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Abstract

This thesis describes a novel approach to build a general purpose working Telugu text-to- speech

synthesis system (TTS) based on hidden Markov model (HMM) which is reasonably intelligible, nat-

ural sounding and flexible. There have been several attempts proposed to use HMM for constructing

TTS systems. Most of such systems are based on waveform concatenation techniques.

To fully convey information present in speech signals, text-to-speech synthesis systems are required

to have an ability to generate natural sounding speech with arbitrary speakers individualities and

emotions (e.g., anger, sadness, joy). To represent all these factors the Mel- cepstral coefficients are

extracted as spectral parameters. Excitation parameters are extracted using fundamental frequency

(F0).

In the proposed approach, on the contrary, speech parameter (Mel-generalized cepstral coefficients,

F0) sequences are generated from HMM directly based on maximum likelihood criterion. By con-

sidering the relationship between static and dynamic parameters, smooth spectral sequences are

generated according to the statistics of static and dynamic parameters modeled by HMMs. As a

result, natural sounding speech can be synthesized.

To synthesize speech, fundamental frequency (F0) patterns are modeled and generated. The con-

ventional discrete or continuous HMMs, however, cannot be applied for modeling F0 patterns, since

observation sequences of F0 patterns are composed of one dimensional continuous values and discrete

symbol which represents voiced and unvoiced respectively. To overcome this problem, the HMM is

extended so as to be able to model a sequence of observation vectors with variable dimensionality

including zero-dimensional observations, i.e., discrete symbols. It is shown that by using this ex-

tended HMM, referred to as the multi-space probability distribution HMM (MSD-HMM), spectral

parameter sequences and F0 patterns can be modeled and generated in a unified framework of HMM.
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Chapter 1

Introduction

1.1 General Background

Since speech is obviously one of the most important ways for human to communication, a great effort

is going on to incorporate speech into human-machine communication environments. Now a days

machines becoming more functional and prevalent, it demands for technologies in speech processing

area, such as speech recognition, dialogue processing, speech understanding, speech synthesis, is in-

creasing to establish high-quality man-machine communication with voice. Text-to-speech synthesis

(TTS), one of the important technologies in speech processing, is a technique for creating speech

signal from arbitrarily given text in order to transmit information from a machine to a human by

voice. To fully convey information contained in speech signals, text-to-speech synthesis systems are

required to have an ability to generate natural sounding speech with arbitrary speaker’s individual-

ities and emotions such as anger, sadness and joy.

A text-to-speech system makes it possible for people who cannot read, to be able to listen to near

natural sounding utterances of written text in a language that they understand. People who wants

to learn a new language can use a Text-to-Speech synthesis system to learn a language by listening

to how a given text in the language of their interest is pronounced. The Text-to-Speech synthesis

systems can also integrated to work with systems that recognise text from scanned documents and

those that recognise a person’s handwriting in the form of digitals.

For constructing such a Text-to-Speech synthesis system, the use of hidden Markov models (HMMs)

become large. Hidden Markov models were successfully applied to model the sequence of speech

spectra in speech recognition systems, and the performance of HMM-based speech recognition sys-

tems have been improved by techniques which utilize the flexibility of HMMs: context-dependent

modeling, dynamic feature parameters, mixtures of Gaussian densities, tying mechanism. Hidden

Markov models based approaches for speech synthesis is categorized as follows:

1. Transcription of text and segmentation of the speech database [1]

2. Construct inventory of speech segments [2-5].

3. Run-time selection of multiple instances of speech segments [4,6].
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4. Speech synthesis from HMMs themselves [7-10].

Since most of this methods 1 − 3 are, by using a waveform concatenation algorithm, e.g., PSOLA

algorithm, a high quality synthetic speech produced. However, to obtain various voice characteristics,

we require large amounts of speech database are, and it is difficult to collect, segment and store the

large speech database. On the other hand, in method 4, voice characteristics of synthetic speech can

be changed by transforming HMM parameters. To get this parameter generation algorithms [11],

[12] for HMM-based speech synthesis have been proposed, and a speech synthesis system [9], [10] has

been built using these algorithms. Actually, voice characteristics of synthetic speech can be changed

by applying a speaker adaptation technique [13], [14] or a speaker interpolation technique [15]. The

main characteristics of the system is use to dynamic feature: by including the dynamic coefficients in

the feature vector, the dynamic coefficients of the speech parameter sequence generated in synthesis

are constrained to be realistic and smooth as defined by the parameters of the HMMs.

