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Abstract 

 

 

Live cell imaging of intracellular calcium is a cutting-edge tool used in drug design, 

delivery and screening. The aim of this study was to develop the mathematical model for the 

drug mediated (G protein coupled receptor targeting drug) intracellular calcium responses in 

fibroblasts and estimate the kinetic parameters.  The current work proposes a computational 

framework for classification of heterogeneous data, model selection and parameter 

estimation using genetic algorithm (GA). Since the data is heterogeneous and large in size, 

we performed (1) reduction of the dimension using principal component analysis (PCA) and 

(2) classification of the calcium dynamics using K-means algorithm. Using PCA and K-

means, the cell-to-cell variability was modeled as a mixture of three subpopulations (a) low 

amplitude (b) high amplitude-immediate (c) high amplitude-delayed responses. For model 

selection we formulated a series of models having various product formation kinetics, 

substrate inhibition and product inhibition kinetics. Then we used the hybrid algorithm for 

model selection through minimization of the error between the experimental and the 

simulated calcium profiles. Hybrid of two optimization techniques, GA and gradient-based 

method was used, which takes advantage of both the techniques. In this hybrid algorithm, 

GA provides the initial guess values for gradient-based method. Using this method we 

found that the Michaelis Menten kinetic model provides a satisfactory agreement with the 

experimental data, whereas the adoption of detailed models leads to negligible 

improvements of the fit. Moreover we found that any of the model having Michaelis Menten 

kinetics, Hill kinetics, inclusion of substrate inhibition, product inhibition or exponential 

delay mechanisms were not able to capture the delayed response. 
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Chapter 1 
 

Introduction 

 

G-protein coupled receptors are the target receptors for almost 45% of the drug in current 

drug market. For drug screening using cell-based assays, fluorescent imaging of calcium 

dynamics cell-population can be used to obtain the dose-response profile. However, 

construction of a dose-response function based on single cell responses is rather challenging 

as the cells in a population respond heterogeneously to the drug. Here we develop a 

computational framework for identification of the mathematical model based on kinetic 

mechanism and estimate kinetic parameters corresponding to the heterogeneous calcium 

responses in HeLa cells. The temporal dynamics of cytosolic calcium was measured through 

time-lapse imaging using confocal microscopy for various drug doses (GPCR targeting 

drug). 

 

1.1 Calcium Imaging Experiment  

 

Figure 1.1 shows the calcium responses in a cell population and in this experiment, 400 ng 

drug is added to each and every cells. As the calcium response cannot be measured directly, 

we added Fluo-4 reagent (fluorescent sensor that binds to calcium). Intensity of the Fluo-4 

with respect to time at different cell locations were noted. Since calcium concentration is 

proportional to the intensity of the Fluo-4, we have plotted intensity with respect to time at 

different cell locations. 

As we can see from the Figure 1.1, some cells brighter (higher intensity) indicating that the 

cells are responding to the drug. The Figure 1.2 shows the experimental plot of calcium 

concentration vs. time of the cells for 400 ng drug dose. 
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Fig 1.1: Confocal imaging of intracellular calcium in HeLa cell population (400ng/mL drug) 

Fig 1.2: Fluo-4 intensity (proportional to calcium concentration in cells) vs. time in a cell population 

 (Drug dose=400 ng/mL drug dose) 
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1.2 Existing challenges: 

 

The specific challenges in analysis of intracellular calcium dynamics are as follows 

1. To handle large amount of dynamic data from the imaging experiments (handling 

large amount of videos) 

2. To identify a mathematical model for calcium responses for each and every cell 

which can predict the time course of calcium concentration (since very little 

information is available on the kinetic mechanisms of the intracellular reactions and 

reaction network) 

3. To propose a general model for the cells with various drug doses 

4. To estimate the kinetic parameters of the proposed mathematical model (it is 

challenging to obtain these kinetic parameters experimentally) 

 

Instead of proposing a general model for the whole population or finding a kinetic model for 

each and every cell, the models can be proposed for specific type of cell responses. In order 

to perform the classification, we performed dimension reduction by principal component 

analysis. And we used K-means clustering to divide the population in three subpopulations. 

 

The estimation of the kinetic parameters in the biological models is often formulated as an 

optimization problem. Hence, we defined the objective function of the problem as the 

difference between the model outputs/response produced from the simulation (using kinetic 

parameters) and the respective experimental measurements. As a result, the solution, which 

was formed from the combination of kinetic parameter sets, generate the model output that 

closely fit the experimental measurements. 
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Chapter 2 
 

Literature Review 

  

Biological systems typically consist of large numbers of interacting components and involve 

complex processes at a variety of spatial, temporal and biological scales [1]. The key part of 

the systems biology approach is mathematical modelling and it can be used to produce 

composite models which describe systems across multiple scales.  

To understand the kinetic mechanism of drug-cell interactions, computational modeling will 

play an important role. Generally the biological kinetic models are constructed using a set of 

coupled differential equations, mostly by using ordinary differential equations (ODEs), to 

signify the reactions in a specific range of time intervals. The models heavily rely on a set of 

parameters such as reaction rates and transportation rates that characterize the physiological 

behaviors of system. It is challenging to find these kinetic parameters through experimental 

analyses. Hence, these kinetic parameters are rather approximated based on the given 

experimental measurements. In most cases, the nonlinear least squares techniques (in 

finding root mean square error, RMSE) are used to find optimal parameters that may 

produce model outputs which fit closely to our experiment measurements. This task is 

usually hampered by the nonlinearity of the systems as well as the incompleteness of the 

available experimental measurements [2]. 

2.1 Reaction Mechanism and kinetic model 

 

The model-building process generally starts with (1) expert proposing a model (2) fitting the 

model to the data and (3) changing the model if the predictions are not satisfactory. This is a 

knowledge-intensive, time-consuming and iterative process [3]. Fitting the model to 

experimental data involves searching for the model parameters that accurately describe the 

data as defined by an error criterion. The error is generally defined as the sum of the squares 

of the differences between the model predictions and the experimental data. This step in 

modelling, known as parameter estimation, is critical, because wrong conclusions may be 

reached if a set of model parameters that are able to describe the data are available but are 
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not identified. Parameter estimation is complicated by the complexity and non-linearity of 

the model, quality of the data, the lack of tight bounds on the parameter search space and the 

lack of generic tools that can cater to a wide range of models [3]. 

 

We have assumed a reaction mechanism based on our experimental data as shown in Figure 

2.1 and proposed a kinetic model. From Figure 2.1 we conclude that the experimental data 

and the simulated model (blue curve) looks similar. Hence we plan to set a framework for 

parameter estimation (kinetic parameters) using optimization techniques. 

