
A Stochastic Resampling Based Selective Particle

Filter for Robust Visual Object Tracking

Neilay Khasnabish

A Thesis Submitted to

Indian Institute of Technology Hyderabad

In Partial Fulfillment of the Requirements for

The Degree of Master of Technology

Department of Electrical Engineering

June 2016

Declaration

I declare that this written submission represents my ideas in my own words, and where ideas or

words of others have been included, I have adequately cited and referenced the original sources. I

also declare that I have adhered to all principles of academic honesty and integrity and have not

misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I understand

that any violation of the above will be a cause for disciplinary action by the Institute and can also

evoke penal action from the sources that have thus not been properly cited, or from whom proper

permission has not been taken when needed.

————————–

(Signature)

—————————

(Neilay Khasnabish)

—————————–

(Roll No.)

Acknowledgements

First I would like to thank my advisor Dr. Ketan P. Detroja of Department of Electrical Engineering

at IIT Hyderabad for his guidance and motivation. I bow my sincere thanks to all my teachers from

whom I learned a lot throughout the years of my study. At the same time, I gratefully acknowledge

[1, 2, 3] as I used their benchmark test videos to evaluate the performance of my algorithm. Finally

I express my gratitude towards my parents and my friends for encouraging me all the time.

iv

Dedication

For my parents, the source of my inspiration

v

Abstract

In this work, a new variant of particle filter has been proposed. In visual object tracking, particle

filters have been used popularly because they are compatible with system non-linearity and non-

Gaussian posterior distribution. But the main problem in particle filtering is sample degeneracy. To

solve this problem, a new variant of particle filter has been proposed. The resampling algorithm used

in this proposed particle filter is derived by combining systematic resampling, which is commonly

used in SIR-PF (Sampling Importance Resampling Particle Filter) and a modified bat algorithm;

this resampling algorithm reduces sample degeneracy as well as sample impoverishments. The

measurement model is modified to handle clutter in presence of varying background. A new motion

dynamics model is proposed which further reduces the chance of sample degeneracy among the

particles by adaptively shifting mean of the process noise. To deal with illumination fluctuation and

object deformation in presence of complete occlusion, a template update algorithm has also been

proposed. This template update algorithm can update template even when the difference in the

spread of the color-histogram is especially large over time. The proposed tracker has been tested

against many challenging conditions and found to be robust against clutter, illumination change,

scale change, fast object movement, motion blur, and complete occlusion; it has been found that

the proposed algorithm outperforms the SIR-PF (Sampling Importance Resampling Particle Filter),

bat algorithm and some other state-of-the-art tracking algorithms.

Object tracking is the estimation of object trajectory using an array of sensors. The sensors can

be RADAR, SONAR or video camera etc. Object tracking has diverse application in the domains

like defense, aerospace, robotics, cell biology, surveillance and ubiquitous computing etc. Visual

object tracking is a special case where a camera or a network of cameras is used as a sensor. Visual

object tracking is widely used in various fields like human computer interaction, automation, defense

and industry etc. The major application oriented research areas of visual object tracking are mobile

robotics, robotic arm control, vehicle control and navigation, video surveillance, autonomous landing,

low altitude positioning, dropping of payloads and obstacle avoidance, and cell biology, etc.

In Chapter 1, a general introduction to object tracking is given. The idea is further visualized by

some motivating examples. Then a detailed overview of visual object tracking is given along with

their challenges. Finally the statement of our project work is explained.

In Chapter 2, a detail review of all the key algorithms in 2D object tracking is made. The

algorithms described in this chapter are: region based tracking, covariance based tracking, template

based tracking, and particle filter based tracking. In region based tracking, smoothened probabilistic

histogram of target is formed; then it is matched with the reference one. Next the similarity metric

between them is maximized using MeanShift algorithm. In covariance based tracking, the features of

the target are encapsulated in a covariance matrix for tracking; encapsulation of feature in covariance

matrix makes the tracker more robust. In the described template based tracking, a novel Kalman

filtering is used to update the template which makes the system immune to severe occlusion. Finally,

particle filter is introduced. In particle filter based tracking, both object and likelihood modeling is

introduced along with SIR-PF (Sampling Importance Resampling Particle Filter) algorithm.

In Chapter 3, a detail review of data association algorithms are explained. In general, data

association algorithms belong to a different class of algorithm which are widely used for multiple

object tracking. Here a brief review of data association algorithms like NNF (Nearest Neighbour

Filter), PDA (Probabilistic Data Association) and JPDA (Joint Probabilistic Data Association) are

vi

introduced.

In Chapter 4, multiple camera tracking methods are reviewed. Multiple camera multiple object

tracking includes both overlapped and non-overlapped camera networks. 3D object tracking is also

considered as a sub-category of multi camera object tracking. Stereo camera network is widely used

in depth estimation using geometry. Single camera can also locate objects in 3D using the intrinsic

and extrinsic parameters of the camera, which are computed by calibration. Hence, under this

sub-section, 3D object tracking is also reviewed.

In Chapter 5, the proposed algorithm is explained in detail. The proposed algorithm combines

a modified version of SIR-PF (Sampling Importance Resampling Particle Filter) and a modified

version of bat algorithm for re-sampling. This combination improves particle filter in many aspects

which are explained in this section. Further this proposed tracker is enhanced using several other

extra modules to handle clutter, occlusion and illumination fluctuation problem, etc.

Chapter 6 includes the experimental results. The proposed tracker is compared against SIR-

PF (Sampling Importance Resampling Particle Filter), bat algorithm and other state-of-the-art

algorithms. A large number of videos are tested. The videos include different challenging conditions

like background clutter, abrupt illumination change, scale change of object, fast movement of the

object, motion blur and complete occlusion. The videos are tested several times and over the

complete sequence. The quantitative results are also listed in this chapter for every video sequence.

From the test results, the performance of the proposed algorithm is found to be satisfactory.

The document is concluded with the complete list of the referred documents. The literature

review sections give complete idea on the recent trends in visual object tracking. Then the proposed

algorithm is explained and evaluated under several critical test situations. Thus this document gives

the detail literature review of visual object tracking and the proposed approach, concluding with

the referred literature.

vii

Contents

Declaration . ii

Approval Sheet . iii

Acknowledgements . iv

Abstract . vi

1Introduction to Visual Object Tracking1

Introduction .1.1 1

Object Tracking Examples .1.2 1

Aerospace Monitoring .1.2.1 1

Video Surveillance .1.2.2 2

1.2.3 Cell Biology . 2

. .Visual Object Tracking1.3 2

Objective of the Project .1.4 4

. .Summary1.5 4

5Review of Single Camera Object Tracking Algorithms2

Introduction .2.1 5

Region Based Tracking .2.2 5

Introduction .2.2.1 5

Target Modeling .2.2.2 6

Target Candidate Modeling .2.2.3 7

Bhattacharyya Coefficient Maximization .2.2.4 7

Algorithm .2.2.5 9

2.2.6 Critical Analysis . 9

Covariance Based Tracking .2.3 10

Introduction .2.3.1 10

Covariance Matrix Formulation .2.3.2 10

Computing the Best Match .2.3.3 11

. .2.3.4 Critical Analysis 11

Template Based Tracking .2.4 11

Introduction .2.4.1 11

Algorithm .2.4.2 12

. .Critical Analysis2.4.3 13

viii

2.5 Particle Filter Based Tracking . 13

2.5.1 Introduction . 13

2.5.2 Particle Filters . 14

2.5.3 System Model . 15

2.5.4 Color Model . 16

2.5.5 Algorithm . 17

2.5.6 Critical Analysis . 17

2.6 Summary . 17

3 Review of Multiple Visual Object Tracking Algorithms 19

3.1 Introduction . 19

3.2 Comparison of Data Association Algorithms . 19

3.3 Nearest Neighbor Data Association . 20

3.4 Probabilistic Data Association . 20

3.5 Particle Filter Data Association . 23

3.6 Summary . 23

4 Review of Multi-camera and 3D Object Tracking 24

4.1 Introduction . 24

4.2 Camera Calibration . 24

4.3 Multi-camera Object Tracking . 25

4.3.1 Disjoint Field of View Tracking . 25

4.3.2 Overlapped Field of View Tracking . 25

4.3.3 Tracking Human Motion . 26

4.3.4 Critical Analysis . 26

4.4 Depth Estimation and 3D Tracking . 26

4.4.1 Introduction . 26

4.4.2 Literature Review : Different Approaches to 3D Tracking 27

4.5 Summary . 27

5 Proposed Algorithm 28

5.1 Introduction . 28

5.2 Related Works . 29

5.3 Proposed Particle Filter . 30

5.3.1 Sampling Importance Resampling Particle Filter 30

5.3.2 Proposed Algorithm . 32

5.4 Proposed Measurement Model . 33

5.4.1 Other Related Works . 34

5.4.2 Proposed Measurement Model . 34

5.5 Proposed Motion Dynamics Model . 35

5.6 Proposed Resampling Algorithm . 38

5.6.1 Bat Algorithm . 38

5.6.2 Proposed Resampling Algorithm . 40

5.6.3 Computational Cost Analysis . 42

ix

5.7 Proposed Template Update Mechanism . 43

5.7.1 Related Works . 43

5.7.2 Proposed Template Update Algorithm . 43

5.8 Summary . 45

6 Test Results 47

6.1 Introduction . 47

6.2 Comparison with SIR-PF and Bat Algorithm . 48

6.2.1 Case Study 1 : Tracking Object Under Illumination Variation, Occlusion and

Clutter . 48

6.2.2 Case Study 2 : Tracking Object Under Clutter, Fast Motion and Scale Change 49

6.2.3 Case Study 3 : Tracking Object Under Motion Blur, Fast Motion and Scale

Change . 54

6.2.4 Case Study 4 : Tracking Object Under Occlusion, Fast Motion and Clutter . 57

6.2.5 Case Study 5 : Tracking Object Under Occlusion and Clutter 60

6.2.6 Case Study 6 : Tracking Object Under Occlusion, Fast Motion and Scale Change 63

6.2.7 Case Study 7 : Tracking Object Under Illumination Variation and Clutter . . 63

6.2.8 Case Study 8 : Tracking Object Under Scale Change, Partial Occlusion and

Clutter . 69

6.2.9 Case Study 9 : Tracking Object Under Complete Occlusion and Clutter . . . 72

6.2.10 Case Study 10 : Tracking Object Under Illumination Variation and Motion Blur 75

6.2.11 Analysis . 75

6.3 Computational Cost Analysis . 78

6.4 Comparison in Subtracted Color Space . 80

6.4.1 Case Study 1 : Tracking Object Under Illumination Variation, Occlusion and

Clutter . 81

6.4.2 Case Study 2 : Tracking Object Under Clutter, Fast Motion and Scale Change 81

6.4.3 Case Study 3 : Tracking Object Under Motion Blur, Fast Motion and Scale

Change . 82

6.4.4 Case Study 4 : Tracking Object Under Occlusion, Fast Motion and Clutter . 82

6.4.5 Case Study 5 : Tracking Object Under Occlusion and Clutter 82

6.4.6 Case Study 6 : Tracking Object Under Occlusion, Fast Motion and Scale Change 83

6.4.7 Case Study 7 : Tracking Object Under Illumination Variation and Clutter . . 83

6.4.8 Case Study 8 : Tracking Object Under Scale Change, Partial Occlusion and

Clutter . 83

6.4.9 Case Study 9 : Tracking Object Under Complete Occlusion and Clutter . . . 84

6.4.10 Analysis . 84

6.5 Comparison with Other State-of-the-art Trackers . 84

6.5.1 Case Study 1 : Tracking Object Under Illumination Variation, Occlusion and

Clutter . 85

6.5.2 Case Study 2 : Tracking Object Under Clutter, Fast Motion and Scale Change 85

6.5.3 Case Study 3 : Tracking Object Under Motion Blur, Fast Motion and Scale

Change . 90

6.5.4 Case Study 4 : Tracking Object Under Occlusion, Fast Motion and Clutter . 90

x

6.5.5 Case Study 5 : Tracking Object Under Occlusion and Clutter 95

6.5.6 Case Study 6 : Tracking Object Under Occlusion, Fast Motion and Scale Change 95

6.5.7 Case Study 7 : Tracking Object Under Illumination Variation and Clutter . . 95

6.5.8 Case Study 11 : Tracking Object Under Deformation, Clutter, Scale Variation

and Fast Motion . 99

6.5.9 Case Study 12 : Tracking Object Under Clutter, In-plane Rotation and Out-

plane Rotation . 99

6.5.10 Case Study 13 : Tracking Object Under Clutter, Object Deformation and

Occlusion . 105

6.5.11 Case Study 14 : Tracking Object Under Illumination Variation, Motion Blur,

Fast Motion, Background Clutter and Low Resolution 105

6.5.12 Analysis . 109

6.6 Summary . 109

7 Conclusion 111

References 112

xi

Chapter 1

Introduction to Visual Object

Tracking

1.1 Introduction

Object tracking refers to the estimation of object location and their trajectory using sensors like

RADAR, SONAR, camera and microphone etc. The key objective of the object tracking is to

estimate the number of objects as well as their states like position, velocity and acceleration. As

for example, tracking of an aircraft using RADAR; in this context, the problem is to estimate the

number of aircrafts present, their type or class, their location and speed, using RADAR.

There are lots of uncertainties in tracking objects that make the task complicated. As for

example, object motion can be mixed by random disturbances, their motion can remain undetected

by the sensors and the quantity of the objects traversing the field-of-view of the sensor or the

sensor network can be changed randomly. The sensor measurements are get coupled with random

noise, making the estimation incorrect. Sometimes the objects may be overlapped and cannot be

distinguished so easily. Also sensors may give measurements while there is no object either.

In this chapter, a complete overview of different object tracking research areas is given in detail,

including the detail problem statement for this project.

1.2 Object Tracking Examples

Object tracking refers to the estimation of the kinematic states (position, velocity and acceleration),

using measurements from sensors or a network of sensors in presence of noise and clutter. A typical

object tracking system consists of a network (array) of sensors and a processor. Some applications

of object tracking are reviewed as follows:

1.2.1 Aerospace Monitoring

This might be a very common example of object tracking. RADAR is used from domestic aircraft

tracking to military surveillance applications. RADAR basically gives the measurement; but due to

the uncertainties in the measurements available from RADAR, the tracking become quite challenging.

1

Birds and clouds etc. are sources of noise present in this measurement. Another challenge is due

to the maneuvering feature of aircrafts. Also, when a number of fighter aircrafts form an array, the

problem refers to multi object tracking.

1.2.2 Video Surveillance

This is another popular example where the sensor the network of cameras which are placed away

from each other. This sort of facilities are nowadays available with all banks, airports and malls

etc. With the help of high speed wired or wireless networks, the network of cameras are growing

larger and larger. This leads to the problem of automatic detection and tracking of a person or a

vehicle in frames, and then, from this data, the object tracking algorithm has to infer their behavior

(unusual or criminal behavior); this is another trending research area. US military used this sort of

application in the battle-field. Another modification to this approach is crowd-detection.

1.2.3 Cell Biology

In cell biology, the birth as well as death rates and the motion of the biological-cells are needed to be

observed continuously. As for example, in the analysis of anti-inflammatory diseases, the speed and

the acceleration of the lymphocyte cells are continuously monitored by taking their periodic images

may be over a number of days. The speed, division and death-rate can be estimated by tracking

the cells; these parameters can be calculated from the track initialization as well as termination

probabilities; this makes the algorithm enough intelligent to discover any unobserved behaviour.

Data association algorithms are used to identify cells and to track.

1.3 Visual Object Tracking

Visual object tracking uses camera network as sensor. Visual object tracking is a popular research

area in computer vision. The existence of fast processors, high quality, but inexpensive video cameras

and their high demanding need for automatic video analysis has increased the need for research in

the field of object tracking algorithms. In visual analysis of objects, the key steps are: detection,

tracking and recognition.

Visual object tracking widely used in various fields like Human Computer Interaction, automa-

tion, defense and industry etc. The major application oriented research areas of visual object

tracking are Mobile Robotics, Robotic Arm Control, Vehicle Control and navigation, Surveillance,

Autonomous Landing, Low Altitude Positioning, Dropping of Payloads and Obstacle Avoidance etc.

Both mobile robotics and robotic arm refer to Control and Automation. In both these appli-

cations, estimation of object location and depth are very important. Once the 3D coordinate is

calculated, the robotic arm can pickup the object. But, while picking up the object, the robotic arm

need to track the object continuously whether the object is moving or standing still. This can be

achieved by using a network of cameras mounted on the arm. Similarly vehicle control also needs

continous tracking and depth estimation using a set of cameras.

Apart from single camera object tracking, lots of research is going on in the field of multi

camera object tracking also. The examples of recent trends in multi camera tracking are 3D track

formation, depth estimation and occlusion resistant tracking. Multi camera multi object tracking

2

is widely used in surveillance, 3D track formation, space and shuttle fleet inspection (NASA), etc.

The key research challenges are to attain higher accuracy, to track/form 3D shape of fast moving

objects with low resolution cameras and to estimate depth (widely used in mobile robots, vehicle

security systems etc.) etc. Literature [4] describes how multi camera network can be used for easy

living. Occlusion resistant tracking basically uses different homo-graphic approaches while, in multi-

camera surveillance, multiple objects are stitched in camera-views, using transition probability and

histogram matching.

Different algorithms have been proposed till now regarding object tracking. Those algorithms

can be classified in two broad categories: one is target representation and localization based, which is

basically an optimization algorithm, and the other one is data-association and filtering based. Both

these approaches have their own advantages and disadvantages depending on their application.

[5, 6, 7] describe all the recent trends in single as well as multi camera object tracking. State-space

formulation is frequently used for modeling discrete-time systems in object tracking.

The main difficulties faced in visual object tracking are:

1. Loss of information due to 3D to 2D projection

2. Noisy and blurred reproduction of images

3. Complex and overlapped motion of multiple objects

4. Non-rigidity of objects

5. Partial or complete occlusion

6. Abrupt illumination change

7. Fast and real-time processing

Lots of algorithms have been developed, but most of them are application oriented. Their

differences lie in the fact that:

1. How objects are modeled

2. Which features are used for modeling

3. What is the application they are intended for

The popular appearance representations regarding visual object tracking are:

1. Probabilistic modeling: It can be Gaussian, Gaissian Mixture model or Parzen window based.

As for example [8] uses Parzen window and Histogram for object modeling.

2. Templates modeling: They are based on geometry of the objects.

3. Multiview appearance models: Here different views of the same object is encoded in differrent

subspace views. Subspace approaches are like PCA (Principal Component Analysis) based Eigen-

face approach.

The common visual features used in object tracking are:

1. Color

2. Edge

3. Texture

As mentioned earlier, visual analysis consists of object detection and tracking, the few object

detection methods are as follows:

1. Point Detection: They are used to find interest points in the images using some descriptor.

The examples of point detectors are SIFT (Scale Invariant Feature Transform) and Harris Corner

Detector etc.

3

2. Background Subtraction: This refers to modeling background using Gaussian or Mixture

of Gaussian for outdoor scenarios or HMM (Hidden Markov Model) to subtract foreground and

background to detect new incoming objects

3. Segmentation: It is the grouping of similar pixels. Several algorithms like MeanShift etc. are

available for segmentation

The key tracking categories are:

1. Point tracking: Every point/single-point/every feature point of the object is used for tracking.

as for example, Kalman or particle filtering. For multi object tracking, these filters are extended

by using some additional algorithms like data association techniques like PDA (Probabilistic Data

Association), JPDA (Joint Probabilistic Data Association), or NNF (Nearest Neighbor Filter) etc.

2. Kernel tracking: It is apparently done by estimating the motion of an object, which is modeled

by any method, from one frame to another [8].

1.4 Objective of the Project

In this work, a new algorithm has been proposed. The proposed approach includes a modified SIR-

PF (Sampling Importance Resampling Particle Filter) and a modified bat algorithm. This improves

SIR-PF (Sampling Importance Resampling Particle Filter) in many aspects. Particle filters suffer

from two major problems: sample degeneracy and sample impoverishment. To solve these sample

degeneracy and sample impoverishment, the resampling algorithm for this proposed particle filter has

been derived by modifying the bat algorithm. The measurement model is modified to handle clutter

in presence of varying background, and a new motion dynamics model is proposed which further

reduces the chance of sample degeneracy among the particles by adaptively shifting mean of the

process noise. To deal with illumination fluctuation and object deformation in presence of complete

occlusion, a template update algorithm has also been proposed. This template update algorithm

can update template even when the difference in the spread of the color-histogram is especially large

over time. Various datasets, which are collections of benchmark videos on visual object tracking,

are taken from [1, 2, 3]. The videos include different challenging conditions like heavy background

clutter, abrupt illumination change, scale change of object, fast movement of the object, motion

blur, and complete occlusion. The proposed algorithm tested several times and over the complete

sequence. The quantitative results are also listed in this chapter for every video sequence. The

case studies show that the proposed algorithm is compared against SIR-PF (Sampling Importance

Resampling Particle Filter), bat algorithm and other state-of-the-art algorithms, and the proposed

algorithm outperforms many of them. Thus the proposed tracker is found to be robust against

clutter, illumination fluctuation, scale change, fast object movement, motion blur and complete

occlusion.

1.5 Summary

This chapter describes the various aspects and key application areas where visual object tracking can

be the crucial part of the research. The challenges of visual object tracking are also well explained.

Then the objective of the project is described. In the next chapters, the major tracking algorithms

are described.

4

Chapter 2

Review of Single Camera Object

Tracking Algorithms

2.1 Introduction

In this chapter, several major single object visual tracking algorithms have been introduced. Here

both the advantages and disadvantages of each algorithm are figured out. The algorithms described

fall under both deterministic and probabilistic categories; each category has their own advantages

and disadvantages. As for example, deterministic tracking is faster while probabilistic tracking is

more robust in presence of partial occlusion and clutter.

All the major algorithms like region based tracking, feature based tracking, adaptive template

based tracking and particle filter based tracking etc. are reviewed and analyzed. In deterministic

search, the current frame is searched using a template. There are existing algorithms for updating

the template, which makes the tracking robust. These sort of template based tracking algorithms

are simply optimization algorithms. The ultimate objective is to minimize the distance between the

reference model and the target model. In most of these deterministic algorithms, tracking works fine

until the background color matches with the object color or the object is occluded for a pretty long

time. It has been tried to figure out intuitively why this happens. On the other hand, probabilistic

tracking can almost eliminate these problems; as for example, particle filter based approach etc.

The selection of the algorithm depends on the application. As for example, face tracking in

crowd much more dependent on target representation rather than on target dynamics. In contrast

to this, in aerial video surveillance, target as well as camera motion are more important. Finally it

can be concluded that, whatever the application is, the complexity of the tracker must be as less as

possible to make it real-time.

2.2 Region Based Tracking

2.2.1 Introduction

In this section, the tracking algorithm explained is based on color histogram and MeanShift op-

timization. This algorithm can track non-rigid objects. The feature histogram of the targets are

5

masked with kernel, which makes the function smooth and suitable for gradient-based optimization

algorithms, which searched for the local maxima. A metric has been derived from the Bhattacharyya

coefficient to measure similarity, and then MeanShift is used to optimize the similarity metric. This

algorithm successfully deals with camera movement,clutters, partial occlusions and target dimension

variations. Further, this algorithm can be integrated with filters and data association algorithms.

In this section, it has been tried to infer reasons of some drawbacks of this algorithm and

described in 2.2.6. In this approach, first model of the object is made using RGB histogram, then

it is localized by using extended MeanShift algorithm (a machine learning based non-parametric

algorithm) as discussed earlier.

[8] describes a method where histogram matching is done between target model and target

representation, using Bhattacharya coefficient. Then, the peak of Bhattacharyya matching coefficient

is reached by using MeanShift algorithm. Hence, the objective is to maximize a likelihood-type

function. Although [8] claims that this new approach to object tracking is immune to camera

motion, partial occlusion, clutter and target scale variants, we could figure out few disadvantages

in this algorithm. It is the inherent feature of MeanShift algorithm to stop at the local maxima

(optima). Hence, if background is similar to the object, the tracker may get stuck at an incorrect

location rather that at the centroid of the real object. In this paper [8], the authors provide a

solution to this problem by providing background modeling.

