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Abstract

The pressure-driven displacement flow of one fluid by another has been widely studied in literature

due to its relevance in many natural phenomena and industrial applications, such as pumping of

crude oil, in food processing industry, in enhanced oil recovery, to name a few. The present thesis

consists of two parts. In the first part, pressure-driven displacement flow of a less viscous fluid

initially occupying an axisymmetric pipe by a highly viscous fluid is investigated by conducting

numerical simulations. The fluids consist of two species diffusing at different rates. The fluids are

assumed to be Newtonian, incompressible with the same density, but different viscosity modelled as

an exponential function of the concentration of both the species. A parametric study investigating

the effects of diffusivity ratio, log-mobility ratios of the slower and faster diffusing species and

Reynolds number on the flow dynamics is conducted. Our results demonstrate the presence of

instability patterns due to double-diffusive effect in situations when a less viscous fluid displaces

a highly viscous fluid. These instabilities are qualitatively different from those observed in planar

channel. The intensity of these instabilities increases with increasing the values of diffusivity ratio.

It is demonstrated that a highly viscous stenosis region is created near the entrance of the pipe

due to double-diffusive effect, providing a favourable condition to start the instability. In addition

to this, because of double-diffusive effect locally at some portion of the pipe, the less viscous fluid

becomes the displacing fluid, which promotes the development of instability.

The second part is experimental investigation of instability in a pressure-driven displacement

flow of two immiscible liquids in pipe of diameter of the order of millimetre. In this study, the

pressure-driven immiscible displacement flow, focusing on the situations, where the invading fluid is

less viscous than the resident fluid, is investigated experimentally in pipes of four different diameters.

An extensive study has been conducted and influence of Reynolds number and capillary diameter

on the flow dynamics have been investigated. The results demonstrate the presence of instability

patterns due to competition between imposed pressure gradient, gravity and surface tension forces.
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Chapter 1

Overview

The dynamics of flow of two fluids, having different viscosity and density is an interesting subject due

to its relevance in many natural and industrial applications. In industries, transportation of oil and

gas in pipelines [1], cooling of nuclear power station, combustion of fuel sprays in internal combustion

engines and enhanced oil recovery are some of examples, wherein we encounter multiphase flows. The

two-phase flow has been studied by several authors in different configurations by considering both

miscible and immiscible fluids [1, 4, 5, 6, 8, 26]. The effects of geometry, density and viscosity ratios

between the fluids, flow rate, surface tension have been investigated [1, 5, 6, 2, 10, 3, 20, 21, 22, 28].

1.1 Outline of the thesis

The main objective of the present study is to investigate the flow dynamics and instabilities formed in

pressure-driven displacement flows of two miscible/immiscible liquids with varying viscosity, capillary

diameter, diffusivity ratio and flow rate in three-dimensional geometries by performing numerical

simulations and experiments.

The thesis is divided into two parts. The first part is numerical investigation of pressure-driven

displacement flow of a less viscous fluid initially occupying in an axisymmetric pipe by a highly

viscous fluid. The working fluids consist of two species, which are diffusing at different rates. The

fluids are assumed to be Newtonian, incompressible having the same density, but different viscosity.

This viscosity is modelled as an exponential function of the concentrations of both the species.

A parametric study investigating the effects of diffusivity ratio, log-mobility ratios of the slower

and faster diffusing species and Reynolds number on the flow dynamics is conducted. The results

demonstrate the presence of instability patterns due to double-diffusive (DD) effect in situations

when a less viscous fluid displaces a highly viscous fluid. It is demonstrated that a highly viscous

stenosis region is formed near the entrance of the pipe due to double-diffusive effect, providing a

favourable condition to start the instability.

The second part is experimental investigation of instability in pressure-driven displacement flow

of two immiscible liquids in a capillary. In this study, the pressure-driven immiscible displacement

flow, focusing on the situations, where the invading fluid is less viscous than the resident fluid, is

investigated experimentally in pipes of four different capillary diameters. The fluids considered here

are water and coconut-oil with viscosity ratio, µ21 = 27 and density ratio, ρ21 = 0.925. An extensive
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study has been conducted and the influence of Reynolds number and capillary diameter on the

flow dynamics have been investigated. The results demonstrate the presence of instability patterns

due to competition between the imposed pressure gradient, gravity and surface tension forces. By

keeping the other parameters constant and changing the capillary diameter of the pipe changes the

critical Reynolds number (Re at which the first instability formation is observed). As the Reynolds

number is decreased below the Rec, plug flow displacement behaviour is seen in the system. In this,

instability phenomenon was not continuous and multiple formation of plugs are observed. Decreasing

the As the capillary diameter is decreased, more axisymmetric nature of instability is observed .
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Chapter 2

Instability due to double-diffusive

phenomenon in pressure-driven

displacement flow of one fluid by

another in an axisymmetric pipe

2.1 Background

The viscous fingering phenomenon in the displacement flows of a highly viscous fluid by a less viscous

one has been widely studied in literature due to its relevance in many industrial applications and

natural phenomena [1]. It is also well known that the opposite situation, wherein a less viscous fluid

is displaced by a highly viscous one is stable [4, 5, 6, 2, 3]. However, these conclusions are only

true for single-component” systems, where viscosity stratification is achieved by varying one species,

say temperature or concentration. Recently, it was observed that the classically stable viscosity-

stratified configurations in the context of single-component flows become unstable in the presence

of two species having different diffusion constants (say, temperature and salt, or sugar and salt, etc)

in porous media [7], and pressure-driven flows in two-dimensional planar channel [9, 8, 10, 11, 12,

13]. This phenomenon is commonly known as double-diffusive effect, which has been extensively

studied in density-stratified systems (see for example Turner [14]), but has received far less attention

in viscosity-stratified flows. Moreover, to the best of our knowledge, all the previous studies are

conducted for planar geometries, although in most of the industrial applications the geometries are

circular in cross section. The flow dynamics in a circular pipe are very different to those of the planar

channel, as far as the instability and transition to turbulence are concerned [15]. Thus, the focus of

the present study is to investigate the instability patterns due to the double-diffusion phenomenon

in an axisymmetric pipe. The double-diffusive phenomenon observed in density-stratified systems

in the context of thermohaline convection is briefly discussed below [16].