 

 

. 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.1: Reaction Mechanism and kinetic model for simulation of calcium response 
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2.2 Optimization methods 

 

2.2.1 Genetic Algorithm: 

Genetic algorithms (GA) were first proposed by John Holland in 1975[4]. GA’s are quite 

promising as a stochastic global optimization method. These algorithms are based on the 

evolutionary ideas of natural selection and genetics. It is the most popular method used in 

the parameter estimation problem. GA requires only information concerning the quality of 

the solution and does not need linearity of the parameters.  

 

The Genetic algorithm selects individuals at each step in a random manner from the current 

population of species parents and uses them to produce new generations for the next 

generation. Over successive generations, the population evolves toward an optimal solution. 

In each step, genetic algorithm uses three types of operators to create the next generation of 

the population: selection, crossover, and mutation. 

 

Selection operator: The selection is based on the adaptation of individuals. It is carried 

out by choosing pairs of individuals from one generation to another and those involved in 

the reproduction process of the future population. A certain percentage of the population 

size is maintained from one generation to another called elitism. Elitism involves copying a 

small proportion of the fittest candidates, unchanged, into the next generation. This can 

sometimes have a dramatic impact on performance. Candidate solutions that are preserved 

unchanged through elitism remain eligible for selection as parents when breeding the 

remainder of the next generation. 

 

Crossover operator: Crossover (like selection) is a convergence operation which is 

intended to pull the population towards a local minimum/maximum. The crossing is 

applicable to two individuals drawn randomly from a population above the current 

population. These two individuals are mated to give birth to two other offspring’s. Despite 

the randomness, this exchange of information gives genetic algorithms power in their work: 

sometimes “good” genes from one parent will replace the “bad” genes and create another 

offspring better adapted to the environment. Generally the crossover probability will be 0.7-

0.85. 
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Mutation operator: Mutation is a divergence operation. It is intended to occasionally break 

one or more members of a population out of a local minimum/maximum space and 

potentially discover a better minimum/maximum space .The mutation operator for all these 

individuals was generated in the new population.. It serves to emulate the natural 

phenomenon whereby offspring sometimes happen to have genes with totally different 

characteristics from their parent [5] because of errors due to various factors. 

 

Advantages of GA: 

 No prior information is needed about search space. 

 Excellent global search capability (able to do multi-prolonged population based 

search) 

 

Disadvantages of GA: 

o Weak local search capability 

o Suffer from slow convergence speed 

 

The flowsheet of GA is shown in Figure 2.2. 

 

 

 
Fig 2.2: Flowsheet of genetic algorithm 

 

 



15 

2.3 Hybrid Method for optimization 

 

A hybrid algorithm for optimization takes advantages of both genetic algorithm and gradient 

based search method. In this GA is used to get local minima and by using this one we can 

use gradient based method to ensure that global minima is reached. The GA based hybrid 

procedure identifies the most promising regions of the parameter search space [3]. The best 

solutions from GA in every generation and also the members of the final generation are then 

used as the initial guess values for the local optimizer based on gradient-based method 

(fmincon in MATLAB, combining steep descent method and Newton method).  

 

To overcome the drawbacks of GA, based on the mechanism of the biological DNA, RNA 

genetic algorithm was proposed to estimate the parameters in chemical engineering 

processes [6]. They encoded the chromosomes with nucleotide bases and GA operators are 

modified with RNA molecular operations. In this algorithm, they first encode each 

individual with a strand of nucleotide bases, RNA strand. Then instead of cross over 

operators to improve the performance of GA, RNA-recoding operator and protein-folding 

operators are designed in RNA-GA. Apart from encoding procedure, RNA strands are first 

translated into amino acids ones, protein strands, according to triplet codons in decoding 

procedure [6]. 

 

2.4 RNA-GA: 

RNA contains 4 kinds of nucleotides: Adenine (A), Uracil (U), Guanine (G) and Cytosine 

(C)[6]. In genetic code, a three-letter codes, triplet codon, decides an amino acid, i.e., three 

nucleotides in RNA strand decide an amino acid by the translating operator. On the 

decoding procedure of the PIRGA (Protein inspired RNA GA), RNA strands are first 

translated into amino acid strands, protein ones [6]. 

 

Procedure of the RNA-GA 

Step1:.Initilizing the population (N individuals) 

Step2: Calculating objective function (fitness value) at each population divide population 

into two groups 

Step3: Select N individuals to combine mating pool with the selection strategy. 

Step4: Check whether or not meets the condition of the RNA-recoding operator. If yes then 

execute the   RNA-recoding operator and go to Step 6. Otherwise, go to Step 5. 
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Step5: Check whether or not meets the condition of the protein mutual-folding operator. If 

yes then execute the protein mutual-folding operator and go to Step 6. Otherwise, carry out 

protein self-folding operator and go to Step 6. 

Step6: Executing mutation operator (adaptive probability). 

Step7: Repeat the Steps from 2–6 until termination conditions are met and the final solution 

is found. 

 

Advantages of RNA-GA 

 Can improve diversity of the population 

 Can able to overcome fraudulence compared with GA[6]. 

Disadvantages of RNA-GA: 

o Sacrifices the speed of convergence to obtain diversity in population. 

o Not applicable for high-dimensional optimization problems. 

 

To overcome the deficiencies of RNA-GA, a DNA based GA (DNA-GA) was proposed[7]. 

In this algorithm, they encoded each individual with a sequence of nucleotide bases. Then, 

inspired by the operations of DNA molecular, they designed genetic operators to enhance 

the global searching ability of the DNA-GA. Simulation studies on six benchmark functions 

[7],varying from two-dimensional to high dimensional, show the superiority of the DNA-

GA in contrast to other two algorithms, RNA-GA and GA as shown in Figure 2.3a and 

Figure 2.3b. 

 

2.5 The DNA Genetic Algorithm 

 

Binary data is encoded with 0 and 1, DNA is encoded with nucleotides which is of four 

type’s adenine (A), guanine (G), cytosine (C), and thymine (T)[7]. 

 

Genetic operators 

There are three types of genetic operators for DNA-GA. They are crossover operator, 

selection operator and three mutation operator consisting of inverse-anticodon operator, 

maximum-minimum operator, and normal-mutation operator [7]as shown in Figure 2.4. 
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Fig 2.3:  a) Six Benchmark Test Functions (objective functions) to test the performance of 

optimization algorithm b) Comparison of efficiency of three algorithms DNA-GA, RNA-GA 

and GA 

 

 

 

Fig 2.4 :  a) Flowsheet of DNA-GA algorithm b) crossover operator c) IA operator d) MM operator 

e) NM operator 
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Procedure of the DNA-GA 

Step 1: Initializing the population (N individuals) 

Step 2: Calculating objective function (fitness value) at each population 

Step 3: Select two individuals from the population randomly as the parents and adopt 

crossover operator over the parents to generate new individuals. Repeat this step until N/2 

new individuals are created. 