2.2.2 Target Modeling

[8] uses m-bin (r = 1...m) joint histogram for target modeling or reference modeling. Target model

is represented by ellipsoidal region by individually rescaling the row and column by hx and hy so

that the pixel locations are normalized to make the histogram rotation invariant. Let n?l be the

normalized pixel location of the l-th pixel and Epanechnikov is the kernel is used to make the

distribution smooth.

Let, m be the total number of bins in the joint color histogram (in case of RGB, it is three

dimensional), r be the bin of the joint histogram, n?l be the l-th normalized pixel location, δ be

the Kronecker delta function, n be the total number of pixels present in the template, K(.) be the

Epanechnikov kernel and y be location of the template.

The target or reference model is:

q̂ = {q̂r}r=1...m

m∑
r=1

q̂r = 1 (2.1)

The target candidate at location y is:

p̂(y) = {p̂r(y)}r=1...m

m∑
r=1

p̂r = 1 (2.2)

The joint-histogram is formed as follows:

q̂r = C

n∑
l=1

K
(
‖n?l ‖2

)
δ [b(n?l)− r] (2.3)

6

where the normalization constant C is:

C =
1∑n

l=1K (‖n?l ‖2)
(2.4)

This probabilistic method using which the model is built is called Parzen window based approach

which is a popular method for non-parametric density estimation. There are several winodws used

to measure the density like Gaussian window, Epanechnikov kernel etc.

densityPARZEN =

Tumberofsamplesfallingwithinwindow
Totalnumberofsamples

V olume
(2.5)

Equation (2.3) depicts that the histogram is immune to rotation. Unlike in normal histogram,

where only number of bins are counted, each bin is weighted by Epanechnikov kernel according their

distance from the origin (midpoint) of the template in this literature [8]. The pixel near the center

have higher weight and border pixels have less weight. Epanechnikov kernel is used because it is

faster in convergence rather than Gaussian one although Gaussian kernels are smoother than other

ones.

The similarity function is made smooth by masking with the help of an isotropic kernel, like

Epanechnikov kernel, in its spatial domain. Although Gaussian kernels can provide more smoothing

effect, Epanechnikov kernels are faster in convergence rate.

2.2.3 Target Candidate Modeling

This modeling is the same as that of the target modeling. The difference is that the normalized

pixel locations in the region of target candidate are centered at y. Let, m be the total number

of bins in the joint color histogram (in case of RGB, it is three dimensional), r be the bin of the

joint histogram, n?l be the normalized pixel location of the l-th pixel, h be the bandwidth, δ be

the Kronecker delta function, nh be the total number of pixels present in the template, K(.) be the

Epanechnikov kernel and y be location of the template.

The histogram model is as follows:

p̂r(y) = Ch

nh∑
l=1

K

(∥∥∥∥y − n?l
h

∥∥∥∥2
)
δ [b(n?l)− r] (2.6)

where the normalization constant Ch is given as:

Ch =
1∑nh

l=1K(‖y−n
?
l

h ‖2)
(2.7)

2.2.4 Bhattacharyya Coefficient Maximization

Bhattacharyya distance measures the distance between two probabilistic distribution models, and

this is the metric to measure the similarity between two probabilistic distributions. Hence, the

histograms must be in probabilistic form. Once the probabilistic histogram models are formed for

target model and target candidate, their similarity can be compared as follows using Bhattacharyya

coefficient:

7

ρ =

m∑
r=1

√
p̂r(y)q̂r (2.8)

To localize the target in the current frame, (2.8) must be maximized. The localization starts

from the location of the target in the previous frame knows as the model. Although RGB histogram

is used here, texture and edges features can also be used under this framework. Now the general

extended MeanShift optimization algorithm is used to maximize the Bhattacharyya coefficient (2.8).

Since search for new target-location starts at ŷ0, Taylor’s expansion at ŷ0 (which is the initial

condition of each iteration at k-th frame) is done as follows:

ρ ≈ 1

2

m∑
r=1

√
p̂r(ŷ0)q̂r +

1

2

m∑
r=1

p̂r(y)

√
q̂r

p̂r(ŷ0)
(2.9)

Using (2.6) and (2.9), the following can be derived:

ρ ≈ 1

2

m∑
r=1

√
p̂r(ŷ0)q̂r +

Ch
2

nh∑
l=1

wlK

(∥∥∥∥y − n?l
h

∥∥∥∥2
)

(2.10)

where weight at each pixel l = 1...nh is:

wl =

m∑
r=1

√
q̂r

p̂r(ŷ0)
δ [b(n?l)− r] (2.11)

To optimise, MeanShift is used, which searches for the local maxima:

ŷ1 =

∑nh

l=1 n
?
lwlg

(∥∥∥ ŷ0−n?
l

h

∥∥∥2)
∑nh

l=1 wlg

(∥∥∥ ŷ0−n?
l

h

∥∥∥2) (2.12)

where derivative of Epanechnikov kernel is (n? is the pixel distance):

g(n) = −dK(n?)
dx

Epanechnikov kernel is defined as follows:

K(n) = 1
2c
−1
d (d+ 2)(1− n?) if n ≤ 1 else K(n) = 0

where d is the dimension and cd is the volume of the dimension. As discussed earlier, [4] uses

this kernel as it is pretty fast as compared to Gaussian kernel.

To eliminate background clutter, [8] also describes background weighted color histogram. Back-

ground template is defined around the foreground or object template or target area. The area of the

background template is application dependent and has been taken as three times than that of the

target area in [8]. The pixels outside the target area but inside the background area are considered

as background pixels. Let {ôr}r=1...m be the discrete background histogram of the background space

and ô∗ be its smallest non-zero value. Hence, the weight for each bin r is defined as:

{
vr = min

(
ô∗

ôr
, 1

)}
r=1...m

(2.13)

8

The weight vr is multiplied with the target histogram as follows:

q̂r = Cvr

n∑
l=1

K(‖nl‖2)δ [b(xl)− r] (2.14)

where the normalization constant C is:

C =
1∑n

l=1K(‖nl‖2)
∑m
r=1 vrδ [b(nl)− r]

(2.15)

Similarly, the weight vr is also multiplied with the target candidate histogram as follows:

p̂r(y) = Chvr

nh∑
l=1

K

(∥∥∥∥y − nl
h

∥∥∥∥2
)
δ [b(ni)− r] (2.16)

where the normalization constant Ch is:

Ch =
1∑nh

l=1K(‖y−nl

h ‖2)
∑m
r=1 vrδ [b(nl)− r]

(2.17)

2.2.5 Algorithm

The steps of the algorithm described in [8] are as follows:

1. Initialize the target model q̂ and its initial location ŷ0 in initial frame using (2.3).

2. Initialize initial location in k-th frame as ŷ0 inhereted from (k−1)-th frame and Bhattacharyya

coeficient at k-th frame using (2.8).

3. Derive weight wl for all l = 1...nh using (2.11) at ŷ0 in k-th frame.

4. Run (2.12) iteratively until it converges. If error between ŷ0 and ŷ1 is less than a threshold ε

then stop, else assign ŷ0 = ŷ1, and keep the loop running until it converges. Or it can be made to

run this loop for a maximum number of iterations. In average, after 20 iterations, it converges.

5. Annotate k-th frame at new location: ŷ1, assign ŷ0 = ŷ1 and pass this ŷ0 to the (k + 1)-th

stage.

5. Go to step 2 and statrt tracking at (k + 1)-th frame.

2.2.6 Critical Analysis

Since MeanShift searches for the local maxima, it may get stuck when the background and object

have same color distribution; the same has been observed from simulation. To get rid of it to

some extent, [8] suggests background modeling. The convergence accuracy and time depends on

h (bandwidth) parameter. If h is too high, accuracy will be less and, if h is too small, time of

convergence will be pretty high. The illumination and occlusion immunity of the algorithm is highly

dependent upon the discriminating power of the histogram. To solve occlusion problem, [8] proposes

to merge this algorithm with other data-association and filtering algorithms. Different tracking cues

can be converted into a histogram, then can be tracked using this algorithm. Another problem

in MeanShift based tracking is that it is highly illumination sensitive. If Bhattacharyya matching

coefficient has several peaks or optima due the illumination fluctuation, it may get stuck at a wrong

location. [9] proposes an approach which uses DC coefficient of the DCT (Discrete Cosine Transform)

to measure illumination change. Then, a weighted histogram is proposed which nullifies this change

9

in DC energy or illumination. This makes the algorithm robust against illumination. MeanShift is

popular only because its high speed; the accuracy is increased by adding some extra weight to the

histogram. The inherent drawbacks of the original MeanShift based tracking algorithm is solved by

[10]; [10] resolves these problems by mixing edge, color and texture information all together. In this

approach, the tracker is splitted into several fragments to utilize the spatial information. Similarly,

[11] modifies MeanShift for scale variant, illumination variant and occluded object tracking. [12]

uses MeanShift for perpetual user interface.

2.3 Covariance Based Tracking

2.3.1 Introduction

It has been showed that popular MeanShift algorithms’s efficiency and accuracy depends on the

histogram-formation. So researchers have tried other descriptors like HoG (Histogram of Gradient),

DCT (Discrete Cosine Transform) and SIFT (Scale Invariant Feature Transform) with MeanShift,

and each of them has their own advantages and disadvantages; as for example, SIFT (Scale Invariant

Feature Transform) is invariant to rotation, but slow as it computes at different pyramid levels.

[13] describes the method to formulate DCT (Discrete Cosine Transform) histogram. The color

histogram’s complexity increases exponentially with its dimension, and, if the number of bins are

increased, sparsity will also increase.

Hence, in this section, another method has been introduced using which the object can be

modeled and then tracked. [14] explains this novel algorithm to model as well as match objects

using covariance matrix. This covariance matrix based approach is a unique method to mix multiple

features within a small dimension. While averaging during the covariance matrix computation, a

large amount of the mean-zero noise is removed. This covariance matrix based feature representation

is also invariant to scale and illumination.

2.3.2 Covariance Matrix Formulation

[14] describes the covariance based object descriptor and the lie algebra based update mechanism.

The covariance matrix helps fusion of different modalities and features (as for example, color inten-

sity, gradient, etc.) inside a small dimension, and, it is not necessary to take any assumption on the

measurement noise. This descriptor can be used as non-stationary camera model also. Literature

[14] describes a descriptor, not any tracking algorithm.

The formulation is quite simple. Let a square template RT is formed the dimension of which is:

M × N . For every pixel l, let x and y be their locations in x-axis and y-axis. I be the intensity

value at x, y, and Ix be the 1st derivative of I along x-axis direction. Thus, for every pixel in the

template RT , the following vector is formed:

fl = [x y I(x, y) Ix(x, y) . . .] (2.18)

or can be arranged as roation-invariant form:

frl = d ‖(x′, y′)‖ I(x, y) Ix(x, y) . . . e (2.19)

10

where

‖(x′, y′)‖ =
√

(x′2 + y′2), (x′, y′) = (x− x0, y − y0) (2.20)

and x0, y0 is the pixel location of the centre of the template RT .

The covariance matrix CRT
is defined as:

CRT
=

1

MN

MN∑
k=1

(fk − µRT
)(fk − µRT

)T (2.21)

where M × N be the dimension of the rectangular patch RT and µRT
be the mean of the

corresponding feature throughout the entire patch RT .

2.3.3 Computing the Best Match

Let CR1
and CR2

be the two feature covariance matrices formed using (2.21), in patches or templates

R1 and R2. Since covariance matrix does not lie on the Euclidean space, the dissimilarity or distance

between these two matrices is measured using Forstner’s method as follows:

ρa(CR1
,CR2

) =

√√√√ d∑
t=1

ln2λt(CR1
,CR2

) (2.22)

where d be the dimension and λt(CR1 ,CR2) be the generalised Eigen values (t = 1...d).

2.3.4 Critical Analysis

Since Eucleadian distance cannot be used to match the covariance matrices, this algorithm [14]

cannot be made compatible for Bhattacharyya metric and then extended to MeanShift, according

to the way described in [8]. [15] uses the covariance matrix concept in some other way. [15] uses

the same covariance descriptor like [14], but uses a different metric based on Riemannian manifolds.

They propose a probabilistic novel tracking algorithm with a covariance tensor learning mechanism.

2.4 Template Based Tracking

2.4.1 Introduction

Novel template based tracking is described in [16, 17]. Basically, template based searches are done

using correlation matrices. A template is formed and searched throughout the image space and

computes the correlation coefficient between the target na the model. But this simple approach is

not suitable for cases where occlusion occurs, object is non-rigid and illumination change is intense.

Hence, [16] uses a novel template update mechanism by robust Kalman filters. So it is resistant to

severe occlusions, abrupt illumination change, etc. This algorithm embeds both template update

and tracking mechanism together. In this section, literature [16] is described. Unlike the common

application of Kalman filter to predict and update position (state), in [16], it has been used for

prediction and smoothing of the intensity values of the pixels inside the template. Then, this

template is fed to an optimization algorithm to match the template-transformation-parameters the

11

best. The method deals with severe occlusion and changing object orientation. The key features of

this algorithm described in [16] are summarized below:

1. Severe occlusions and illumination changes are solved

2. Fast and abrupt change of object orientation is solved

3. Background clutter is eliminated

4. Can be mounted on a movable camera

2.4.2 Algorithm

The steps of the algorithm described in [16] is summarized below:

1. A template RT is taken manually. Every pixel is considered as a feature point, and one Kalman

filter is alloted for each pixel l to predict. Hence, l = 1...M × N where M,N is the dimension of

the template RT . Let Ik(R) is the intensity value of a pixel at k-th stage in R-th color channel (in

case of RGB) and so defined for other two channels. The feature vector fk denotes state of a pixel

at k-th frame is defined as follows:

fk = [Ik(R) Ik(G) Ik(B)]
T

(2.23)

2. State of feature vectors is predicted as:

p(fk|fk−1) ∼ N (fk−1,W) (2.24)

W be the error covariance matrix and it is same for each pixel; it has to be initialized.

3. Using fk−1, an optimization task is done to find the best match transform (as for example, affine

transformation etc.) and to extract the transformation parameters âk at k-th stage by summing

and optimizing over all the pixels in template RT as follows:

âk = arg min
a

∑
l∈RT

ρ
(
ε
(
Ik(ϕ(l;a)), f̂k−1(x)

))
(2.25)

where Ik(ϕ(l;a)) is the feature vector observed at the point ϕ(l;a) in k-th frame.

ε̂ = ε(zk, f̂k) (2.26)

ε(zk, f̂k) =

√
[zk − f̂k]TR1

−1[zk − f̂k] (2.27)

where f̂k is the predicted feature vector at k-th stage. At the initial few stages R1 is a large

positive definite matrix. After some frames, it gets updated as given in [16].

4. Once âk is got, the template can be shifted to a new location and the measurement zk is

obtained at this k-th frame

5. Predict and update feature vector for the next (k+1)-th frame as follows:

f̂k = [ψ(ε̂)R1
−1 + (Ck−1 + W)

−1
]−1[ψ(ε̂)R1

−1zk + (Ck−1 + W)
−1

f̂k−1] (2.28)

where C be the covariance matrix of the approximated Gaussian output distribution:

12

p(fk|z1:k−1) =

∫
fk−1

p(fk|fk−1)p(fk−1|z1:k−1) = N (f̂k−1, (Ck−1 + W)
−1

(2.29)

and other parameters are defined as:

ρ(ε) = ε2/2 if|ε| < c (2.30a)

ρ(ε) = c(|ε| − c/2) otherwise (2.30b)

ψ(ε̂) = 1 if|ε| ≤ c (2.31a)

ψ(ε̂) =
c

|ε|
if|ε| > c (2.31b)

where c is a threshold obtained from chi-square distribution.

7. fk, W and Ck is passed on to the next (k+1)-th frame

2.4.3 Critical Analysis

In [16], when ε > c, template pixel is regarded as outliers. Hence, occlusion is detected pixel-by-

pixel. Occlusion is detected when percentage of outliers exceeds some predefined threshold like 30

percent. At that time, tracking must be stopped for some predefined unit of time. The template is

reinitialized after that predefined time period.

2.5 Particle Filter Based Tracking

2.5.1 Introduction

Another completely different but popular approach to object tracking is Bayesian tracking. Use

of particle filter in object tracking has brought a revolutionary change in the concept of tracking.

Whereas Kalman filters follow only Gaussian distributions, particle filters propagate in a more

general distributions, which is more realistic; this solves many ambiguous situations faced in visual

object tracking. Another important advantage of particle filters is that it allows fusion of information

to track objects better in much more complex situations. Hence, in this section, particle filter based

tracking is introduced in datail.

The particle filter based tracking is described in [18] which uses the same method depicted

in [8] to model the object in a probabilistic framework rather than in a deterministic framework.

Color-modeled trackers are said to be robust with a decent computational cost. They are efficient

in tracking even when objects to be tracked shows variability on spatial structures where most

space-dependent trackers will fail. Hence, it can track when there is drastic change in the spatial

appearance of the object. [18] apparently describes Monte Carlo tracking using the same color

histogram modeling. [18] uses particle filter which eliminates clutter and solves complete occlusion

much better. [18] formulates a likelihood function based on color histogram distances just like [8].

Argument is given that, since likelihood is non-linear as well as multi-modal in visual tracking,

13

particle filter is preferred to Kalman filter. [19], [20] and [21] also explain particle filter in detail.

This probabilistic approach is also better in the sense that it does not need much tuning parameters.

The key philosophy in Bayesian tracking is to update the pre-knowledge of the hidden state with

the set of measurement including the latest one. Many real-world systems exist which follow the

Markov property that the present state depends on the immediate past state only. In object tracking

also, this happens.

2.5.2 Particle Filters

Here the SIR (Sampling Importance Re-sampling) particle filter is reviewed. Both Kalman and

particle filter based tracking falls under the Bayesian tracking category. In order to make estimation,

both accurate system model and a measurement model are needed.

In Bayesian approach, one creates posterior density function (pdf) of the states to be estimated

based on received measurement and all other information. Now the objective is to maximize the

posterior estimation. This maximization is done using some filters. These filters have two steps:

Prediction and Update. The latest measurement is used to update the prior or predicted ones.

Let, k be the stage, x be the state, z be the measurement vector. Thus prior (predicted ones) is

updated with a likelihood and a normalization factor as follows using Baye’s rule:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(2.32)

where

xk = estimated state at k-th stage

zk = measurement at k-th stage

Predictions occur as follows:

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1) dxk−1 (2.33)

p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|z1:k−1) dxk (2.34)

Let, vk−1 be the process noise. Then the philosophy of the approach is that the state is predicted

using some dynamics as follows:

xk = fk(xk−1, vk−1) (2.35)

Since state is hidden, this predicted state is not correct. Hence, it is then corrected using (2.32).

The measurement model is as follows:

zk = Hkxk + nk (2.36)

where Hk is the measurement matrix and nk is the measurement noise.

Kalman filter provides optimal state estimation, assuming system to be ideally linear and noise

is Gaussian-zero-mean; hence, the posterior distribution is unimodal. On the other hand, extended

Kalman filter and particle filter provide suboptimal solution. Particle filters work with a number of

particles each having some weight. In SIR-PF (Sampling Importance Re-sampling Particle Filter)

algorithm, each particles are transmitted through some model state space equations, then likelihood

14

is computed, particles having higher weight are replicated while others are suppressed and this

process goes on. As mentioned earlier, particle filters have many versions proposed to solve the

following two problems mainly:

1. To reduce sample degeneracy problem : After some iterations, many particles have negligible

weight. These particles are discarded while higher weightage particles are replicated. The degeneracy

is calculated using the following equations:

N̂eff =
1

Ns∑
i=1

(wik)2

(2.37)

where i be the number of particle, wik be the weight associated with i-th particle which is a

measure of posterior at the point and Ns be the total number of particles generated. If N̂eff is more

than a threshold, re-sampling is required. While, in another variant of particle filter called SIR-PF

(Sampling Importance Resampling Particle Filter), re-sampling is done at every stage k.

2. To reduce sample impoverishment : While re-sampling, particles get concentrated around

higher weight which reduces diversity among the particles. Even in case of very little noise, particles

will merge to a single point after some iterations. One solution may be a good choice of importance

density to minimize variance among the particle weights. Another solution is to use MCMC sampling.

A good choice of selecting particles is to increase their variance: V ar(ωik) for i = 1...Ns. There

are many variants of particle filtering; SIR-PF (Sampling Importance Resampling Particle Filter)

filter is one of them. It is a Monte Carlo algorithm which can be applied to the recursive Bayesian

filtering problems easily. The advantage of using SIR-PF (Sampling Importance Resampling Particle

Filter) is its weak assumptions. To implement this algorithm, state dynamics or system model is

needed to be known along with the measurement matrix. The original algorithm of particle filtering

called Sequential Importance Sampling (SIS). The key assumption is that since it is difficult to draw

particles from probability density p(.), sample are so generated from some other density called q(.)

(importance density). Hence, the weight for i-th particle:

wik ∝
p(xi0:k|z1:k)

q(xi0:k|z1:k)
(2.38)

wik ∝
p(zk|xik)p(xik|xik−1)p(xi0:k−1|z1:k−1)

q(xik|xi0:k−1, z1:k)q(xi0:k−1|z1:k−1)
(2.39)

wik ∝ wik−1
p(zk|xik)p(xik|xik−1)

q(xik|xik−1, zk)
(2.40)

SIR-PF (Sampling Importance Resampling Particle Filter) is easy to implement as the weight is

proportional to the likelihood, but the re-sampling has to be taken at each step.

2.5.3 System Model

In probabilistic tracking, system and measurement models are very crucial. The models are given

below:

xk = Fkxk−1 + vk−1 (2.41)

15

zk = Hkxk + nk (2.42)

where

Fk =
1 0 dt 0

0 1 0 dt

0 0 1 0

0 0 0 1

 (2.43)

Hk = (
1 0 0 0

0 1 0 0

)
(2.44)

where, dt=time difference between two frames. This model is called constant-velocity model.

And, the states are x = [x y ẋ ẏ]T where x, y be the pixel locations along x-axis and y-axis

and ẋ, ẏ be their respective velocities. vk−1 be the process noise at (k − 1)-th stage and nk be the

measurement noise at k-th stage.

2.5.4 Color Model

A measurement model based on jointm-bin histogram (r = 1...m) as reference model as well as target

candidate has been proposed [8]. The center of the template is taken as the origin. Epanechnikov

kernel used in this model makes border pixels have lesser weight. Let q̂r and p̂r(y) (r = 1...m) be

the reference and target candidate color histograms, respectively as given in [8]. y be the location

of the target histogram. Now, these two histograms are compared by Bhattacharyya coefficient [8].

Bhattacharyya coefficient approximates the chi-square statistics eliminating the singularity problem

while dealing with empty bins [22]. The equation is given in (2.45).

ρ =

m∑
r=1

√
p̂r(y)q̂r (2.45)

The distance between the two distributions is given by [8]:

D(y) =
√

1− ρ (2.46)

Hence, likelihood of the i-th particle at y in k-th stage is given by:

p(zik|xik) ∝ exp(−λD(y)) (2.47)

where, λ is a tuning parameter [18].

For higher accuracy, [18] proposes that the tracked region of the object is divided into N number

of different patches having distinct colors. This makes the tracking more robust wit the help of the

spatial information. This method also increases robustness to occlusion. The likelihood becomes:

p(yt|xt) ∝ exp(−λ
N∑
t=1

D(y)t) (2.48)

16

Background modeling is also introduced in [18]. The background need to be static and available

offline. Similarly, [8] derives another way to fuse M different cues (like motion, color and acoustic

cues, etc.) together. Their derived equation is given below:

p(z|x) =

M∏
t=1

p(zt|x) (2.49)

where z1, z2, ...zM are different available measurements

2.5.5 Algorithm

Let x be the state, i be the particle, w be the weight, z be the measurement and Ns be the number

of particles. Then the steps in SIR-PF (Sampling Importance Resampling Particle Filter) algorithm

are shown in Algorithm 2.