The viscosity-stratified single-component systems have been studied by many authors [26, 20, 21,

22, 17, 18, 19, 23, 24, 25]. Several configurations, such as core-annular, three-layer and displacement

flows are considered in these studies. The relevant finding from these studies are summarized as
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follows. In three-layer planar channel flow, decreasing the viscosity towards the wall has a significant

stabilizing influence. As expected, the stabilizing effects accentuated with the decrease in viscosity

contrast of the fluids occupying the near-wall and centreline regions. On the other hand, increasing

the viscosity of the fluid toward the walls destabilizes the three-layer channel flow. In such unstable

configurations, Sahu et al. [24] found the presence of absolute instability under certain parameter

ranges by conducting a linear stability analysis, which in turn takes the flow towards a transitional

state via non-linear mechanism. On the other hand, core-annular pipe flow is different. For higher

viscosity ratios, the flow becomes unstable even when the less-viscous fluid is at the wall [22]. By

conducting a linear stability analysis, Govindarajan and co-workers [9, 10] observed a new instability

mode due to double-diffusive phenomenon in a three-layer planar channel flow with the less viscous

fluid occupying the near wall regions. The mixing in single-component viscosity-stratified flow in

porous media has been investigated by Jha et al. [28, 27]. The readers are referred to the recent

review articles [6, 11], which discuss the instability in viscosity stratified flows.

As the above brief review shows, all the previous work carried out on double-diffusive effect has so

far been for planar channel, although cylindrical geometries are frequently encountered in industrial

applications. The present study is an extension of Mishra et al. [9] and Sahu [8] to investigate

the double-diffusive effect for displacement flow through an axisymmetric pipe. Through a series

of direct numerical simulations, they investigated the instabilities due to double-diffusive effect in

pressure-driven displacement flow of a less viscous fluid by a highly viscous fluid, which is injected

at the inlet of a planar channel. As discussed above this is a stable configuration in the context of

single-component flows. The effects of diffusivity ratio of the faster and slower diffusing species have

been investigated and various instability patterns were found once the finger of the highly viscous

fluid penetrates inside the channel.

The rest of this study is organized as follows. The formulation and equations governing the flow

are presented in section 2.2. The results are discussed in section 2.3. Concluding remarks are given

in section 2.4.

2.2 Formulation

We consider pressure-driven displacement flow of one fluid (fluid 2) by another one (fluid 1) in an

axisymmetric pipe of diameter D and length L, as shown in Fig. 2.1. Both the fluids have the same

density, and are assumed to be incompressible and Newtonian, with dynamic viscosities µ1 and µ2,

respectively. The viscosity of the invading fluid is higher than that of the resident fluid (µ1 > µ2).

This is a stable configuration in the context of single-component systems [3, 6], as discussed in

section 2.1. Here, the resident (fluid 2) and invading (fluid 1) fluids consist of the same solvent,

but contain two species (S and F) diffusing at different rates, wherein S and F represent the slower

and faster diffusing species, respectively. Df and Ds are the diffusivities of the faster and slower

diffusing species, respectively, such that δ = Df/Ds > 1 (by definition). The pipe wall is assumed

to be rigid and impermeable, with inlet and outlet at x = 0 and x = L, respectively. In order to

minimize the entry effects, at the starting of the simulation the invading fluid is filled up to x = D

inside the pipe. The invading fluid (fluid 1 having species S and F in quantity S1 and F1 ) is injected

at the inlet of the pipe with an average velocity, V (≡ Q/A), where Q and A (≡ πD2/4) denote the

flow rate and cross-sectional area of the pipe, respectively. The resident fluid (fluid 2 having species
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D

Fluid 2
(S2, F2)

Fluid 1
(S1, F1)

D

r
x

L

Figure 2.1: The schematic (not to scale) showing the initial flow configuration. The portions of the
pipe 0 ≤ x ≤ D and D ≤ x ≤ L are filled with fluid 1 and fluid 2, respectively. The aspect ratio of
the pipe, L/D is 100.

S and F in quantity S2 and F2) is initially kept stationary inside the pipe (D ≤ x ≤ L). The length

of the pipe is considered to be 100D. The viscosity, µ is modelled using the following viscosity-

concentration relationship [4, 10, 29, ?] for liquid systems:

µ = µ1exp

[
Rs

(
S − S1

S2 − S1

)
+Rf

(
F − F1

F2 − F1

)]
(2.1)

where Rs ≡ (S2 − S1) (d(lnµ)/dS) and Rf ≡ (F2 − F1) (d(lnµ)dF ) are the log-mobility ratios of

species S and F , respectively. We have used this viscosity-concentration relationship as the objective

of this study is to compare the flow dynamics with double-diffusive effects in an axisymmetric pipe

with those observed in an two-dimensional channel [8, 9].

An axisymmetric cylindrical coordinate system (r, x) is used to formulate the problem, where r

and x denote the radial and axial coordinates, respectively. The flow dynamics is governed by the

continuity and the Navier-Stokes equations coupled to the convective-diffusion equations of both

species through concentration-dependent viscosity. The following scaling is employed in order to

render the governing equations dimensionless:

(r, x) = D (r̃, x̃) , t = Dt̃
v , (u, v) = v (ũ, ṽ) , P = ρv2P̃ , µ = µ1µ̃

S̃ =
S − S1

S2 − S1
, F̃ =

F − F1

F2 − F1
(2.2)

where the tildes designate dimensionless quantities. After dropping tildes, the dimensionless gov-

erning equations are given by

∇ · u = 0 (2.3)

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+

1

Re
∇ · µ(∇u +∇uT) (2.4)
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[
∂s

∂t
+ (u · ∇s)

]
=

1

ReSc
∇2s (2.5)

[
∂f

∂t
+ (u · ∇f)

]
=

1

ReSc
∇2f (2.6)

where u(u, v) represents axisymmetric velocity field, wherein u and v are the velocity components

in the axial and radial directions, respectively; p denotes the pressure field; t is the time. Here

Re(≡ ρV D/µ1) and Sc(≡ µ1/ρDs) denote Reynolds number and Schmidt number, respectively.

The dimensionless viscosity has the following dependence on F and S:

µ = exp(Rss+Rff) (2.7)

such that Rs + Rf < 0 represents the situation considered here, where the invading fluid is more

viscous than the resident fluid. By setting either Rf = 0, or Rs = 0 and δ = 1, we can recover the

governing equations for single component systems.

Eqs. (2.3)-(2.7) are solved using no-slip, no-penetration and no-flux conditions at the pipe wall. A

fully-developed velocity profile with a constant flow rate (ui = (0.25−r2)32/π, vi = 0) is imposed at

the inlet, wherein ui and vi denote the axial and radial velocity components at the inlet, respectively.