Step 4: Insert all the new individuals generated in step 3 into the population without deleting 

old individuals. 

Step 5: Adopt three mutation operators orderly over each individual, and generate 3/2N new 

individuals. 

Step 6: Replace all the original individuals with the new ones produced in step 5. 

Step7: Apply elitism in conjunction with tournament selection to choose N individuals from 

the population for advancing into the next generation. 

Step 8: Repeating steps 2–7 until the stop criteria are met, and the final solution is found. 

 

Advantages of DNA-GA: 

 Convergence speed is superior compared to GA, RNA-GA. 

 Probability to converge to global minima is high. 

 Applicable to high dimensional optimization functions. 
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Chapter 3 
 

Model Selection  

 

 

3.1 Data Reduction Technique 

 

We need to analyze the time series calcium response for a large number of cells and the 

dimension of our experimental data is large. So we have reduced the dimension through 

implementation of principal component analysis (PCA). The flowchart for PCA is shown in 

Figure 3.1. 

 

 

Fig 3.1: Flowsheet for principal component analysis 
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Principal component analysis: This method is used for reduction of data dimension and 

feature extraction through creating a new set of variables called principal components. Each 

of the new variables is a linear combination of the original variables. Each of the principal 

components is chosen so that it would describe most of the data features. All the principal 

components are orthogonal to each other [8]; and hence there is no redundant information. 

The first principal component has the maximum variance among all possible choices. 

Our experimental data is of 119*28 dimension (time*cell).We have reduced the dimension 

in time direction. First we find the deviation matrix i.e. how much the data is deviating is 

from the mean [8]. Then we find the covariance matrix which is of 119*119 dimension. 

Next we find the Eigen values and corresponding Eigen vectors. Now the maximum 

variance data is selected by selecting Eigen vectors corresponding to highest Eigen values 

(2). Now the deviation matrix is multiplied by Eigen vector matrix to form new data matrix 

of 28*2 dimension. So finally the data matrix of dimension 28*119 is reduced to 28*2. The 

overall flowsheet of my project is shown in Figure 3.2: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.2: Workflow for data classification, model selection and parameter estimation 
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3.2 K-means Clustering 

 

K-means is a technique for classification of the objects based on attributes/features into K 

number of groups where K is positive integer number. The grouping is done by minimizing 

the sum of squares of distances between data and the corresponding cluster centroid. Thus, 

the purpose of K-mean clustering is to classify the data. The output data from PCA is given 

as input to the K-means algorithm. The input to the k-means is given as to classify the data 

into three types of clusters (K=3). After clustering, the data was divided into three types of 

responses a) fast response, cluster 1 (green) b) flat response, cluster 2 (blue) and c) delayed 

response, cluster 3 (red). Hence we plan to fit three models for each cluster so that a 

combination of three models with various parameters can be used as the predictive 

framework. 

 

3.3 Model Selection 

 

We selected one dataset for calcium response from cluster 1 and assumed a mechanism [9] 

to describe that cell data as shown in Figs 3.3 and 3.4 : In the Figure 3.3, X represents drug, 

after addition of the drug it binds to the receptor to form S1. Where, S1 acts as catalyst to 

the next reaction to form S2 which in turn acts as a catalyst to form S3. S3 is assumed to be 

calcium concentration. We proposed a set of models assuming (1) first order kinetics, 3 ode 

model (Model 1) (2) Michalis Menten kinetics, 3 ode model (Model 2) [4] and (3) first order 

kinetics, 4 ode model (Model 3). We have used genetic algorithm to estimate the parameters 

for all these models and selected the model having minimum error using the estimated 

parameter. 

 

3.4 Parameter estimation using hybrid algorithm 

  

The flowsheet of Genetic Algorithm used for parameter estimation is shown in Figure 3.5. 

We have used the uniform crossover and the mutation operators with probabilities 0.8 and 

0.01, respectively. As a rule of thumb, the crossover probability is generally greater than 

0.75 so as to encourage better exploration of the search space. The top 5% of the solutions 

in every generation are preserved in the next generation. This makes sure that the best 

solutions are passed on even if the GA does not find a better solution during the search. A 

higher value of this elitism operator typically leads to premature convergence and a lower 
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value might result in the loss of good solutions identified by the GA. The number of 

generations are given as 100 and the population size is given as 100. 

 

 

 

Fig 3.3: Biomolecules present in the signaling pathway 

 

 

Fig 3.4: Reaction mechanism and the corresponding model equations, (a) 1st order kinetics b) 

Michalis Menten model c) Four equations 1st order ODE model 
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3.5 Objective function-Problem formulation : 

 

Model 1 and Model 2 are having 10 parameters while model 3 is having 12 parameters as 

shown in Table 3.1 The description of the parameters is also given in Table 3.1. The 

parameters (rate constants) are generated by GA and are given as input to an ODE solver 

(ode45) for solving coupled differential equations using Runge-Kutta-Method (ode23 in 

MATLAB). 

The objective function is presented as the difference (error to be minimized) measured 

between the experimental calcium response and the simulated values of intracellular 

calcium responses from the ode solver. 

 

 

 

 

 

This error function is given as input function to the Genetic Algorithm. The GA evaluates 

the estimated parameter after our criteria meets i.e. either error is < 0.01 or the number of 

generations exceeds 100. After estimation of parameters from GA, these parameters are 

given as input to the gradient based method (fmincon in MATLAB). 

 

2
2)(exp













 



n

sim
RMSE

 

Fig 3.5: Flowsheet for model selection and parameter estimation 

 

 



24 

 

Table 4.1: Description of kinetic parameters and their ranges for model 1, 2&3.  
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Chapter 4 

Mathematical modeling of calcium response 

 

In this study, the intracellular calcium concentration of 28 cells were measured through time 

lapse imaging (119 intervals of time, 28x119 matrix). Using principal component analysis 

we have reduced the data to 28x2 matrix (taking two principal components into 

consideration) as shown in Figure 4.1a. 

Since the main challenge is to identify the model that explain the whole dataset, we divided 

these 28 cells into 3 clusters using K-means clustering. From Figure 4.1b we can see that the 

data is divided into three clusters. Each cluster is responding differently, green cluster 

indicates fast response, red cluster indicates delayed response and blue cluster indicates flat 

response. The cells in each cluster is responding in a similar manner with respect to other 

members in the same cluster. Hence we plan to identify three models for each of these three 

clusters. Figure 4.2 gives the experimental cell data plot after clustering the cell data. 