Figure 1.1: Flow chart of HMM-based Text-to-Speech Synthesis system.

1.2 Scope of thesis

The HMM-Based speech synthesis system is shown in Fig. 1.1. From this figure we have two parts.

They are training and synthesis parts of the HMM-based synthesis system. In training phase, spectral

parameters (e.g., mel-generalized cepstral coefficients) and excitation parameters (e.g., fundamen-

tal frequency F0) are extracted from the given or used speech database. These extracted speech

parameters are modeled by context-dependent HMMs. In systhesis phase, a context-dependent

label sequence is generated from the input text.From this context dependent label sequence a sen-

tence HMM is built by concatenating context dependent HMMs for the given input text. By using

the parameter generation algorithm, speech parameters (i.e. mel-generalized cepstral coefficients

and fundamental frequencies) are generated from the sentence HMM. Lastly,a speech wave file is

2



synthesized from the generated spectral(mel-generalized cepstral coefficients) and excitation param-

eters(fundamental frequencies) by using a synthesis filter.

In this report, it is assumed that spectral(mel-generalized cepstral coefficients) and excitation pa-

rameters(fundamental frequencies) include phonetic and prosodic information, respectively.
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Chapter 2

Mel-cepstral Analysis and

Synthesis

The speech analysis and synthesis technique is one of the key issues in vocoder dependent speech

synthesis system, because characteristics of the spectral model, like stability of synthesis filter and

performance of model parameters, effects the quality of synthesized speech, and speech synthesis

system structure. Because of the above issues, the mel-generalized cepstral analysis adn synthe-

sis technique[16] is employed to estimate spectral parameters and to synthesize the speech in the

HMM-based speech synthesis system. This chapter deals with the mel-generalized cepstral analysis

and synthesis technique, that is how the spectral feature parameters,i.e., mel-generalized cepstral

coefficients, are extracted from speech signal from the speech database and speech is synthesized

from by using these mel-generalized cepstral coefficients.

2.1 Source-filter Model

To deal with a speech waveform mathematically, a discrete-time model is used to represent sam-

pled speech signals, as shown in Fig. 2.1. The transfer function H(z) models the structure of

vocal tract system part the speech. The excitation part contains voiced and unvoiced speech. For

voiced speech the vocal folds oscillations are quasi periodic hence the voiced part is modellednu a

quasi-periodic train of pulses. For unvoiced speech the vocal folds movements are random, i.e. it

don’t have periodicity associated with the unvoiced speech, hence random noise sequence is used

to model the unvoiced sounds. To generate speech signals x(n), the parameters of the model must

change with time because speech is an outcome of time varying vocal-tract system driven by time-

varying excitation.But for many speech sounds, it is reasonable to assume that the properties of the

vocal tract and excitation remain fixed for some periods of 510 msec. Under such assumption, the

excitation e(n) is filtered by a slowly time-varying linear system H(z) to generate speech signals x(n).

By using this speech parameters i.e. the excitation e(n) and the impulse response h(n) of the

vocal tract speech can be computed using the convolution sum expression.

x(n) = h(n) ∗ e(n) (2.1)
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where ∗ represents discrete convolution. The details of digital signal processing and speech processing

techniques are given in Ref. [17]

Figure 2.1: Source-filter modeling of speech.

2.2 Mel-Cepstral analysis

2.2.1 Spectral Model

Spectrum in the mel-cepstral analysis[16] H(ejw) is represented by the M-th order mel-cepstral

coefficients c̃(m) as below

H(z) = exp

M∑
m=0

c̃(m)z̃−m, (2.2)

where

z̃−1 =
z−1 − α
1− αz−1

, |α| < 1. (2.3)

The phase of the all-pass transfer function z̃−1 = e−jw̃ is given by

w̃ = arctan
(1− α2) sinw

(+− α2) cosw − 2α
(2.4)

The phase response w gives a good approximation to auditory frequency scale with appropriate

value of α.