Neumann boundary condition for pressure is used at the outlet of the pipe.

A finite-volume open source code, Gerris [31, 32] with dynamic adaptive grid refinement based on

the vorticity magnitude and species concentration is used to solve Eqs. (2.3)-(2.6). A finest grid size

of 0.015 (approximately) has been used for the regions which contain gradients of slower or faster

diffusing species. Grids of size 0.06 (approximately) have been used to resolve the vortical regions

inside the domain. We refer the readers to Tripathi et al. [32, 33, 34] for detailed description of

the numerical method used in this study. The present grid size distribution was found to yield grid

independent results for the onset of instability and other flow features. In order to validate our code,

we have simulated displacement of one fluid by another in a two-dimensional planar channel for the

same parameter values considered by Mishra et al. [9]. The spatio-temporal evolution of s contours

for three values of is presented in Fig. 2.2. It can be seen that as expected δ = 1 (single-component)

is a stable configuration, but for δ > 1 the flow becomes unstable forming Kelvin- Helmholtz (KH)

type instabilities at the mixed regions. It is to be seen that these flow patterns are in agreement

with those presented in Mishra et al. [9]. However, note that fluid 2 was filled completely inside the

channel considered by Mishra et al. [9], whereas in the present study, we filled fluid 2 in the region

H ≤ x ≤ L of the channel in order to minimize the entry effect, where H is the height of the channel.

In addition, the solver has been validated extensively for several interfacial flow problems [32, 33, 34],

which have been excluded from here for brevity.

In the present study, we have extended the work of Sahu and co-workers [9, 8] to investigate

the effects of double diffusion associated with the displacement flow of a less viscous fluid by a

highly viscous one in an axisymmetric pipe. This is a parametrically rich problem, with several

dimensionless numbers, such as Re, Sc, Rs , Rf and δ influencing the flow dynamics. The effects of

these dimensionless variables are discussed below.
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(a)

(b)

(c)

Figure 2.2: Spatio-temporal evolution of the concentration field of species s at different times in a
two-dimensional planar channel (from top to bottom, t = 20, 30, 40, 50 and t = 75) for (a) δ = 1,
(b) δ = 5 and (c) δ = 10. The rest of the parameter values are Re = 100, Scs = 100, Rs = 3 and
Rf = −3.6. The flow dynamics obtained using the present solver is very similar to those observed
in Mishra et al. [9].

2.3 Results and discussion

2.3.1 Effect of δ

We begin the presentation of our results by investigating the effects of δ on the flow dynamics in

Fig. 3(a)-(d), where spatio-temporal evolution of s field has been plotted for = 1, 2.5, 5, and 10,

respectively. The rest of the parameter values used to generate this figure are Re = 100, Sc = 100,

Rs = 3 and Rf = 3.6. Here Rs +Rf < 0, but Rs > 0 and Rf < 0, which corresponds to a situation

when a highly viscous fluid displaces a less viscous fluid, and the slower and faster diffusing species

have destabilizing and stabilizing influences, respectively. For instance, in this case the slower

and faster diffusing species could be sugar and temperature, respectively. It can be seen that, as

expected, for δ = 1 the flow dynamics is stable, and a pure-Poiseuille-diffusive flow occurs as the

finger penetrates inside the pipe. It can be seen that the KH type instabilities appear for δ > 1. The

intensity of instability increases with an increase in the value of δ. Such behaviour is testament to

the ability of DD to destabilize an otherwise stable situation and for which there are several diverse
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examples [7, 16]. For the regime under consideration here, we observe that δ ≈ 2.5 corresponds to

the onset of instability, and which can be seen in the contours of s. Close inspection of Fig. 3(b)

reveals that a spike like structure appears at the tip of the finger at later times (t40). For higher

values of δ, the KH type instability becomes catastrophic. Roll-up structures become apparent at

earlier times and have increasingly greater intensity as time progresses. Comparison of contours of

s for δ = 10 observed in an axisymmetric pipe (Fig. 3(d)) with those seen in a two-dimensional

planar channel (Fig. 2(d)) divulge that the mushroom-like structures which are clearly visible in a

planar channel do not appear in case of axisymmetric pipe, and the intensity of instability is greater

for the case of a two-dimensional planar channel. Also DD convection affects pipe flow for much

smaller value of than the channel case. It can be seen in panel (b) of Figs. 2 and 3 that the flow in

a two- dimensional channel is fairly stable for δ = 2.5, but the instability already appears in case of

an axisymmetric pipe for the same value of δ. Close inspection of Figs. 2 and 3 also reveals that the

mixing in a planar channel is dominated by instabilities, where as in a pipe it is mainly dominated

by diffusion mechanism. Inspection of results presented Fig. 2 (two-dimensional channel) and Fig.

3 (axisymmetric pipe) reveals that the speed of the finger in a pipe is higher than that observed in

a planar channel for the same set of parameter values. This is also evident in Fig. 4, where the time

evolution of location of the tip of the finger in a two-dimensional channel and an axisymmetric pipe

are presented for different values of δ. We also observed in Fig. 4 that increasing δ increases the

speed of the finger for both the channel and pipe cases.

The spatio-temporal evolution of viscosity field for different values of δ is presented in Fig. 5 for

the same parameter values used to generate Fig. 3. For δ = 1, the viscosity in the mixed region

decreases monotonically in the positive axial direction, whereas for δ > 1 the viscosity undergoes a

non-monotonic distribution in the axial direction due to the double-diffusive effect. In addition to

this, for δ > 1 a highly viscous stenosis region forms near the wall of the pipe. The value of viscosity

of the fluid in the stenosis region increases with an increase in the value of δ. This phenomenon was

first observed by Taylor [35] for single-component flows. The non-monotonic viscosity distribution

in the axial direction and the highly viscous stenosis formation near the wall of the pipe provide

a favorable condition for the instability to grow [6], leading to the amplification of instabilities for

increasing values of δ.