Algorithm 1 SIR-PF Algorithm

1: procedure SIR-PF((xik−1, w
i
k−1)Ns

i=1, zk)
2: for i = 1 : Ns do
3: Draw: xik ∼ p(xik|xik−1)
4: Compute: wik = p(zk|xik)

5: Normalize: wik for i = 1...Ns
6: Systematic Resampling: Discard particles with low weight and replicate particles with higher

weight as given in [19]
7: return (xik, w

i
k)Ns
i=1

2.5.6 Critical Analysis

Particle filters, also known as Bayesian trackers, are very efficient trackers. They can handle clutter

and complete occlusion inherently. There are many variants of particle filters. SIR-PF (Sampling

Importance Resampling Particle Filter) is one of them and is the simplest one. Although particle

filters are more robust as compared to deterministic trackers, they are slower compared to determin-

istic trackers like MeanShift trackers. Hence, lots of work has been done on MeanShift algorithm

to make it equivalent to particle filters. Yet particle filters are key research topics from computer

vision researchers. Work [18] also describes multiple object tracking scheme. But it is simple up to

two objects; for higher interacting objects, complexity increases. In case of deterministic trackers,

number of trackers are run in parallel to track multiple objects. This scheme works fine as long

as the situation is quite simple. When number of objects increases and they start interacting with

each other (overlapping), this parallelly running multiple tracker scheme fails. Generally, in case of

probabilistic trackers, others techniques are adopted for multiple object tracking.

2.6 Summary

In this chapter, a set of major algorithms ranging from template matching to Bayesian tracking

has been discussed. Bayesian tracking includes different forms of particle filters and Kalman filters.

17

Optimal Kalman filters are suitable for ideally linear model and Gaussian posterior and noise distri-

bution. On the other hand, extended Kalman filter and uncented Kalman filter, are the sub-optimal

ones. In case of Bayesian tracking, modeling is a crucial part of algorithm development. This model-

ing can be either single model or multiple model. In multiple model approach, estimations are made

individually, and then they are clubbed together to provide the final estimation; as for example,

Interacting Multiple Model Kalman Filter. The algorithms described in this chapter form the basis

of other algorithms which are designed for more complicated scenario. In the next chapter, multiple

object tracking algorithms are reviewed.

18

Chapter 3

Review of Multiple Visual Object

Tracking Algorithms

3.1 Introduction

Up to this chapter, deterministic and probabilistic visual object tracking algorithms have been

introduced for single object mainly. Although the previously described algorithms can be extended

for multiple object tracking, in this chapter, another different approach called data association

technique has been introduced. Although the algorithms explained here are for visual object tracking,

they are also compatible for non-visual object tracking as explained like RADAR based object

tracking, etc. Data association algorithms are more robust in case the objects are close each other

or overlapping on each other as compared to other algorithms. Most deterministic trackers fail in

this situation. In data association method, multiple measurements are assigned to multiple objects.

As number of objects is known, the data association step computes the origin of the measurements

probabilistically. It is based on the hypothesis of the origin of measurement. In single object tracking,

there are two hypothesis: one measurement is from object and one is from clutter. But in multiple

object tracking, such hypothesis is more.

The key philosophy of data association algorithms is that, under probabilistic framework, a

predicted state is updated with the help of available measurements; either the best measurement

is picked up or all the measurements are used together with some weight assigned to each mea-

surement. The most common data association algorithms are: Nearest Neighbor Filter (NNF),

Probabilistic Data Association (PDA), Joint Probabilistic Data Association (JPDA), MHT (Mul-

tiple Hypothesis Tracking), PMHT (Probabilistic Multiple Hypothesis Tracking) and MCMC-DA

(Markov Chain Monte-Carlo Data Association) etc. The selection of data association algorithm is

application specific.

3.2 Comparison of Data Association Algorithms

GNN (Global Nearest Neighborhood), which picks up the best one from all the available measure-

ments for updating the predicted state, is simple and fast. But, its disadvantages are: less efficient

19

in low SNR (Signal to Noise Ratio), less efficient in ambiguous situation and less efficient when ob-

jects are interacting. On the other hand, JPDA (Joint Probabilistic Data Association) is a modified

version of PDA (Probabilistic Data Association) where joint probability is computed across all the

targets. But, as JPDA (Joint Probabilistic Data Association) is less efficient in low SNR (Signal

to Noise Ratio) situation, ML-JPDA (Maximum Likelihood Joint Probabilistic Data Association)

has been proposed for some cases. The drawbacks of JPDA (Joint Probabilistic Data Association)

are: it is less efficient in low SNR (Signal to Noise Ratio), or when objects are interacting or objects

are closely spaced. Moreover, JPDA (Joint Probabilistic Data Association) cannot cannot detect

new objects automatically. MHT (Multiple Hypothesis tracker) uses the concept of batch processing

where later measurements are used prior correlation association. Another version of MHT (Multiple

Hypothesis tracker) is PMHT (Probabilistic Multiple Hypothesis tracker) which works at low SNR,

but needs higher computational load. In MHT (Multiple Hypothesis tracker), number of hypothesis

increases exponentially with number of measurements.

3.3 Nearest Neighbor Data Association

It is the simplest data association strategy although it has some other modified variants also. All

data association algorithms are designed for Kalman Filter. Hence, the equations used in Kalman

Filter are not modified. Let, x be the state, z be the measurement, k be the stage, P be the state

error covariance matrix, Q be the process noise covariance matrix, R be the measurement noise

covariance matrix, F be the system matrix, H be the measurement matrix and d be the number of

measurements. KFPredict denotes all the stages of Kalman Filter prediction. The best measurement

is picked up for the update stage as follows:

1. Prediction:

[xk|k−1,Pk|k−1] = KFPredict[xk−1,Pk−1,Q,F] (3.1)

2. Distance computation:

z = argmin[zk(t)−Hxk|k−1]TSk|k−1
−1[zk(t)−Hxk|k−1] (3.2)

where t=1 ...d and Sk|k−1 = HPk|k−1H
T + Rk

3. Pickup the best measurement as the closest to predicted one and that measurement is used

for updating the Kalman filter.

For multiple object tracking, a matrix L is formed. Rows contain d1 measurements and colums

contain d2 targets. Thus L is a d1 × d2 matrix. If L is a square matrix, data association is done

using Hungarian method. Otherwise, Munker’s method is used for non-square matrix L.

3.4 Probabilistic Data Association

In comparison with NNF (Nearest Neighbor Filter), the PDA (Probabilistic Data Association) uses

more than one measurement to update the state of the target. It forms a gate and considers those

measurements which are within the gate. Unlike NNF (Nearest Neighbor Filter), it assigns weight

to all these measurements inside the gate and uses them to compute updated stage.

20

For PDA (Probabilistic Data Association), the computational requirements are around fifty per-

cent more than that of the normal Kalman filter. The steps in PDA (Probabilistic Data Association)

algorithm is described briefly from [23]. The key assumptions are:

A) One target of interest is present

B) The track has been already initialized

C) Every time a measurement validation region is set up around the predicted measurement

D) The target detections are time independent with detection probability PD

Let x be the state, F be the system matrix, H be the measurement matrix, z be the measurement,

k be the stage, P be the state error covariance matrix, Q be the process noise covariance matrix and

R be the measurement noise covariance matrix. The key steps of the basic algorithm are described

as follows:

1. Predict using Kalman filter:

xk|k−1 = Fk−1xk−1|k−1 (3.3)

zk|k−1 = Hkx(k|k − 1) (3.4)

Pk|k−1 = Fk−1Pk−1|k−1F
′
k−1 + Qk−1 (3.5)

Sk = HkPk|k−1H
′
k + Rk (3.6)

where xk|k−1 be the predicted state at k-th instant, zk|k−1 be the predicted measurement, and

Pk|k−1 be the predicted state error covariance matrix.

2. A gate is formed with volume V; the validation region is formed as an ellipse. The gate

probability (probability that gate having volume V contains true measurement) be PG and the

detection probability be PD. The gate volume is as follows:

V = cnz
|γSk|1/2 = cnz

γ
nz
2 |Sk|1/2 (3.7)

where γ is the threshold and V is the gate volume. cnz is the volume of measuement dependent

nz dimensional unit hemisphere. Thus measurements within this gate are considered:

{z : [z− zk|k−1]S−1k [z− zk|k−1] ≤ γ} (3.8)

where z be the set of validated m(k) number of measurements at k-th stage.

3. The data association probability at k-th stage and for t-th measurement is computed as

follows:

βt(k) =
Lt(k)

1− PDPG +
∑m(k)
j=1 Lj(k)

(3.9)

βt(k) =
1− PDPG

1− PDPG +
∑m(k)
j=1 Lj(k)

, t = 0 (3.10)

where t = 1, . . . ,m(k) and t = 0 means clutter and

Lt(k) =
N [zk(t); zk|k−1,Sk]PD

λ
(3.11)

Hence, measurements which are within the validation region are taken into consideration, and

21

all these measurements are used together to update the step unlike NNF (Nearest Neighbor Filter)

where only the best measurement is picked up. Hence, βt(k) gives the data association weight of

t-th measurement with the target at k-th stage.

4. The Kalman-predicted state is updated using those validated measurements along with their

computed weight respectively:

xk|k = xk|k−1 + W(k)ν(k) (3.12)

The computation of combined innovation is as follows:

ν(k) =

m(k)∑
t=1

βt(k)νt(k) (3.13)

Kalman Gain is computed as:

W(k) = Pk|k−1H
′
kS
−1
k (3.14)

Pk|k = β0(k)Pk|k−1 + [1− β0(k)]Pck|k + P̃k (3.15)

Pck|k = Pk|k−1 −W(k)SkW(k)′ (3.16)

Pck|k = Pk|k−1 −W(k)SkW
′
k (3.17)

P̃k = W(k)

m(k)∑
t=1

βt(k)νt(k)νt(k)′ − ν(k)ν(k)′

W(k)′ (3.18)

The main disadvantage of PDA (Probabilistic Data Association) lies in the selection of proper

validation gate. If it is too large, clutters will be included, and, if it is too small, actual measure-

ment may be excluded. Another variant of PDA (Probabilistic Data Association) is JPDA (Joint

Probabilistic dada Association). PDA (Probabilistic Data Association) is extended to JPDA (Joint

Probabilistic Data Association) for multiple object tracking. There are various fast implementation

algorithms of this JPDA (Joint Probabilistic Data Association). The complexity of JPDA (Joint

Probabilistic Data Association) can be further reduced by using MCMCDA (Markov Chain Monte

Carlo Data Association) algorithm. JPDA (Joint Probabilistic Data Association) is described in

[23, 24] where measurement-to-target association is computed jointly across all the targets. JPDA

(Joint Probabilistic Data Association) is used for multiple target tracking. The state estimation is

calculated either separately or jointly. In decoupled estimation, marginal association probabilities

are required which is computed by summing over all the joint events in which marginal event of inter-

est occurs. Many fast sub-optimal implementations of JPDA (Joint Probabilistic Data Association)

have been proposed.

22

3.5 Particle Filter Data Association

Although data association algorithms are designed for Kalman filters [25], they are used with particle

filters also [26, 27]. In this section, how particle filters can be merged with data association algorithms

is introduced. Particle filter based tracker explained in 2.5.6 can be experimented with any of the

data association algorithms to analyze their performance. One way to merge particle filters with

JPDA (Joint Probabilistic Data Association) is described in [26]. Particle filter with JPDA (Joint

Probabilistic Data Association) is used to track multiple objects. The key philosophy in [26] is to

update the weight of particle filters in a different way. The weight equation in [26] not only includes

measurement likelihood but also the data association probability. The weight for each particle is

computed described in [26] is given as:

wt2,k =

m1(k)∑
t1=0

βt1t2,kp(z
t1
k |x

i
t2) (3.19)

where m1(k) be the total number of measurement and m2(k) be the total number of target at

k-th stage, t1 be the measurement, t2 be the target, i be the particle, k be the stage. p(zt1k |xit2) be

the likelihood with respect to t1-th measurement. Thus t1 = 1...m1(k) and t2 = 1...m2(k).

3.6 Summary

In this chapter, different data association algorithms like Nearest Neighbor Filter, Probabilistic data

Association Filter and its variant Joint Probabilistic Data Association Filter are explained along

with their comparisons. It has also been described how they can be used with particle filters.

Hence, single object tracking algorithms can be extended to multiple object tracking either by

running a number of trackers in parallel or by using data association algorithm. As told earlier,

data association algorithms are more robust when objects come too close to each other. Once

multiple object tracking is done, it can be extended to multi camera object tracking depending on

the requirement of application. Multi camera object tracking has tremendous applications reviewed

in the next chapter in detail.

23

Chapter 4

Review of Multi-camera and 3D

Object Tracking

4.1 Introduction

In this chapter, multiple camera object tracking as well as depth estimation techniques from video

frames are reviewed. Camera networks are used in various applications including surveillance, dis-

aster response and environmental modeling etc. In most of the cases, the data from each node

(camera node) is sent to the central server for processing. In a general approach, inside the process-

ing unit, program written for each camera first tracks multiple objects using tracking algorithms,

and then, the objects tracked are stitched across different camera views using transition-probability

and appearance-probability matching. On the other hand, in case of depth estimation, stereo cam-

era based approach is found to be very popular and so it is reviewed in this chapter. Stereo 3D

tracking is widely used in various applications including robotics and automation engineering. With

the increment of automation in industry, the demand of humanoids is also increasing where depth

estimation is a crucial part. Various stereo algorithms have been proposed so far. Another multi

camera tracking application is human motion tracking. It is widely used in smart environments

where analysis of human motion is very crucial. Similarly tracking human motion under multiple

camera network is used in many smart applications. Tracking human motion in a camera network

is quite challenging because of the highly deformable nature of human body. All these techniques

are addressed in this chapter.

4.2 Camera Calibration

Camera calibration is the process of estimation of intrinsic and extrinsic parameters of the camera.

Intrinsic parameters include focal length, principal point, size of pixel etc., while extrinsic parameters

include camera orientation. With both intrinsic and extrinsic parameters, camera matrix can be

formed. With the help of this camera matrix, any 2D image co-ordinate is converted to 3D real

world coordinate and vice-a-versa. Literature [28, 29] gives details of camera calibration. A detail

method of camera calibration has been found in the lecture video [30]. The main goal is to compute

the camera matrix which is formed using the geometry between real 3D world coordinates and their

24

corresponding 2D image-coordinates, considering pin-hole camera model. Once the camera matrix

is formed, one can track the object in 2D image and project back its 2D coordinates to the original

3D coordinates. With MATLAB Camera Calibration app, the calibration task can also be done to

get the camera matrix directly. In contrast to the reference based camera calibration, in self camera

calibration, camera is moved in a predefined fashion, and then, the camera matrix is computed by

clubbing rotational, translational matrices etc. 3D coordinate is multiplied with this camera matrix

gives the 2D location in image plane. Thus this real world coordinate and image coordinates are

correlated.

4.3 Multi-camera Object Tracking

In multi-camera object tracking, one popular approach is the homography based approach. Kalman

filters are also used in multi camera object tracking using homography. Although many algorithms

have been proposed so far, the main difference in multiple camera object tracking lies in the camera

topology. In some topology, the field of view of two adjacent cameras can overlap. In other case,

none of the cameras share their field of views with others. In this section, both overlapped and

un-overlapped multiple camera object tracking is introduced.

4.3.1 Disjoint Field of View Tracking

In disjoint FoV (field of view) tracking, the camera views do not overlap. This increases the area

of observation. The approach explain in [31] uses camera topology and Parzen window to find path

probabilities during training period; Parzen window is generally used when the form of probability

density is unknown. In this approach, the objective is to find the MAP (maximum a posteriori).

The advantage of this method is that tracking does not require calibration, but the disadvantage is

that the system needs to be trained occasionally. Parzen window is used to compute inter-camera

space-time probabilities like probability of an object to enter a certain camera at a certain time

given location, time and velocity of exit at the other camera. The probability of two objects to be

same depends upon space-time information and appearance. In [31], learning is done by making

one person traveling across the disjointed cameras during the training period. The appearance

similarity across different cameras is calculated using the same Bhattacharyya coefficient. In some

other literature, to compare appearance, BTF (Brightness Transfer Function) has been proposed for

better performance.

4.3.2 Overlapped Field of View Tracking

In multi camera object tracking, generally data from each node (camera terminal) is sent to the

centralized server.But, due to low bandwidth, less security and memory management, each node

of camera should act in an autonomous way; this leads to the concept of autonomous processing.

In autonomous processing, each node interacts with its neighbors and share information to reach a

consensus. Thus each camera processes information locally. Kalman filter modified with consensus

algorithm can be used in this scenario. Autonomous processing applications are distributed in nature.

On the other hand, in some other application, both the distributed and centralized algorithms are

mixed together. Distributed camera networks are used widely used in Ubiquitous Computing. [32]

25

uses Kalman consensus filter, which is widely used in distributed sensor network, to track objects

in a overlapped camera network. It is a decentralized tracking system. Each camera has a Kalman

filter and shares information with its neighbors, and finally reaches a consensus. The system uses

homographic information. Each node (camera) shares information with its neighbor iteratively

to attain a common decision. Distributed Kalman filtering is used in cooperative control based

applications. Kalman consensus filter is nothing but another modified version of distributed Kalman

filter. Consensus means to attain a general agreement after sharing each camera its own estimate of

state with its neighbors. Hence, even if one node fails, the tracking is not lost.

4.3.3 Tracking Human Motion

In this section, review of human motion tracking is introduced. [33] describes tracking human

using monocular gray-scale-images. The camera network is fixed. The key challenge is to establish

correspondence among objects viewed across different cameras. This method first segments out

human from static background, then establishes the correspondence. The non-rigidity of the human

body is solved by matching pixels which are on the middle-line of the human body. In the first

stage, single view tracking is done by segmentation and probabilistic feature association. In the

second stage, multiple view (multi camera view) spatial matching is done by finding perpendicular

distance from an equi-polar line formed by the other camera view; from this perpendicular distance,

a Gaussian model is derived and matching is done according to this Gaussian model.

4.3.4 Critical Analysis

Both object transition-probability and object similarity-probability may fail (especially in case of

non-overlapping camera topology) if object is moving in a more unpredicted way and the appearance

of the object is changed in an abrupt fashion respectively. Similarly, in case of [32], the camera needs

to be calibrated frequently; the accuracy of tracking is dependent upon calibration. Literature [34]

uses the concept of Brightness Transfer Function (BTF) which relates how two different cameras

can see the same object. Literature [35] derives an expression for the transition probability taking

case of the blind area.

4.4 Depth Estimation and 3D Tracking

4.4.1 Introduction

Depth estimation and 3D tracking have vast application ranging from Computer Vision to Control

engineering (as for example, in robotics or in outer space vehicles to form a convoy). Thus depth

estimation and 3D tracking is a growing research topic. Another application of 3D tracking can be

used to learn and follow the path by automated objects. An example is KUKA robot which learns

using 3D path formation of the tracked object. Apart from this, 3D image information is also used in

movies and computer games etc. 3D information of a tracked object can be obtained by calibrating

a single or a stereo-camera. As already discussed, using the camera matrix, 3D and 2D points can

be related. On the other hand, in stereo camera configuration, depth is calculated from disparity.

26

4.4.2 Literature Review : Different Approaches to 3D Tracking

Depth is estimated from disparity in stereo configuration. If a single camera is used, 3D tracking is

done using camera matrix which is derived from the intrinsic and extrinsic parameters.

Stereo configuration is not only used for depth estimation only. It can be used for higher accuracy

in tracking. [36] uses particle filter under stereo configuration. Likelihood is computed using both

the stereo images. Then these two likelihood values of object appearance are clubbed together and

used as a joint likelihood. [37] also uses almost the same concept. They try to use both 2D and 3D

information into filtering for higher accuracy rather than depth estimation.

[38] uses single camera for 3D tracking where camera parameters are used to correspond between

3D and 2D. Literature [39] derives a novel approach to track objects in 3D. In their approach,

two sets of particle filters on each of the stereo images are formed and a correspondence is made

in between them. Literature [40] derives disparity information under three different conditions to

estimate depth.

4.5 Summary

In this chapter, various multi camera and 3D object tracking schemes are reviewed. It can be

seen that the research-trend in stereo depth estimation is to increase the depth of estimation with

accuracy. Similarly, in multi camera object tracking, training the camera system has to be improved

so that the objects coming from the blind area can be modeled properly for efficient detection.

Another research area might be low resolution multi camera object tracking. Since low resolution

camera network will take low bandwidth for communication, this can be used for pervasive or

ubiquitous computing, which is a leading research topic in embedded systems engineering.

In pervasive computing, human machine interaction is a crucial part, where tracking objects can

be a small but most important part of research. As for example, ubiquitous monitoring of old people

staying in an environment; for automatic analysis of their behavior or motion, a network of embedded

cameras has to be mounted the output of which has to be sent either to a central processor or has to

processed at each camera node. Pervasive computing environments are donned with communication,

networking, computing, Human Machine Interfacing, speech and vision facilities, etc. Pervasive

computing environments can be either stand alone or mobile; as for example, mounted on a ship etc.

Hence, in all these applications, multiple object tracking and establishing correspondence among

them from the view of different cameras in a sensor network is very crucial.

Till this chapter, all major visual object tracking algorithms are reviewed. Now a new variant of

particle filter based visual tracking algorithm has been proposed in this work which is explained in

the next chapter.

27

Chapter 5

Proposed Algorithm

5.1 Introduction

In this chapter, a new variant of particle filter along with a stochastic resampling algorithm has

been proposed. In visual object tracking, particle filters have been used popularly because they

are compatible with system non-linearity and non-Gaussian posterior distribution. But the main

problem in particle filtering is sample degeneracy. To solve this problem, a new variant of particle

filter has been proposed. The resampling algorithm used in this proposed particle filter is derived

by combining systematic resampling, which is commonly used in SIR-PF (Sampling Importance

Resampling Particle Filter), and a modified bat algorithm; this resampling algorithm reduces sample

degeneracy as well as impoverishments. The measurement model is modified to handle clutter in

presence of varying background. A new motion dynamics model is proposed which further reduces

the chance of sample degeneracy among the particles by adaptively shifting mean of the process noise.

To deal with illumination fluctuation and object deformation in presence of complete occlusion, a

template update algorithm has also been proposed. This template update algorithm can update

template even when the difference in the spread of the color-histogram is especially large over time.

The proposed tracker has been tested against many challenging conditions and found to be robust

against against clutter, illumination change, scale change, fast object movement, motion blur, and

complete occlusion; it has been found that the proposed algorithm outperforms the SIR-PF and bat

algorithm.

Different forms of particle filters have been widely used in all sorts of visual object tracking widely.

The key idea behind particle filter is to generate particles that will simulate the true posterior, then

from the mean of the posterior can be easily estimated. The higher is the number of particles, the

better is the simulation. In case of image data, both the likelihood and the posterior distributions

are non-Gaussian. Hence, particle filters are preferred to Kalman filters in visual object tracking;

Kalman filters work accurately only when posterior and noise are Gaussian, including the system to

be linear.

But still there are some drawbacks in particle filter. Computationally a particle filter is less

efficient compared to a Kalman filter. So, in some cases, where the process and measurement noise

are almost or nearly Gaussian and system can be approximated by linearization, Kalman filters

can be used, and, in such cases, Kalman filters can give optimal solution. Kalman filters are much

28

higher computational efficiency as compared to particle filters. Large computational cost is one major

drawback of particle filtering. Another problem in particle filter is called sample impoverishment

which arises while resolving the degeneracy problem in particle filters. But, as compared to Kalman

filters, particle filters are more robust to clutter. Hence, for this project, particle filter is selected.