2.2.2 Spectral Criterion

In the unbiased estimation of log spectrum [18] it has been shown that the power spectral estimate

|H(ejw)|2, which is unbiased in a sense of relative power, is obtained by the following criterion E is

minimized with respect to c̃(m)Mm=0

E =
1

2π

∫ π

−π
(expR(w)−R(w)− 1)dw, (2.5)

where

R(w) = logIN (w)− log|H(ejw)|2 (2.6)
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and IN (ω) is the modified periodogram of a weakly stationary process x(n) is given by

IN (ω) =
|
∑N−1
n=0 w(n)x(n)e−jωn|2∑N−1

n=0 w
2(n)

where w(n) is the window whose length is N . To take the gain factor K outside from H(z), we

rewrite Eq.(2.2) as:

H(z) = exp

M∑
m=0

b(m)φm(z) = K ·D(z), (2.7)

where

K = exp b(0), (2.8)

D(z) = exp

M∑
m=0

b(m)φm(z), (2.9)

and

b(m) =

{
c(m) if m = M ;

c(m)− αb(m+ 1) if 0 ≤ m < M.
(2.10)

φm(z) =

{
1 if m = 0;
(1−α2)z−1

1−αz−1 z̃−(m−1) if m ≥ 1.
(2.11)

Since H(z) is a minimum phase system, we can show that the minimization of E with respect to

c̃(m)Mm=0 is equivalent to that of

ε =
1

2π

∫ π

−π

IN (ω)

|D(ejw|
dw, (2.12)

with respect to

b = [b(1), b(2), ....., b(M)]T (2.13)

The gain factor K that minimizes E is obtained by setting ∂E
∂K=0

K =
√
εmin (2.14)

where εmin is the minimized value of ε. There exists only one minimum point because the criterion

E is convex with respect to c̃. Consequently, the minimization problem of E can be solved using

efficient iterative algorithm based on FFT and recursive formulas. In addition, the stability of model

solution H(z) is always guaranteed.

2.3 Synthesis Filter

To synthesize speech from the mel-cepstral coefficients, itneeds to realize the exponential transfer

function D(z) of Eq. 2.9. Even the transfer function D(z) is not a rational function, the MLSA (Mel

Log Spectral Approximation) filter [19] approximates D(z) with sufficient accuracy and becomes

minimum phase IIR system. The complex exponential function expω is approximated by a rational

function

exp ω ' RL(F (z))

6



=
1 +

∑L
l=1AL,lω

l

1 +
∑L
l=1AL,l(−ω)l

(2.15)

Thus D(z) is approximated as below

RL(F (z) ' exp (F (z)) = D(z) (2.16)

where F (z) is defined by

F (z) =

M∑
m=1

b(m)φm(z) (2.17)

When F (z) is expressed as

F (z) = F1(z) + F2(z) (2.18)

the exponential transfer function is approximated in a cascade form

D(z) = exp F (z)

= exp F1(z) · exp F2(z)

' RL(F1(z)) ·RL(F2(z)) (2.19)

as shown in Fig. 2.2. If

maxw|F1(ejω)|,maxw|F2(ejω)| < maxw|F (ejω)|, (2.20)

we know that RL(F1(ejω))×RL(F2(ejω)) approximates D(ejω)) precisely than RL(F (ejω)

Figure 2.2: Two stage cascade structure of synthesis filter D(z).
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Chapter 3

Modelling Speech Parameters

Based on HMM

The performance of speech recognition system based on hidden Markov models was improved by

including the dynamic features of speech parameters. Thus, if there exists is a technique to generate

speech parameters from HMMs which includes the dynamic features, it will be useful for speech

synthesis system to get the smooth synthesized speech. In this chapter a speech parameter generation

technique from HMMs which include the dynamic features is discussed.

