEm

EfVm + EmVf
(4.3)

The in-plane shear modulus (G12) is obtained using,

G12 =
GfGm

GfVm +GmVf
(4.4)

The in-plane Poisson’s ratio (ν12) is obtained using,

ν12 = νfVf + νmVm (4.5)

2. Halpin-Tsai Model [4, 5]

According to Halpin-Tsai semi empirical model, the properties E1 and ν12 are same as rule of

mixture given by Eq. 4.2 and Eq. 4.5 respectively. The transverse elastic modulus (E2) can be

obtained by using,

E2 = Em

(
1 + ξηVf
1− ηVf

)
(4.6)

η =

(
Ef
Em
− 1
)

(
Ef
Em

+ ξ
) (4.7)

Where, ξ = 2 for circular fiber in square array. It is a reinforcement factor which depends on

loading conditions, fiber geometry etc.
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The in-plane shear modulus is obtained using,

G12 = Gm

(
1 + ξηVf
1− ηVf

)
(4.8)

η =

(
Gf
Gm
− 1
)

(
Gf
Gm

+ ξ
) (4.9)

Where, ξ = 1 for calculating the in-plane shear modulus.

The properties of the carbon fiber and matrix material given in the table 4.1 are used to calculate

the properties of CFRP composite laminate analytically by using above mentioned approaches.

Kashddoja [5] has obtained the properties of CFRP composite laminate by performing the DIC

experiment. The numerical estimates of material properties are calculated using the effective tensor

modulus obtained using Eq. 2.27 by assuming the transversely isotropic nature of composite. The

numerically obtained properties are compared with analytically and experimentally obtained results.

It can be observed from the Table 4.2 that for E1, G12 and ν12, numerical results are closer to exper-

imental results as well as analytical results. There is a percentage error of 2 between the numerical

and experimental results for E1. However, the numerical and experimental results for E2 are not

comparable. The numerical results for E2 are closer to the Halpin-Tsai model. The results obtained

here are quite consistent with the experimental results obtained by Kashddoja [5].

Table 4.2: Comparison between numerical,experimental and analytical results

Property HFGMC code Experimental Rule of Halphin Tsai

results results (DIC) mixture model

Longitudinal modulus,(E1)in GPa 80.25 81.9 83.074 83.074

Transverse modulus,(E2)in GPa 8.80 6.15 6.04 9.87

Shear modulus,(G12)in GPa 2.935 2.77 2.253 2.97

Poisson’s ratio,(ν12) 0.33 0.34 0.33 0.33

4.4 Comparison between Numerical and FEM Results

Initially for preliminary comparison, Stress analysis is carried out by using both high fidelity gener-

alized method of cells and finite element analysis. HFGMC is different from classical finite element

method. The major differences are the displacement continuity between adjacent elements is point

wise (achieved by node sharing) in the finite elemental method. While in the HFGMC, displacement

continuity between adjacent sub-cells is satisfied by an average basis. In HFGMC the equilibrium is
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enforced in strong form while the it is enforced in weak form in FEM. In theory, either can be used for

stress analysis. However when you introduce gradients the micro-equilibrium handling in weak form is

tedious test as compared to HFGMC frame work. Further, in HFGMC, periodic boundary conditions

are applied using both displacement and traction continuity whereas in finite element modeling, only

displacement continuity is considered.

In the present work, we sought initial comparison of FE simulations without introducing the

micro-force balance in the weaker sense. Hence, they cannot be truly compared.

4.4.1 Finite element modeling

A 2D finite element model is developed for CFRP laminate in which SOLID 183 element is used

with plane strain condition. Total number of elements used were 54,349 and size of each element was

5× 10−5mm. Dimensions and loading condition for RUC are shown in Figure 4.1.

(a) Finite element method (b) Average HFGMC Solution

(c) Correction using HFGMC (d) Full HFGMC Solution

Figure 4.3: Component of stress in fiber direction (σ11)
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(a) Finite element method (b) Average HFGMC Solution

(c) Correction using HFGMC (d) Full HFGMC Solution

Figure 4.4: Component of stress in loading direction (σ33)

Figures 4.3(a) and (d) shows the stress σ11 developed in the fiber direction obtained by finite

element method and HFGMC. The HFGMC solution is superposition of average HFGMC solution

and the correction due to inhomogeneous field as shown in Figs. 4.3(b) and (c). The FEM and

HFGMC agree qualitatively in the pattern. However, HFGMC also provides the inhomogeneous fields

due to discrete nature of the inhomogeneity existing at the microscale.

Similarly, Figures 4.4(a) and (d) shows the stress σ11 developed in the transverse direction obtained

by finite element method and HFGMC. The HFGMC solution is superposition of average HFGMC

solution and the correction due to inhomogeneous field as shown in Figs. 4.4(b) and (c).

4.5 Stress-strain Behavior of CFRP Composite Laminate

The applied strain has been gradually increased from zero to final failure point and the stress-strain

behavior of CFRP composite laminate is reported in here. The dimensions of RUC, loading and

boundary conditions are shown in Figure 2.2a. To carry out the analysis, RUC element has been
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divided into 50× 50 sub-cell array.
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Figure 4.5: Stress-strain curve for CFRP composite

Figures. 4.5a and 4.5b represents the stress (σ33 and σ23) vs applied strain ε33.