The radial variation of viscosity at a later dimensionless time (t = 50) for different axial locations

are plotted in Fig. 6(a)-(d) for δ = 1, 2.5, 5, and 10, respectively. It can be seen that a core-annular

configuration is formed with the less viscous fluid in the annular region for δ = 1. The viscosity

in this case decreases monotonically in the radial direction at all x locations. This is a stable

configuration, as shown by Govindarajan and co-workers via linear stability analyses [6, 17]. For

δ > 1 the viscosity profiles encounter minima at intermediate radial locations (in the mixed region)

for all axial locations, with the annular region occupied with highly viscous fluid, thus making the

flow unstable. Close inspection of Fig. 6(b)-(d) also reveals that the value of the near-wall viscosity

increases with an increase in δ value, thereby making the flow more unstable. The effect of the

log-mobility ratio of the slower diffusing species, Rs is investigated next.
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(a)

(b)

(c)

(d)

Figure 2.3: Spatio-temporal evolution of the concentration field of species s at successive times (from
top to bottom, t = 20, 40, 50 and t = 75) for (a) δ = 1, (b) δ = 2.5, (c ) δ = 5 and (d) δ = 10. The
rest of the parameter values are Re = 100, Scs = 100, Rs = 3 and Rf = −3.6. The centreline of
the pipe is located at the middle of each panel.
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(a)

(b)

(c)

(d)

Figure 2.4: Spatio-temporal evolution of the viscosity field at successive times (from top to bottom,
t = 20, 30, 40, 50 and t = 75) for (a) δ = 1, (b) δ = 2.5, (c) δ = 5 and (d) δ = 10. The rest of the
parameter values are Re = 100, Scs = 100, Rs = 3 and Rf = −3.6. The centreline of the pipe is
located at the middle of each panel.
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(a) (b)

(c) (d)

Figure 2.5: Variation of viscosity at t = 50 in the radial direction at different axial locations for
(a)δ = 1 , (b)δ = 2.5, (c)δ = 5 and (d)δ = 10 .The rest of the parameters are , t = 50, Re = 100,
Scs = 100, Rs = 3 and Rf = −3.6.

2.3.2 Effect of Rs

The spatio-temporal evolutions of the concentration field of the slower diffusing species are presented

for Rs = 0.5, 1.5, 2 and 3 in Fig. 7(a), (b), (c) and (d), respectively. The rest of the parameter

values are Re = 100, Sc = 100, δ = 10 and Rf = 3.6. Again the slower and faster diffusing species

have destabilizing and stabilizing influences, respectively. In addition to this, Rs + Rf < 0, thus a

highly viscous fluid is displacing a less viscous one inside the pipe. For Rs = 0.5, the viscosity of

the invading fluid is approximately 22.2 times higher than that of the resident fluid. The value of

δ (δ = 10) considered in this case is not high enough to create instabilities. In this case, a finger

with a blunt nose penetrates inside the pipe as the time progresses. With an increase in the value

of Rs , the viscosity ratios between the invading and resident fluids decreases. For Rs = 1.5, the

nose of the finger becomes sharper, and the onset of instabilities occurs at Rs = 1.5 for the set

of parameter values considered. Further increase in the value of Rs leads to KH type instabilities

at the mixed region separating the fluids. This behaviour is also evident in Figs. 8 and 9. The

appearance of highly viscous stenosis region near the wall, which is the source for these instabilities

is not significant enough for Rs = 0.5, but starts to dominate the instability dynamics for Rs ≥ 1.5
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for this set of parameter values.

The axially averaged viscosity (µx ) versus r, and radially averaged viscosity (µr) versus x profiles

are plotted at t = 30 in Fig. 9(a) and (b), respectively. It can be seen in Fig. 9(a) that for R s 1.5, the

dynamics due to the double-diffusive effect creates a core-annular configuration, with highly viscous

fluid in the annular region. The non-monotonic trend of the radially averaged viscosity profiles are

also apparent for Rs ≥ 1.5 in Fig. 9(b), which implies that although initially a highly viscous fluid

was displacing a less viscous fluid, at later times due to the double-diffusive effects a situation is

created locally, wherein a less viscous fluid displaces a highly viscous one. This phenomenon makes

the flow unstable [3].

(a)

(b)

(c)

(d)

Figure 2.6: Spatio-temporal evolution of the concentration field of species s at successive times (from
top to bottom, t = 20, 30, 40, 50 and t = 75) for (a) Rs = 0.5, (b) Rs = 1.5, (c)Rs = 2 and (d)
Rs = 3. The rest of the parameter values are Re = 100, Scs = 100, δ = 10 and Rf = −3.6. The
centreline of the pipe is located at the middle of each panel.
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(a)

(b)

(c)

(d)

Figure 2.7: Spatio-temporal evolution of the viscosity field at successive times (from top to bottom,
t = 20, 30, 40, 50 and t = 75) for (a) Rs = 0.5, (b) Rs = 1.5, (c)Rs = 2 and (d) Rs = 3. The rest of
the parameter values are Re = 100, Scs = 100, δ = 10 and Rf = −3.6. The centreline of the pipe
is located at the middle of each panel.
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(a) (b)

Figure 2.8: Variation of a) axially average viscosity, (µx ≡ D
L

∫ L/D

0
µdx) verses r, b) radially averaged

viscosity (µr ≡ 8
D2

∫D/2

0
µrdr) verses x, for different values of Rs, at t = 30 for Re = 100, Scs = 100,

δ = 10 and Rf = −3.6.

2.3.3 Effect of Rf

We then investigate the effects of changes to the log-mobility ratio of the faster diffusing species. In

Fig. 9(a), (b) and (c), we plot the spatio-temporal evolution of s for Rf = -1, -3 and -5 respectively.

The rest of the parameter values are Re = 100, Sc = 100, δ = 10 and Rs = 2. The results presented

in Fig. 9(a) are characteristic of a situation when a less viscous fluid displaces a highly viscous fluid

occupying the pipe initially (i.e. Rs + Rf > 0; unstable configuration even for single-component

systems). It can be seen that a cap-type instability appears at the tip of the finger, with a blunt

nose. The results presented in Fig. 10(b) and (c) are stable in the context of single-component

systems; however, become unstable due to differential diffusivity of the slower and faster diffusing

species (δ = 10). Decreasing the value of Rf by keeping Rs constant decreases the double-diffusive

instability. It can be seen in Fig. 10(a) that, for t=30, the viscosity contrast of the annular to

the core fluids decreases with Rf . Such effect was also observed for all later times considered (not

shown). Also the peak of the radially averaged viscosity near the entrance region decreases with a

reduction in the value of Rf , and thereby stabilizing the flow dynamics.