Lots of work has been done on particle filter based visual object tracking. Many modifications

in particle filtering [18, 20, 26, 21, 27, 36, 39, 41, 42, 43, 44] for visual object tracking have been

proposed to improve tracking accuracy.

In this work, a new form of particle filter has been proposed along with a new resampling algo-

rithm. In this work, first it has been tried to reduce the inherent problems of SIR-PF (Sampling

Importance Resampling Particle Filter) like sample degeneracy and sample impoverishment. Next,

other additional modifications are made to make the algorithm robust against clutter, illumination

change, scale change, fast object movement, motion blur, and complete occlusion. Then the algo-

rithm is tested using a number of different challenging videos, and found to be working satisfactorily

as compared with SIR-PF (Sampling Importance Resampling Particle Filter), bat algorithm and

other state-of-the-art algorithms.

5.2 Related Works

Till now, numerous tracking algorithms have been proposed in the field of visual object tracking

[5, 6, 7, 45, 46, 47, 44, 48, 15, 21]. As discussed earlier, these algorithms can be classified in two

broad categories: i) optimization based algorithms and ii) filtering based algorithms. Both these ap-

proaches have their own advantages and disadvantages depending on the application. Traditionally,

optimization based tracking methods are deterministic in nature, however recently nature inspired

stochastic optimization methods [45, 41] have also been proposed for object tracking. On the other

hand, filtering based tracking methods are stochastic in nature.

Compared to the deterministic trackers [8], probabilistic trackers [18] are relatively more robust

in presence of short-time complete occlusion as well as background clutter. In probabilistic tracking,

two most popular filters are: Kalman filter and particle filter. As discussed earlier, the Kalman filters

perform well when the underlying distribution is Gaussian, however particle filters can adapt to more

general distributions. Likelihood model in visual object tracking is non-linear and posterior is non-

Gaussian. Therefore visual object tracking methods based on particle filters are more successful.

Thus particle filters outperform Kalman filters in visual object tracking.

Although Kalman filters are not more suitable than particle filters for visual object tracking,

in some applications, Kalman filters are also used [46]. The modified versions of Kalman filter are

extended Kalman filter, unscented Kalman filter, etc. [49] uses unscented Kalman which is far better

than extended Kalman filter. Unscented Kalman filter preserves linearity up to order three with the

same computational load as extended Kalman filter, using the concept of sigma points and unscented

transformation. The main disadvantage with extended Kalman filter is to find out Jacobbian matrix

at every time step. [49] uses this unscented Kalman filter for contour tracking. It computes nonlinear

measurement model more accurately without the help of a Jacobian matrix. So some researchers

have combined unscented Kalman filter and particle filter to formulate unscented particle filter for

better proposal density distribution [42]. As already discussed, one key problem in particle filtering

is sample degeneracy. After a few iterations, degeneracy may occur when there are many particles

29

having negligible weight. One can overcome this problem of sample degeneracy either by choosing

better importance density [42] or by systematic resampling [19]. While re-sampling, these low-weight

particles are discarded while higher weight-particles are replicated. Hence, particles get concentrated

around higher weight, thus reduces diversity among the particles. But this systematic resampling

may make the particles merge to a single point making them lose their diversity. This problem

is known as sample impoverishment. To overcome sample impoverishment, various improvements

have been proposed in the literature [41, 43]. A good choice of selecting particles is to increase their

variance. Hence, ideally the particles should have diversity without any sample degeneracy. In this

work, a modified resampling algorithm is proposed to address these issues simultaneously.

In another approach, rather than computing a better proposal density, particles filters are merged

with nature inspired stochastic optimization algorithms. Such nature inspired stochastic optimiza-

tion algorithms have been proposed in the literature [50]. In the proposed work, bat algorithm has

been modified to be merged with particle filter. Amongst other contemporary stochastic optimiza-

tion algorithms, bat algorithm has a fast convergence rate in the initial stages. Also the flavor of

Particle Swarm Optimization (PSO) and Harmony Search (HS) can be obtained from bat algorithm

by changing loudness and pulse-rate of the microbats. It has been shown in [50] that bat algo-

rithm performs better than Particle Swarm Optimization (PSO) and under certain conditions where

Particle Swarm Optimization (PSO) may fail, bat algorithm will converge to the global optimum

[50].

In this proposed work, both the SIR-PF (Sampling Importance Resampling Particle Filter) and

the bat algorithm are modified and then merged together to get rid of sample degeneracy and

sample impoverishment mainly. The tracking efficiency of the proposed algorithm has been found

to be much better than the SIR-PF (Sampling Importance Resampling Particle Filter) and bat

algorithm. The proposed algorithm has been tested under many challenging conditions and found

to be robust against against clutter, illumination change, scale change, fast object movement, motion

blur, and complete occlusion. In this work, test results from various datasets [1, 2, 3] have been

demonstrated. These data sets are collections of benchmark videos on visual object tracking.

5.3 Proposed Particle Filter

In this section, the proposed particle filter, which is a modified version of SIR-PF (Sampling Im-

portance Resampling Particle Filter), has been described. The key idea of particle filtering is to

simulate the true posterior using a number of large particles. But there are some disadvantages of

particle filter. These are:

1. Sample degeneracy may occur after some iterations

2. Sample impoverishment due to systematic resampling [19]

3. Large number of particles required to simulate the true posterior correctly

In this proposed particle filter algorithm along with the modified bat inspired resampling algo-

rithm, these problems are resolved. This increases the tracking accuracy.

5.3.1 Sampling Importance Resampling Particle Filter

First the basic equations of SIR-PF (Sampling Importance Resampling Particle Filter) is revisited.

As discussed earlier, Bayesian tracker has two steps: Prediction and Update. Let, k be the stage, x

30

be the state, z be the measurement vector. Thus prior (predicted ones) is updated with a likelihood

and a normalization factor as follows using Bayes’ rule:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(5.1)

where, xk = estimated state at k-th instant and zk = measurement at k-th instant.

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|z1:k−1) dxk−1 (5.2)

p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|z1:k−1) dxk (5.3)

In particle filtering, the posterior distribution is estimated by particles having some weight. So

these particles imitate the true posterior; finally the mean of this posterior is computed. The state

(samples or particles) is predicted using system dynamics as follows:

xk = fk(xk−1, vk−1) (5.4)

where, vk−1 is the process (state) noise.

There may be mismatch in the actual system dynamics and the modelled system dynamics. This

model mismatch as well as the fact that states are hidden (not measured) make the predictions

inaccurate. Hence it is necessary to update the predictions using (5.1). The measurement model is

as follows:

zk = hk(xk,nk) (5.5)

where nk is the measurement noise.

In particle filtering, the key objective is to properly represent the posterior distribution p(xk|z1:k).

Each particle i at stage k has weight wik which gives some measure of posterior at that point:

wik ∝
π(xi)

q(xi)
(5.6)

The theory as described in [19] is: particles are generally difficult to draw from distribution

π(xi), but π(xi) can be computed. Hence, samples are generated from another distribution called

importance density q(xi). Now the modified form of the weight at k-th instant is:

wik ∝ wik−1
p(zk|xik)p(xik|xik−1)

q(xik|xik−1, zk)
(5.7)

where p(zk|xik) is the likelihood, p(xik|xik−1) is the prior and q(xik|xik−1, zk) is the importance

density.

As the number of particles or samples Ns increases, the following computation tends to the true

posterior:

p(xk|z1:k) ≈
Ns∑
i=1

wikδ(xk − xik) (5.8)

31

For simplicity, importance density is taken as prior. Hence, the weight becomes:

wik ∝ wik−1p(zk|xk) (5.9)

Reduction of Equation (5.7) to (5.9) results in some inaccuracy in the tracking. There are many

ways to to improve this. In [42], the importance density distribution q(xik|xik−1, zk) and the prior

p(xik|xik−1) are derived from unscented Kalman filter; this forms the unscented particle filter. This

helps shifting the prior towards the better likelihood. Another way of shifting the particles to better

position is to use either deterministic or probabilistic optimization algorithm as stated earlier.

The steps in SIR-PF (Sampling Importance Resampling Particle Filter) algorithm are shown in

Algorithm 2.

Algorithm 2 SIR-PF Algorithm

1: procedure SIR-PF((xik−1, w
i
k−1)Ns

i=1, zk)
2: for i = 1 : Ns do
3: Draw: xik ∼ p(xik|xik−1)
4: Compute: wik = p(zk|xik)

5: Normalize: wik for i = 1...Ns
6: Systematic Resample: Discard particles with low weight and replicate particles with higher

weight as given in [19]
7: return (xik, w

i
k)Ns
i=1

5.3.2 Proposed Algorithm

The key idea behind particle filtering is to simulate the true posterior using a large number of

particles. The weight associated with each particle gives the measure of posterior at that state.

In particle filtering, degeneracy may occur after a few iterations. When degeneracy occurs, the

particles cannot simulate the true posterior properly, producing error in tracking. The most popular

form of particle filter is SIR-PF (Sampling Importance Resampling Particle Filter) [19] which uses

systematic resampling. This systematic resampling can eliminate sample degeneracy, but may cause

another problem called sample impoverishments. So, a new variant of particle filter along with

resampling algorithm has been proposed in this work, which eliminates both sample degeneracy and

sample impoverishments among the particles, increasing the accuracy in tracking.

To reduce sample degeneracy, the proposed particle filter uses selective resampling. Let i be the

particle, k be the stage and x be the state. Hence, state of i-th particle at k-th stage xik is drawn

from state of i-th particle at (k − 1)-th stage xik−1 as follows:

xik ∼ p(xik|xik−1) (5.10)

Hence, at k-th stage, two states are available for i-th particle. One is from previous stage xik−1
and another one is newly drawn state: xik. But, measurement is taken only at k-th stage for both

these states: zik for the i-th particle. Thus unlike SIR-PF (Sampling Importance Resampling Particle

Filter), the weight is computed twice as shown in (5.11) and (5.12):

wik = p(zik|xik) (5.11)

32

wiprev = p(zik|xik−1) (5.12)

The two weights (5.11) and (5.12) are compared and the best one is chosen. Thus this selective

resampling helps the tracker work even if the process noise model is not properly tuned. The steps

of the proposed particle filter is explained in Algorithm 3 (where Ns be the total number of particles,

LostTrackTH is the threshold).

Algorithm 3 Proposed Algorithm

1: procedure PROPOSED ALGORITHM(V ideoInput, InitialLocation,WindowSize)
2: fullscale, Updating and others are set true or false depending upon the application
3: All the threshold values are set
4: Number of particles Ns is initialized
5: Initialize particles xik (i = 1 : Ns) around InitialLocation in the initial frame
6: Initialize reference histogram q̂r of the object
7: while Reading frame k-th from V ideoInput do
8: for i = 1 : Ns do
9: Draw: xik ∼ p(xik|xik−1)

10: Compute likelihood: wik = p(zik|xik) using (5.20)
11: Compute likelihood: wiprev = p(zik|xik−1) using (5.20)

12: if wik < wiprev then

13: xik = xik−1
14: wik = wiprev

15: Estimate mean yk of all the states xik for i = 1...Ns
16: Compute Bhattacharyya similarity coefficient ρ?k at yk using (5.18)
17: if ρ?k < LostTrackTH then
18: r0 = 1
19: else
20: r0 = 0
21: Resample particles (Algorithm 6)
22: Re-estimate mean yk of all the updated resampled states xik for i = 1...Ns
23: Compute the final estimated location yk
24: Update the template (Algorithm 7)
25: Update the model dynamics (Algorithm 4)
26: Annotate at yk and display the frame
27: Pass yk for the next frame

Hence, although the computational cost of the proposed particle filter is more than that of the

conventional SIR-PF (Sampling Importance Resampling Particle Filter), the proposed algorithm

can solve sample degeneracy and sample impoverishment much better.

5.4 Proposed Measurement Model

Measurement model is one of the most crucial part of particle filter based tracking. A better

measurement model can reduce the effect of clutter, making the tracking robust. The proposed

measurement model is formulated by merging two other different measurement models [8, 18].

33

5.4.1 Other Related Works

Till now various measurement models, such as covariance based [14], edge based [11, 10], texture

based [10], and color based [8] models have been proposed in the literature. To include spatial

information in histograms, multi part modeling has been introduced in [18, 10]. Work [11] splits the

MeanShift tracker into different small segments to make it more robust against occlusion. Works

[8, 18, 10, 11] all use background modeling and merge them to the measurement model to make the

measurement model more robust against clutter. To solve clutter, [10] merges color, edge, texture and

background information all together with MeanShift making it robust against background clutter.

5.4.2 Proposed Measurement Model

A better measurement model can reduce the effect of clutter. A measurement model is proposed

by combining the measurement models from literature [18] and [8]. [18] introduces the concept of

multi-part modeling which adds spatial information to the histogram and [8] introduces background

modeling for dynamically changing background. [18] also uses background modeling where back-

ground should be static and background information should be available offline. In [8], a background

probabilistic histogram is formed, and each bin value of the histogram is compared with its smallest

non-zero bin value (ô?). In the proposed approach, instead of comparing with the least probability

value, a user defined threshold Th is used for comparison. The proposed measurement model is more

robust when the diversity among the colors in background is less. Thus, in the proposed model,

spatial information is added to the color histogram while background can be dynamic.

A four dimensional histogram is proposed. Three dimensions are for colors Red, Green and Blue,

and one more dimension is for storing spatial information about the pixel (pixel location). But,

if each pixel’s location is stored, the dimension of the histogram will be too large to process fast.

Hence, the image template is divided or quantized into number of blocks, and the block number

a pixel belongs to is considered as the spatial information while generating the histogram. And,

for processing the background information, the background template around the object template

having the equal area is taken, and the pixels which are outside the object template but inside the

background template are considered as background pixels for processing.

A measurement model based on joint m-bin histogram (r = 1...m) as reference model as well

as target candidate has been proposed [8]. The center of the template is taken as the origin.

Epanechnikov kernel used in this model makes border pixels have lesser weight. Let q̂r and p̂r(y)

(r = 1...m) be the background-weighted reference and target color histograms, respectively as given

in [8]. y be the location of the target histogram. ôr be the discrete probabilistic histogram of the

background. Notation n?l be the l-th normalized pixel location, δ be the Kronecker delta function

and K(.) be the Epanechnikov kernel. n and nh are the number of pixels in reference and target

histograms. Each bin-value r of the joint histogram is multiplied by a modified weight vr given

below : {
vr = min

(
Th

ôr
, 1

)}
r=1...m

(5.13)

q̂r = Cvr

n∑
l=1

K(‖n?l ‖2)δ [b(n?l)− r] (5.14)

34

C =
1∑n

l=1K(‖n?l ‖2)
∑m
r=1 vrδ [b(n?l)− r]

(5.15)

p̂r(y) = Chvr

nh∑
l=1

K

(∥∥∥∥y − n?l
h

∥∥∥∥2
)
δ [b(n?l)− r] (5.16)

Ch =
1∑nh

l=1K(‖y−n
?
l

h ‖2)
∑m
r=1 vrδ [b(n?l)− r]

(5.17)

Now, these two histograms are compared by Bhattacharyya coefficient [8]. Bhattacharyya coef-

ficient approximates the chi-square statistics eliminating the singularity problem while dealing with

empty bins [22]. The equation is given in (5.18).

ρ =

m∑
r=1

√
p̂r(y)q̂r (5.18)

The distance between the two distributions is given by [8]:

D(y) =
√

1− ρ (5.19)

Hence, likelihood of the i-th particle at y in k-th stage is given by:

p(zik|xik) ∝ exp(−λD(y)) (5.20)

where, λ is a tuning parameter [18].

The proposed likelihood model is expected to reduce clutter in case of dynamically changing

background, and also it can suppress background color even if background has some color throughout

the entire background template region.

The proposed measurement model is tested. The test result is given in Fig. 5.1 and Fig. 5.2. Fig.

5.1 shows the locations of the object templates or the windows. Window 1 is the initial reference

window. Other windows are taken over the entire frame to test the efficiency of the proposed

measurement model. The dimension of the histogram is 8 × 8 × 8 × 2 where 2 is the number of

the blocks the object template or window is divided into for utilizing the spatial information. The

image frame is taken from [3]. Hence, the proposed likelihood model can reduce clutter in case of

dynamically changing background, and also it can suppress background color even if background

has same color throughout the entire background template region.

5.5 Proposed Motion Dynamics Model

Bayesian filters track dynamics of the object. Hence, many motion dynamics models have been

proposed in literature [51] depending on the application. In this proposed work, instead of constant-

velocity model, as used in most of the cases, zero velocity model has been proposed, and velocity

is encoded as process noise. The advantage of this model is that it is application independent

and the model parameters change adaptively to generate better particles which may reduce sample

degeneracy.

35

Figure 5.1: Location of the numbered windows

Figure 5.2: Bhattacharyya metric comparison plot

36

Generally the velocity (process noise) is represented by Gaussian noise N (µ, σ) where µ, is the

mean value and σ is the standard deviation. In this proposed adaptive approach, σ is kept fixed

while µ keeps changing adaptively according to (5.21):

µ =
σ

2
(1− e−d) (5.21)

where d ∈ [0 3] is the normalized distance traveled by an object from (k − 1)-th stage to k-th

stage and σ is the maximum estimated velocity. When d = 0, µ = 0, and, when d = 3, µ = 0.95× σ
2 .

The limiting value of µ as d→∞ is σ
2 .

The proposed model shifts the µ towards the direction of motion of the object. The limiting

value of µ ensures that µ is not completely shifted in one direction so that, if velocity of the object

abruptly changes in reverse direction, the model can still track the object. The algorithm is described

in Algorithm 4. µ can be either positive or negative. µ is divided into µx and µy. In terms of state

space, particles are generated according to (5.22).

xk =

1 0 1 0

0 1 0 1

0 0 0 0

0 0 0 0

xk−1 +

0

0

N (µx, σx)

N (µy, σy)

 (5.22)

where the states are x = [x y ẋ ẏ]T . Let x, y be the positions of the pixels along x-axis and

y-axis, and ẋ, ẏ be their respective velocities.

Algorithm 4 Proposed Motion Dynamics Model

1: procedure MODEL–1(ρ?k, ρ
?
k−1, T rackOK,yk,yk−1)

2: Compute: d = yk − yk−1
3: Compute: dx = |d1|
4: Compute: dy = |d2|
5: if ρ?k > TrackOK AND ρ?k−1 > TrackOK then
6: if d1 < 0 then
7: µx = −σx

2 × (1− exp(−dx/K1))
8: else
9: µx = σx

2 × (1− exp(−dx/K1))

10: if d2 < 0 then
11: µy = −σy

2 × (1− exp(−dy/K2))
12: else
13: µy =

σy

2 × (1− exp(−dy/K2))

14: else
15: Assign : µx = 0
16: Assign : µy = 0

17: return µx, µy

In Algorithm 4, ρ?k and ρ?k−1 be the Bhattacharyya similarity coefficient at k-th and (k − 1)-

th stage computed using (5.18) at yk and yk−1 respectively. Since image frames are 2D, distance

d =

[
d1

d2

]
. TrackOK is the threshold and K1, K2 are the two normalizing constants so that

d ∈ [0 3] in (5.21). Hence, the proposed model can further reduce the chance of sample degeneracy.

Generally the velocity is represented by Gaussian noise N (µ, σ) where µ, is the mean value and

37

σ is the standard deviation. Generally µ is set a 0 while σ is tuned by the user according to the

estimated velocity of the tracked object. The probability of generating a velocity v is given by:

p(v) = K1e
− (v−µ)2

2σ2 (5.23)

where K1 = 1
σ
√
2π

. If velocity of the object or the particles is less, a lower value of σ will

work. But, if velocity is large, from (5.23), it can be easily inferred the increasing σ will not

improve the probability of generating a high velocity much. Also the velocity of the object keeps

changing with time along with its direction. Mathematically, say σ is fixed and maximum velocity

v = σ has to be produced. Hence, K1 is also fixed. Probability of producing velocity v = σ at

µ = 0 is p1(v) = K1e
−0.5 = 0.606K1. But µ = σ

2 , Probability of producing velocity v = σ is

p2(v) = K1e
−0.125 = 0.882K1. So p2 > p1. Now, in case the velocity changes to v = −σ suddenly,

probability of producing velocity v = −σ with µ = 0 is p3(v) = K1e
−0.5 = 0.606K1, but with µ = σ

2 ,

p4(v) = K1e
−1.125 = 0.324K1. So p4 is not too small to produce velocity in the negative direction

suddenly. Even if the number of negative velocity generated is less, the proposed particle filter with

resampling algorithm (explained in the next section) will track the object immediately. The variable

d is obtained by finding the distance between the same object in the current and previous frame and

then normalizing the distance into [0 3] by diving it using the maximum assumed distance. Hence,

the proposed model can further reduce the chance of sample degeneracy.

5.6 Proposed Resampling Algorithm

Resampling is essential to avoid sample degeneracy among the particles, which occurs after few iter-

ations. With SIR-PF (Sampling Importance Resampling Particle Filter), the systematic resampling

algorithm is used as described in [19] where low weight particles are discarded while higher weight

particles are replicated. This again reduces the diversity among the particles causing sample impov-

erishment among them. Also, in case of clutter, there is a chance that all the particles may merge

at a wrong point as there is no further searching in the algorithm. In this work, a new resampling

algorithm is proposed. This proposed resampling algorithm reduces the degeneracy problem and

also sample impoverishment. Also, if due to error in motion dynamics, tracking is lost, this resam-

pling algorithm can immediately track the lost object. This proposed resampling algorithm utilizes

both systematic resampling [19] and bat algorithm. Bat algorithm is used because it has two basic

moves: exploration and exploitation. The key philosophy of the approach is that these two moves

are used in two different situations as explained in this section.

5.6.1 Bat Algorithm

In 2010, Xin-She Yang introduced nature inspired Bat Algorithm [50]. Bat algorithm simulates

the behavior of a group of micro bats reaching an optimum location. The key philosophy of the

algorithm is that all the bats track the current best solution randomly. While tracking the current

best solution, if any other better than the current best solution is found, all the bats will move

toward that new better solution. In general, this is the way the micro bats will reach the optimum

location. While moving, the bats will randomly switch between the two types of jumps or moves.

Let i be the particle or bat and t be the iteration. Multiplying factor β ∈ [0 1] and fi be the

38

random frequency of i-th bat within the range [fmin fmax]. The type-1 jump occurs using the

following equations:

fi = fmin + (fmax − fmin)β (5.24)

The velocity of i-th bat is updated as:

vt+1
i = vti + (sti − s?)fi (5.25)

st+1
i = sti + vt+1

i (5.26)

where sti be the location of the i-th bat at t-th instant or iteration; s? is the present best global

solution; this s? gets updated as the bats converge. And multiplying factor β ∈ [0 1].

Once exploration is done, the bats are allowed to search in the vicinity of the current location

using the type-2 jump as follows:

st+1
i = s? + εAt (5.27)

where ε ∈ [−1 1] and At is the mean loudness among all the bats at that stage.

Loudness (sound) of i-th bat will vary according to:

At+1
i = αAti (5.28)

where, α ∈ (0 1)

Pulse-rate will vary according to:

rt+1
i = r0i [1− exp (−γt)] (5.29)

where, γ > 0

The general bat search algorithm with NB-number of bats is shown in Algorithm 5.

Algorithm 5 Bat Algorithm

1: procedure BAT((bi, vi)
NB
i=1, s

?)
2: Initialize fmax, fmin, β, α, γ, r0i , ri and Ai for i = 1...NB
3: Assign : t = 0
4: while t < Maximum iterations do
5: Generate frequency fi using (5.24) for i = 1...NB
6: Generate new solutions using (5.25) and (5.26)

. rand(min,max) is uniformly created random number in between (min, max)
7: if rand(0, 1) > ri then
8: Update s? from the current best solution
9: Generate new solution using using (5.27)

10: if rand(0, 1) < Ai AND f(bi) < f(bbest) then
11: Accept the new solutions
12: Update Ai and ri using (5.28) and (5.29)

13: Find the current best among all the bats and update s?