In the figures the black dot represents the damage initiation point at a strain level of ε33 =

2.03× 10−3. Simulations are halted and considered as final failure point, when 35 % of total volume

is occupied by damaged sub-cells. It can be observed from the figures that, till the damage initiation

point, CFRP composite material shows linear behavior but once the damage initiates, softening is

observed as shown in Figure 4.5. Softening is due to the the sudden degradation in strength (see

Bazant [11]). In our simulations, the stiffness properties of the damaged sub-cells were degraded by

95 %. Therefore, strength of the CFRP laminate at damaged location decreases abruptly and softening

is observed. Size of the softening region is sensitive to the damaged region. Therefore, to capture

the size effect, sub-cell size was varied and the behavior of CFRP composite material following the

damage initiation has been observed.
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Figure 4.6: Stress-strain curve for different sub-cell array
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Figure 4.6a represents the σ33 vs ε33 curve for various sub-cell sizes, the stress vs strain linear and

damage initiation is converged for the 50x50 and above discretization. However, the zoomed softening

zone shown in Figure 4.6b shows that the softening zone is still not converged. But due do limitations

in the computing resources, 50× 50 in the subsequent simulations. The computational cost increases

in geometric progression i.e for 70x70 the simulation are 96% more expensive than 50x50 while the

predictions are merely improved less than 2%. Further, the softening obtained using sub-cell array of

50× 50 is more pronounced than others and hence it is on conservative side. Decreasing tendency of

softening region could further be seen for finely divided repeating unit cell. However small the subcell

size the region of softening always persists [11].

4.6 Stress-strain components in the CFRP laminate

The present work is focused on the 2D analysis of CFRP composite laminate. The 2-3 plane is a plane

of isotropy. Therefore, stress and strain components with the plane 2-3 are further investigated. In

this section, the stress and strain distribution of various components within linear regime (well below

damage initiation load) is presented i.e at the applied strain of ε = 1.6 × 10−3. Figures 4.7a & 4.7b

represents stress σ22 and strain ε22 contours for the loaded RUC. Maximum stress has been observed

at the transverse hole edge and the corners. The corner nodes are constrained to represent periodic

boundary conditions. Hence, reflections are seen from the constrained corner nodes. The stress σ22 is

non trivial even though pure uniaxial ε33 is applied. The observed stress σ22 is purely due to Poisson’s

effect.

(a) Stress component (σ22) (b) Strain component (ε22)

Figure 4.7: Stress and strain component in y2 direction

Figures 4.8a & 4.8b represents stress σ33 and strain ε33 contours for the loaded RUC. Maximum

stress has been observed at an angular offset to the transverse hole edge. The strain contours show
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low strains in the fiber due to higher stiffness ( stiffness ratio is of the order of 60 in this case).

(a) Stress component (σ33) (b) Strain component (ε33)

Figure 4.8: Stress and strain component in y3 direction

Figures 4.9a and 4.9b represents shear stress σ23 and shear strain ε23 contours for the loaded RUC.

Maximum and minimum stress are observed at ±45 to the transverse hole edge. The inhomogeneous

field around the circumference of the hole is greatly spread as compared to normal and transverse

field plotted in Figures. 4.7a and 4.8a.

(a) Stress component (σ23) (b) Strain component (ε23)

Figure 4.9: Stress and strain component in 2-3 direction

4.7 Damage Propagation in CFRP Laminate

To study the damage behavior of CFRP composites, applied strain is increased from 0 to the final

failure point. The Figure 4.11 shows the variation of volume fraction of damage with increasing strain

value. Till ε = 2.21 × 10−3, damage was absent but after increasing the strain further, non-linear

variation has been observed. The plot of the volume fraction of damage versus strain follows cubic
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nature as observed from Figure 4.11 after failure initiation point. The cubic expression obtained by

using basic fitting in MATLAB R2013a is as follows:

Vdamage = 4.13× 107 ε333 − 3.58× 105 ε233 + 1219.5 ε33 − 1.3634

Final failure has been observed when 35 % volume of the material was damaged.

(a) Applied strain ε = 0.001 (b) Applied strain ε = 0.002 (c) Applied strain ε = 0.00221

(d) Applied strain ε = 0.0024 (e) Applied strain ε = 0.003 (f) Applied strain ε = 0.003731

(g) Fracture index variation from 0 to 1

Figure 4.10: Damage propagation in CFRP composite material with increasing strain

Figure 4.10 shows the damage behavior of CFRP composite material. In this figure, fracture index

variation for different strain values is plotted for single RUC element. The dimensions of RUC are

kept as shown in Figure 4.1. As the fracture index reaches to 1 for any sub-cell of RUC, that sub-cell

is assumed to be failed. From Figure 4.10c , it is observed that failure initiates for ε = 0.00221 applied

strain value and four sub-cells are failed. From Figure 4.10a and Figure 4.10b, it is observed that

there is no failure till the applied strain reaches to ε = 0.00221.
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Figure 4.11: Volume fraction of damage with increasing strain

The stiffness and strength properties of the failed sub-cells are degraded by 95 % and again applied

strain is increased. Now, as applied strain increases, failure propagates in the direction of loading as

shown in Figure 4.10d. For this strain, the failed sub-cells are 124.

Failure propagation is observed for ε = 0.003 as shown in Figure 4.10e. Till this point number of

failed sub-cells are 464. Again, same procedure is repeated as mentioned for previous case. Now,

catastrophic failure is observed for ε = 0.003731 as shown in Figure 4.10f with 884 failed sub-cells.