3.1 Modeling Spectal Parameters

3.1.1 Introduction to Continuous density HMM

In this report, a continuous density HMM is used to model the the vocal tract as in the speech

recognition systems. The continuous density Markov model is a finite state machine which makes

one state transition at each time unit. Firstly, a decision has to be taken in order to decide which

state to occupy i.e. to succeed to next state which may be that state also. Then have to generate

output vector based on the probability density function(pdf) for the present state. An HMM is a

doubly stochastic random process, i.e. it is models the state transition probabilities between states

and the output probabilities for each state as in [33].

One way to understand HMMs is to consider each state as a model of a segment of speech. In

figure 3.1 how the speech utterance using a N -state left-to-right HMM, in which each state is mod-

eled by a multi-mixture Gaussian model is discussed. Assume that this utterance(parameterized by

speech analysis as the D-dimensional observation vector ot ) is divided into N segments di which

are represented by the states Si . The transition probability aij defines the probability of making

transition from state i to state j and satisfies the stochastic constraint aii + aij = 1. Then, each

state is modeled by a M -mixtures Gaussian density function:

bj(ot) =

M∑
k=1

cjkN(ot, µjk,Σjk)

8



=

M∑
k=1

cjk
1

(2π)
D
2 |Σ| 12

exp{−1

2
(ot − µjk)TΣ−1jk (ot − µjk)}, (3.1)

Figure 3.1: A five state HMM.

where cjk, µjk and Σjk represnts the mixture coefficients, D-dimensional mean vector and D ×
D covariance matrix(full covariance matrix) for the k-th mixture component in the j-th state,

respectively. Above covariance matrix can be restricted to the diagonal elements if the elements of

the feature vector are independent. |Σjk| is the determinant of Σjk, and Σ−1jk is the inverse of Σjk.

The mixture gains cjk satisfy the stochastic constraint

M∑
k=1

cjk = 1, 1 ≤ j ≤ N (3.2)

cjk ≥ 0, 1 ≤ j ≤ N, 1 ≤ k ≤M (3.3)

so pdf is properly normalized, i.e., ∫ ∞
−∞

bj(o)do, 1 ≤ j ≤ N (3.4)

Since the pdf of Eq. (3.1) can be used to approximate, any finite, continuous density function, it

can be used in a wide range of problems and is widely used for acoustic modeling.

For simpicity and convinience, the complete parameter set of the HMM model is represented by

a notation

λ = (A,B, π) (3.5)

where A = {aij}, B = {bj(o)} and π = {πi}. πi is the initial state distribution of state i, and it have

the property

π =

{
0 if i 6= 1;

1 if 1 = 1.
(3.6)

in the left-to-right HMM model.

9



3.1.2 Probability

To calculate the probanility of the obeservation sequence O = (o1, o2, , oT ) given the model λ,

i.e.P (O|λ), forward-backward algorithm is used. Direct calculation P (O|λ) without using farward-

backward algorithm the computational complexity is high. It requires order of 2TN2 order cal-

culations. On the other hand, If the forward-backward algorithm is epmloyed, then computational

complexity is less and it requires on the order of N2T calculations, and it is computationally feasible.

Forward-backward algorithm is discussed in the following section as in [33].

The forward algorithm

Forward variable αt(i) is defined as

αt(i) = P (o1, o2, , oT , qt = i|λ) (3.7)

that is, the probability of the partial observation sequence from time 1 to time t and state i at time

t, given the model parameters λ . We solve αt(i) inductively, as discussed below

1. Initialization

α1(i) = πibi(o1), 1 ≤ i ≤ N. (3.8)

2. Induction

αt+1(j) = [

N∑
i=1

αt(i)aij ]bj(ot+1), 1 ≤ t ≤ T − 1, 1 ≤ i ≤ N. (3.9)

3. Termination

P (O|λ) =

N∑
i=1

αT (i) (3.10)

The backward algorithm

As in the forward algorithm, let us assume the backward variableβt(i) is defined as

βt(i) = P (ot+1, ot+2, , oT |qt = i, λ) (3.11)

that is, the probability of the partial observation sequence from time t to time T , given state i at

time t and the model parameters λ. We solve βt(i) using induction as discussed below

1. Initialization

βT (i) = 1, 1 ≤ i ≤ N (3.12)

10



2. Induction

βt(i) =

N∑
i=1

aijbj(ot+1)βt+1(j), t = T − 1, T − 2, ..., 1, 1 ≤ i ≤ N (3.13)