 

 

Fig 4.1:  The scatter plot of two principal components for 400ng drug dose data a) Before 

Clustering b) After Clustering using K-Means (K=3) 
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Fig 4.2: Three types of calcium response obtained through K-means clustering of calcium response in a cell 

population, Green-Immediate response, Red-Delayed response, Blue-Flat response (Low amplitude) 
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Cluster 1: 

We took time series data from one cell (cluster 1) for model fitting and tried to fit with three 

models, model 1, model 2 and model 3. Figure 4.3, shows the plot of simulated calcium 

response (blue) vs experimental calcium response (pink) along with the error with each time 

point. The next panel shows the scatter plot of simulated response vs experimental response 

for various models. Table 4.1 shows the values of estimated parameters and objective 

function value/error by Genetic Algorithm. The results clearly shows that Model 2  having 

the Michaelis Menten model is yields comparatively less  root mean square error (RMSE = 

0.1129). Hence our framework can be used for selection of the best fitting model for the 

dynamic data. 

 

Cluster 2:  

Similarly we took another representative data (calcium response in a cell) from cluster 2 for 

model fitting and we investigated three models. The kinetic parameters are estimated by 

Genetic Algorithm. Figure 4.4 shows the plot of simulated calcium response (blue) vs 

experimental calcium response (pink) along with the error at each time point. The other 

panel shows the scatter plot for the simulated vs experimental response for various models. 

Table 4.2 shows the values of estimated parameters and objective function value by genetic 

Algorithm. We observed that all models are giving RMSE of approximately ~ 0.047 with 

the minimum error for model 3 (Simple 1st order ODE with 4 equations). 

 

Cluster 3: 

Similarly we took another representative data (calcium response in a cell) from cluster 3 for 

model fitting and we investigated three models. The kinetic parameters are estimated by 

Genetic Algorithm. The Figure 4.5, shows the plot of simulated response (blue) vs 

experimental response (pink) along with the error. The other panel shows the simulated vs 

experimental response for various models. Table 4.3 shows the values of parameters and 

objective function value by genetic Algorithm. We observed that Model 1 (1st order model) 

is yields comparatively less error (RMSE = 0.2422). 
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Fig 4.3:  Panel 1: Time course of calcium response from experiments (cluster 1) and simulation, Panel 

2: Scatter plot of simulation vs experimental data for cluster 1, a) Model 1 b) Model 2 c) Model 3 

 

Fig 4.4:  Panel 1: Time course of calcium response from experiments (cluster 2) and simulation, Panel 

2: Scatter plot of simulation vs experimental data for cluster 2, a) Model 1 b) Model 2 c) Model 3 

a) 

b) 

c) 

a) 

b) 

c) 
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b) 

c) 

a) 

Fig 4.6:  Panel 1: Time course of calcium response from experiments (cluster 3) and simulation, Panel 

2: Scatter plot of simulation vs experimental data for cluster 3, a) Model 1 b) Model 2 c) Model 3 

 

Fig 4.5:  Panel 1: Time course of calcium response from experiments and simulation, Panel 2: Scatter 

plot of simulation vs experimental data, a) Cluster 1 b) Cluster 2 c) Cluster 3 

a) 

b) 

c) 
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Hybrid Method (GA+Fmincon) Results: 

Estimated parameters from Genetic Algorithm corresponding to best fit models for each 

cluster has been given as the input for the gradient search. Figure 4.6, shows the fitting 

results from the hybrid method (GA+Fmincon method). Table 4.4 shows the values of 

parameters and objective function values estimated by hybrid method and Table 4.5 shows 

the performance of several methods. 

 

 

 

 

 

 

Table 4.1: Estimated kinetic parameters by GA and corresponding error for data in cluster 1 (for 

various models: Model 1:10 parameters, Model 2, 10 parameters, Model 3: 12 parameters) 

Table 4.2: Estimated kinetic parameters by GA and corresponding error for data in cluster 2 (for various 

models: Model 1:10 parameters, Model 2, 10 parameters, Model 3: 12 parameters) 
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Table 4.3: Estimated kinetic parameters by GA and the corresponding error for cluster 3 for various 

models (Model 1:10 parameters, Model 2, 10 parameters, Model 3: 12 parameters) 

 

 

Table 4.4: Estimated kinetic parameters by hybrid method (GA+Fmincon) and the corresponding error 

for the data for three clusters (for the selected models) 

 

Table 4.5:   Performance of the method: Estimated time of computation for Genetic Algorithm and 

Gradient based search 
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Chapter 5 

Sensitivity Analysis 

 

One of the major difficulties in constructing mathematical models of biological system is 

the lack of precise parameter values which are often associated with a high degree of 

uncertainty. This uncertainty in parameter values can be incorporated into the modelling 

process using sensitivity analysis, the systematic investigation of the relationship between 

uncertain model inputs and the resulting variation in the model outputs. 

Here we performed sensitivity analysis to identify the parameters that has significant effect 

on the model output. We performed sensitivity analysis through change in one of the kinetic 

parameters by +50% of the estimated value keeping other parameters constant. Figure 5.1-

5.6 shows the sensitivity analysis with respect to various kinetic parameters (Here we show 

the results for 6 parameters k1, k-1, k2, k-2, k3, and q respectively, for other parameters, the 

analysis was performed but the result is not shown) for Model 1 fitted to cluster 1.  

Here we show that the cell response is sensitive to most of the kinetic parameters. Similar 

analysis was performed for cluster 1 by model 2 and model 3.The results are tabulated in 

Table 5.1 .The result shows that for Model 2, the simulated calcium response is not sensitive 

to k-2 and k-3 and for Model 3 the simulated calcium is not sensitive with respect to k3, k-3,  

k-4, and k-6. 
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Fig 5.1: Sensitivity analysis for k1:  Plot of Simulated results, Experimental results, and 

Error with time (for cluster 1, model 1 when parameter ‘k1’ is varied from [1-7]). 

 

 

Fig 5.2: Sensitivity analysis for k-1:  Plot of Simulated results, Experimental results, and Error 

with time (for cluster 1, model 1 when parameter ‘k-1’ is varied from [1-5]) 
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Fig 5.3: Sensitivity analysis for k2:  Plot of Simulated results, Experimental results, and 

Error with time (for cluster 1, model 1 when parameter ‘k2’ is varied from [3-12]). 

 

Fig 5.4: Sensitivity analysis for k-2:  Plot of Simulated results, Experimental results, and 

Error with time (for cluster 1, model 1 when parameter ‘k-2’ is varied from [0-1]). 
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Fig 5.5: Sensitivity analysis for k3:  Plot of simulated results, experimental results, and 

error with time (for cluster 1, model 1 when parameter ‘k3’ is varied from [0-4]). 