All failed sub-cells are from matrix region.

4.8 Stiffness Properties of CFRP Composite Laminate

The variation of stiffness properties of CFRP laminate with the increasing strain from 0 to 3.3715×

10−3 is shown in Figure 4.12. Behavior of all the stiffness properties is constant till the damage

initiation point
(
ε = 2.02× 10−3

)
however non-consistent beyond that.
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Figure 4.12: Properties of CFRP composite with increasing applied strain

From Figure 4.12, the nature of deterioration of stiffness properties beyond failure initiation point

can be observed in which, longitudinal elastic modulus E11 gradually degrades till final failure point(
ε = 3.71× 10−3

)
whereas others exhibits sudden drop. The Figure 4.13 shows the variation of E22

and E33 properties with increasing strain. It is observed from this figure that E22 and E33 retain same

value till failure initiation point beyond which, both the values degrades differently till final failure

point. CFRP laminate has only five independent constants in the effective constitutive matrix till

failure initiation point. The effective stiffness matrix for the RUC in the linear region before damage

initiation
(
CeffA

)
is given below:

CeffA =


83100 4921 4921 0 0 0
4921 10743 4446 0 0 0
4921 4446 10743 0 0 0

0 0 0 2384 0 0
0 0 0 0 2920 0
0 0 0 0 0 2920
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Figure 4.13: Comparison between E22 and E33 properties

From the above stiffness matrix, it is observed that

c22 = c33, c21 = c31, c55 = c66 , c44 = 1
2 (c22 − c23) and all other constants are zero.

Therefore, it is clearly seen that (y2, y3) plane shows transversely isotropic behavior till damage initi-

ation point. In this plane, the stiffness properties are constant when calculated in different directions

till damage initiation point. Therefore, stiffness matrix at the point where stiffness properties starts

degrading which can be called as corporation point which is
(
CeffB

)
,

(
CeffB

)
=


83076 4912 4897 0 0 0
4909 10727 4427 0 0 0
4901 4436 10691 0 0 0

0 0 0 2376 0 0
0 0 0 0 2905 0
0 0 0 0 0 2918


The effective stiffness matrix at ε = 3 × 10−3 which is in the region between damage initiation and

final failure is given by
(
CeffC

)
,

(
CeffC

)
=


81799 4332 3736 0 0 0
4220 9615 3476 0 0 0
3920 3848 8239 0 0 0

0 0 0 2023 0 0
0 0 0 0 2257 0
0 0 0 0 0 2753
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The The effective stiffness matrix at final failure point is given by
(
CeffD

)
,

(
CeffD

)
=


79483 1993 965 0 0 0
1599 3947 1017 0 0 0
1240 1927 1845 0 0 0

0 0 0 708 0 0
0 0 0 0 415 0
0 0 0 0 0 1014


Therefore, by observing

(
CeffD

)
sudden drop has been observed in the stiffness properties at the

failure point. The behavior of material changes to anisotropic from isotropic, beyond failure initiation

point since the nature of stiffness properties does not remain constant in all direction in the 2-3 plane

this claim can be visualized graphically also from the figure 4.13

4.9 Summary

The input parameters required for progressive damage analysis of composites have been discussed in

this chapter. The steps in the numerical analysis using high fidelity generalized method of cells is also

included in this chapter with the help of flowchart shown in the Figure 4.2. The behavior of the CFRP

laminate and variation of stiffness properties under increasing strain has been studied in this chapter.

The numerical results obtained are compared with experimental results generated by Kashfuddoja [5]

and analytical results calculated using Halpin-Tsai model. The damage progression in the laminate

has been studied described in the Figure 4.10 with increasing strain and final failure of the CFRP

laminate has been captured. 1I RVE configuration has been analyzed for increasing (D/H) ratio to

find the minimum RVE size.



Chapter 5

RVE Interaction Effect

For simplicity, the microstructure of the CFRP composite has been assumed as doubly periodic, shown

in the Figure 5.1 which is defined in the (x2, x3) co-ordinate system. RUC element is described by

Figure 5.2 defined in the (y2, y3) co-ordinate system. Sometimes, RUC does not represent RVE. In

such cases, mean-field homogenization is used to obtain the homogeneous properties of the CFRP

composites. Due to non-local effects, RVE is size dependent. Therefore, it is essential to consider the

RVE interaction effect. Figure 5.1 shows (Blue) RVE with no interaction, (orange) with near neighbor

interaction and (green) with next near neighbor interaction. Due to long-range interactions, the size

of the RVE changes. In the present analysis, near neighbor interaction effect has been considered

while calculating the minimum RVE size and assumed as next near neighbor effect is absent.

Figure 5.1: Micro-structure of CFRP composite
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Figure 5.2: Repeating unit cell element in (y2, y3) co-ordinate system

Due to computational limitations, it is prohibitively difficult to solve the global system of equations

for the near neighbor interaction RVE shown in the Figure 5.1 with red color. Therefore, to capture

the fiber interaction effect, different RVE configurations shown in the Figure 5.3 are considered. This

chapter focuses on estimating the minimum RVE size for different RVE configurations shown in the

Figure 5.3 for the CFRP composite material using the HFGMC method and Halpin-Tsai model.