3. Termination

P (O|λ) =

N∑
i=1

β1(i) (3.14)

By using trellis structure we calculate forward-backward probability as shown in Fig. 3.2. In

this figure, x-axis represents obeservation sequence and y-axis represents states of Markov model.All

the possible state sequence will remerge into these N nodes no matter how long the observation

sequence in Trellis structure. For forward algorithm, at times t = 1 , we have to calculate the values

of α1(i), 1 ≤ i ≤ N, and at time t = 2, 3, ..., T we o only calculate values of αt(j), 1 ≤ j ≤ N, in

which each calculation involves only the N previous values of αt−1(i) because each of the N states

can be reached from only the N states at the previous time slot. Because of this advantage the order

of probabilty is reduced in the forward-backward algrorithm.

Figure 3.2: Computation of forward-backward algorithm by using a trellis structure of observation
t and state i.

3.1.3 Parameter estimation of continuous density HMM

Adjusting the model parameters (A,B, π) by a method is very difficult. It has to satisfy a certain

optimization criterion.There is no exiting technique to analytically solve for the model parameter set

which maximizes the probability of the observation sequence. But we can choose a method in which

λ = (A,B, π) such that its likelihood, P (O|λ), is locally maximized using an iterative procedure

which is known as the EM(expectation-maximization) methosd [21], [22].
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Now we define a parameter that is the probability of being in state i at time t, and state j at

time t+ 1, given the model and the observation sequence to reestimate HMM parameters, is defined

below

ξt(i, j) = P (qt = i, qt+1 = j|O, λ), (3.15)

By using forward and backward variables, ξt(i, j) can be written as

ξt(i, j) =
P (qt = i, qt+1 = j|O, λ)

P (O|λ)
=

αt(i)aijbj(ot+1βt+1(j))∑N
i=1

∑N
j=1 αt(i)aijbj(ot+1βt+1(j))

(3.16)

By using ξt(i, j), we now define a new parameter, i.e. the probability of being in state i at time t,

given the entire observation sequence and the model parameters, and it is represented as

γt(i) =

N∑
j=1

ξt(i, j) (3.17)

Q-function

We use Baum’s auxiliary function by maximizing it to reesitmate the formulas over λ.

Q(λ, λ
′
) =

∑
q

P (O, q|λ
′
) logP (O, q|λ) (3.18)

Because

Q(λ, λ
′
) ≥ Q(λ, λ

′
)⇒ P (O, q|λ

′
) ≥ P (O, q|λ) (3.19)

We can maximize the function Q(λ, λ
′
) over λ to improve λ

′
in the sense of increasing the likelihood

P (O, q|λ)

Maximization of Q-function

We derive parameters of λ for the given observation sequence O and model parameters λ, which

maximize Q(λ, λ
′
). P (O, q|λ) is written as below

P (O, q|λ) = πq0

T∏
t=1

aqt−1qtbqt(ot) (3.20)

logP (O, q|λ) = log πq0 +

T∑
t=1

log aqt−1qt +

T∑
t=1

log bqt(ot) (3.21)

Now the Q-function in Eq 3.18 can be written as

Q(λ, λ
′
) = Qπ(λ

′
, π) +

T∑
t=1

Qai(λ
′
, ai) +

T∑
t=1

Qbi(λ
′
, bi)
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=

N∑
i=1

P (O, q0 = i|λ
′
) log πi +

N∑
j=1

T∑
t=1

P (O, qt−1 = i, qt = j|λ
′
) log aij +

T∑
t=1

P (O, qt = i|λ
′
) log bi(ot)

(3.22)

where

π = [π1, π2, ..., πN ] (3.23)

ai = [ai1, ai2, ..., aiN ], (3.24)

and bi is the parameter vector that defines bi(). The following the stochastic constraints have to be

satisfied to maximize the Eq. 3.22 and the parameter set is λ

N∑
j=1

πj = 1, (3.25)

N∑
j=1

aij = 1, (3.26)

M∑
k=1

cjk = 1, (3.27)

∫ ∞
−∞

bj(o)do = 1, (3.28)

can be derived as

πi =
α0(i)β0(i)∑N
j=1 αT (j)