 

Fig 5.6: Sensitivity analysis for q:  Plot of Simulated results, experimental results, and error 

with time (for cluster 1, model 1 when parameter ‘q’ is varied from [4-10]). 
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Table 5.1: Summary of sensitivity analysis results for a) model 1 b) model 2 c) model 3 for 

cluster 1 
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Chapter 6 

Analysis of delayed calcium response 

Three models chosen based on various kinetic mechanisms were not able capture the trend 

in calcium responses under cluster 3 (delayed response).  In order to explain the delay in the 

response we formulated a series of models corresponding to other reaction mechanism as 

shown in Figure 6.1.We proposed three different network structures/motifs based on various 

topologies. The first structure contains only substrate inhibition (Figure 6.1a), the second 

structure contains only product inhibition (Figure 6.1b), and the third one contains a 

combination of substrate and product inhibition (Figure 6.1c). For each structure we 

proposed five different types of kinetic mechanisms for substrate and product inhibition, 

exponential terms in transportation of calcium as shown in Figure 6.2. a) Product inhibition 

of type 1 (
qtSkk

k

)(32

1


) b) Product inhibition of type 2 (

2

432

1

)()( tSktSkk

k


) [1010] c) 

Gaussian substrate inhibition of type 3 d) One exponential term for transportation of 

calcium concentration (S3) e) Two exponential terms for transportation of calcium 

concentration S3.  Using various combinations of these models, we constructed 23 possible 

models. 

 

 

The parameters were estimated by using Genetic Algorithm and the model with minimum 

error was chosen as the best possible model. For optimization, we used number of 

generations as 100, population size as 100 and the probability of Genetic operators like 

cross over, mutation and elitism probabilities as 0.8, 0.01 ,0.05 respectively. The models 

were solved by using an ODE solver (Ode 45 in MATLAB). 
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Fig 6.1:  Three possible network structures/motifs and corresponding mechanisms for cluster 3:  

a) with substrate inhibition b) product inhibition c) both substrate and product inhibition 

 

 

Fig 6.2:  Possible kinetic mechanisms for substrate and product inhibition and calcium 

transportation 
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Fig6.3: a) Reaction mechanism and kinetic model with inhibition of type 3:S1T3 b) Panel 1: 

Time course of calcium response from experiments (cluster 3) and simulation, Panel 2: 

Scatter plot of simulation vs experimental data for cluster 3, Model with inhibition of type 

3:S1T3 
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Fig 6.4:  a) Reaction mechanism and kinetic Model with inhibition of type 2 S2P2  b) Panel 

1: Time course of calcium response from experiments (cluster 3) and simulation, Panel 2: 

Scatter plot of simulation vs experimental data for cluster 3, Model with inhibition of type 

2:S2P2 
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Fig 6.5:  a) Reaction mechanism and kinetic Model with inhibition of type 1 and type 5(case 

2) S1T5T1: b) Panel 1: Time course of calcium response from experiments (cluster 3) and 

simulation, Panel 2: Scatter plot of simulation vs experimental data for cluster 3, Model with 

inhibition of type 1&5 (case 2): S1T5T1 
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We investigated various combinations of inhibition terms in the models and found that on 

including inhibition terms of type 1(
qtSkk

k

)(32

1


) and type 4(

)*exp( 22

11

Sk

Sk
) yields 

comparatively less RMSE (0.1596) [See Figure 6.5a and 6.5b]. From the error analysis as 

shown in Table 6.1, it can be concluded that the minimum error is 0.2739 and the most 

suitable model contains the exponential terms for calcium transportation. Here we show the 

results on investigations for various reaction mechanism. Figure 6.3 to 6.5 shows the 

simulated calcium response vs experimental calcium response along with the error. The 

second panel of these figures show the scatter plot of simulated vs experimental responses.  

 

Table 6.1: Error analysis for three types of network structure/reaction mechanisms 

proposed for cluster 3, Model with exponential transportation shows minimum error. 
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Chapter 7 

Conclusions & Discussion 

 

Conclusions: The present work provides a framework for finding the most suitable model 

corresponding the intracellular calcium response from a list of models. From Figure 4.3, and 

from Table 4.2, we can conclude that the model having Michalis Menten kinetics can 

capture the immediate calcium response (cluster 1) well compared to other models. From 

Figure 4.4 and from Table 4.3, we can conclude that a particular parameter set for most of 

the models can capture the flat responses or low amplitude responses (cluster 2). From 

Figure 4.5 and from Table 4.4, we can conclude that simple 1st order model can capture the 

cluster 3 best compared to other possible models. 

For all the kinetic mechanisms used, GA may not yield the estimation of parameters as upon 

reaching a global basin, it takes time to find the optimum there as the nature of search in GA 

is stochastic in nature. On the other hand, the disadvantage of the classical method is that 

they progress based on the gradient information at the current point and prone to get 

structure to a local optima very frequently.  However, Global optima can be found very fast 

by the classical method if the initial guess has been provided in the global basin. Using this 

basis, GA is used to find the global basin first and then use the classical gradient based 

search technique to find the local minima. The assumption here is that the GA yields the 

global basin for the given optimization problem. 

Based on the current work and computational framework, further improvements are possible 

as follows: 

• Detailed validation of the model: All the data in one cluster (for various drug 

doses) can be fitted to the selected model for that cluster. We need to choose 

multiple videos and cluster the data so that the number of data in one cluster will be 

twice that of the number of kinetic parameters in the model. 

• Advanced clustering techniques: Advanced clustering method such as support 

vector machine can be used for clustering the cells in contrast to Kmeans clusters 

(which clusters the data in a linear manner). 

• Updating model formulation: We can update our model database through inclusion 

of more complex mechanisms having positive and negative feedbacks, mutual 
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inhibition, co-operative binding sites. Additionally we can have a more exhaustive 

set of models having combinations of substrate inhibition, product inhibition, 

mutual inhibitions, and exponential terms in reactions and transports. 