1I RVE configuration accounts for a single RUC element as shown in the Figure 5.3 whereas two RUC

elements are analyzed in 2IL and 2IT RVE configurations. In 2IT configuration, two fiber elements

are placed in the direction perpendicular to the loading and the two fiber elements are deposited in

the direction of loading for 2IL RVE configuration as shown in the Figure 5.3.

Figure 5.3: Different RVE configurations

2I RVE configuration consists of four RUC elements as shown in the Figure 5.3.

5.1 Fiber Interaction Effect

Previously, 1I fiber configuration has been analyzed but the fiber interaction effect present due to

the fiber orientation, fiber spacing etc. can not be captured using single fiber RUC element, which is

demonstrated by the Figure 5.4.

The fracture index has been plotted for different RVE configurations for same loading condition in

the Figure 5.4. As fracture index reaches to 1, the damage is detected in the material. All the RVE

configurations described in the Figure 5.3 has been studied for ε = 1.6 × 10−3 and it is discovered

that all other RVE configurations are showing failure except 1I fiber configuration. Therefore, the
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necessity of considering different configurations arises. It becomes essential to calculate minimum

RVE size for which the fiber interaction effect disappears or shows negligible effect. Therefore, in

Chapter 5, different RVE configurations has been studied to find the minimum RVE size.

(a) 1I RVE configuration (b) 2IL RVE configuration

(c) 2IT RVE configuration (d) 2I RVE configuration

Figure 5.4: Fiber interaction effect in different RVE configurations

5.2 Different Types of RVE Configurations

To find the minimum RVE size, RVE configurations has been inspected for the varying (D/H) ratio

from 0.2 to 0.8 in which, D and H are the diameter of the fiber and height of the RVE respectively.

In each RVE configuration, diameter of the fiber (D) was kept constant which was 7.5 µm and the

volume fraction of the fiber (Vf ) was varied between 0.0031 to 0.502 as shown in the Figure 5.5. The

dimensions of the RVE configurations has been calculated using the Eq. 4.1 and the properties of the

carbon fiber and epoxy resin material has been taken from the Table 4.1.
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Figure 5.5: Volume fraction of fiber vs (D/H)

Dimensions of all the RVE configurations were calculated using the following expression of volume

fraction of fiber (Vf ):

Vf =
n×

(
π
4

)
D2

L×H
(5.1)

where, n is the number of fiber elements

D is the diameter of the fiber

L and H are the width and height of the RVE respectively.

5.2.1 1I RVE Configuration:

Single RUC element has been studied in the 1I RVE configuration as shown in the Figure 5.3. The

dimensions of the RVE are calculated using the Eq. 5.1. While calculating the dimensions for 1I

configuration, it was assumed that W = H. Using diameter and volume fraction of the fiber shown

in the Figure 5.5, dimensions of the 1I RVE are calculated for each (D/H) ratio. It can be seen from

Figure 5.5, volume fraction of the RVE increases with increase in the (D/H) ratio. Dimensions of

the RVE, calculated using Eq. 5.1 for different (D/H) ratio are given in the Table 5.1. The micro-

structure of the 1I RVE configuration for mentioned (D/H) ratios is shown in the Figure 5.6. The

diameter of the fiber element is constant for every (D/H) ratio but size of the RVE decreases with

increasing (D/H) ratio.
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Figure 5.6: Micro-structure for different (D/H) ratios for 1I RVE configuration

Table 5.1: Dimensions of 1I RVE configuration for different (D/H) ratio
(all the dimensions are in µm )

(D/H) Height (H) width (L) Volume fraction of fiber (Vf )

0.2 37.5 37.5 0.031

0.3 25 25 0.00706

0.4 18.75 18.75 0.126

0.5 15 15 0.196

0.6 12.5 12.5 0.282

0.7 10.72 10.72 0.384

0.8 9.375 9.375 0.502

Drugan et al. [27, 28] has used Hashin-Shtrikman variational principle to obtain a micro-mechanics

based non-local constitutional relation between the stress and strain variables at macro scale. He has

calculated the minimum size of RVE by allowing 5% variation in the overall modulus tensor over which

the macroscopic properties of the element are constant. In present approach, high fidelity generalized

method of cells has been used to find the effective stiffness matrix for the representative volume element

and assuming transversely isotropic nature of the CFRP composites, stiffness properties for the 1I RVE

configuration of the CFRP composite material has been determined for (D/H) ratio varying from 0.2

to 0.8. Halpin-Tsai model described in the section 4.3 is used to calculate the material properties for

different (D/H) ratios analytically and obtained results are compared with the numerical properties

acquired using HFGMC.
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(b) E22 vs (D/H)
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(c) G12 vs (D/H)

Figure 5.7: Variation in the stiffness properties with increasing (D/H) ratio for 1I RVE configuration

E11, E22 and G12 are the longitudinal elastic modulus in the fiber direction, transverses elastic

modulus and in-plane shear modulus respectively. The Figure 5.7a presents the difference between

the longitudinal elastic modulus (E11) obtained using HFGMC method and Halpin-Tsai model for

increasing (D/H) ratio from 0.2 to 0.8. It can be followed from the Figure 5.7a that with decreasing

(D/H) ratio, HFGMC method approaches towards the Halpin-Tsai model. Similar results are ob-

served for transverse elastic modulus (E22) and shear modulus (E22) illustrated by Figure 5.7b and

5.7c respectively. It can be seen from the Figure 5.7b and 5.7c, error in stiffness properties calculated

using HFGMC and Halpin-Tsai method progressively increases with increasing (D/H) ratio. The

particular value of (D/H) ratio at which above error reaches within the limit of 5 % symbolizes the

minimum RVE size. Therefore, for (D/H) = 0.4 or less, all the stiffness properties described in the
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Figure 5.7 are within 5% error limit w.r.t analytical results acquired using Halpin-Tsai model. Hence,

size of the RVE for (D/H) = 0.4 given in the Table 5.1 is the minimum RVE size for 1I configuration.