14: t = t+ 1

15: return s?

The Bat algorithm converges much faster, especially at initial stages. Convergence analysis of

39

bat algorithm is provided in [50].

5.6.2 Proposed Resampling Algorithm

Unlike the conventional bat algorithm [50], in the modified algorithm, each bat (or particle) moves

toward its own best rather than toward the global best. In this way each bat revolves around its

own best which gets updated when a better solution is found.

Let i be the particle or bat and t be the iteration. Multiplying factor β ∈ [0 1] and fi be the

random frequency of i-th bat within the range [fmin fmax]:

fi = fmin + (fmax − fmin)β (5.30)

The velocity of i-th bat is updated as:

vt+1
i = vti + (sti − s?i)fi (5.31)

where sti be the state of the i-th bat or particle in t-th iteration and s?i be the most recent global

optimum solution of the i-th bat or particle chosen from all the present and past moves.

The type-1 jump for the next (t+ 1)-th move:

st+1
i = sti + vt+1

i (5.32)

where sti be the state of the i-th bat or particle in t-th iteration and st+1
i be the state of the i-th bat

or particle in (t+ 1)-th iteration

Similarly type-2 jump for the next (t+ 1)-th move:

st+1
i = s?i + rand(min1,max1) (5.33)

where min1, max1 be the lower and upper limit of the uniformly generated random number.

Let Ns be the number of particles or bats. The steps of the proposed resampling algorithm are

shown in Algorithm 6.

The proposed algorithm modifies the SIR-PF (Sampling Importance Resampling Particle Filter)

just to move the particles to better position. In general, particle filter has three steps: generation

of particles, computation of weight and resampling the particles. Similarly, the ideal bat algorithm

can also be divided into three stages namely Stage-I, Stage-II and Stage-III as follows:

Stage-I: This stage is the first stage. Loudness is set as 1 and pulse-rate as 0. Bats are generated,

and the best bat is picked up. Let all the bats move toward that best bat location. If any other best

location found, update the new best location. Relocate the bats around this best located bat (5.33)

as pulse-rate is 0. Accept this new location of the bats if better than previous ones as loudness is

set as 1.

Stage-II: This stage includes all the stages after the first and before the last stage. Loudness is

decreasing and pulse-rate is increasing. New bats are generated near the best with some changing

probability. New locations are also accepted with some changing probability. If new locations are

not accepted, the distance between their old location and the updated best is used cumulatively to

increase search space. This slowly causes zooming.

40

Algorithm 6 Proposed Resampling Algorithm

1: procedure RESAMPLING((xik, w
i
k)Ns
i=1, Ns, r0)

2: Initialize fmax, fmin, β, ri = r0 for i = 1...Ns
3: Assign : s?i = xik for i = 1...Ns
4: Assign : t = 0
5: Assign : vti = 0 for i = 1...Ns
6: Assign : sti = xik + rand(min,max) for i = 1...Ns . Particles are slightly deviated from the

actual state by uniformly distributed random numbers in the range min,max
7: while t < Maximum iterations do
8: for i = 1 to Ns do
9: if rand(0, 1) > ri then

10: st+1
i = s?i + rand(min1,max1)

11: else
12: Generate new solution st+1

i using (5.30), (5.31), (5.32)

Compute: winew = p(zik|s
t+1
i) using (5.20)

13: if wik < winew then
14: Update : wik = winew
15: Update : xik = st+1

i

16: Update : s?i = st+1
i

17: Assign : st+1
i = sti

18: t = t+ 1

19: if r0 = 1 then
20: Systematic Resample : Discard particles with low weight and replicate particles with

higher weight as given in [19]

21: return (xik, w
i
k)Ns
i=1

Stage-III: This stage is the last stage. Ideally loudness is set as 0 and pulse-rate as 1. Neither

bats are generated around best (5.33) nor locations are updated. Only the best is updated and the

velocity of each bat is cumulatively added up. This causes only exploration.

To summarize, in case of conventional bat algorithm, at the initial stage, due to both exploration

and exploitation, all bats move toward the same target and all the better new solutions are accepted.

As number of stage increases, chance of exploration increases while the chance of exploitation de-

creases; also the probability of accepting new better solutions also decreases. In the final stage, no

exploitation occurs. Only exploration occurs and none of new solutions are accepted; only the global

best value is updated as usual. Hence, it can be visualized that, at the initial stage the bats tend

to converge, and then the bats keeps searching around the converged location and this search space

increases with the number of stages.

As shown in Algorithm 6, this bat algorithm is modified to reduce the computational complexity

and sample impoverishment. Particles are generated with a motion dynamics following the real

object and there is some probability that particles will follow the real object. Then Bhattacharyya

metric (5.18) at deterministically estimated mean location says if the particles are converged. If

converged, particles are just moved to better location using (5.33). This increases the convergence

and reduces sample impoverishment because the best values are individual for each bat, not a

common one. When the object is lost (detected by Bhattacharyya metric (5.18), it cannot be

decided which particle is near the lost or occluded object. Hence, it is assumed that each particle

is equally probable to be near the object. Now the Stage-III described above is directly used to

explore the region by each particle independently. After exploration, once the best particle is found

41

(the accuracy of finding the best particle is further increased by the proposed anti-clutter object

model described in 5.4), the particles are converged using systematic resampling described in [19].

Thus the modified bat algorithm uses either exploitation or the exploration move. This reduces the

computational cost and sample impoverishment. To summarize, when object is lost either due to

clutter or complete occlusion, exploration move – type-1 jump (5.32) – gets activated. Otherwise,

type-2 jump (5.33) simply rearranges the particles.

5.6.3 Computational Cost Analysis

It can be shown that the proposed resampling algorithm is computationally less expensive compared

to the bat algorithm. Analysis of the computational complexity of the proposed resampling algorithm

and the bat algorithm is carried out. Let c1 be the average cost of computing all the stages of

type-1 jump (including frequency, cumulative velocity computation, etc.), c2 be the average cost

of evaluating the likelihood, c3 be the average cost of rearranging the bats and accepting the best

value, c4 be the average cost of increase of pulse-rate and decrease of loudness, c5 be the average

cost of computing all the stages of type-2 jump, c6 be the average cumulative cost for resampling,

Ns be the number of bats and Ks be the number of iterations. It can be shown that c5 (type-

2 jump) is computationally more efficient than c1 (type-1 jump) as type-1 jump contains some

extra computation to compute frequency and velocity, which are not in type-2 jump. Hence, the

computational complexity of the bat algorithm in every frame: every frame:

CostBA =

Ns∑
i=1

Ks∑
t=1

(c1 + p1(c2 + c5) + c2 + p2c4 + c3) (5.34)

Now for the proposed algorithm, the computational cost in every frame:

CostPRO =

Ns∑
i=1

Ks∑
t=1

(p1c5 + (1− p1)(c1 + c6) + c2 + c3) (5.35)

where, when p1 = 1, type-2 jump is selected, otherwise type-1 jump is selected.It is observed

that the sum of the computational cost of likelihood and rearranging the bats and accepting the best

value is far more than other costs, as likelihood model accesses more memory locations and perform

more arithmetic and logical operations. Hence, (5.34) and (5.35) can be reduced as, respectively:

CostBA ≈
Ns∑
i=1

Ks∑
t=1

((p1 + 1)c2 + c3) (5.36)

CostPRO ≈
Ns∑
i=1

Ks∑
t=1

(c2 + c3) (5.37)

where p1 can be 0 or 1 randomly throughout the frames. Hence, approximately the average

computational cost of the proposed bat inspired resampling algorithm is less than that of the con-

ventional bat algorithm throughout the entire frames. So it is better to use the proposed resampling

algorithm rather than using the conventional bat algorithm directly for resampling the particles.

42

5.7 Proposed Template Update Mechanism

As time increases, many changes in the histogram of the template takes place. As for example,

changes can be in scale, shape and illumination mainly. Hence, to keep tracking the object accurately,

the template needs to be updated.

5.7.1 Related Works

One major problem in template update is the presence of occlusion. If a template is completely

updated under prolonged occlusion, it will loose tracking the right object. Hence, templates cannot

be updated when complete occlusion occurs for prolonged time. So literature[16] turns off tracking

when number of outliers in the template pixel increases beyond a certain percentage; this outliers are

detected using Mahalanabis distance formula between the measured and predicted pixels, and the

comparison is made pixel to pixel. On the other hand, [11] updates the template by simply copying

the past template if foreground is more prominent than background and tracking is correct. Thus, in

the works [52, 53, 54, 11], different template update mechanisms are described. As discussed earlier,

[11] decides the template update policy depending on foreground and background pixel count; then

a particular fragment is updated by directly replacing the current model. While [16] uses Kalman

filter in a novel way to update the template.

5.7.2 Proposed Template Update Algorithm

As time increases, many changes in the histogram of the template may take place. As for example,

changes may occur in scale, shape and illumination. Hence, to keep tracking the object accurately,

the template needs to be updated. One problem in template update is the presence of occlusion. If

a template is updated under prolonged occlusion, it may loose tracking the right object. Hence, a

template update algorithm is proposed which can work in presence of prolonged complete occlusion.

Also this algorithm includes a mechanism to adaptively change the range of histogram to increase the

discrimination among the colors without increasing sparsity in the histogram. The update equation

is given as:

quk = (1− α)quk−1 + αpuk; (5.38)

where quk−1 is the reference histogram inherited from (k − 1)-th stage and used for tracking

objects in k-th stage. puk is the target histogram formed at present tracked location yk in k-th

stage. puk contains the new information of the tracked object which may be different from that of

quk−1. Now it has been observed that, if puk is directly assigned to quk, the change in quk (which

is used for (k + 1)-th stage) can be abrupt. This abrupt update is not desirable in many cases as

it may cause drift. Hence, (5.38) will help smooth this abrupt change using a smoothing parameter

α. This will stop drifting the tracking, which arises in direct assignment. Here α ∈ [0 1]. Generally

less weight is given to puk.

In the proposed algorithm, the range of histogram can be chosen by setting fullscale as true or

false. As the template is not getting updated immediately, Bhattacharyya metric (5.18) can be used

to detect occlusion, rather than comparing pixel-by-pixel. The proposed mechanism is described in

Algorithm 7.

In Algorithm 7, xbin, ybin, zbin are the numbers of joint histogram bins of R, G and B channel of

43

Algorithm 7 Template Update Algorithm

1: procedure UPDATE(quk, quk−1, puk, ρ
?
k, ρ

?
k−1,

Updating, α, fullscale, xbin, ybin, zbin,yk,yk−1)
2: Initialize Threshold Values UpdateTH, simiTH
3: Compute : quk = (1− α)quk−1 + αpuk
4: Compute ρ? using qu0, quk and (5.18)
5: if ρ?k > UpdateTH AND ρ?k−1 > UpdateTH AND ρ? > simiTH AND Updating ==
true AND fullscale == true then

6: else
7: Assign : quk = quk−1;

. Or can be initialized to qu0 depending on application and occlusion type

8: if ρ?k > UpdateTH AND ρ?k−1 > UpdateTH AND ρ? > simiTH AND Updating ==
true AND fullscale == false then

9: Choose an area around the location yk at k-th stage
10: Compute Maximum Value in R-channel maxR
11: Compute Maximum Value in G-channel maxG
12: Compute Maximum Value in B-channel maxB
13: Compute : xstep = (maxR+ threshold)÷ xbin
14: Compute : ystep = (maxG+ threshold)÷ ybin
15: Compute : zstep = (maxB + threshold)÷ zbin
16: Compute puk using xstep, ystep, zstep, yk and others at k-th stage
17: Compute : quk−1 using this new xstep, ystep, zstep, yk−1 and others at (k−1)-th frame
18: Compute : quk = (1− α) ∗ quk−1 + α ∗ puk
19: Compute : qu0 with this new xstep, ystep, zstep for the first frame
20: Compute ρ? using qu0, quk and (5.18)
21: if ρ? > simiTH then
22: else
23: Assign : quk = quk−1;

24: return quk . quk is be used to search in the (k + 1)-th frame

44

the 4D probabilistic histogram respectively including block (number of blocks the template is divided

into) which are all fixed. qu0 is the reference histogram in the initial frame. If ρ? < simiTH, severe

drifting takes place, and so the reference histogram is assigned to the previous or initial one. Selection

of threshold is application dependent. If fullscale = false then, in the first frame also, the step

size of the joint histogram should be set as:

xstep = (maxR+ threshold)÷ xbin

ystep = (maxG+ threshold)÷ ybin

zstep = (maxB + threshold)÷ zbin

(5.39)

where maxR, maxG, maxB are the maximum values of the R, G and B planes of the frame

respectively, and threshold is a user defined value. Hence, the proposed algorithm can update

the template under severe prolonged occlusion keeping the tracking accurate in presence of large

variation of scale, shape and illumination.

5.8 Summary

In most of the cases, importance density of particle filters is taken as state transition prior for sim-

plicity. Since transition prior does not have the information about present observation, particles

may stay in the region where likelihood is less. The most optimal distribution minimizes the vari-

ance and variance reduces with increasing number of particles. Ideally, as the number of particles

reaches infinity, the weights reach the true posterior density. But, although using a large number of

particles will reduce variance, it will increase the computational cost. This is the main disadvantage

of particle filtering. In practice, a trade-off between the computational cost and the variance is made

while selecting the number of particles. As number of particles increases, variance reduces, but com-

putational cost increases. In SIR-PF (Sampling Importance Resampling Particle Filter), particles

are generated following the dynamics, and then, using the resampling algorithm, all low weighted

particles converge toward the best particles ideally; but these best particles may not be at the real

best location due to many reasons. On the other hand, the original bat algorithm converges in the

beginning, and then starts exploring the state space; it does not follow the dynamics. Since all bats

move toward the frequently changing global best, there may be a chance that Bats move toward the

clutter. Hence, to increase search space more bats are required. Now the proposed algorithm first

follows the dynamics of the tracked object, and then searches for the best locations, and finally the

particles will converge; this increases the probability of increasing variance around the much better

locations than that of the SIR-PF (Sampling Importance Resampling Particle Filter) at the cost of

some extra computation. As each particle (can be considered as a bat also) moves towards its own

best, it increases the search space by making it more robust against occlusion and clutter. Hence,

although the overall computational cost of the proposed algorithm is more than that of the SIR-PF

(Sampling Importance Resampling Particle Filter) and the bat algorithm, the proposed algorithm

takes less number of particles to track accurately as compared to SIR-PF (Sampling Importance

Resampling Particle Filter) and bat algorithm. The proposed algorithm is also compared with other

state-of-the-art algorithms.

45

The proposed algorithm eliminates two major problems in particle filtering : sample degeneracy

as well as sample impoverishment problem. The proposed particle filter has been modified to reduce

the degeneracy among the particles. This has been tested in different test videos and has been found

to be working satisfactorily. Hence, the proposed algorithm can generate good particles having

enough diversity among them. The key advantage of using bat algorithm is that the probability

of jumps of the bats can be switched between type-1 jump and type-2 jump by changing tuning

parameter called pulse-rate. Hence, in the proposed algorithm, when object is moving slow and

there is no occlusion present, movement of the particles according to type-2 jump is given higher

priority and, when there is complete occlusion, movements of the particles according to type-1 jump

is given higher priority by tuning the pulse-rate parameter properly. This feature of bat algorithm

is merged with the modified particle filter, which can restrict the movement of the particles from

going to a worse location, has been proven robust against many tracking scenario.

In the proposed algorithm, the bat algorithm is modified to be merged with the modified par-

ticle filter. The key reason of modifying bat algorithm is that, if it used with SIR-PR (Sampling

Importance Resampling Particle Filter) as a replacement of the systematic resampling algorithm, it

works slowly, and finally all the particles converge to a single point, reducing the verity among the

particles. Hence, the conventional bat algorithm has been modified. In the modified bat algorithm,

the exploration and exploitation are separated. It has been observed that exploration moves are

suitable when track is lost while exploitation moves are suitable just reach a better location. While

exploration, the particles do not track global best. Rather it tracks it’s own best; this increases the

search space and finally when the better solution is found for each particle separately, the systematic

resampling algorithm is used to pickup the best among the better ones and to converge to that best

location. Hence, this algorithm is robust in case of complete occlusion. Under occlusion, the object

may get lost, but as soon as it comes under view, the tracking algorithm immediately tracks it. The

algorithm has been tested with a number of different videos.

Also, it has been showed that the adaptive motion model increases the probability of generating

the particles towards the moving object rather than away from the object. It works even better

in case the object moves in one direction uniformly. The parameters are defined in such a way so

that, if object is moving haphazardly, it can also track. This module has been found to be working

satisfactorily.

Finally, the update mechanism along with the dynamic histogram ranging can solve vast il-

lumination change while tracking object. The algorithm has been tested for both fast and slow

illumination change. This update mechanism can resolve scale change and blurring effect also.

The algorithm has been tested with a number of challenging video sets over the complete frames.

The test results are given in the next chapter. The test results are analyzed both analytically and

quantitatively. From the test results it has been found that the proposed algorithm is robust against

clutter, illumination fluctuation, scale change, fast object movement, motion blur and complete

occlusion. The proposed algorithm is compared with other state-of-the-art algorithms, and found

to be working satisfactorily.

46

Chapter 6

Test Results

6.1 Introduction

This chapter contains test results of the proposed algorithm. To demonstrate the effectiveness of

the proposed algorithm, case studies involving clutter, large illumination fluctuation, scale change,

fast object movement, motion blur and complete occlusion are made. The quantitative test results

of the proposed algorithm are compared with that of SIR-PF (Sampling Importance Resampling

Particle Filter), bat algorithm and other state-of-the-art algorithms, and it has been observed that

the proposed algorithm works satisfactorily. The tests have been done a number of times for each

video and their average values are noted. The tests are run over the complete frames for each

video input, and the targets are manually initialized. Error in tracking is measured in terms of

Euclidean distance of the tracked centroid and the ground-truth centroid. Testing benchmark [50]

defines precision plot for evaluating tracking performance. This plots what percentage of frames is

within a given threshold Euclidean distance from the ground-truth. [50] uses 20 pixel distance as the

threshold for their evaluation purpose. But, in this work, instead of 20 pixels, 15 pixels are taken

as threshold. Then a Success Rate is defined as follows:

Success Rate =
Positive Frames

Total Number of Frames
× 100 (6.1)

Success Rate is computed as percentage by considering those tracking results (positive frames)

where this Euclidean distance between ground truth pixel location and tracked pixel location is

within the above mentioned threshold limit, against the total number of frames.

The parameter setting is kept fixed for all the test cases. 8 × 8 × 8 RGB histogram is used

throughout the experiments for bat and SIR-PF (Sampling Importance Resampling Particle Filter).

For the proposed algorithm, 8×8×8×2 RGB histogram is used throughout the experiment where 2

is the number of blocks the template has been vertically divided for utilizing the spatial information

in the proposed measurement model. µx, µy, σx and σy are taken as 0, 0, 20 and 20 respectively for

all the videos. For type-2 jump, max1 = 2 and min1 = −2. For the proposed algorithm, range of

[fmin fmax] is taken as [−5 5]. Remaining other threshold values are set as: LostTrackTH = 0.85,

UpdateTH = 0.85, TrackOK = 0.85, simiTH = 0.7, α = 0.1, block = 2, and Th = 0.001. Also

fullscale = true and Updating = true is set. All parameters are kept same for all the video

47

sequences except for Case Study 10. The tests are carried out a number of times, and their average

values are noted. First the proposed algorithm is compared with SIR-PF (Sampling Importance

Resampling Particle Filter) and bat algorithm only. With the same initial conditions, the tests are

sun for several times for the complete sequence of each video. For SIR-PF (Sampling Importance

Resampling Particle Filter), 400 particles are initialized, for bat algorithm, 40 bats with 10 iterations

for each one are initialized, and for the proposed algorithm, 20 particles with 5 iterations for each

one is set.

6.2 Comparison with SIR-PF and Bat Algorithm

First the proposed algorithm is compared with SIR-PF (Sampling Importance Resampling Particle

Filter) and bat algorithm. In this section, the results are listed. Each subsection tabulates the

results and then explains the results. The tables list success rate, mean error, standard deviation

of error and maximum error, which are computed in average, for each video. Each subsection also

contains the marked images for these three algorithms so that the difference among the performance

can be easily analyzed. Only Case Study 10 is different in terms of parameter settings. In other

cases, the parameters are kept same. Although the parameters can be tuned separately for each

type of video using off-line training data. Thus, if the object to be tracked is known beforehand, the

parameters can be tuned using a number of training videos. This will enhance the performance of

tracking.

6.2.1 Case Study 1 : Tracking Object Under Illumination Variation, Oc-

clusion and Clutter

In this case study, the video is taken from [1, 2]. The video contains a number of basketball players.

Among them, a specific player is tracked. The video has been chosen for the case study because

a number of players wearing clothes of the same color, and, out of them, only one specific player

has to be tracked. This example proves the robustness of the proposed algorithm against clutter.

There is illumination fluction also in some frames, along with occlusion; the illumination change

is abrupt. Table. 6.1 lists the results of tracking and Fig. 6.1, Fig. 6.2, Fig. 6.3, Fig. 6.4

shows sample sequences of tracking. It has been seen that the proposed algorithm can track the

object better than SIR-PF (Sampling Importance Resampling Particle Filter) and bat algorithm,

and there is large difference in the results. As the object (player) moves in one direction in most

of the time, the proposed motion dynamics model adaptively shifts the mean of the process noise

accordingly; this reduces the degeneracy among the particles generated. Further, in presence of

clutter, the background weighted spatial-histogram track better by reducing the effect of clutter

which SIR-PF (Sampling Importance Resampling Particle Filter) and bat algorithm do not. Hence,

the proposed tracker does not get trapped at any local optima. But, even if it gets trapped at a

local optima anyhow, the proposed resampling algorithm helps the proposed tracker come out of

the trapped local optima; this is because, when the object gets trapped at the local optima, the

weight is obviously still lower than that of the actual location, and so, type-1 jump gets activated

and the it searches throughout the entire space. The same thing happens in case of occlusion also.

Hence, the algorithm comes out of the trapped or wrong location much faster as compared to SIR-

48

PF (Sampling Importance Resampling Particle Filter) and bat algorithm. Also maximum error in

case of the proposed algorithm is less because of the proposed particle filter which lets the particles

move to better places only. The appearance change is captured by the template update mechanism.

Hence, in overall, the proposed algorithm works much better than SIR-PF (Sampling Importance

Resampling Particle Filter) and bat algorithm.