• Optimization techniques: In future, we may also perform the parameter estimation 

using techniques such as improved versions of GA such as DNA-GA, RNA-GA, 

VA-DNA GA, and techniques other than GA such as particle swarm optimization, 

simulated annealing etc. 
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Appendix: 

1) GA main File (calling the function for calculation of error 

between simulated and experimental response) 

    clear all 
    clc 
    close all 
 options=gaoptimset('Generations',100,'PopulationSize',100);%% GA 

INPUT  
[parmest,fval1]=ga(@funcdeff1,10,[],[],[],[],[0 0 0 0 0 0 0 0 0 0 

0],[30 30 30 30 30 30 30 30 30 10],[],[],options);  %% NUMBER OF 

PARAMETERS-10,RANGE [0-30][0-10]. 

  
tim=0:0.1:10; 
p=1; 

  
a=parmest;  %% FINAL OPTIMIZED PARAMETERS  
ansss=fval1;  %% FINAL RMSE 

  
b=[1;1;1;1;1;1;1;1;1;1];  %% MICHALIS MENTEN KINETIC CONSTANTS  
%% TIME (EXPERIMENTAL) %% 
time0p=[0   593 1585    2581    3584    4592    5600    6604    

7599    8598    9604    10602   11604   12610   13615   14608   

15612   16614   17617   18618   19623   20625   21617   22610   

23614   24615   25619   26613   27619   28618   33246   34244   

35244   36247   37244   38240   39236   40238   41242   42250   

43254   44254   45255   46251   47248   48243   49240   50236   

51237   52236   53237   54240   55245   56243   57240   58230   

59230   60224   61230   62230   63230   64231   65235   66239   

67231   68229   69222   70270   71268   72222   73227   74227   

75224   76226   77226   78235   79245   80241   81239   82237   

83237   84244   85247   86247   87248   88240   89281   90273   

91267   92263   93260   94257   95258   96261   97254   98252   

99255   100253  101264  102268  103268  104264  105266  106263  

107265  108263  109256  110251  111255  112260  113264  114270  

115283  116275  117278  118274  119279  120282  121287  122281  

123276  124275  125271  126266  127264  128265  129270  130273  

131280  132286  133295  134296  135289  136282  137290  138293  

139297  140293  141284  142280  143278  144272  145284  146283  

147278  148276  149277  150280  151292  152288]; 

  
time0=time0p'; 

  
%% EXPERIMENTAL DATA %% 

  
runningfilep=[2.0292    1.9588  2.1023  2.0052  1.9076  2.1103  

2.1672  2.2059  2.1334  2.0402  2.0017  2.0646  1.9439  2.111   

2.1061  2.0599  2.102   2.1789  2.1617  2.007   2.0008  2.0575  

2.0292  2.0042  2.0283  2.0492  2.0079  2.0449  2.0801  2.2619  

2.1349  2.2735  2.3093  2.3024  2.2702  2.1782  2.273   2.3253  

2.3583  2.4576  2.5205  2.7467  2.8105  3.0847  3.392   3.8749  

4.218   4.7197  5.1458  5.5666  5.7204  5.6265  5.6524  5.5894  

5.5601  5.6597  5.4443  5.294   4.9939  4.7888  4.6036  4.4199  
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4.3426  4.1206  4.099   3.7794  3.8185  3.5738  3.418   3.3465  

3.1317  2.9703  2.9262  2.7815  2.5785  2.4807  2.4383  2.3095  

2.3975  2.4463  2.3658  2.3437  2.3518  2.3792  2.472   2.2511  

2.3146  2.3406  2.3083  2.3049  2.2528  2.3895  2.3419  2.4758  

2.3901  2.4221  2.2158  2.4121  2.2536  2.2548  2.427   2.311   

2.4366  2.1515  2.2847  2.3155  2.3661  2.3697  2.2797  2.3599  

2.2761  2.3582  2.3262  2.3162  2.4061  2.4523  2.4411  2.4938  

2.4529  2.4856  2.5407  2.4909  2.4679  2.5859  2.5657  2.4855  

2.4545  2.5002  2.5012  2.542   2.4291  2.4354  2.5512  2.5835  

2.4666  2.5122  2.5122  2.6541  2.5217  2.6065  2.4878  2.6352  

2.5355  2.7398  2.5716  2.5563  2.5064  2.6139  2.5281  

2.6194];%cluster 3 
 runningfile=runningfilep'; 
         time1=time0-time0(1); 
        time = time1/(1000*60); 
%         %% NORMALIZING THE DATA FOR CALCIUM RESPONSE 
%              for i0=4:2:4; 
                 runningbasemeanst = runningfile; 
                 runningbasemean = sum(runningbasemeanst(1:25))/25; 
                 runningcalnorm = runningfile/runningbasemean; 
                 runningcalnormnew = runningcalnorm; 
%  
%              end 
        exp = runningcalnormnew; 
        expp=exp(32:end); 
        expp1=expp-expp(1); 
        timep=time(32:end); 
        timep1=timep-timep(1); 
        intval=[0;0;0];          %% INITIAL CONDITIONS 
        %intval=[0;0;0;0];    
        [tt,fval]=ode45(@(t,x) model5(t,x,a,b),tim,intval); %% ODE 

SOLVER 

                    
 xap=fval(:,3);             %% SIMULATED VALUE 
 calsim = interp1(tim,xap,timep1,'pchip');   %% SIMULATED 

(INTERPOLATED VALUE) 
         

error = abs(calsim-expp1); 

     
err1=rms(error)         % FINAL RMSE 
%    
%% PLOTTING %% 
       l=0:3.5; 
       figure(2) 
       subplot(1,2,1) 
       %         
        plot(timep1,expp1,'<m','linewidth',2) 
        hold on 
        plot(tt,fval(:,3),'b','linewidth',2) 
        hold on 
        plot(timep1,error,'c','linewidth',2) 
        hold on 
        title('CONC vs. TIME','fontsize',26) 
        xlabel('TIME(min)','fontsize',26); 
        ylabel('CONCENTRATION','fontsize',26); 
         axis([0 2 -0.5 5]) 
        legend('Experimental','Simulated','Error','fontsize',26); 
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%         figure(2) 
          subplot(1,2,2) 
        plot(expp1,calsim,'+','linewidth',2) 
        hold on 
        %axis ([0 3.5 0 3.5]) 
        %axis([0 0.3 0 0.3]) 
        axis([0 1.5 0 1.5]) 
%         axis tight 
        plot(l,l,'k','linewidth',2) 
        xlabel('EXPERIMENTAL','fontsize',26) 
        ylabel('SIMULATED','fontsize',26) 
        legend('SIMULATED vs. EXPERIMENTAL','45deg 

line','fontsize',26) 
        title('SIMULATED vs. EXPERIMENTAL','fontsize',26) 
%         
        figure(3) 
        plot(timep1,expp1,'<m','linewidth',2) 
        hold on 
        plot(tt,fval(:,3),'b','linewidth',2) 
        hold on 
        plot(timep1,error,'c','linewidth',2) 
        hold on 
        title('CONC vs. TIME','fontsize',26) 
        xlabel('TIME(min)','fontsize',26); 
        ylabel('CONCENTRATION','fontsize',26); 
        axis([0 2 -0.5 5]) 
        legend('Experimental','Simulated','Error','fontsize',26); 
        hold on 
display(a,'optimum parameters are /n'); 
display(ansss,'Final Error /n'); 