(a)
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(b)

(c)

Figure 2.9: Spatio-temporal evolution of the concentration field of species s at successive times (from
top to bottom, t = 20, 30, 40, 50 and t = 75) for (a) Rf = −1, (b)Rf = −3 and (c) Rf = −5. The
rest of the parameter values are Re = 100, Scs = 100, δ = 10 and Rs = 2. The centreline of the
pipe is located at the middle of each panel.

(a) (b)

Figure 2.10: Variation of a) axially average viscosity, (µx ≡ D
L

∫ L/D

0
µdx) verses r, b) radially

averaged viscosity (µr ≡ 8
D2

∫D/2

0
µrdr) verses x, for different values of Rf , at t = 30 for Re = 100,

Scs = 100, δ = 10 and Rs = 2.
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2.3.4 Effect of Re

Finally, in Fig. 2.11, the effects of Re are shown for Sc = 100, δ = 10, Rs = 3, and Rf = 3.6. It can be

seen that flow becomes vigorously unstable with an increase in the value of Re. This behaviour is not

surprising as the destabilizing behaviour of Reynolds number can be observed in many shear flows.

Close inspection of this figure also reveals that the nose of the finger becomes increasingly sharp

as Re is increased, but surprisingly becomes blunt for Re = 1000. Increasing Reynolds number by

keeping the Schmidt number fixed also implies that the Peclet number (ReSc), which characterizes

diffusion, is increased. It can be seen in Fig. 2.11 that the mixing due to diffusion decreases with

an increase in the value of Re, which increases (decreases) the Peclet number (diffusive mixing).

Comparison of the spatio-temporal variation of s contours shown in Fig. 2.11 for an axisymmetric

pipe with those of Mishra et al. [9] for a two-dimensional channel reveals that the present flow is

more unstable than that observed in a channel.

(a)

(b)

(c)

Figure 2.11: Spatio-temporal evolution of the concentration field of species s at successive times
(from top to bottom, t = 20, 30, 40, 50 and t = 75) for (a) Re = 50, (b) Re = 500 and (c) Re
= 1000. The rest of the parameter values are Scs = 100, δ = 10 Rs = 3 and Rf = −3.6.. The
centreline of the pipe is located at the middle of each panel.
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2.4 Concluding remarks

In this paper, the pressure-driven displacement flow, focusing on the situation when the invading

fluid is more viscous than the resident fluid (classically a stable configuration in the context of single-

component systems), is investigated in an axisymmetric pipe, using an open source code, Gerris based

on finite-volume approach. The fluids considered in the present study have the same density, but

different viscosity. The viscosity stratification is achieved through the addition of two solute species

diffusing at different rates. The viscosity is modelled as an exponential function of the concentration

of both the species. An extensive parametric study has been conducted, and the influences of

diffusivity ratio, log-mobility ratios of the slower and faster diffusing species, and Reynolds number

on the flow dynamics have been investigated. Our results demonstrate the presence of instability

patterns due to double-diffusive effect, which are qualitatively different from those observed in a

planar channel and also in situations when a less viscous fluid displaces a highly viscous fluid. We

found that increasing the values of δ and Rs , keeping Rf fixed, makes the flow increasingly unstable.

Similar trend is observed when the Reynolds number is increased. We observe a blunt nose of the

penetrating finger for lower value of Rs , which becomes sharper with increasing Rs value. It is

demonstrated that although initially a highly viscous fluid displaces a less viscous one, at later

times, a local situation is created due to the double-diffusive phenomenon, wherein less viscous fluid

becomes the displacing fluid. Also, at later times, the viscosity of the fluid in annular region becomes

more viscous as compared to that in the core of the pipe, which starts the instability observed in

the present study.
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Chapter 3

An experimental study of

instability in pressure-driven

displacement flow of two

immiscible liquids in capillary

tubes

3.1 Background

As discussed in the previous chapter, in pressure-driven displacement flow of a less viscous fluid by

a more viscous fluid, the interface separating the two fluids becomes unstable. When the fluids are

immiscible, the Yih type instability [36] appears at the interface, whereas the Kelvin-Helmoltz-type

roll-up structures form at the so called ‘interface’ of two miscible fluids. In miscible/immiscible flow

configurations, several numerical and experimental studies have been carried to understand the flow

dynamics, which is reviewed recently by Govindarajan and Sahu [6]. Sahu et al. [37] numerically

investigated the three-dimensional displacement flow of a liquid originally occupying a square duct

by another immiscible liquid of different density and viscosity, which is injected from the inlet of

the channel. The effect of viscosity ratio, density ratio, surface tension, wettability and capillary

number was also studied by Chin et al. [38], Grosfils et al. [39], Kang et al. [40], and Dong et

al. [41], respectively. In this chapter, displacement flow of coconut oil organically occupying inside

a pipe by water is investigated experimentally. An parametric study has been conducted and the

influence of Reynolds number and capillary diameter on the flow dynamics have been investigated.

The results demonstrate the presence of instability patterns due to competition between imposed

pressure gradient, gravity and surface tension forces.
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3.2 Experimental set-up and procedure

The experimental set-up of pressure-driven displacement flow of one fluid by another immiscible

fluid in a capillary tube is shown in Fig 3.1. The set-up consists of glass capillaries with nominal

inner diameters, D = 0.5, 1, 2 and 3 mm. The capillary tubes were mounted on a glass holder

stand, made up of iron, so as to avoid any disturbance/vibrations during the experiment. Initially

the capillary was filled with coconut oil (fluid 2) with dynamic viscosity, µ2 = 27 cp and density,

ρ2 = 925 kg/m3. One end of the capillary was connected to a micro-pump and the other end was

kept open to atmospheric conditions. A syringe of 30 ml was mounted on the micro-pump which

contained water (fluid 1) with dynamic viscosity µ1 = 1 cp and density ρ1 = 1000 kg/m3. Water was

coloured pink with KMnO4 to capture the water-coconut oil interface through the glass capillary

tubes. Water was injected into the capillary tubes with different volumetric flow rates (0.5 - 30

ml/min). A scale was attached to the iron stand to track the location of finger-tip and instabilities

along the capillary tube length. A digital camera was used to capture the instability phenomena

for a certain length of the capillary. Experiments were repeated for various volumetric flow rates to

calculate the error bar related to displacement of finger tip and instabilities. It was found that the

error related to the finger tip and instability displacement was ±3% and ±1.2%, respectively (Figs.

3.4-3.5).