5.2.2 2IT RVE configuration:

2IT RVE configuration is shown in the Figure 5.3 in which two fiber elements are placed in the direction

perpendicular to the loading. Therefore, to capture the fiber interaction effect, 2IT configuration has

been studied for various (D/H) ratios. For 2IT RVE configuration, strain was applied in the length

direction as shown in The Figure 5.3.

Figure 5.8: Micro-structure for different (D/H) ratios for 2IT RVE configuration

Dimensions of the RVE has been estimated using the Eq. 5.1 and stated in the Table 5.2. The

micro-structure of the 2IT RVE with increasing (D/H) ratio is presented in the Figure 5.8 in which

diameter of both the fiber elements remain constant for all the (D/H) ratios.

Table 5.2: Dimensions of 2IT RVE configuration for different (D/H) ratio
(all the dimensions are in µm )

(D/H) Height (H) width (L) Distance between center of fibers Volume fraction (Vf )
0.2 75 37.5 37.5 0.031
0.3 50 25 25 0.00706
0.4 37.5 18.75 18.75 0.126
0.5 30 15 15 0.196
0.6 25 12.5 12.5 0.282
0.7 21.43 10.72 10.72 0.384
0.8 18.75 9.375 9.375 0.502
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(b) E22 vs (D/H)
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(c) G12 vs (D/H)

Figure 5.9: Variation in the stiffness properties with increasing (D/H) ratio for 2IT RVE configuration

The overall modulus tensor for 2IT RVE configuration was obtained using HFGMC method to

calculate the stiffness properties of CFRP composite material. Here, the difference between the

properties obtained using Halpin-Tsai model and HFGMC method is more when compared with the

1I RVE configuration. It was observed that the percentage change in the stiffness properties calculated

using HFGMC method, prescribed in the Figure 5.9 is within 5 % when compared with Halpin-Tsai

model for (D/H) = 0.3 and less for 2IT configuration. Therefore, estimated minimum RVE size for

2IT RVE configuration is for (D/H) = 0.3 which is stated in the Table 5.2.
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5.2.3 2IL RVE configuration

2IL RVE configuration is shown in the Figure 5.3 in which two fiber elements are positioned in the

direction of loading. Therefore, to study the behavior of the RVE configuration, strain ε = 1 × 10−3

has been applied in the direction of fiber and effective stiffness matrix was calculated to find the

stiffness properties for this configuration. The microstructure of the RVE configuration for increasing

(D/H) ratio is shown in the Figure 5.10 in which diameter of the fiber has been kept constant.

Figure 5.10: Micro-structure of 2IL RVE configuration for different (D/H) ratios

Similar to the previous configuration, dimensions of the RVE for (D/H) ratio varying from 0.2 to

0.8 has been calculated using the Eq. 5.1 and stated in the Table 5.3.

Table 5.3: Dimensions of 2IL RVE configuration for different (D/H) ratio
(all the dimensions are in µm )

(D/H) Height (H) width (L) Distance between center of fibers Volume fraction (Vf )
0.2 37.5 75 37.5 0.031
0.3 25 50 25 0.00706
0.4 18.75 37.5 18.75 0.126
0.5 15 30 15 0.196
0.6 12.5 25 12.5 0.282
0.7 10.72 21.43 10.72 0.384
0.8 9.375 18.75 9.375 0.502
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(c) G12 vs (D/H)

Figure 5.11: Variation in the stiffness properties with increasing (D/H) ratio for 2IL RVE configuration

The variation in the stiffness properties calculated using HFGMC method and Halphin-Tsai model

with increasing (D/H) ratio is shown in the Figure 5.11. Interaction effect becomes considerable

when (D/H) ratio reaches to 0.5. The longitudinal and transverse elastic modulus calculated using

HFGMC method are in agreement with the Halphi-Tsai model results as observed from Figure 5.11a

and Figure 5.11b. Minimum RVE size for 2IL configuration by considering the 5 % variation in the

stiffness properties obtained using HFGMC results w.r.t. analytical results is observed for (D/H) =

0.4.
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5.2.4 2I RVE configuration

2I RVE configuration consists of an 2 × 2 array of fiber elements as described in the Figure 5.3.

Dimensions of this configuration has been calculated using the Eq. 5.1 and stated in the Table 5.4.

Micro-structure for the 2I configuration for various (D/H) ratio is shown in the Figure 5.12. Model

has been studied to find the minimum RVE size for which near fiber interaction effect is negligible.