 

 

2) Funcdeff1 file  (Function File), calculation of error 

function err=funcdeff1(Pact)       %% INPUT PARAMETERS FROM GA 
     %% TIME  
 time00p=[0  593 1585    2581    3584    4592    5600    6604    

7599    8598    9604    10602   11604   12610   13615   14608   

15612   16614   17617   18618   19623   20625   21617   22610   

23614   24615   25619   26613   27619   28618   33246   34244   

35244   36247   37244   38240   39236   40238   41242   42250   

43254   44254   45255   46251   47248   48243   49240   50236   

51237   52236   53237   54240   55245   56243   57240   58230   

59230   60224   61230   62230   63230   64231   65235   66239   

67231   68229   69222   70270   71268   72222   73227   74227   

75224   76226   77226   78235   79245   80241   81239   82237   

83237   84244   85247   86247   87248   88240   89281   90273   

91267   92263   93260   94257   95258   96261   97254   98252   

99255   100253  101264  102268  103268  104264  105266  106263  

107265  108263  109256  110251  111255  112260  113264  114270  

115283  116275  117278  118274  119279  120282  121287  122281  

123276  124275  125271  126266  127264  128265  129270  130273  

131280  132286  133295  134296  135289  136282  137290  138293  

139297  140293  141284  142280  143278  144272  145284  146283  

147278  148276  149277  150280  151292  152288]; 

  
time000=time00p'; 
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%% CLUSTER DATA-EXPERMENTAL 
  runningfileep=[2.0292   1.9588  2.1023  2.0052  1.9076  2.1103  

2.1672  2.2059  2.1334  2.0402  2.0017  2.0646  1.9439  2.111   

2.1061  2.0599  2.102   2.1789  2.1617  2.007   2.0008  2.0575  

2.0292  2.0042  2.0283  2.0492  2.0079  2.0449  2.0801  2.2619  

2.1349  2.2735  2.3093  2.3024  2.2702  2.1782  2.273   2.3253  

2.3583  2.4576  2.5205  2.7467  2.8105  3.0847  3.392   3.8749  

4.218   4.7197  5.1458  5.5666  5.7204  5.6265  5.6524  5.5894  

5.5601  5.6597  5.4443  5.294   4.9939  4.7888  4.6036  4.4199  

4.3426  4.1206  4.099   3.7794  3.8185  3.5738  3.418   3.3465  

3.1317  2.9703  2.9262  2.7815  2.5785  2.4807  2.4383  2.3095  

2.3975  2.4463  2.3658  2.3437  2.3518  2.3792  2.472   2.2511  

2.3146  2.3406  2.3083  2.3049  2.2528  2.3895  2.3419  2.4758  

2.3901  2.4221  2.2158  2.4121  2.2536  2.2548  2.427   2.311   

2.4366  2.1515  2.2847  2.3155  2.3661  2.3697  2.2797  2.3599  

2.2761  2.3582  2.3262  2.3162  2.4061  2.4523  2.4411  2.4938  

2.4529  2.4856  2.5407  2.4909  2.4679  2.5859  2.5657  2.4855  

2.4545  2.5002  2.5012  2.542   2.4291  2.4354  2.5512  2.5835  

2.4666  2.5122  2.5122  2.6541  2.5217  2.6065  2.4878  2.6352  

2.5355  2.7398  2.5716  2.5563  2.5064  2.6139  2.5281  2.6194]; 
  

runningfileee=runningfileep'; 

           
        time111=time000-time000(1); 
        timeee = time111/(1000*60); 

  
         %% NORMALIZING THE DATA FOR CALCIUM RESPONSE 
        %              for i0=3:2:5; 
 runningbasemeansttt = runningfileee; 
runningbasemeannn = sum(runningbasemeansttt(1:25))/25; 
runningcalnormmm =    runningfileee/runningbasemeannn; 
runningcalnormnewww = runningcalnormmm; 
 %              end 
         exppp = runningcalnormnewww; 
        expppp=exppp(32:end); 
        expp111=expppp-expppp(1); 
        timeppp=timeee(32:end); 
        timep111=timeppp-timeppp(1); 
        intvalll=[0;0;0]; 
        %intvalll=[0;0;0;0]; 
        %Pest=[1;1;1;1;1;1;1;1]; 
        Pest=[1;1;1;1;1;1;1;1]; 
         timmm=0:0.1:10; 
%          timmm=timee-Pact(11); 
        

[~,Yvalll]=ode45(@(t,x)model5(t,x,Pact,Pest),timmm,intvalll); 
xappp=Yvalll(:,3); 
calsimmm = interp1(timmm,xappp,timep111,'pchip'); 
errorrr = abs(calsimmm-expp111); 
         %% RMS ERROR %% 
        err=rms(errorrr); 
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3) Model file (function), solution of ODE models having 

kinetic mechanisms : 

function f = model5( t,x,p,pb) 

  
% MONOD MODEL 

   
f=zeros(3,1); 

  
f(1)=p(1)+(p(3)*x(2)/(pb(3)+x(2)))-(p(2)*x(1)/(pb(2)+x(1)))-

(p(4)*x(1)/(pb(4)+x(1))); 
f(2)=(p(4)*x(1)/(pb(4)+x(1)))+(p(5)*x(3)/(pb(5)+x(3)))-

(p(3)*x(2)/(pb(3)+x(2)))-(p(6)*x(2)/(pb(6)+x(2))); 
f(3)=(p(7)/(1+p(9)*power(x(1),p(10))))+(p(6)*x(2)/(pb(6)+x(2)))-

(p(8)*x(3)/(pb(8)+x(3)))-(p(5)*x(3)/(pb(5)+x(3))); 

 

4) Sensitive Analysis: 
 
    clear all 
    clc 
    close all 

    
%k1=4.5173;k_1=3.0493;k2=7.6822;k_2=0.0376;k3=2.4952;k_3=29.9899;k4

=29.9853;k_4=5.9210;k5=2.2221;q=9.993;                             

%% MODEL 1 DATA FROM GA 
%k1=8.2734;k_1=18.5615;k2=8.2389;k_2=1.7819;k3=11.7065;k_3=0.022;k4

=29.9976;k_4=3.8641;k5=7.0948;q=9.9786;                            

%% MODEL 2 DATA FROM GA 
k1=11.7155;k_1=11.1817;k2=13.1449;k_2=29.7656;k3=14.2503;k_3=0.0625

;k4=1.6875;k_4=0.0404;k5=29.9845;k_5=5.1562;k6=24.7968;q=9.9938;  