Experiments were performed to obtain the value of contact angle for water and coconut-oil with

glass for account of surface tension. The contact angles at water-air (θw) and coconut oil-air (θc)

junctions at the tube wall were found to be 180 and 55.60, respectively. The interfacial tension

between the water and coconut-oil interface is 12.8 mN/m2 [42]. Both the fluid tends to wet the

surface of the glass tube and this wetting properties has a profound influence on the width of the

penetrating fluid and consequently on the shape of the overall pattern [43].

Image processing techniques was used on the images collected from the digital camera to extract

the desired data [44]. This was basically done using Matlab image processing toolbox. Initially

the images are cropped such that only tube part is visible (Fig. 3.3). The resulting image is

then converted into grayscale by the Matlab functions. Intensity versus x diagram is obtained by

averaging the intensity values of each column. A threshold value of 115 is taken to obtain the peaks

in the intensity versus x diagram (not shown). The peaks are tracked with time to obtain the motion

of the thin regions of the pink fluid (water). The motion of finger tip at different times are plotted

(Fig.3.4-3.5) for different Re.

The influences of Reynolds number(Re) and capillary diameter(Cad) on the flow dynamics are

discussed below.
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Coconut-oil (Fluid-2)
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Water (Fluid-1)

Figure 3.1: A schematic of the experimental set-up for the pressure-driven immiscible displacement
of one fluid by another in a capillary.
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Figure 3.2: A schematic of water displacing coconut-oil in a capillary.
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3.3 Results and discussion

3.3.1 Effect of Re

We now begin our analysis by investigating the effect of Re (Reynolds number) which introduces

instability in the system. In the present study, experiments were carried out for Re ranging from

40 − 300 for all the four capillary tubes. The effect of Re on the flow dynamics is presented in

the current section where all other parameters are kept constant and only volumetric flow rate

is varied in each capillary tube. In the present section, the study includes finger-tip tracking,

instability tracking by image processing techniques and identification of a critical Reynolds number

Rec, at which the first instability formation in the system was observed. As the Reynolds number

is decreased below the Rec, plug flow displacement behaviour was seen in the system (Fig 3.3(a)).

In this, instability phenomenon (Neck-Break formation) was not continuous and multiple formation

of plugs ware observed below the Rec value.

The effect of Re on the flow dynamics is shown in Fig 3.3(a)-(d), where spatio-temporal evolution

of the concentration field of water has been plotted for Re = 72, 83, 120 and 180 respectively. The

rest of the parameter values are, Cad = 2mm, L = 10cm, µ1 = 1cp, µ2 = 27cp, ρ1 = 1000kg/m3 and

ρ2 = 925kg/m3. The Re is calculated based on the fluid 1 (water) and defined as Re = DV ρ1/µ1,

where the Cad = diameter of the capillary, V = Velocity of the fluid 1 injected, ρ1 = density of fluid

1 and µ1 = viscosity of fluid 1. Here µ2 > µ1 which corresponds to a situation when a less viscous

fluid displaces a highly viscous fluid and hence is an unstable system [1]. In Fig 3.3(b)-(d), for Re

≥ Rec , it can be seen that the instability formation is continuous and no plug flow displacement

occurs as the finger penetrates inside the capillary tube. For this set of parameter values, we observe

that Re = 83 corresponds to the critical Reynolds number for which the initial instability is seen

(Fig 3.3(b)). Similarly, the Rec values for capillary diameter Cad = 0.5, 1 and 3mm was found to

be 95, 48 and 120 respectively (Fig 3.8). Close inspection of Fig 3.3(b)-(d) reveals that, initially

the instabilities are waves in structure [45] and as the finger penetrates inside the capillary, kink

type instability is observed [46]. This kink type pattern can be seen in Fig 3.3(b)-(d), and termed

in this study as ”Neck-break formation” (N-B). It is observed that the intensity of the instability

increases as the Reynolds number is increased. This destabilizing behaviour of Reynolds number

can be observed in many shear flows [6]. In the initial stages, the N-B type instability is seen to

form at the tails end and as the Re is increased further, simultaneous N-B type instability formation

is seen in the whole capillary tube.

The variation of the location of finger-tip (Xtip) at different time interval for capillary diameter

D = 0.5, 1, 2 and 3mm and 20 ≤ Re ≤ 300 is presented in Fig 3.4(a)-(d), for same parameter

values used in Fig 3.3. For this set of parameters, the ratio of single phase water velocity to finger-

tip velocity (Vsp/Vtip, calculated from Fig 3.4) was found to be around 1.66 for all the capillary

diameters. An error bar was plotted shown in Fig 3.4(a)-(d), which was generated by carrying out

a single experiment several times.The percentage error limit for the Xtip in the capillary tubes was

found to be ±3%. This percentage error limits were nearly same for different Reynolds number and

capillary diameters (Fig 3.4). The finger-tip speed was also seen to behave different when the Re

number was increased higher. In this there was a phenomenon of two N-B type merging with each

other to form a new N-B type instability because of which the Xtip location was seen to oscillate in

the capillary domain. This behaviour was seen for Re ranging from Rec ≤ Re ≤ 200. For Re > 200,
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the N-B type instability merging was seen faster and the finger-tip oscillations was minimized.

Now we see the effect of Re on the N-B type instability formation. The variation of location

of instability (Xint) with respect to time for capillary diameter Cad = 0.5, 1, 2 and 3 mm and for

40 ≤ Re ≤ 300 has been plotted in Fig 3.5(a)-(d). The rest of the parameter values are, µ1 = 1cp,

µ2 = 27cp, ρ1 = 1000kg/m3 and ρ2 = 925kg/m3. The ratio of single-phase velocity to the instability

velocity (Vsp/Vint) was found to be nearly 20.22 for all the capillary diameters.

(a)

(b)

(c)

(d)

Figure 3.3: Experimental images of water penetrating inside the capillary at successive times (from
top to bottom, t = 10, 20, 30 and t = 50) for Reynolds number (a) Re = 72, (b) Rec = 83, (c)
Re = 120 and (d) Re = 180. The rest of the parameters values are, D = 2mm, L = 10cm, µ1 = 1cp,
µ2 = 30cp, ρ1 = 1000kg/m3 and ρ2 = 925kg/m3.
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Figure 3.4: Variation of location of finger tip , Xtip (cm), in the steamwise direction for (a) D = 3mm
, (b) D = 2mm, (c) D = 1mm and (d) D = 0.5mm .The rest of the parameters are 0 ≤ t ≤ 50 sec,
0 ≤ Re ≤ 300 and Aspect ratio = 1 : 100.