Figure 5.12: Micro-structure for different (D/H) ratios for 2I RVE configuration

Table 5.4: Dimensions of 2I RVE configuration for different (D/H) ratio
(all the dimensions are in µm )

(D/H) Height (H) width (L) Distance between center of fibers Volume fraction (Vf )
0.2 75 75 37.5 0.031
0.3 50 50 25 0.00706
0.4 37.5 37.5 18.75 0.126
0.5 30 30 15 0.196
0.6 25 25 12.5 0.282
0.7 21.43 21.43 10.72 0.384
0.8 18.75 18.75 9.375 0.502

Variation of the stiffness properties w.r.t. (D/H) ratio changing from 0.2 to 0.8 using HFGMC

method and Halphin-Tsai model is shown in the Figure 5.13. These two methods present exact

matching results for shear modulus (G12) as shown in the Figure 5.7c whereas longitudinal elastic

modulus (E22) obtained using HFGMC is also closely matches with the analytical results as observed

from Figure 5.13a. Considering the 5 % variation in transverse elastic modulus (E22) when compared

with Halphin-Tsai model results, minimum RVE size for present configuration is observed for (D/H) =

0.5 as fiber interaction effect is negligible for (D/H) = 0.5 or less.

After observing all the RVE configurations presented using the Figure 5.3, for 2I RVE configuration,

minimum RVE size is obtained for highest (D/H) ratio whereas for 2IT configuration, it is observed

for lowest (D/H) ratio. Numerical results formulated using high fidelity generalized method of cells

are utmost accordance with the analytical results acquired using Halphin-Tsai model for 2IL and

2I RVE configuration. Next, stiffness properties obtained using HFGMC method for different RVE
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configurations has been compared to find the most appropriate configuration to avoid early matrix

failure when stacked under tensile loading.
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(c) G12 vs (D/H)

Figure 5.13: Variation in the stiffness properties with increasing (D/H) ratio for 2I RVE configuration

5.3 Comparison Between Different RUC Configurations

RUC configurations described in the Figure 5.3 has been studied to find the most appropriate con-

figuration for micro-mechanical analysis CFRP composites by comparing the stiffness properties

(E11, E22, G12) of them. In the Figure 5.14, longitudinal elastic modulus of the CFRP composites

in the fiber direction has been plotted against varying (D/H) ratio for all the RVE configurations

mentioned in the Figure 5.3 which shows that the longitudinal elastic modulus (E11) predicted by all

the RVE configurations is same. Therefore, for determining the material properties in the direction
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of fiber, any configuration amongst various RVE configurations shown in the Figure 5.3 can be used.

Figure 5.15a and 5.15b explains the behavior of transverse elastic modulus (E22) and shear modulus

(G12) respectively w.r.t. increasing (D/H) ratio for different RVE configurations. From Figure 5.15a

and 5.15b, it can be easily concluded that the results obtained for 1I and 2I configuration are exactly

matching whereas 2IT configuration gives maximum values for the effective stiffness properties. The

shear modulus for 2IL configuration is the lowest amongst all configurations whereas transverse elastic

properties of the CFRP composite are lowest for 1I and 2I configuration. Therefore, 2IT configuration

shows higher effective stiffness properties when compared with all other configurations.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

D/H ratio

L
on

gi
tu

di
na

l e
la

st
ic

 m
od

ul
us

 (
E

11
)

 

 
1I
2IL
2IT
2I

Figure 5.14: Longitudinal elastic modulus (E11) for different RVE configurations
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Figure 5.15: Transverse elastic modulus (E22) and shear modulus (G12) for different RVE configura-
tions
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5.4 Summary

Different RVE configurations have been analyzed to find minimum RVE size for each configuration

to avoid fiber interaction effect. These configurations have been compared for same diameter and

volume fraction of the fiber but for varying (D/H) ratio. Minimum RVE size is obtained for each

configuration by allowing 5% variation w.r.t. analytical results calculated using Halpin-Tsai model.

Different configurations shown in the Figure 5.3 has been compared to find the most appropriate

model for analyzing the CFRP laminate by considering the interaction effect.



Chapter 6

Conclusions and Scope of Future
Work

6.1 Conclusions

Carbon fiber reinforced polymer composite material exhibits linear and transversely isotropic behavior

only till damage initiation point. Once the first trace of damage is initiated, CFRP laminate shows

nonlinear and anisotropic nature. The damage progression with increasing strain has been studied

thoroughly. The final failure strain for CFRP composite is also realized. Stiffness properties remain

constant till failure initiation but after that, they start decreasing gradually. At final failure point,

sudden drop is observed for all the stiffness properties except longitudinal elastic modulus (E11).

The minimum representative volume element size has been located using same approach for differ-

ent RVE configurations. To calculate minimum RVE size, various RVE configuration were studied for

increasing
(
D
H

)
ratio from 0.2 to 0.8. By comparing different RVE configurations, it is observed that

2IT configuration carries the highest stiffness properties amongst all for same diameter and volume

fraction of the fiber element.

6.2 Scope for Future Work

The MATLAB code developed during this project work can be extended to study the constitutive

behavior of viscoelastic composites. The same code can be used to study the behavior of more realistic

CFRP composites which consists of non-uniformly distributed fiber elements. Constitutive behavior

of CFRP composites can also be studied for shear loading using exactly same study with appropriate

input conditions. The present micromechanical analysis approach can be further extended to study

the behavior of composites under fatigue loading. Same code with small modification can be used to
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study the behavior of anisotropic material considering continuous, gradual or exponential degradation

also.
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Appendix A

High Fidelity Generalized Method
of Cells (HFGMC)

A.1 Equation of stress

Total stress for each sub-cell can be calculated using the Eq. 2.6 given below[3, 23]:

σ(βγ) = σ̄(βγ) + σ
(βγ)
(10) y

(β)
2 + σ

(βγ)
(01) y

(γ)
3 (A.1)