%% MODEL 3 DATA FROM GA 
tim=0:0.1:10; 
a1=floor(q-ceil(0.5*q)); 
a2=ceil(1.5*q); 

  
if(a1<0) 
    a1=0; 
end 
if(a2>10) 
    a2=10; 
end 
h=(a2-a1)/10; 
% intvals=[0;0;0]; 
% b=[6.0399;2.6456];                   %% VARYING CONSTANTS [K3,Q] 
% ap=parmest; 
% [a1,b1]=size(parmest); 
 %%%[LOWERBOUND,STEPSIZE,UPPERBOUND]= 
range=[a1,h,a2] 

  
p=1; 
for i=a1:h:a2 
% a=parmest;%(1:a1,1:b1-1) i];%0.6715];   
% ansss=fval1; 
%tim=t-a(11); 
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%a=[22.1008    2.5975    0.0735   40.1613   44.8795   35.9338   

37.5373   16.8255    1.5766   24.9824];%    0.1618 

  
%a=[i 5 5 5 5 5 5 5 5 5]; 
%a=[4.4217  3.2649  3.6485  3.6074  5.8833  0.0036  29.9982 0.8049  

0.2708  i]; 

  
%a=[k1 k_1 k2 k_2 k3 k_3 k4 k_4 k5 q]; %%% FOR MODEL 1&2 
a=[k1 k_1 k2 k_2 k3 k_3 k4 k_4 k5 k_5 k6 i];  %%% FOR MODEL 3 

  
%b=[1;1;1;1;1;1;1;1]; 
%         % SAVING THE TIME DATA (TIMING DATA FOR X AXIS) 
%         time0 = runningfile(:,2); 
time0p=[0   593 1585    2581    3584    4592    5600    6604    

7599    8598    9604    10602   11604   12610   13615   14608   

15612   16614   17617   18618   19623   20625   21617   22610   

23614   24615   25619   26613   27619   28618   33246   34244   

35244   36247   37244   38240   39236   40238   41242   42250   

43254   44254   45255   46251   47248   48243   49240   50236   

51237   52236   53237   54240   55245   56243   57240   58230   

59230   60224   61230   62230   63230   64231   65235   66239   

67231   68229   69222   70270   71268   72222   73227   74227   

75224   76226   77226   78235   79245   80241   81239   82237   

83237   84244   85247   86247   87248   88240   89281   90273   

91267   92263   93260   94257   95258   96261   97254   98252   

99255   100253  101264  102268  103268  104264  105266  106263  

107265  108263  109256  110251  111255  112260  113264  114270  

115283  116275  117278  118274  119279  120282  121287  122281  

123276  124275  125271  126266  127264  128265  129270  130273  

131280  132286  133295  134296  135289  136282  137290  138293  

139297  140293  141284  142280  143278  144272  145284  146283  

147278  148276  149277  150280  151292  152288]; 

  
time0=time0p'; 

  
runningfilep=[1.7947    1.7066  1.795   1.7653  1.6533  1.7034  

1.7993  1.8415  1.8215  1.7106  1.6945  1.7219  1.6706  1.7545  

1.7825  1.6893  1.8103  1.8798  1.8723  1.673   1.7675  1.7778  

1.7967  1.7977  1.7476  1.8274  1.8982  1.8357  1.8104  1.852   

1.7904  1.8549  1.8217  2.0381  3.3923  4.3831  5.2303  6.1928  

6.7607  7.1215  7.3803  7.4975  7.4826  7.4902  7.2023  7.1245  

6.9317  6.8244  6.5528  6.3874  6.1029  5.8338  5.6522  5.3505  

5.1337  4.9923  4.5175  4.26    3.9181  3.7117  3.4205  3.2369  

2.947   2.7876  2.5925  2.2879  2.3618  2.2923  2.2255  2.1878  

2.1046  1.966   1.9223  1.8908  1.9208  1.8792  1.8789  1.8218  

2.0128  1.8937  1.9125  1.8636  1.8468  1.8123  1.9642  1.8496  

1.8571  1.9047  1.9319  1.9432  1.8433  1.9973  1.8651  2.0078  

1.9786  1.9334  1.8098  1.9474  1.8606  1.8842  1.9102  1.9863  

2.0104  1.8516  1.8998  1.8432  1.915   1.8872  1.8912  1.9287  

1.8878  1.8659  1.8735  1.8711  1.977   1.8822  1.9809  1.9356  

1.9965  1.9994  2.0321  1.9748  2.0042  2.128   2.0995  2.1155  

2.1673  2.0542  2.1394  2.0851  2.0182  2.0487  2.173   2.1385  

2.1122  2.1519  2.0667  2.2132  2.2644  2.267   2.1653  2.1092  

1.9778  2.3012  2.0454  2.1146  2.0543  2.1796  2.0096  2.1384]; 
 

runningfile=runningfilep'; 
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time1=time0-time0(1); 
time = time1/(1000*60); 
 %         %% NORMALIZING THE DATA FOR CALCIUM RESPONSE 
%          
%              for i0=4:2:4; 
                  runningbasemeanst = runningfile; 
                 runningbasemean = sum(runningbasemeanst(1:25))/25; 
                 runningcalnorm = runningfile/runningbasemean; 
                 runningcalnormnew = runningcalnorm; 
%  
%              end 
        exp = runningcalnormnew; 
       expp=exp(32:end); 
       expp1=expp-expp(1); 
       timep=time(32:end); 
       timep1=timep-timep(1); 
        %intval=[0;0;0]; 
       intval=[0;0;0;0]; 
       [tt,fval]=ode45(@(t,x) model9(t,x,a),tim,intval); 
        xap=fval(:,4); 
       calsim = interp1(tim,xap,timep1,'linear'); 
        error = abs(calsim-expp1); 
       err1=rms(error); 
       errvalv(p)=err1; 
       parm1(p)=i; 
       l=0:3.5; 
%       
        subplot(4,3,p) 
        plot(timep1,expp1,'<m','linewidth',2) 
                  hold on 
        plot(tt,fval(:,4),'b','linewidth',2) 
        hold on 
        plot(timep1,error,'c','linewidth',2) 
        hold on 
        hold on 
       xlabel('TIME(min)')%,'fontsize',26); 
       ylabel('CONC')%,'fontsize',26); 
       axis([0 2 -0.5 5]) 
       p=p+1;  
end 
%  
        title('CONC vs. TIME')%,'fontsize',26) 
        legend('Experimental','Simulated','Error')%,'fontsize',26); 
        [parm1' errvalv'] 
%xlswrite('e.xls',err1'); 
% display(a,'optimum parameters are /n'); 
% display(ansss,'Final Error /n'); 