The observed flow dynamics (Fig 3.3) is a result of competition between the imposed pressure-

gradient, surface tension force and the gravity. The pressure-driven flow induces motion of fluid 1

in positive axial direction, and the gravity acting perpendicular to flow, opposes the motion. The

density difference of 7.5% was seen to affect the flow dynamics when the capillary diameter (Cad) was

greater than 1mm. For Cad ≥ 1mm, the gravity is also a dominating force acting in the downward

direction settles the remnants of fluid ”1” at the bottom part of the capillary tube [47]. The upper

layer of the capillary tube for t ≥ 10 sec was thicker compared to the bottom layer (Fig 3.3 and

3.7). Interesting to observe in the flow dynamics was, the speed of the N-B type instability was

much smaller as compared to the Vtip and Vsp. As we go near the bottom wall, the velocity of

flow dynamics decreases due to no-slip condition and as the instability formation was seen near the

bottom wall region, the velocity of instability was also seen less as compared to other flow velocity.

In 1mm and 0.5mm capillary diameter, the upper layer of coconut-oil was thin for t ≥ 10 sec as

compared to 2mm and 3mm capillary diameter. As the finger penetrates inside the capillary tube

25



(a) (b)

0 10 20 30 40 50 60
0

5

10

15

20

 

 
X_

in
st

 (c
m

)

Time (sec)

 Re  =  63
 Re  =  119
 Re  =  159
 Re  =  199
 Re  =  239

0 13 26 39 52 65
0

4

8

12

16

 

 

X_
in

st
 (c

m
)

Time (sec)

 Re  =  83
 Re  =  96
 Re  =  120
 Re  =  180
 Re  =  240

(c) (d)

0 7 14 21 28 35
0

2

4

6

8

10

 

 

X_
in

st
 (c

m
)

Time (sec)

 Re  =  48
 Re  =  72
 Re  =  95
 Re  =  120
 Re  =  286

0 2 4 6 8 10 12
0

1

2

3

4

5

6

 

 

X_
in

st
 (c

m
)

Time (sec)

 Re  =  95
 Re  =  143

Figure 3.5: Variation of Xint, in the steamwise direction for (a) Cad = 3mm , (b) Cad = 2mm, (c)
Cad = 1mm and (d) Cad = 0.5mm .The rest of the parameters are 0 ≤ t ≤ 50 sec, 0 ≤ Re ≤ 300
and Aspect ratio = 1 : 100.
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Figure 3.6: Location of first instability (Xint) formed with capillary diameter Cad, for its corre-
sponding Rec values. The time at which the initial instability was seen is shown in the graph.
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at later times, for 1mm and 0.5mm diameter, the water occupied the whole domain and total

displacement of coconut-oil by water was observed, Whereas the upper layer occupied by coconut-

oil was thicker in 2mm and 3mm capillary diameter tubes. This type of phenomenon was also

studied by many authors in core/annular flow in channels and capillaries, both numerically and

experimentally. The axisymmetric behaviour of N-B type instability was seen for all the capillary

diameter when the Re number was greater than 500, which is discussed in detail in the next section.

The location of first instability seen for a critical Reynolds number(minimum Re at which the

instability is seen) in the capillary tube is shown in Fig 3.6. The graph was plotted for various

diameters and their respective Rec. From the Fig 3.6, it can be seen that for 0.5mm capillary

diameter and corresponding Rec = 95, the instability was seen to occur near the injection region

(0.4cm). Also the time taken for the first instability to occur for above given parameters was very

less compared to the other capillary diameter. For 1mm and 2mm capillary diameter , the instability

occurrence was seen to have increasing and decreasing behaviour respectively. For 3mm capillary

diameter, the instability was seen to form far from the injection point(2cm). As the capillary

diameter goes on increasing, the time for first instability to occur was also seen to increase. Now we

investigate the effect of Capillary diameter (Cad) on the flow dynamics discussed in the next section.

3.3.2 Effect of Cad

Now we investigate the effect of Capillary diameter (Cad) on the flow dynamics. In Fig 3.7, spatio-

temporal evolution of the concentration field of water has been plotted at successive times (from

top to bottom, t = 10, 20, 30, 40 and t = 50) for capillary diameter (a) 1mm, (b) 2mm and (c)

3mm. The rest of the parameter values are Re = 120 and length plotted for 1mm, 2mm and 3mm

capillary diameter are (a) 8cm, (b) 10cm and (c) 15cm respectively. In Fig 3.7(c), compared to Fig

3.7(a)(b), it can be seen that the N-B type instability formation at t = 10 sec is just developing,

whereas in 2mm and 1mm capillary diameter the N-B instability formation are 2 and 4 in count

respectively. The N-B type instability formation, for constant Re, is seen to decrease as the capillary

diameter is increased . Another interesting thing to notice is, the distance between two successive

N-B type instability formation goes on increasing as the capillary diameter increases [30]. The reason

behind it can be analysed as, the surface tension forces are less dominating as the capillary diameter

increases. These surface tension forces are strong in small capillary diameters and tend to keep

the water molecules in contact giving rise to more N-B type formation, whereas in large capillary

diameters, the surface tension forces are less dominating and the finger elongates throughout the

domain in cylindrical shape.

The instabilities formation is always seen to form near the lower wall of the capillary as shown in

Fig 3.3 and Fig 3.7. As we decrease the capillary diameter and keeping other parameter constant,

the axisymmetric nature of instability was seen more (Fig 3.7(a)(b)). This axisymmetric nature was

also investigated in the present study for Fig 3.7, where image processing techniques (as described

in section 3.2) were employed to calculate the values of Ru and Rl (Fig 3.2). From the values of Ru

and Rl, the N-B instability thickness (NBt) for different capillary diameter and time interval were

obtained. The location of the instability for each capillary diameter was calculated by averaging

the values of (NBt/2) + Rl for all the time interval. The averaged values of the instability location

(from bottom wall) for 1mm, 2mm and 3mm capillary diameter was 0.47mm, 0.72mm and 1mm

respectively. The values clearly depicts that as the capillary diameter is decreased, the instability
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(a)

(b)

(c)

Figure 3.7: Experimental images of water penetrating inside the capillary at successive times (from
top to bottom, t = 10, 20, 30, 40 and t = 50) for capillary diameter (a) 1mm, (b) 2mm and (c) 3mm.
The rest of the parameter values are Re = 120 and length plotted for 1mm, 2mm and 3mm are (a)
8cm, (b) 10cm and (c) 15cm respectively (Water - pink colour and Coconut oil - transparent).

formation is seen near the mid-section of the radial direction, also giving rise to symmetric pattern.