Where, σ̄(βγ) can be calculated using following expression:

σ̄(βγ) = C(βγ)ε̄+ C(βγ)P(10)W
(βγ)
(10) + C(βγ)P(01)W

(βγ)
(01)

σ(10) and σ(01) components used in Eq. A.1 can be obtained using stress moment equation as follows:

S
(βγ)
(mn) =

1

hβ

1

lγ

∫ hβ
2

−hβ
2

∫ lγ
2

−lγ
2

σ(βγ)y
(β)
2

m
y
(γ)
3

n
dy

(β)
2 dy

(γ)
3 (A.2)

By putting m = 1 and n = 0, we can calculate the S
(βγ)
(10) component,

S
(βγ)
(10) =

1

hβ

1

lγ

∫ hβ
2

−hβ
2

∫ lγ
2

−lγ
2

σ(βγ)y
(β)
2

1
y
(γ)
3

0
dy

(β)
2 dy

(γ)
3

After simplifying and putting Eq. A.1 in Eq. A.2.

S
(βγ)
(10) =

1

hβ

1

lγ

∫ hβ
2

−hβ
2

∫ lγ
2

−lγ
2

(
σ̄(βγ) + σ

(βγ)
(10) y

(β)
2 + σ

(βγ)
(01) y

(γ)
3

)
y
(β)
2 dy

(β)
2 dy

(γ)
3

After integrating w.r.t. dy
(γ)
3 and putting the limits,

S
(βγ)
(10) =

1

hβ

∫ hβ
2

−hβ
2

[
σ̄(βγ)y

(β)
2 + σ

(βγ)
(10) y

2(β)
2

]
dy

(β)
2
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Now integrating w.r.t. dy
(β)
2 and putting the limits.

σ
(βγ)
(10) =

12

h2β
S
(βγ)
(10)

Similarly, by putting m = 0 and n = 1 in the Eq. A.2 and solving, σ
(βγ)
(01) can be obtained.

σ
(βγ)
(01) =

12

l2γ
S
(βγ)
(01) (A.3)

Therefore, σ
(βγ)
(01) and σ

(βγ)
(01) components can be acquired using following expressions:

σ
(βγ)
(10) =

12

h2β
S
(βγ)
(10) σ

(βγ)
(01) =

12

l2γ
S
(βγ)
(01)

A.2 Displacement and traction continuity conditions

The displacement and traction boundary conditions are applied on the surface 1 and surface 2 which

are represented by red and green color in the Figure A.1 respectively . RUC is a periodic structure

therefore, continuity conditions are applied only on two surfaces.

Figure A.1: Sub-cell

Displacement boundary condition: -

Now, only two surfaces as shown in fig. A.1 has been considered and symmetrical boundary conditions

has been assumed.

The displacement continuity equation for surface 1 is,∫ hβ
2

−hβ
2

[
u(βγ)|

y
(γ)
3 =

lγ
2

− u(βγ1)|
y
(γ1)
3 =

lγ1
2

]
dy

(β)
2 = 0 (A.4)

Using displacement equation 2.1,

u(βγ)|
y
(γ)
3 =

lγ
2

= ε̄.X +W
(βγ)
(00) + y

(β)
2 W

(βγ)
(10) +

lγ
2
W

(βγ)
(01) +

1

2

(
3y

(β)2
2 −

h2β
4

)
W

(βγ)
(20) +

lγ2

4
W

(βγ)
(02)
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u(βγ1)|
y
(γ)
3 =

lγ1
2

= ε̄.X +W
(βγ1)
(00) + y

(β)
2 W

(βγ1)
(10) +

lγ1
2
W

(βγ1)
(01) +

1

2

(
3y

(β)2
2 −

h2β
4

)
W

(βγ1)
(20) +

lγ2
1

4
W

(βγ1)
(02)

By substituting these values in displacement continuity eq. A.4

I =

∫ hβ
2

−hβ
2

[
ε̄.X +W

(βγ)
(00) + y

(β)
2 W

(βγ)
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lγ
2
W

(βγ)
(01) +

1

2

(
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]

+

[
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(β)
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2
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(β)2
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h2β
4

)
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(βγ1)
(20) +

lγ2
1

4
W

(βγ1)
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]
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After integrating the above equation and putting the limits,

[
∆W

(βγ)
(00) +

lγ
2

∆W
(βγ)
(01) +

lγ2

4
∆W

(βγ)
(02)

]
−
[
∆W

(βγ1)
(00) −

lγ1
2

∆W
(βγ1)
(01) +

lγ2
1

4
∆W

(βγ1)
(02)

]
= 0 (A.5)

This is the final expression for displacement boundary condition on surface 1.

The expression for displacement continuity condition on surface 2 is as follows:∫ lγ
2

−lγ
2

[
u(βγ)|

y
(β)
2 =

hβ
2

− u(β1γ)|
y
(β1)
2 =

hβ1
2

]
dy

(γ)
3 = 0 (A.6)

By solving eq. A.6,

[
∆W

(βγ)
(00) −

hβ
2

∆W
(βγ)
(10) +

hβ2

4
∆W

(βγ)
(20)

]
−
[
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(β1γ)
(00) +

hβ1

2
∆W

(β1γ)
(10) +

hβ2
1

4
∆W

(β1γ)
(20)

]
= 0 (A.7)

This is the final expression for displacement boundary condition on surface 2.