Table 6.1: Case Study 1

— SIR-PF Bat Algo. Proposed Algo.
Mean Error 78.95 93.44 14.03

Maximum Error 346.69 344.94 161.45
Std. Deviation 103.19 103.51 18.53

Frames per Second 1.79 1.50 1.30
Success Rate 51.17 41.66 86.82

Figure 6.1: Tracking sequence: Frame 5, 15, 38, and 101 are shown (starting from the top left one
in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is for
the proposed algorithm for Table. 6.1

6.2.2 Case Study 2 : Tracking Object Under Clutter, Fast Motion and

Scale Change

In this case study, the video is taken from [1, 2]. In the video, a runner is tracked under the presence

of clutter, fast motion and scale change. The proposed algorithm can track the object, and there is

significant difference in the test results among the trackers. Table. 6.2 lists the results of tracking

and Fig. 6.5, Fig. 6.6, Fig. 6.7, Fig. 6.8 shows sample sequences of tracking. The accuracy

of the proposed algorithm is much higher. Because the object, which is a runner here, runs in one

49

Figure 6.2: Tracking sequence: Frame 114, 193, 210, and 244 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.1

Figure 6.3: Tracking sequence: Frame 334, 460, 506, and 651 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.1

50

Figure 6.4: Tracking sequence: Frame 652, 719, 722, and 725 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.1

direction in most of the time, the proposed motion dynamics model adaptively shifts the mean in the

of the process noise right direction accordingly. So the degeneracy among the particles generated

is reduced in the proposed algorithm as compared to SIR-PF (Sampling Importance Resampling

Particle Filter). When there is no degeneracy, the particles are moved toward some better location

using type-2 jump. This may be called as rearrangement of the particles. Further, in presence of

clutter, the background weighted spatial-histogram computes weight for each bin, reducing the effect

of clutter which SIR-PF (Sampling Importance Resampling Particle Filter) and bat algorithm do

not. The proposed tracker does not get trapped at any local optima for this reason, or the chance of

such trapping is comparatively lesser. But, again even if it gets trapped at a local optima anyhow,

the proposed resampling algorithm helps the tracker come out of the trapped local optima; this is

because, when the object gets trapped at the local optima, the weight is obviously still lower than

that of the actual location, and so, type-1 jump gets activated and then it searches throughout the

space. The same thing happens in case of occlusion also. Hence, the algorithm comes out of the

trapped or wrong location much faster as compared to SIR-PF (Sampling Importance Resampling

Particle Filter) and bat algorithm. Also maximum error in case of the proposed algorithm is less

because of the proposed particle filter which lets the particles move to only better places, and hence,

mean error and standard deviation is also less. The appearance change is captured by the template

update mechanism. Hence, the proposed algorithm works much better than SIR-PF (Sampling

Importance Resampling Particle Filter) and bat algorithm.

51

Figure 6.5: Tracking sequence: Frame 27, 31, 42, and 64 are shown (starting from the top left one
in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is for
the proposed algorithm for Table. 6.2

Figure 6.6: Tracking sequence: Frame 67, 74, 83, and 103 are shown (starting from the top left one
in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is for
the proposed algorithm for Table. 6.2

52

Figure 6.7: Tracking sequence: Frame 133, 148, 161, and 187 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.2

Figure 6.8: Tracking sequence: Frame 195, 200, 330, and 350 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.2

53

Table 6.2: Case Study 2

— SIR-PF Bat Algo. Proposed Algo.
Mean Error 54.66 102.45 12.54

Maximum Error 146.65 253.11 22.67
Std. Deviation 27.58 67.86 16.42

Frames per Second 3.76 2.63 2.80
Success Rate 49.69 45.07 94.77

6.2.3 Case Study 3 : Tracking Object Under Motion Blur, Fast Motion

and Scale Change

In this case study, the video is taken from [1, 2]. In the video a boy is tracked who is jumping

abruptly. In this video, there is motion blur, fast motion and scale change. In this case study,

there is no much difference in results among the trackers. Table. 6.3 lists the results of tracking

and Fig. 6.9, Fig. 6.10, Fig. 6.11, Fig. 6.12 shows sample sequences of tracking. While selecting

the template, some amount of background information is purposefully kept inside the template to

test the robustness of the measurement model along with the tracker. Although SIR-PF (Sampling

Importance Resampling Particle Filter) works fine, bat algorithm loses track for a few frames when

the object moves away and shrinks and background information predominates inside the template.

But, due to its global optimization feature, it again tracks back. This video is chosen mainly to

see the performance of the proposed motion dynamics model when the object moves abruptly in

any direction rather than moving in one direction. This proposed adaptive model moves the mean

value of the process noise in one direction. It has been proven mathematically that, when object

changes its direction abruptly, still it can track. Also, as usual, this model reduces the degeneracy

problem as compared to SIR-PF (Sampling Importance Resampling Particle Filter). When there is

no degeneracy, the particles are moved toward some better location using type-2 jump. Due to the

fast motion, if object track is lost, type-1 jump searches in the entire state-space and tracks the lost

object immediately. There is no clutter in the test case, but yet the template is chosen in such a way

so that it contains some background information which may be regarded as clutter. In this case, the

proposed algorithm outperforms as usual. The proposed tracker does not get trapped at any local

optima, or the chance of such trapping is comparatively lesser in case of the proposed algorithm.

But, again, even if it gets trapped at a local optima anyhow, the proposed resampling algorithm

helps the tracker come out of the trapped local optima; this is because, when the object gets trapped

at the local optima, the weight is obviously still lower than that of the actual location, and so, type-

1 jump gets activated and then it searches throughout the entire space. The same thing happens

in case of occlusion also. Hence, the algorithm comes out of the trapped or wrong location much

faster as compared to SIR-PF (Sampling Importance Resampling Particle Filter) and bat algorithm.

As usual, due the proposed particle filter algorithm, maximum error is also quite lesser than the

others. Moreover, in this video, scale change and blurring are also happening together. They are

solved by the proposed template update algorithm. As the scale of the object changes, the content

of the template also changes accordingly. This changed information is captured and updated by

the template update algorithm. Hence, the overall performance of the proposed algorithm is much

better.

54

Figure 6.9: Tracking sequence: Frame 25, 80, 88, and 102 are shown (starting from the top left one
in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is for
the proposed algorithm for Table. 6.3

Figure 6.10: Tracking sequence: Frame 105, 121, 130, and 138 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.3

55

Figure 6.11: Tracking sequence: Frame 266, 272, 273, and 386 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.3

Figure 6.12: Tracking sequence: Frame 401, 409, 556, and 600 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.3

56

Table 6.3: Case Study 3

— SIR-PF Bat Algo. Proposed Algo.
Mean Error 16.08 19.24 10.47

Maximum Error 68.06 139.44 35.79
Std. Deviation 7.11 27.39 6.8

Frames per Second 2.77 1.79 1.73
Success Rate 87.17 85.33 88.67

6.2.4 Case Study 4 : Tracking Object Under Occlusion, Fast Motion and

Clutter

In this case study, the video is taken from [1, 2]. In this video, there is mainly motion blur, complete

occlusion, background clutter, minute illumination change and scale change. Table. 6.4 lists the

results of tracking and Fig. 6.13, Fig. 6.14, Fig. 6.15, Fig. 6.16 shows sample sequences of tracking.

SIR-PF (Sampling Importance Resampling Particle Filter) and bat algorithm gets trapped at clutter,

while the proposed algorithm can track accurately. When complete occlusion occurs, the track is

lost. But the proposed algorithm immediately tracks as soon as the object comes into sight. The

proposed algorithm outperforms SIR-PF (Sampling Importance Resampling Particle Filter) and bat

algorithm. In this case also the object is moving abruptly. Thus the performance of the proposed

motion dynamics model when the object moves abruptly in any direction rather than moving in

one direction is observed. This proposed adaptive model moves the mean value of the process

noise in one direction. It has been proven mathematically that when object changes its direction

abruptly, still it can track. This has been verified in this test case again in presence of occlusion.

There is complete occlusion along with clutter. When there is no degeneracy, the particles are

moved toward some better location using type-2 jump. Due to occlusion, if object track is lost,

type-1 jump searches in the entire state-space and tracks the lost object due to complete occlusion

immediately. The clutter problem is solved by the proposed measurement model. Both SIR-PF

(Sampling Importance Resampling Particle Filter) and bat algorithm fails in presence of clutter.

But the proposed algorithm outperforms as usual. The proposed tracker does not get trapped at

any local optima for this reason, or the chance of such trapping is comparatively lesser in case of

the proposed algorithm. But, again even if it gets trapped at a local optima anyhow, the proposed

resampling algorithm helps the tracker come out of the trapped local optima; this is because, when

the object gets trapped at the local optima, the weight is obviously still lower than that of the actual

location, and so, type-1 jump gets activated and the it searches throughout the entire space. The

same thing happens in case of occlusion also. Hence, the tracker comes out of the trapped or wrong

location much faster as compared to SIR-PF (Sampling Importance Resampling Particle Filter) and

bat algorithm. In the same way, the loss of track due to fast motion is also solved. As usual, due

the proposed particle filter algorithm, maximum error is also quite lesser than the others. The small

changes in scale is adapted by the template update algorithm. Hence, the overall performance of

the proposed algorithm is much higher.

57

Figure 6.13: Tracking sequence: Frame 5, 13, 21, and 34 are shown (starting from the top left one
in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is for
the proposed algorithm for Table. 6.4

Figure 6.14: Tracking sequence: Frame 40, 48, 74, and 190 are shown (starting from the top left one
in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is for
the proposed algorithm for Table. 6.4

58

Figure 6.15: Tracking sequence: Frame 200, 222, 257, and 258 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.4

Figure 6.16: Tracking sequence: Frame 265, 278, 285, and 291 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.4

59

Table 6.4: Case Study 4

— SIR-PF Bat Algo. Proposed Algo.
Mean Error 150.79 91.93 81.84

Maximum Error 256.56 257.12 251.96
Std. Deviation 48.11 66.12 70.09

Frames per Second 2.24 1.60 1.38
Success Rate 5.84 7.02 15.12

6.2.5 Case Study 5 : Tracking Object Under Occlusion and Clutter

In this case study, the video is taken from [1, 2]. In the video, a person is tracked who is walking

and the person faces short-time occlusion. Table. 6.5 lists the results of tracking and Fig. 6.17, Fig.

6.18, Fig. 6.19, Fig. 6.20 shows sample sequences of tracking. The performance of the proposed

algorithm is a bit lesser than that of the SIR-PF(Sampling Importance Resampling Particle Filter)

This video is chosen mainly to analyze the performance of all the three algorithms in a simple

case. Minor occlusion and clutter are present. The object moves in one direction in most of the

time. So the accuracy increases due to the proposed motion dynamics model as usual. It has been

proven mathematically that when object moves in one direction, the shifted mean produces better

particles. This is tested in this test case mainly. Also, as usual, this model reduces the degeneracy

problem as compared to SIR-PF (Sampling Importance Resampling Particle Filter). When there

is no degeneracy, the particles are moved toward some better location using type-2 jump. Due to

the fast motion, if object is lost, type-1 jump searches in the entire state-space and tracks the lost

object due to fast motion immediately. There is no much clutter in the test case, and so none of the

trackers gets trapped in any wrong position. In case of occlusion, type-1 jump gets activated and

the it searches throughout the entire space. In this test case, all the three algorithms are performing

almost same although the proposed algorithm is working little bit better due to the proposed particle

filter, adaptive motion model and proposed resampling algorithm. The lesser success rate is due to

the template selection. The person is wearing a gray trousers and the background is also grayish.

Inside the template, grayish pixels are predominating. So the performance is a bit reduced in case

of the proposed algorithm.

Table 6.5: Case Study 5

— SIR-PF Bat Algo. Proposed Algo.
Mean Error 17.67 22.76 16.79

Maximum Error 56.8 67.96 34.22
Std. Deviation 12.34 13.79 7.51

Frames per Second 1.39 1.11 0.97
Success Rate 70.6 55.2 64.8

60

Figure 6.17: Tracking sequence: Frame 3, 6, 11, and 36 are shown (starting from the top left one in
clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is for the
proposed algorithm for Table. 6.5

Figure 6.18: Tracking sequence: Frame 37, 38, 39, and 42 are shown (starting from the top left one
in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is for
the proposed algorithm for Table. 6.5

61

Figure 6.19: Tracking sequence: Frame 81, 82, 85, and 95 are shown (starting from the top left one
in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is for
the proposed algorithm for Table. 6.5

Figure 6.20: Tracking sequence: Frame 104, 162, 184, and 230 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.5

62

6.2.6 Case Study 6 : Tracking Object Under Occlusion, Fast Motion and

Scale Change

In this case study, the video is taken from [1, 2]. In the video a person is tracked who is walking and

faces occlusion along with scale change. Table. 6.6 lists the results of tracking and Fig. 6.21, Fig.

6.22, Fig. 6.23, Fig. 6.24 shows sample sequences of tracking. In this video also, performances of all

the three trackers are almost same, but the proposed algorithm is a bit better than the others two

trackers. This video is taken due to three reasons: occlusion, large scale change and less diversity in

color. Many of the measurement models fail to process information when diversity of color is less. In

this video, on two major colors are present in the object. One of them is black which in large quantity.

It has been observed that proposed measurement model works better than others. Occlusion is also

present. In this case, the object is moving in one direction in the presence of occlusion. This

proposed adaptive model moves the mean value of the process noise in one direction. It has been

proven mathematically that the chance of this model to generate comparatively better particles is

more. This has been verified in this test case again in presence of occlusion. SIR-PF (Sampling

Importance Resampling Particle Filter) and bat algorithm gets deviated slightly due to clutter, while

the proposed algorithm can track accurately. When complete occlusion occurs, the track is lost.

But the proposed algorithm immediately tracks the object as soon as the object comes into sight.

The proposed algorithm outperforms SIR-PF and Bat algorithm. When there is no degeneracy, the

particles are moved toward some better location using type-2 jump. Due to occlusion, if object track

is lost, type-1 jump searches in the entire state-space and tracks the lost object due to complete

occlusion immediately. Clutter is also present in the video. The problem of clutter is solved by the

proposed measurement model. Both SIR-PF (Sampling Importance Resampling Particle Filter) and

bat algorithm fail in presence of clutter. But the proposed algorithm outperforms as usual. The

proposed tracker does not get trapped at any local optima for this reason, or the chance of such

trapping is comparatively lesser in case of the proposed algorithm. But, again even if it gets trapped

at a local optima anyhow, the proposed resampling algorithm helps the tracker come out of the

trapped local optima; this is because, when the object gets trapped at the local optima, the weight

is obviously still lower than that of the actual location, and so, type-1 jump gets activated and the it

searches throughout the entire space. The same thing happens in case of occlusion also. Hence, the

algorithm comes out of the trapped or wrong location much faster as compared to SIR-PF (Sampling

Importance Resampling Particle Filter) and bat algorithm. In the same way, the loss of track due

to fast motion is also solved. As usual, due the proposed particle filter algorithm, maximum error is

also quite lesser than the others. Moreover the scale of the object is also changing in large amount.

This change is comparative larger than other videos. The changes in scale is adapted by the template

update algorithm. Hence, the overall performance of the proposed algorithm is comparatively much

better.

6.2.7 Case Study 7 : Tracking Object Under Illumination Variation and

Clutter

In this case study, the video is taken from [1, 2]. In the video, a person is perform in stage where

abrupt change in illumination occurs along with background clutter. Table. 6.7 lists the results of

tracking and Fig. 6.25, Fig. 6.26, Fig. 6.27, Fig. 6.28 show sample sequences of tracking. This video

63

Figure 6.21: Tracking sequence: Frame 3, 26, 38, and 55 are shown (starting from the top left one
in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is for
the proposed algorithm for Table. 6.6

Figure 6.22: Tracking sequence: Frame 61, 65, 70, and 78 are shown (starting from the top left one
in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is for
the proposed algorithm for Table. 6.6

64

Figure 6.23: Tracking sequence: Frame 88, 100, 121, and 154 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.6

Figure 6.24: Tracking sequence: Frame 192, 210, 239, and 299 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.6

65

Table 6.6: Case Study 6

— SIR-PF Bat Algo. Proposed Algo.
Mean Error 17.32 16.45 13.2

Maximum Error 50.21 74.01 42.57
Std. Deviation 9.70 11.84 7.57

Frames per Second 1.98 1.34 1.37
Success Rate 61.82 72.88 82.95

is a bit different from others. The light intensity in this video is less and flashes of light are also

present. Neither severe occlusion nor severe scale change is there. In this video also, the proposed

algorithm outperforms the other two trackers. It has been observed that proposed measurement

model works better than others. In this case, the object is moving abruptly in the presence of

clutter and illumination fluctuation. This proposed adaptive model moves the mean value of the

process noise to a better direction. It has been proven mathematically that the chance of this

model to generate comparatively better particles is more. This has been verified in this test case

again in presence of abrupt motion, clutter and illumination change. SIR-PF (Sampling Importance

Resampling Particle Filter) and bat algorithm gets deviated due to clutter, while the proposed

algorithm can track accurately. If the track is lost anyhow, the proposed algorithm immediately

catches the track. When there is no degeneracy, the particles are moved toward some better location

using type-2 jump. And, if object is lost from tracking, type-1 jump searches the entire state-space

and tracks the lost object. The problem of clutter is solved by the proposed measurement model.

Both SIR-PF (Sampling Importance Resampling Particle Filter) and bat algorithm fails in presence

of clutter. But the proposed algorithm outperforms as usual. The proposed tracker does not get

trapped at any local optima for this reason, or the chance of such trapping is comparatively lesser

in case of the proposed algorithm. But, again even if it gets trapped at a local optima anyhow,

the proposed resampling algorithm helps the tracker come out of the trapped local optima; this

is because, when the object gets trapped at the local optima, the weight is obviously still lower

than that of the actual location, and so, type-1 jump gets activated and the it searches throughout

the entire space. Hence, the algorithm comes out of the trapped or wrong location much faster

as compared to SIR-PF (Sampling Importance Resampling Particle Filter) and bat algorithm. As

usual, due the proposed particle filter algorithm, maximum error is also quite lesser than the others.

The illumination problem is solved by the adapted by the template update algorithm. Hence, the

overall performance of the proposed algorithm is comparatively much better.

Table 6.7: Case Study 7

— SIR-PF Bat Algo. Proposed Algo.
Mean Error 67.44 90.33 14.2

Maximum Error 260.52 148.55 43.73
Std. Deviation 49.3 78.68 10.5

Frames per Second 2.32 1.72 1.51
Success Rate 10.14 15.62 58.63

66

Figure 6.25: Tracking sequence: Frame 7, 20, 23, and 27 are shown (starting from the top left one
in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is for
the proposed algorithm for Table. 6.7

Figure 6.26: Tracking sequence: Frame 28, 36, 43, and 48 are shown (starting from the top left one
in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is for
the proposed algorithm for Table. 6.7

67

Figure 6.27: Tracking sequence: Frame 55, 60, 62, and 66 are shown (starting from the top left one
in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is for
the proposed algorithm for Table. 6.7

Figure 6.28: Tracking sequence: Frame 69, 322, 352, and 365 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.7

68

6.2.8 Case Study 8 : Tracking Object Under Scale Change, Partial Oc-

clusion and Clutter

In this case study, the video is taken from CAVIAR dataset [3]. In the video, a person is walking

whose scale is changing. There is background clutter and short-time partial occlusion in the video

also. Table. 6.8 lists the results of tracking and Fig. 6.29, Fig. 6.30, Fig. 6.31, Fig. 6.32 shows

sample sequences of tracking. This video is taken because of the presence of clutter, minor scale

change and less diversity among colors. The object mainly contains only black and white. The

template is chosen so that part of the foreground color continuously remains in the background

to evaluate the robustness of the proposed measurement model. There is minute change in light

intensity also. Neither severe occlusion nor severe scale change is there. The proposed algorithm

outperforms the other two trackers. It has been observed that proposed measurement model works

better than others. There is partial occlusion also. In this video, the object is moving in one direction

only in the presence of clutter. Thus the proposed adaptive model moves the mean value of the

process noise in one direction. It has been proven mathematically that the chance of this model

to generate comparatively better particles is higher. This has been verified in this test case again

in presence of uni-directional motion, clutter and partial occlusion. SIR-PF (Sampling Importance

Resampling Particle Filter) as well as bat algorithm gets deviated due to clutter, while the proposed

algorithm can track accurately. If the track is lost anyhow, the proposed algorithm immediately

catches the track. When there is no degeneracy, the particles are moved toward some better location

using type-2 jump. And, if object is lost from tracking, type-1 jump searches the entire state-space

and tracks the lost object. Thus the clutter problem is solved by the proposed measurement model.

Both SIR-PF (Sampling Importance Resampling Particle Filter) and bat algorithm fail in presence

of clutter. The proposed algorithm outperforms as usual. The proposed tracker does not get trapped

at any local optima for this reason, or the chance of such trapping is comparatively lesser in case of

the proposed algorithm. But, again even if it gets trapped at a local optima anyhow, the proposed

resampling algorithm helps the tracker come out of the trapped local optima; this is because, when

the object gets trapped at the local optima, the weight is obviously still lower than that of the

actual location, and so, type-1 jump gets activated and the it searches throughout the entire space.

Hence, the algorithm helps the tracker come out of the trapped or wrong location much faster as

compared to SIR-PF (Sampling Importance Resampling Particle Filter) and bat algorithm. Due to

the same reason, the proposed algorithm works better in presence of partial occlusion present in the

video frames. As usual, due the proposed particle filter algorithm, maximum error, mean error and

standard deviation of error are also quite lesser than the others, as particles are not allowed to move

to the comparatively worse location. This is the inherent feature of the proposed selective particle

filter. This feature along with the proposed adaptive motion model reduces the chance of generating

degeneracy among the particles. Finally, the illumination problem is solved by the template update

algorithm. Hence, the overall performance of the proposed algorithm is comparatively much better

than that of the SIR-PF (Sampling Importance Resampling Particle Filter) and bat algorithm.

69

Figure 6.29: Tracking sequence: Frame 352, 364, 368, and 370 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.8

Figure 6.30: Tracking sequence: Frame 376, 419, 428, and 454 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.8

70

Figure 6.31: Tracking sequence: Frame 485, 491, 513, and 540 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.8

Figure 6.32: Tracking sequence: Frame 558, 579, 586, and 594 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.8

71

Table 6.8: Case Study 8

— SIR-PF Bat Algo. Proposed Algo.
Mean Error 66.11 60.35 16.35

Maximum Error 159.11 150.6 31.62
Std. Deviation 50.84 49.96 7.20

Frames per Second 3.92 3.15 2.89
Success Rate 36.65 39.29 60.82

6.2.9 Case Study 9 : Tracking Object Under Complete Occlusion and

Clutter

In this case study, the video is taken from [3]. In the video, a person is walking whose scale is

changing. There is background clutter and complete occlusion also. Table. 6.9 lists the results of

tracking and Fig. 6.33, Fig. 6.34, Fig. 6.35, Fig. 6.36 shows sample sequences of tracking. This video

is considered because of the presence of clutter, minor scale change and complete prolonged occlusion.

There is minute change in light intensity too. Severe complete occlusion is present. The proposed

algorithm outperforms the other two trackers. It has been observed that proposed measurement

model works better than others in presence of clutter and occlusion. In this case too, the object is

moving in one direction only in the presence of clutter. This proposed adaptive model moves the

mean value of the process noise in one direction. It has been proven mathematically that the chance

of this model to generate comparatively better particles is more. This has been verified in this

test case again in presence of uni-directional motion, clutter and partial occlusion mainly. SIR-PF

(Sampling Importance Resampling Particle Filter) and bat algorithm gets deviated due to clutter,

while the proposed algorithm can track accurately. If the track is lost anyhow (due to clutter or

complete prolonged occlusion), the proposed algorithm immediately catches the lost object after the

occlusion is over. When there is no degeneracy, the particles are moved toward some better location

using type-2 jump. And, if object is lost from tracking, type-1 jump searches the entire state-space

and tracks the lost object. Thus the clutter problem is solved by the proposed measurement model.

Both SIR-PF (Sampling Importance Resampling Particle Filter) and bat algorithm fail in presence

of clutter. The proposed algorithm outperforms as usual. The proposed tracker does not get trapped

at any local optima for this reason, or the chance of such trapping is comparatively lesser in case of

the proposed algorithm. But, again even if it gets trapped at a local optima anyhow, the proposed

resampling algorithm helps the tracker come out of the trapped local optima; this is because, when

the object gets trapped at the local optima, the weight is obviously still lower than that of the actual

location, and so, type-1 jump gets activated and the it searches throughout the entire space. Hence,

the algorithm helps the tracker come out of the trapped or wrong location much faster as compared

to SIR-PF (Sampling Importance Resampling Particle Filter) and bat algorithm. Due to the same

reason, the proposed algorithm works better in presence of both prolonged complete occlusion and

clutter. The overall performance of the proposed algorithm is comparatively much better than that

of the SIR-PF and Bat algorithm.