In Fig 3.8, values of critical Reynolds number (Rec) has been plotted for different capillary

diameters(Cad). It is seen that as the diameter of the capillary decreases, the Rec value also

decreases. But when the capillary diameter reaches 0.5mm, the Rec value increases and tends to

deviate similar type of behaviour as other capillary diameters. The Rec value for Cad = 0.5mm was

found to be 95.

28



0.0 0.5 1.0 1.5 2.0 2.5 3.0

40

60

80

100

120

 

 

R
e_

cr
iti

ca
l

Capillary diameter (mm)

Figure 3.8: Variation of critical Reynolds number, Rec, for Cad = 3mm, 2mm, 1mm andD = 0.5mm.
The rest of the parameters are , 0 ≤ t ≤ 50 sec and Aspect ratio = 1 : 100.

3.4 Concluding remarks

The pressure-driven immiscible displacement flow, focusing on the situation where the invading fluid

is less viscous than the resident fluid, is investigated experimentally in four different capillary tubes.

The fluids considered here are water and coconut-oil with viscosity ratio, µ21 = 27 and density ratio,

ρ21 = 0.925. A parametric study has been conducted and influence of Reynolds number and Capillary

diameter on the flow dynamics has been investigated. Our results demonstrate the presence of

instability due to competition between imposed pressure gradient, gravity and surface tension forces.

We found that, keeping other parameter constant and changing the capillary diameter, changes the

critical Reynolds number (Re at which the first instability formation was observed). As the Reynolds

number is decreased below the Rec, plug flow displacement behaviour is observed in the system. In

this, instability phenomenon is not continuous and formation of multiple plugs is observed. Initially

the instability is ”wavy” in structure and as the finger penetrates inside the capillary, a kink is

observed. This kink type pattern is termed in this study as ”Neck-break formation” (N-B). For

Cad ≥ 1mm, the gravity is the dominating force, which acts in the downward direction, settling the

remnants of fluid ”1” at the bottom part of the capillary tube, where as for Cad < 1mm, the effect

of gravity is negligible. The time taken for first instability formation in the capillary tube is seen to

increase with increase in Cad. For constant Re, the N-B type instability formation is decreased as the

Cad is increased. As we decrease the capillary diameter, more axisymmetric nature of instability is

observed . At micro scale, the flow dynamics observed in capillary tubes are very different than that

as observed in macro scale. There is still a need to conduct research in this context and experiments

need to be carried out to understand the ”fluid flows in micro/nano scales”.
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68, (1934) 2–15.

[30] W. K. Chan and C. Yang. Surface-tension-driven liquidliquid displacement in a capillary.

Journal of Micromechanics and Microengineering 15, (2005) 1722.

31



[31] S. Popinet. Gerris: a tree-based adaptive solver for the incompressible Euler equations in

complex geometries. J. Comput. Phys 190, (2003) 572–600.

[32] M. K. Tripathi, K. C. Sahu, and R. Govindarajan. Why a falling drop does not in general

behave like a rising bubble. Scientific reports 4, (2014) 4771.

[33] M. K. Tripathi, K. C. Sahu, G. Karapetsas, K. Sefiane, and O. K. Matar. Non-isothermal

bubble rise: non-monotonic dependence of surface tension on temperature. Journal of Fluid

Mechanics 763, (2015) 82–108.

[34] M. K. Tripathi, K. C. Sahu, and R. Govindarajan. Dynamics of an initially spherical bubble

rising in quiescent liquid. Nature Communications 6, (2015) 6268.

[35] G. I. Taylor. Deposition of viscous fluid on the wall of a tube. Journal of Fluid Mechanics 10,

(1961) 1961.

[36] C.S. Yih. Instability due to viscosity stratification. Journal of Fluid Mechanics 27, (1967) 337.

[37] P. R. Redapangu, K. Chandra Sahu, and S. P. Vanka. A Lattice Boltzmann Simulation of

Three-Dimensional Displacement Flow of Two Immiscible Liquids in a Square Duct. Journal

of Fluids Engineering 135, (2013) 121,202.

[38] J. Chin, E. S. Boek, and P. V. Coveney. Lattice Boltzmann simulation of the flow of binary

immiscible fluids with different viscosities using the Shan-Chen microscopic interaction model.

Philosophical Transactions of the Royal Society of London A 360, (2002) 547–558.

[39] P. Grosfils, J. P. Boon, J. Chin, and E. S. Boek. Structural and dynamical characterization of

Hele-Shaw viscous fingering. Philosophical transactions. Series A, Mathematical, physical, and

engineering sciences 362, (2004) 1723–34.

[40] Q. Kang, D. Zhang, and S. Chen. Immiscible displacement in a channel: Simulations of fingering

in two dimensions. Advances in Water Resources 27, (2004) 13–22.

[41] B. Dong, Y. Y. Yan, W. Li, and Y. Song. Lattice Boltzmann simulation of viscous fingering

phenomenon of immiscible fluids displacement in a channel. Computers and Fluids 39, (2010)

768–779.

[42] B. Kettlitz. M. J. Lewis: Physical Properties of Foods and Food Processing Systems. Food /

Nahrung 33, (1989) 103–103.

[43] J. P. Stokes, D. A. Weitz, J. P. Gollub, A. Dougherty, M. O. Robbins, P. M. Chaikin, and H. M.

Lindsay. Interfacial Stability of Immiscible Displacement in a Porous Medium. Phys. Rev. Lett.

57, (1986) 1718–1721.

[44] S. J. Smith and C. T. Friedrichs. Image processing methods for in situ estimation of cohesive

sediment floc size, settling velocity, and density. Limnology and Oceanography: Methods 250–

264.

[45] M. E. Charles and L. U. Lilleleht. An experimental investigation of stability and interfacial

waves in co-current flow of two liquids. Journal of Fluid Mechanics 22, (1965) 217–224.

32



[46] M. Cloupeau and B. Prunet-Foch. Electrostatic spraying of liquids: Main functioning modes.

Journal of Electrostatics 25, (1990) 165 – 184.

[47] P. R. Redapangu, K. Chandra Sahu, and S. P. Vanka. A study of pressure-driven displacement

flow of two immiscible liquids using a multiphase lattice Boltzmann approach. Physics of Fluids

24, (2012) 10.

33