Traction Boundary Condition:-

Now, by considering the traction boundary condition on surface 1,

∫ hβ
2

−hβ
2

[
L3σ

(βγ)|
y
(γ)
3 =− lγ

2

− L3σ
(βγ1)|

y
(γ1)
3 =− lγ1

2

]
dy

(β)
2 = 0 (A.8)

L3σ
(βγ)|

y
(γ)
3

=
[
L3σ̄

(βγ) + L3σ
(βγ)
(10) y

(β)
2 + L3σ

(βγ)
(01) y

(γ)
3

]
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Put eq. 2.6 in eq. A.8.

L3σ
(βγ)|

y
(γ)
3 =

−lγ
2

= C(βγ)ε̄L3 + C(βγ)P(10)W
(βγ)
(10) L3 + C(βγ)P(01)W

(βγ)
(01) L3 + C(βγ)P(20)W

(βγ)
(20) y

(β)
2 L3

+C(βγ)P(02)W
(βγ)
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(γ)
3 L3

L3σ
(βγ1)|

y
(γ1)
3 =

−lγ1
2

= C(βγ1)ε̄L3 + C(βγ1)P(10)W
(βγ1)
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(βγ1)
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(βγ1)
(20) y

(β)
2 L3

+C(βγ1)P(02)W
(βγ1)
(02) y

(γ1)
3 L3

Putting these values in the traction continuity eq. A.8,

I =

∫ hβ
2

−hβ
2

[
C(βγ)ε̄L3 + C(βγ)P(10)W

(βγ)
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]
[
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(βγ)
(02) y

(γ)
3 L3 − C(βγ1)ε̄L3 − C(βγ1)P(10)W

(βγ1)
(10) L3 − C(βγ1)P(01)W

(βγ1)
(01) L3

]
[
−C(βγ1)P(20)W

(βγ1)
(20) y

(β)
2 L3 − C(βγ1)P(02)W

(βγ1)
(02) y

(γ1)
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dy
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By solving the above expression,[
A
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−
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A
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]
This is the final expression for traction continuity on surface 1.

Similarly, when displacement and traction boundary conditions has been applied on surface 2,∫ lγ
2

−lγ
2

[
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y
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hβ
2
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By solving this expression,[
A

(β1γ)
2(00) −A

(βγ)
2(00)

]
∆ε̄ =

[
A

(βγ)
2(10)∆W

(βγ)
(10) +A

(βγ)
2(01)∆W

(βγ)
(01) −

hβ
2
A

(βγ)
2(20)∆W

(βγ)
(20)

]
(A.11)

−
[
A

(β1γ)
2(10) ∆W

(β1γ)
(10) +A

(β1γ)
2(01) ∆W

(β1γ)
(01) +

hβ1

2
A

(β1γ)
2(20) ∆W

(β1γ)
(20)

]



A.3 Residual vector 67

A.3 Residual vector

The residual vector can be calculated using following expression for each sub-cell,

R(βγ) =



∫ [
L2σ

(βγ) − L2σ
(β1γ)

]
dy

(γ)
3∫ [

L3σ
(βγ) − L3σ

(βγ1)
]
dy

(β)
2

L2σ
(βγ)
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0
0

 =


[
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][
L3σ

(βγ)2 − L3σ
(βγ1)4

]
L2σ

(βγ)
(10) − L3σ

(βγ)
(01)

0
0

 (A.12)

As seen in the Figure. A.2, there are four integration points numbered 1,2,3 and 4 has been considered

in each sub-cell.

Figure A.2: Integration points on sub-cell

By considering, stress expression for each sub-cell.

σ(βγ) = σ̄(βγ) + σ
(βγ)
(10) y

(β)
2 + σ

(βγ)
(01) y

(γ)
3 (A.13)

Equilibrium condition has been satisfied only inside the sub-cell. Now let’s calculate stress acting at

point 1, inside the sub-cell.

σ(βγ)1 = σ̄(βγ) + σ
(βγ)
(10) y

(β)
2 + σ

(βγ)
(01) y

(γ)
3

Co-ordinates of the point 1 are
(

−hβ
2 , 0

)
Putting this value into eq. A.13,

σ(βγ)1 = σ̄(βγ) −
(
hβ
2

)
σ
(βγ)
(10) (A.14)

Now the stress expression at point 3 is

σ(βγ)3 = σ̄(βγ) + σ
(βγ)
(10) y

(β)
2 + σ

(βγ)
(01) y

(γ)
3
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The co-ordinates of point 3 are
(
hβ
2 , 0

)
Putting this value into eq. A.13,

σ(βγ)3 = σ̄(βγ) +

(
hβ
2

)
σ
(βγ)
(10) (A.15)

By solving eq. A.14 and eq. A.15, we can get

σ
(βγ)
(10) =

1

hβ

(
σ(βγ)3 − σ(βγ)1

)
Similarly we can calculate total stress at point 2 and 4 which are located at y

(β)
2 = 0 and y

(γ)
3 = ± lγ2

respectively.

σ(βγ)2 = σ̄(βγ) + σ
(βγ)
(01)

(
lγ
2

)

σ(βγ)4 = σ̄(βγ) − σ(βγ)
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(
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2

)
By solving these equations,

σ
(βγ)
(01) =

1

lγ

(
σ(βγ)2 − σ(βγ)4

)
Hence, higher order stresses can be calculated at integration points.
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