72

Figure 6.33: Tracking sequence: Frame 192, 214, 218, and 224 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.9

Figure 6.34: Tracking sequence: Frame 229, 237, 240, and 248 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.9

73

Figure 6.35: Tracking sequence: Frame 252, 256, 262, and 269 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.9

Figure 6.36: Tracking sequence: Frame 275, 294, 373, and 377 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Table. 6.9

74

Table 6.9: Case Study 9

— SIR-PF Bat Algo. Proposed Algo.
Mean Error 31.94 27.26 13.38

Maximum Error 49.24 52.77 54.58
Std. Deviation 11.06 13.25 11.40

Frames per Second 4.05 3.13 2.80
Success Rate 14.14 32.98 81.68

6.2.10 Case Study 10 : Tracking Object Under Illumination Variation

and Motion Blur

This video is taken from [1, 2]. This video is exceptional from others because, in other videos, the

pixel-values cover the entire range of the histogram. But, in this case, the pixel-values cover a small

part of the entire histogram and eventually increase to towards the maximum value and cover the

entire histogram. In the video, a person is moving from extreme dark to the extreme brightness. So,

in the beginning, if the full-range (as for example, 0–255 for 8–bit image data) histogram is used, the

step-size between the two adjacent bins cannot discriminate the color information properly in the

beginning. Hence, a new scheme – adaptive step-sizing – has been proposed for this type of videos.

This step is activated by setting: fullscale = false. Hence, fullscale = false is set and, according

to the Algorithm 7, the step sizes will vary adaptively. Similarly, other changed parameter values

for this video only are: LostTrackTH = 0.4, UpdateTH = 0.4, simiTH = 0.4, α = 1. For this, the

ground truth information is available only after frame number 300. But, to check the robustness of

the proposed algorithm under varied illumination change, the tracking has been started from the

first frame. So only qualitative results are shown instead of the quantitative result. Fig. 6.37 shows

sample sequences of tracking. The proposed tracker tracks better. The proposed tracker tracks

better because it can discriminate among the colors much better than other tracking algorithms

named SIR-PF (Sampling Importance Resampling Particle Filter) and bat algorithm. Also the

template is updated accordingly to catch the adapt the changing histogram. It has been observed

that only type-2 jump is being executed as there is no occlusion or chance of missing the target. The

problem due to the presence of clutter is solved by the proposed measurement model. Since there

is no mechanism for updating the template along with the adaptive step-sizing and the histogram

does not carry any spatial information, SIR-PF (Sampling Importance Resampling Particle Filter)

and bat algorithm fails to track the object properly as shown the test results.

6.2.11 Analysis

The tests are sun for several times, and the average values are noted. The proposed algorithm is found

to be better than SIR-PF (Sampling Importance Resampling Particle Filter) and bat algorithm. All

the modules contribute to the better performance of the proposed algorithm. In the next section,

the computation cost of the algorithm is analyzed and compared with others.

75

Figure 6.37: Tracking sequence: Frame 1, 2, 124, and 170 are shown (starting from the top left one
in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is for
the proposed algorithm Section. 6.2.10

Figure 6.38: Tracking sequence: Frame 190, 204, 212, and 260 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Section. 6.2.10

76

Figure 6.39: Tracking sequence: Frame 302, 309, 329, and 354 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Section. 6.2.10

Figure 6.40: Tracking sequence: Frame 372, 385, 423, and 430 are shown (starting from the top left
one in clockwise direction). Red box is for SIR-PF, Green box is for bat algorithm and Blue box is
for the proposed algorithm for Section. 6.2.10

77

6.3 Computational Cost Analysis

Tracking time depends on the size of the template. The non-optimized MATLAB implementations

of the algorithms are run on a 2.2 GHz 32-bit Intel Core2 Duo processor with 2 GB RAM. The

Table. 6.10 lists average computation time (in second) of all the algorithms for randomly selected

different template sizes 25× 25, 40× 120 and 50× 140 and for particles or total number of iterations

100, 200, 300 and 400. It has been observed that, under similar number of particles or total number

of iterations, the computational cost of the proposed algorithm is higher than that of the SIR-PF

(Sampling Importance Resampling Particle Filter) and bat algorithm:

Table 6.10: Study of Computational Cost

— 25 × 25 40 × 120 50 × 140
SIR-PF(100) 0.03 0.09 0.15

Bat(100) 0.03 0.15 0.2
Proposed(100) 0.15 0.67 0.85
SIR-PF(200) 0.04 0.2 0.26

Bat(200) 0.07 0.3 0.38
Proposed(200) 0.22 1.2 1.7
SIR-PF(300) 0.07 0.29 0.4

Bat(300) 0.08 0.4 0.6
Proposed(300) 0.31 1.7 2.6
SIR-PF(400) 0.08 0.4 0.57

Bat(400) 0.15 0.5 0.8
Proposed(400) 0.4 2.3 3.4

Generally number of particles of particle filters are selected based on the complexity of the shape

of the posterior distribution and the number of states. The typical range of particles is 100− 1000.

The tests are done by varying number of particles or bats. Throughout the test cases, it has

been observed that 400 particles for SIR-PF (Sampling Importance Resampling Particle Filter), 40

bats with 10 iterations for bat algorithm and 20 particles with 5 iterations for each particle is a

good trade-off between speed and accuracy. Fig. 6.41, Fig. 6.42 and Fig. 6.43 show the typical

computational cost and accuracy comparison of all the trackers for the Case Study 3, and this trend

is approximately followed by all the benchmark videos.

It has been observed from the case studies that, at the cost of some extra computational cost,

the proposed algorithm tracks with much higher accuracy.

Further the time complexity of the proposed algorithm is analyzed with three other state-of-

the-art algorithms: LOT [55], MTT [56] and SCM [57]. The complexity of the proposed algorithm

is compared with these three algorithms because LOT and MTT are simulated using MATLAB,

and SCM is simulated using mixed MATLAB and C language, in [1, 2]. The proposed algorithm is

also coded in MATLAB. All these four algorithms belong to particle filter based tracking. Hence,

the computational time is comparable. All these three algorithms are executed on Intel i7 3770

CPU having 3.4GHz clock speed. On the other hand, the proposed algorithm is executed on Intel

32-bit Core2 Duo processor having 2.2 GHz clock speed. Thus the proposed algorithm is run on a

comparatively lower grade platform. Thus, if the code of the proposed is optimized and run on a

better configuration, the speed of tracking will increase more. LOT initializes 250 particles while

78

Figure 6.41: Comparison of tracking time and success rate for SIR-PF (Sampling Importance Re-
sampling Particle Filter) with number of particles 25, 100, 200, 300 and 400

Figure 6.42: Comparison of tracking time and success rate for bat algorithm with number of bats
5, 10, 20, 30 and 40. Iteration for each bat is 10

79

Figure 6.43: Comparison of tracking time and success rate for proposed algorithm with number of
particles 5, 20, 40, 60 and 80. Iteration for each particle is 5

MTT has initializes 400 particles. The cost of computation among the four algorithms is compared

against minimum and maximum template sizes (because other settings are kept fixed throughout

the experiments as mentioned) 122× 148, 32× 46, 34× 82, 26× 62, 68× 122 and 30× 24 for the

algorithms in Table. 6.11.

Table 6.11: Comparative Computational Cost in FPS (frame per second)

— 122 × 148 32 × 46 34 × 82 26 × 62 68 × 122 30 × 24
LOT 0.1 2.0 – – – –
MTT – – 0.3 1.9 – –
SCM – – – – 0.4 0.6

Proposed Algo. 0.21 2.5 1.44 2.22 0.51 2.77

6.4 Comparison in Subtracted Color Space

In this section, some additional test results are listed for the SIR-PF (Sampling Importance Resam-

pling Particle Filter), bat algorithm and the proposed algorithm.. The tests are done on the same

video sequences as given above which means that the video sequence used in Case Study 1 is same

as the Case Study 1 in this section. There are lots of color spaces defined till now. Out of them,

some color spaces are suitable for tracking purpose. In visual object tracking, mainly RGB, HSV

and rg color spaces are widely used. The main drawback of RGB color space in tracking that the

colors or hue cannot be separated from intensity. Again, although HSV can separate hue, saturation

and value or intensity, it is not linear and its computational time is large [18]. On the other hand,

rg-space is suitable for face-tracking [8]. In this subsection, experiment is done with subtracted color

80

space which is faster in computation as compared to HSV (HSV has more arithmetic and logical

operations per pixel as compared to this subtracted color space). Let R,G,B be the three color

channels of RGB color space, the R′, G′, B′ is the transformed color space for every pixel l is as

follows:

R′ = |R−G| (6.2)

G′ = |G−B| (6.3)

B′ = |B −R| (6.4)

Let f be a function which changes all R,G,B values of l-th pixel by the same amount. Thus, after

subtraction, their values will remain same. This makes the subtracted color space robust against

influencing functions like f which can be as for example, illumination. But, the major drawback

of this subtracted color space is that it cannot distinguish between black R = 0, G = 0, B = 0 and

white R = 255, G = 255, B = 255 or any other color where R = G = B for l-th pixel. Thus, in

general, the subtracted color space works good if the object does not contain any such color. This

has been proven by experiment in this section. Proposed Algo. (Sub) in tables’ column heading

means the result of the proposed algorithm using subtracted color space.

6.4.1 Case Study 1 : Tracking Object Under Illumination Variation, Oc-

clusion and Clutter

The performance of the algorithm with the subtracted RGB color space is included in Table. 6.12.

This color space works because all the RGB values for green, which is the predominant color, are

different and also for all the shades of green.

Table 6.12: Case Study 1 : Subtracted Color Space

— SIR-PF Bat Algo. Proposed Algo. Proposed Algo. (Sub)
Mean Error 78.95 93.44 14.03 16.1

Maximum Error 346.69 344.94 161.45 191.1
Std. Deviation 103.19 103.51 18.53 23.9
Success Rate 51.17 41.66 86.82 89.24

6.4.2 Case Study 2 : Tracking Object Under Clutter, Fast Motion and

Scale Change

The performance of the algorithm with the subtracted RGB color space is included in Table. 6.13.

This color space works because all the RGB values for green and yellow, which are the predominant

colors, are different and also for all the shades of green and yellow.

81

Table 6.13: Case Study 2 : Subtracted Color Space

— SIR-PF Bat Algo. Proposed Algo. Proposed Algo. (Sub)
Mean Error 54.66 181.81 12.54 9.15

Maximum Error 146.65 412.89 22.67 24.00
Std. Deviation 27.58 105.34 16.42 4.84
Success Rate 49.69 11.69 94.77 98.77

6.4.3 Case Study 3 : Tracking Object Under Motion Blur, Fast Motion

and Scale Change

The performance of the algorithm with the subtracted RGB color space is included in Table. 6.14.

In this case, the accuracy is less as the object contains black and almost white background in some

proportion. Still it tracks because, for the skin color, RGB values do not match for each pixel.

Hence, the subtraction is not around (0,0,0).

Table 6.14: Case Study 3 : Subtracted Color Space

— SIR-PF Bat Algo. Proposed Algo. Proposed Algo. (Sub)
Mean Error 16.08 19.24 10.47 12.4

Maximum Error 68.06 139.44 35.79 81.61
Std. Deviation 7.11 27.39 6.8 7.8
Success Rate 87.17 85.33 88.67 85.00

6.4.4 Case Study 4 : Tracking Object Under Occlusion, Fast Motion and

Clutter

The performance of the algorithm with the subtracted RGB color space is included in Table.

6.15.This color subtracted space works because the object contains some red marks which have

different RGB values.

Table 6.15: Case Study 4 : Subtracted Color Space

— SIR-PF Bat Algo. Proposed Algo. Proposed Algo. (Sub)
Mean Error 150.79 91.93 81.84 20.9

Maximum Error 256.56 257.12 251.96 101.19
Std. Deviation 48.11 66.12 70.09 18.36
Success Rate 5.84 7.02 15.12 61.51

6.4.5 Case Study 5 : Tracking Object Under Occlusion and Clutter

The performance of the algorithm with the subtracted RGB color space is included in Table. 6.16.

This color space does not work because RGB value of different shades of gray, which is the color of the

trousers of the person, have same RGB value (211,211,211; 192,192,192; 169,169,169; 128,128,128).

82

Thus this color space cannot differentiate between the object from the grayish background and, the

tracker, in this case loses its track, but still Bhattacharyya matching coefficient is as large as 0.89

in average. Thus the subtracted color space does not work.

Table 6.16: Case Study 5 : Subtracted Color Space

— SIR-PF Bat Algo. Proposed Algo. Proposed Algo. (Sub)
Mean Error 17.67 22.76 16.79 77.21

Maximum Error 56.8 67.96 34.22 266.97
Std. Deviation 12.34 13.79 7.51 80.19
Success Rate 63.6 55.2 64.8 35.2

6.4.6 Case Study 6 : Tracking Object Under Occlusion, Fast Motion and

Scale Change

The performance of the algorithm with the subtracted RGB color space is included in Table. 6.17.

This color space does not work because RGB value of different shades of gray, which is the color of the

trousers of the person, have same RGB value (211,211,211; 192,192,192; 169,169,169; 128,128,128).

Moreover the person is person is waring black trousers. Thus all pixel values are centered around 0.

The subtracted RGB color space cannot differentiate between the object from the grayish background

and, the tracker, in this case, loses its track; but still Bhattacharyya matching coefficient is as large

as 0.93 in average. Thus the subtracted color space does not work.

Table 6.17: Case Study 6 : Subtracted Color Space

— SIR-PF Bat Algo. Proposed Algo. Proposed Algo. (Sub)
Mean Error 17.32 16.45 13.2 71.69

Maximum Error 50.21 74.01 42.57 111.8
Std. Deviation 9.70 11.84 7.57 20.75
Success Rate 61.82 72.88 82.95 4.58

6.4.7 Case Study 7 : Tracking Object Under Illumination Variation and

Clutter

The performance of the algorithm with the subtracted RGB color space is included in Table. 6.18.

Although majority of color is black, still it tracks, using the subtracted RGB color space, because

the face-color has different RGB value and the shade of background is not almost black. But still it

is inferior to the RGB color space due to the already discussed reasons.

6.4.8 Case Study 8 : Tracking Object Under Scale Change, Partial Oc-

clusion and Clutter

The performance of the algorithm with the subtracted color space is included in Table. 6.19. Since

the object contains only black and white, tracking fails in subtracted RGB color space.

83

Table 6.18: Case Study 7 : Subtracted Color Space

— SIR-PF Bat Algo. Proposed Algo. Proposed Algo. (Sub)
Mean Error 67.44 90.33 14.2 35.31

Maximum Error 260.52 148.55 43.73 139.28
Std. Deviation 49.3 78.68 10.5 32.70
Success Rate 10.14 15.62 58.63 47.67

Table 6.19: Case Study 8 : Subtracted Color Space

— SIR-PF Bat Algo. Proposed Algo. Proposed Algo. (Sub)
Mean Error 66.11 60.35 16.35 97.27

Maximum Error 159.11 150.6 31.62 185.06
Std. Deviation 50.84 49.96 7.20 52.23
Success Rate 24.7 35.29 60.82 12.75

6.4.9 Case Study 9 : Tracking Object Under Complete Occlusion and

Clutter

The performance of the algorithm with the subtracted color space is included in Table. 6.20. The

subtracted color space cannot distinguish between the grayish object and background, and so, the

tracker gets trapped.

Table 6.20: Case Study 9 : Subtracted Color Space

— SIR-PF Bat Algo. Proposed Algo. Proposed Algo. (Sub)
Mean Error 31.94 27.26 13.38 93.69

Maximum Error 49.24 52.77 54.58 135.97
Std. Deviation 11.06 13.25 11.40 23.02
Success Rate 14.14 32.98 81.68 3.14

6.4.10 Analysis

Thus from then test results it has been observed that, if the object has such a color whose RGB

values are all different for the color and all its shades, then the subtracted color space works better

than the original RGB color space. Otherwise, RGB color space is far better than the subtracted

color space. Further it has also been proved that the tracker works in different color spaces also.

Clubbing the tracker with more robust color space can result in more accurate tracking.

6.5 Comparison with Other State-of-the-art Trackers

In this section, the proposed tracker is compared with other trackers CPF [18], KMS [8], Frag [58],

SCM [59], LOT [55], VTD [60], MIL [61] and IVT [62]. The testing is done 12 times for each video

and each time at different starting frame. For other trackers, the results are available in [1, 2]. Out of

84

them, CPF, LOT, SCM and IVT algorithms are particle filter based trackers, but their measurement

models are different.

KMS is MeanShift based and CPF is particle filter based tracking algorithm. Frag uses integral

histogram as well as the concept of multiple patches inside the template; it uses EMD (Earth Mover

Distance) to measure similarity. Similarly, LOT also uses EMD (Earth Mover Distance) to measure

the distance between two image patches which are formulated in terms of joint spatial-appearance

form. Color values are considered and pixel positions in the patch is normalized within [0 1]. MIL

uses a classifier which uses Haar like feature. The MIL appearance model is divided into two groups:

positive and negative group, and this group gets updated every time. SCM is intended for tracking

objects where drastic changes in appearance of the object happens. It derives sparsity based features

from histograms. VTD is also robust to abrupt changes in appearance in the objects tracked. Thus

the performance of the proposed algorithm is compared with other contemporary particle filter based

algorithms and others. In this section, all results are tabulated. The tests are done on the same video

sequences as given above which means that the video sequence used in Case Study 1 is same as the

Case Study 1 in this section. But, the reported performance of the proposed algorithm is different

in this section as compared to the previous sections. This is because the template sizes are different

in these cases and also their initial locations are. Throughout the experiments, salmon box is used

CPF, green box is used for Frag, white box is used for IVT, cyan box is used for KMS, magenta box

is used for LOT, dark orange box is used for MIL, red box is used for SCM, yellow box is used for

VTD and blue box is used for the proposed algorithm. For these other state-of-the-art algorithms,

test results are taken from the results folder of [1, 2]. With the same setting, the proposed algorithm

is run for each video. Then, their results are compared using the same metric. Results are compared

according to Temporal Robustness Evaluation[1, 2]. In this case, each time the tracker is initialized

at a different frame of the same video. The tracker is run up to the last frame of each video 12

times. With the help of the ground truth data [1, 2], average results are computed for each video

i.e. average result for all the 12 experiments for each video which start at 12 different initial frames.

6.5.1 Case Study 1 : Tracking Object Under Illumination Variation, Oc-

clusion and Clutter

The performance comparison among the algorithms is given in Table. 6.21. Fig. 6.44, Fig. 6.45,

Fig. 6.46 and Fig. 6.47 show sample sequences of tracking. The proposed algorithm tracks better

than all other algorithms except for VTD tracker. VTD basically decomposes the models and so

the performance is better to some extent.

6.5.2 Case Study 2 : Tracking Object Under Clutter, Fast Motion and

Scale Change

The performance comparison among the algorithms is given in Table. 6.22. Fig. 6.48, Fig. 6.49,

Fig. 6.50 and Fig. 6.51 show sample sequences of tracking. In this case, although the proposed

algorithm’s performance is found to be the best, both CPF and the proposed algorithm works with

almost same accuracy.

85

Figure 6.44: Tracking sequences for Table. 6.21

Figure 6.45: Tracking sequences for Table. 6.21

86

Figure 6.46: Tracking sequences for Table. 6.21

Figure 6.47: Tracking sequences for Table. 6.21

87

Figure 6.48: Tracking sequences for Table. 6.22

Figure 6.49: Tracking sequences for Table. 6.22

88

Figure 6.50: Tracking sequences for Table. 6.22

Figure 6.51: Tracking sequences for Table. 6.22

89

Table 6.21: Case Study 1 : Comparative Study

— Mean Error Maximum Error Std. Deviation Success Rate
CPF 41.47 149.36 43.4 75.71
Frag 47.11 183.84 49.78 67.80
IVT 57.13 186.27 55.15 62.42
KMS 79.42 259.18 79.65 60.19
LOT 41.00 212.02 54.13 78.67
MIL 56.65 172.91 47.12 59.80
SCM 99.58 260.65 80.63 45.80
VTD 8.13 38.15 6.66 98.35

Proposed 7.79 98.87 6.70 97.96

Table 6.22: Case Study 2 : Comparative Study

— Mean Error Maximum Error Std. Deviation Success Rate
CPF 18.99 46.75 12.56 92.56
Frag 160.91 357.01 124.14 18.22
IVT 160.43 285.42 76.59 15.65
KMS 114.63 233.89 78.91 25.63
LOT 70.56 141.72 44.56 80.81
MIL 213.54 418.65 147.83 30.22
SCM 98.54 233.49 73.69 38.41
VTD 39.38 61.94 13.74 84.58

Proposed 14.18 14.18 9.55 92.92

6.5.3 Case Study 3 : Tracking Object Under Motion Blur, Fast Motion

and Scale Change

The performance comparison among the algorithms is given in Table. 6.23. Fig. 6.52, Fig. 6.53,

Fig. 6.54 and Fig. 6.55 show sample sequences of tracking. In this case, CPF performs the best,

then VTD and then the proposed algorithm. The reason for the comparatively lower performance

of the proposed algorithm is due to the template chosen where a part of the skin color (face portion)

remains in the background; so this portion is suppressed. This reduces the performance of the

proposed algorithm a bit.

6.5.4 Case Study 4 : Tracking Object Under Occlusion, Fast Motion and

Clutter

The performance comparison among the algorithms is given in Table. 6.24. Fig. 6.56, Fig. 6.57,

Fig. 6.58 and Fig. 6.59 show sample sequences of tracking. The order of performance (starting

from the best) is : CPF, proposed algorithm and IVT. The reason behind the proposed algorithm’s

comparatively lower performance is the color difference between the background and foreground is

not separable and hence, foreground colors are suppressed.

90

Figure 6.52: Tracking sequences for Table. 6.23

Figure 6.53: Tracking sequences for Table. 6.23

91

Figure 6.54: Tracking sequences for Table. 6.23

Figure 6.55: Tracking sequences for Table. 6.23

92

Figure 6.56: Tracking sequences for Table. 6.24

Figure 6.57: Tracking sequences for Table. 6.24

93

Figure 6.58: Tracking sequences for Table. 6.24

Figure 6.59: Tracking sequences for Table. 6.24

94

Table 6.23: Case Study 3 : Comparative Study

— Mean Error Maximum Error Std. Deviation Success Rate
CPF 5.15 17.69 3.12 99.87
Frag 47.88 172.78 43.64 50.82
IVT 86.05 236.03 65.58 24.15
KMS 5.14 23.64 3.86 99.18
LOT 41.44 139.77 46.22 75.40
MIL 15.05 62.59 13.88 83.37
SCM 77.98 197.50 59.60 29.35
VTD 8.91 26.78 5.24 95.89

Proposed 10.18 34.17 5.27 95.72

Table 6.24: Case Study 4 : Comparative Study

— Mean Error Maximum Error Std. Deviation Success Rate
CPF 31.32 143.25 33.80 62.55
Frag 42.64 120.30 26.28 47.10
IVT 72.79 171.60 44.15 24.72
KMS 46.49 161.00 40.79 45.28
LOT 94.62 257.05 79.18 39.89
MIL 35.79 87.68 21.29 43.12
SCM 53.60 140.90 35.91 30.62
VTD 41.09 119.20 28.31 39.28

Proposed 49.03 242.4 59.69 47.42

6.5.5 Case Study 5 : Tracking Object Under Occlusion and Clutter

The performance comparison among the algorithms is given in Table. 6.25. Fig. 6.60, Fig. 6.61,

Fig. 6.62 and Fig. 6.63 show sample sequences of tracking. The proposed algorithm outperforms

other algorithms in this case study.

6.5.6 Case Study 6 : Tracking Object Under Occlusion, Fast Motion and

Scale Change

The performance comparison among the algorithms is given in Table. 6.26. Fig. 6.64, Fig. 6.65,

Fig. 6.66 and Fig. 6.67 show sample sequences of tracking. The order of performance (starting

from the best) is : CPF, Frag and proposed algorithm. This reason for this is that when the scale

of the object exceeds the tightly fit template, foreground color appears in the background and is

suppressed in the proposed algorithm.

6.5.7 Case Study 7 : Tracking Object Under Illumination Variation and

Clutter

The performance comparison among the algorithms is given in Table. 6.27. Fig. 6.68, Fig. 6.69, Fig.

6.70 and Fig. 6.71 show sample sequences of tracking. The order of performance is (starting with

95

Figure 6.60: Tracking sequences for Table. 6.25

Figure 6.61: Tracking sequences for Table. 6.25

96

Figure 6.62: Tracking sequences for Table. 6.25

Figure 6.63: Tracking sequences for Table. 6.25

97

Figure 6.64: Tracking sequences for Table. 6.26

Figure 6.65: Tracking sequences for Table. 6.26

Figure 6.66: Tracking sequences for Table. 6.26

Figure 6.67: Tracking sequences for Table. 6.26

98

Table 6.25: Case Study 5 : Comparative Study

— Mean Error Maximum Error Std. Deviation Success Rate
CPF 9.38 21.01 4.30 92.58
Frag 83.65 241.46 79.15 48.52
IVT 71.64 288.83 89.61 64.25
KMS 9.55 32.23 5.87 93.56
LOT 9.99 23.44 5.23 91.50
MIL 89.57 261.57 85.04 43.00
SCM 75.45 200.21 65.26 59.15
VTD 83.77 282.76 96.49 50.74

Proposed 13.1 21.78 4.49 95.57

Table 6.26: Case Study 6 : Comparative Study

— Mean Error Maximum Error Std. Deviation Success Rate
CPF 6.45 26.67 4.31 94.79
Frag 14.28 68.44 16.53 86.79
IVT 42.24 67.52 18.88 64.51
KMS 42.80 72.26 19.08 63.81
LOT 48.46 129.27 31.53 57.10
MIL 54.71 84.68 25.98 64.65
SCM 50.30 84.58 25.86 71.92
VTD 44.35 71.26 20.19 64.56

Proposed 11.96 50.65 8.30 95.36

the best one) : VTD, SCM and proposed algorithm. The performance of the proposed algorithm is

a bit reduced by the choice of improper template size.

6.5.8 Case Study 11 : Tracking Object Under Deformation, Clutter,

Scale Variation and Fast Motion

The performance comparison among the algorithms is given in Table. 6.28. Fig. 6.72, Fig. 6.73,

Fig. 6.74 and Fig. 6.75 show sample sequences of tracking. In this case study, the proposed

algorithm works better than the CPF algorithm, and both MIL and SCM tracks with equal accuracy

in tracking. KMS, which is MeanShift based deterministic tracking algorithm, performs little bit

better than the proposed algorithm.

6.5.9 Case Study 12 : Tracking Object Under Clutter, In-plane Rotation

and Out-plane Rotation

The performance comparison among the algorithms is given in Table. 6.29. Fig. 6.76, Fig. 6.77,

Fig. 6.78 and Fig. 6.79 show sample sequences of tracking. The order of the performance (starting

from the best) is : IVT, VTD and proposed algorithm.

99

Figure 6.68: Tracking sequences for Table. 6.27

Figure 6.69: Tracking sequences for Table. 6.27

100

Figure 6.70: Tracking sequences for Table. 6.27

Figure 6.71: Tracking sequences for Table. 6.27

101

Figure 6.72: Tracking sequences for Table. 6.28

Figure 6.73: Tracking sequences for Table. 6.28

Figure 6.74: Tracking sequences for Table. 6.28

102

Figure 6.75: Tracking sequences for Table. 6.28

Figure 6.76: Tracking sequences for Table. 6.29

103

Figure 6.77: Tracking sequences for Table. 6.29

Figure 6.78: Tracking sequences for Table. 6.29

104

Table 6.27: Case Study 7 : Comparative Study

— Mean Error Maximum Error Std. Deviation Success Rate
CPF 34.46 82.29 18.82 29.36
Frag 76.75 193.82 49.76 18.84
IVT 76.55 201.36 59.09 35.55
KMS 71.05 144.41 39.62 16.27
LOT 36.38 98.40 27.15 50.29
MIL 33.74 106.49 27.35 52.55
SCM 41.92 120.93 35.65 56.61
VTD 13.48 38.42 8.27 88.27

Proposed 26.30 72.15 17.81 53.99

Table 6.28: Case Study 11 : Comparative Study

— Mean Error Maximum Error Std. Deviation Success Rate
CPF 13.75 41.51 10.92 84.70
Frag 76.75 193.82 49.76 50.99
IVT 9.30 18.03 4.77 93.17
KMS 9.73 19.60 4.65 95.96
LOT 52.81 126.94 43.21 44.20
MIL 3.85 7.85 1.94 100
SCM 1.63 4.08 0.84 100
VTD 28.51 74.40 23.39 55.97

Proposed 8.4 24.37 6.23 93.79

6.5.10 Case Study 13 : Tracking Object Under Clutter, Object Defor-

mation and Occlusion

The performance comparison among the algorithms is given in Table. 6.30. Fig. 6.80, Fig. 6.81, Fig.

6.82 and Fig. 6.83 show sample sequences of tracking. The performance of the proposed algorithm

is the best in this case.

6.5.11 Case Study 14 : Tracking Object Under Illumination Variation,

Motion Blur, Fast Motion, Background Clutter and Low Resolu-

tion

The performance comparison among the algorithms is given in Table. 6.31. Fig. 6.84, Fig. 6.85,

Fig. 6.86 and Fig. 6.87 show sample sequences of tracking. The performance of the proposed

algorithm is the best in this case. Since, in some frames, the object goes out of bound, those frames

cannot be used for initializing the templates. Hence, some frames are selected for initializations:

31, 39, 46, 54, 62, 69, 115, 130, 138 and 145. The performance of the proposed algorithm degrades

to some extent because the object goes out of the bound of the frame’s search space. The search

space is a region inside the frame with a vertical and horizontal margin equal to the vertical and

horizontal dimensions of the template. Thus the centroid of the template moves within this search

space randomly. Objects out of this search space cannot be tracked by the proposed tracker.

105

Figure 6.79: Tracking sequences for Table. 6.29

Figure 6.80: Tracking sequences for Table. 6.30

Figure 6.81: Tracking sequences for Table. 6.30

Figure 6.82: Tracking sequences for Table. 6.30

106

Figure 6.83: Tracking sequences for Table. 6.30

Figure 6.84: Tracking sequences for Table. 6.31

Figure 6.85: Tracking sequences for Table. 6.31

107

Figure 6.86: Tracking sequences for Table. 6.31

Figure 6.87: Tracking sequences for Table. 6.31

108

Table 6.29: Case Study 12 : Comparative Study

— Mean Error Maximum Error Std. Deviation Success Rate
CPF 40.32 97.38 26.69 54.91
Frag 119.82 301.89 102.44 43.79
IVT 10.08 21.41 5.68 95.37
KMS 43.31 180.11 49.90 53.36
LOT 60.51 219.08 60.61 52.04
MIL 31.19 120.72 37.61 87.46
SCM 25.82 112.92 28.99 77.21
VTD 10.60 33.04 6.91 94.28

Proposed 10.89 31.31 6.36 90.95

Table 6.30: Case Study 13 : Comparative Study

— Mean Error Maximum Error Std. Deviation Success Rate
CPF 30.82 77.48 23.48 79.63
Frag 8.69 42.70 10.31 86.94
IVT 111.75 235.88 70.39 30.56
KMS 97.97 228.01 73.32 33.62
LOT 70.17 136.38 39.30 63.06
MIL 31.99 66.76 18.04 84.44
SCM 16.37 35.52 11.27 93.49
VTD 95.98 184.93 57.07 43.97

Proposed 6.4 28.90 5.82 95.54

6.5.12 Analysis

The overall performance of the proposed algorithm throughout all the videos test cases is satisfac-

tory. In some cases only, CPF, VTD or SCM performs better than the proposed algorithm; other

algorithms never perform better than the proposed algorithm. Thus the proposed algorithm works

better than other contemporary particle filter based algorithms like IVT and LOT. It also works

better than other particle filter based algorithms like CPF and SCM in most of the case studies.

This proves the robustness of the proposed algorithm.

6.6 Summary

In this chapter, all the test results are explained along with their parameter settings. The parameters

are kept constant throughout the entire set of video sequences. But, in practice, if the user knows the

object to be tracked and its ambiance beforehand, the user can tune the tracker on a number of test

videos under that similar condition. This will result in more accurate tracking. But, here the same

set of parameters is used for all the videos to observe the robustness of the proposed algorithm against

others. Here the tests are done a number of times to observe their consistency in the tracking result.

In this proposed work, the bat algorithm has been modified to reduce its computational complexity.

Also the proposed particle filter with the resampling strategy reduces sample degeneracy as well as

sample impoverishment problem. The proposed particle filter can generate good particles having

109

Table 6.31: Case Study 14 : Comparative Study

— Mean Error Maximum Error Std. Deviation Success Rate
CPF 216.76 127.75 59.11 29.71
Frag 108.92 242.98 76.17 34.12
IVT 133.06 264.78 71.72 28.61
KMS 89.16 200.87 60.94 44.46
LOT 113.15 212.93 60.54 40.96
MIL 86.28 175.42 46.89 39.79
SCM 78.84 194.07 58.59 42.62
VTD 94.24 189.25 55.41 39.35

Proposed 42.88 146.69 41.84 57.87

enough diversity among them. The main advantage of using bat algorithm is that the probability

of jumps of the bats can be switched between type-1 jump and type-2 jump by changing tuning

parameter called pulse-rate. Hence, in the proposed algorithm, when object is moving slow and

there is no occlusion present, movement of the particles according to type-2 jump is given higher

priority and, when either there is occlusion or the object is lost, movements of the particles according

to type-1 jump is given higher priority by tuning the pulse-rate parameter properly. The proposed

adaptive motion model increases the probability of generating the particles towards the moving

object rather than away from the object. It works even better in case the object moves in one

direction uniformly. But, the parameters are defined in such a way so that, it has been showed that

if object is moving haphazardly too, still it can be tracked. Finally the update mechanism along

with the dynamic histogram ranging can solve vast illumination change while tracking object. The

algorithm has been tested for both fast and slow illumination change. This update mechanism can

also resolve scale change and blurring effect. The algorithm has been tested with other videos and

has been found to be working satisfactorily. The test results prove the robustness of the proposed

algorithm against clutter, illumination fluctuation, scale change, fast object movement, motion blur

and complete occlusion.

110

Chapter 7

Conclusion

In this project, a robust and new variant of particle filter based visual object tracking algorithm

has been proposed. The algorithm has been tested intensively with many challenging video datasets

[1, 2, 3] and found to be robust against clutter, illumination fluctuation, scale change, fast object

movement, motion blur and complete occlusion.

This report mainly contains the detail literature review of visual object tracking algorithms

and the proposed work. In Chapter 1, a complete overview of tracking applications with some

motivating example is given. Then, in Chapter 2, all leading single object tracking algorithms are

introduced and critically analyzed. In Chapter 3, a different approach to multiple object tracking,

called data association techniques, have been described. Then, chapter 4 describes multiple camera

object tracking algorithms including 3D object tracking. Chapter 5 narrates the proposed work.

Different modules are analyzed separately. Chapter 6 shows the test results and their analysis. Both

qualitative and quantitative analysis of test results have been done.

As the proposed algorithm has been found to be robust, it can be extended for tracking multiple

object tracking and also for fast implementation (real-time). Implementation of algorithms for faster

processing is another field of research. The proposed algorithm has been tested in MATLAB. For

real-time applications, generally computer vision algorithms are implemented using C++. OpenCV

(Open Source Computer Vision) is a popular platform for implementing Computer Vision related

algorithms in C++. OpenCV (Open Source Computer Vision) consists of rich library of computer

vision functions in C++ or other languages for real-time application development. Another way

for faster implementation is hardware implementation which can be done using FPGA (Field Pro-

grammable Gate Array). FPGAs (Field Programmable Gate Arrays) have been used popularly for

faster computer vision algorithm implementations. Many optimized architecture have been proposed

for FPGA (Field Programmable Gate Array) based Computer Vision applications. FPGA (Field

Programmable Gate Array) architecture has more parallelism than the CPUs and so FPGAs (Field

Programmable Gate Arrays) are much faster than the CPUs. FPGA(Field Programmable Gate Ar-

ray) is a very effective solution for real-time application development. Thus, as a future work, this

proposed algorithm can be implemented in hardware for real-time applications along with multiple

object tracking.

111

References

[1] Y. Wu, J. Lim, and M.-H. Yang. Online Object Tracking: A Benchmark. IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) 2411–2418.

[2] Y. Wu, J. Lim, and M.-H. Yang. Tracker Benchmark v1.0.

https://sites.google.com/site/trackerbenchmark/benchmarks/v10 .

[3] E. F. C. project/IST 2001 37540. CAVIAR Test Case Scenarios.

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/ .

[4] J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale, and S. Shafer. Multi-camera Multi-

person Tracking for EasyLiving. Proceedings of Third IEEE International Workshop on Visual

Surveillance 3–10.

[5] X. Wang. Intelligent Multi-camera Video Surveillance: A review. Pattern Recognition Letters

34, (2013) 3–19.

[6] A. Yilmaz, O. Javed, and M. Shah. Object Tracking: A Survey. ACM Computing Surveys 38.

[7] Y. Wang, R. Zhai, and K. Lu. Challenge of Multi–Camera Trackings. 7th International Congress

on Image and Signal Processing 7, (2014) 32–37.

[8] D. Comaniciu, R. Visvanathan, and P. Meer. Kernel Based Object Tracking. IEEE Transactions

On Pattern Analysis And Machine Intelligence 25, (2003) 564–577.

[9] G. Phadke and R. Velmurugan. Illumination Invariant Mean-shift tracking. Proc. Indian Conf

on Computer Vision, Graphics, and Image Processing 407–412.

[10] G. Phadke and R. Velmurugan. Improved Mean Shift for Multi–target Tracking. IEEE Inter-

national Workshop on Performance Evaluation of Tracking and Surveillance (PETS) 37–44.

[11] J. Jeyakar, R. V. Babu, and K. Ramakrishnan. Robust Object Tracking with Background-

weighted Local Kernels. Computer Vision and Image Understanding 112, (2008) 296–309.

[12] G. R. Bradski. Real Time Face and Object Tracking as a Component of a Perceptual User

Interface. Fourth IEEE Workshop on Applications of Computer Vision, 1998 214–219.

[13] F. Malik and B. Baharudin. Quantized Histogram Color Features Analysis for Image Retrieval

Based on Median and Laplacian Filters in DCT Domain. International Conference on Innova-

tion Management and Technology Research (ICIMTR) 624–629.

112

[14] F. Porikli, O. Tuzel, and P. Meer. Covariance Tracking using Model Update Based on Lie Alge-

bra. Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition

728–735.

[15] Y. Wu, J. Cheng, J. Wang, H. Lu, J. Wang, H. Ling, E. Blasch, and L. Bai. Real–Time

Probabilistic Covariance Tracking With Efficient Model Update. IEEE Transactions On Image

Processing 21, (2012) 2824–2837.

[16] H. T. Nguyen and A. W. Smeulders. Fast Occluded Object Tracking by a Robust Appearance

Filter. IEEE Transactions On Pattern Analysis And Machine Intelligence 26, (2004) 1099–1104.

[17] A. K. Jain, Y. Zhong, and S. Lakshmanan. Object Matching Using Deformable Templates.

IEEE Transactions On Pattern Analysis and Machine Intelligence 18, (2002) 267–278.

[18] P. Perez, C. Hue, J. Vermaak, and M. Gangnet. Color-Based Probabilistic Tracking. Springer–

Verlag Berlin Heidelberg 661–675.

[19] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A Tutorial on Particle Filters for

Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transactions On Signal Processing

50, (2002) 174–188.

[20] P. Prez, J. Vermaak, and A. Blake. Data Fusion for Visual Tracking With Particle Filter.

Proceedings of the IEEE 92, (2004) 495–513.

[21] C. Hue, L. Cadre, and P. Perez. Tracking Multiple Objects with Particle Filtering. IEEE

Transactions On Aerospace and Electronic Systems 38, (2002) 791–812.

[22] N. A. Thacker, F. J. Aherne, and P. I. Rockett. The Bhattacharyya Metric as an Absolute

Similarity Measure for Frequency Coded Data. Kybernetika 34, (1998) 363–368.

[23] Y. Bar-Shalom, F. Daum, and J. Huan. The Probabilistic Data Association Filter. IEEE

Control Systems Magazine 82–100.

[24] T. E. Fortmann, Y. Bar-Shalo, and S. Molly. Multitarget Tracking Using Joint Probabilistic

Data Association. IEEE Conference on Decision and Control including the Symposium on

Adaptive Processes 19, (1980) 807–812.

[25] M. Liebens, T. Sakiyama, and J. Miura. Visual Tracking of Multiple Persons in a Heavy Oc-

cluded Space Using Person Model and Joint Probabilistic Data Association. IEEE International

Conference on Multisensor Fusion and Integration for Intelligent Systems 547–552.

[26] M. Jaward, L. Mihaylova, N. Canagarajah, and D. Bull. Multiple Object Tracking Using Particle

Filters. Aerospace Conference .

[27] N. T. Pham, K. Leman, M. Wong, and F. Gao. Combining JPDA and Particle Filter for Visual

Tracking. IEEE International Conference on Multimedia and Expo (ICME) 1044–1049.

[28] Z. Zhang. A Flexible New Technique for Camera Calibration. IEEE Transactions on Pattern

Analysis and Machine Intelligence 22, (2000) 1330–1334.

113

[29] J. Heikkila and O. Silven. A Four-step Camera Calibration Procedure with Implicit Image

Correction. IEEE International Conference on Computer Vision and Pattern Recognition 1106–

1112.

[30] M. Shah. Video Lecture 12 : Camera Model. Video Lecture .

[31] O. Javed, Z. Rasheed, K. Shafique, and M. Shah. Tracking Across Multiple Cameras With

Disjoint Views. IEEE International Conference on Computer Vision 2, (2003) 952–957.

[32] S. Bi, T. K. Ahmed, S. Cristian, D. Chong, A. F. Jay, and A. K. Roy-Chowdhury. Tracking and

Activity Recognition Through Consensus in Distributed Camera Networks. IEEE Transactions.

On Image Processing 19, (2010) 2564–2579.

[33] Q. Cai and J. Aggarwal. Tracking Human Motion in Structured Environments Using a

Distributed-Camera System. IEEE Transactions On Pattern Analysis And Machine Intelli-

gence 21, (2002) 1241–1247.

[34] O. Javed, K. Shafique, and M. Shah. Appearance Modeling for Tracking in Multiple Non-

overlapping Cameras. IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR) 2, (2005) 26–33.

[35] D. Makris, T. Ellis, and J. Black. Bridging the Gaps between Cameras. Proceedings of IEEE

Computer Society Conference on Computer Vision and Pattern Recognition 2, (2004) II–205–

II–210.

[36] G. Catalin and S. Nedevschi. Object Tracking from Stereo Sequences using Particle Filter. 4th

International Conference on Intelligent Computer Communication and Processing 279–282.

[37] J. Zhu, Y. F. Zheng, and R. E. Ewing. Measuring Object Speed using Stereo Tracking. IEEE

International Conference on Robotics and Automation (ICRA) 5949–5954.

[38] A. Wu, M. Shah, and N. D. V. Lobo. A Virtual 3D Blackboard: 3D Finger Tracking us-

ing a Single Camera. Fourth IEEE International Conference on Automatic Face and Gesture

Recognition 536–543.

[39] A. S. Sabb and M. Huber. Particle Filter Based Object Tracking in a Stereo Vision System.

IEEE International Conference on Robotics and Automation 2409–2415.

[40] L.-W. Zheng, Y.-H. Chang, and Z.-Z. Li. A Study of 3D Feature Tracking and Localization

using a Stereo Vision System. International Computer Symposium (ICS) 402–407.

[41] G. S. Walia and R. Kapoor. Intelligent Video Target Tracking using an Evolutionary Particle

Filter based upon Improved Cuckoo Search. Conf. 2012 Ninth Conf. Computer and Robot

Vision 41, (2014) 6315–6326.

[42] Y. Rui and Y. Chen. Better Proposal Distributions: Object Tracking Using Unscented Particle

Filter. Conf. 2012 Ninth Conf. Computer and Robot Vision 2, (2001) II–786–II–793.

[43] C. Shan, Y. Wei, T. Tan, and F. Ojardias. Real Time Hand Tracking by Combining Particle

Filtering and Mean Shift. Proc. Sixth IEEE International Conf. Automatic Face and Gesture

Recognition 669–674.

114

[44] S. K. Zhou, R. Chellappa, and B. Moghaddam. Visual Tracking and Recognition Using

Appearance-Adaptive Models in Particle Filters. IEEE Trans. on Image Processing 13, (2004)

1491–1506.

[45] S. Akhtar, A. Ahmad, and E. M. Abdel-Rahman. A Metaheuristic Bat–Inspired Algorithm

for Full Body Human Pose Estimation. Conf. 2012 Ninth Conf. Computer and Robot Vision

369–375.

[46] S. Y. Chen. Kalman Filter for Robot Vision: A Survey. IEEE Trans. on Industrial Electronics

59, (2012) 4409–4420.

[47] C. Shen, J. Kim, and H. Wang. Generalized Kernel-Based Visual Tracking. IEEE Trans. on

Circuits and Systems for Video Technology 20, (2010) 119–130.

[48] Q. Wang, F. Chen, J. Yang, W. Xu, and M.-H. Yang. Transferring Visual Prior for Online

Object Tracking. IEEE Trans. on Image Processing 21, (2012) 3296–3305.

[49] P. Li, T. Zhang, and B. Ma. Unscented Kalman Filter for Visual Curve Tracking. Image and

Vision Computing 22, (2004) 157–164.

[50] X. Yang. Nature-Inspired Optimization Algorithms. London, UK: Elsevier .

[51] X. Rong Li and V. P. Jilkov. Survey of Maneuvering Target Tracking. Part I. Dynamic Models.

IEEE Transactions on Aerospace and Electronic Systems 39, (2004) 1333–1364.

[52] L. J. Latecki and R. Miezianko. Object Tracking with Dynamic Template Update and Occlusion

Detection. 18th International Conference on Pattern Recognition (ICPR’06) 1, (2006) 556–560.

[53] X. Dong and Z. Mao. Adaptive Template Based Object Tracking with Affine Model. Symposium

on Photonics and Optoelectronics 1, (2010) 1–4.

[54] L. Yuan, J. Gu, Y. Xu, Y. Miao, T. Qiu, and Y. Jin. A Template Update Cam Shift Algo-

rithm Based on LTP Texturel. International Conference on Computer Science and Mechanical

Automation (CSMA) 170–174.

[55] S. Oron, A. Bar-Hillel, D. Levi, and S. Avidan. Locally Orderless Tracking. IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR) 1940–1947.

[56] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja. Robust Visual Tracking via Multi–task Sparse

Learning. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2042–2049.

[57] W. Zhong, H. Lu, and M.-H. Yang. Robust Object Tracking via Sparsity–based Collaborative

Model. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 1838–1845.

[58] A. Adam, E. Rivlin, and I. Shimshoni. Robust Fragments-based Tracking using the Integral

Histogram. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 798–805.

[59] W. Zhong, H. Lu, and Y. Yang, ; Ming-Hsuan .

[60] J. Kwon and K. M. Lee. Visual Tracking Decomposition. IEEE Conf. on Computer Vision and

Pattern Recognition (CVPR) 1269–1276.

115

[61] B. Babenko, M.-H. Yang, and S. Belongie. Robust Object Tracking with Online Multiple

Instance Learning. IEEE Trans. on Pattern Analysis and Machine Intelligence 33, (2010)

1619–1632.

[62] D. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental Learning for Robust Visual Tracking.

International Journal of Computer Vision 77, (2008) 125–141.

116