= γ0(i) (3.29)

aij =

∑T
t=1 αt−1(i)aijbj(ot)βt(j)∑T

t=1 αt−1(i)βt−1(i)
=

∑T
t=1 ξt−1(i, j)∑T
t=1 γt−1(i)

(3.30)

The reestimation formulas for the coefficients of the mixture density, i.e, cjk , µjk and Σjk are of

the form

cij =

∑T
t=1 γt(j, k)∑T

t=1

∑M
k=1 γt(j, k)

(3.31)

µjk =

∑T
t=1 γt(j, k) · ot∑T
t=1 γt(j, k)

(3.32)

Σjk =

∑T
t=1 γt(j, k) · (ot − µjk)(ot − µjk)

′∑T
t=1 γt(j, k)

(3.33)

where γt(j, k) is the probability of being in state j at time t with the kth mixture component

accounting for ot , i.e.,

γt(j, k) =
αt(j)βt(j)∑N
j=1 αt(j)βt(j)

cjkN(ot, µjk,Σjk)∑M
m=1N(ot, µjk,Σjk)

(3.34)
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3.2 Modeling F0 Parameters

In the excitation part the F0 pattern contains continuous values in the voiced region because of the

periodic movement of vocal folds during speech production and a discrete symbol in the unvoiced

region because of the random movement of vocal folds at the time speech production as shown in

Fig.3.3. Hence, we can not employ the discrete or continuous HMMs to model the F0 patterns.

There are several methods[23] to handle the unvoiced region of the speech: (i) We use a random

vector generated from a probability density function (pdf) with a large variance to replace each

unvoiced symbol and then we use the continuous HMMs to model the random vectors explicitly [24],

(ii) We assume that F0 values exists always but they are unobservable in the unvoiced region and

applythe expectation maximization (EM) algorithm [25]. In this section, we discuss a new form of

HMM to model the F0 patterns, in this new HMM the state output probabilities are modelled by

multi-space probability distributions (MSDs) is described. That is nothing but modelling the F0

patterns as linear combination of continuous and discrete HMMs

Figure 3.3: F0 patterns

3.2.1 Introduction to Multi-Space Probability Distribution

Now let us consider a sample space Ω which consists of G spaces as in [33] as shown in Fig. 3.4

Ω =

G⋃
g=1

Ωg (3.35)

where Ωg is an ng -dimensional real space Rng , and a space index g is use to specify it. Each space

Ωg has its probability wg , i.e., P (Ωg) = wg , subject to the constraint
∑G
g=1 wg = 1. Each space

has a probability density function Ng(x), xεRng If ng ¿ 0, where
∫ ng

R
Ng(x)dx = 1. Let us assume t

Ωg contains only one sample point if ng = 0. Accordingly, let P (E) be the probability distribution,

then

P (Ω) =

G∑
g=1

P (Ωg) =

G∑
g=1

Ωg

∫ ng

R

Ng(x)dx = 1 (3.36)
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it is observed that, although Ng(x) does not exist for ng = 0. since Ωg contains only one sample

point, for notational simplicity we define as Ng(x) ≡ 1 for ng = 0.

Each event E, which we take in this report is represented by a random variable o, it consists of

a continuous random variable xεRn and a set of space indices X, that is,

o = (x,X) (3.37)

where all spaces specified by X are n-dimensional. The observation probability of o is defined by

b(o) =
∑
gεS(o)

ωgNg(V (o)) (3.38)

where

V (o) = x, S(o) = X. (3.39)

Observations patterns are shown in Fig. 3.4. An observation o1 consists of three-dimensional vector

x1εR
3 and a set of space indices X1 = 1, 2, G. Thus the random variable x is drawn from one of

three spaces Ω1,Ω2,ΩG ε R
3 , and its probability density function is given by w1N1(x) +w2N2(x) +

wGNG(x).

Figure 3.4: Example of multi-space probability distribution and observations.

Above defined probabilty distribution is known as multi-space probability distribution (MSD)

which is same as the discrete distribution and the continuous distribution when ng ≡ 0 and ng ≡ m >

0, respectively. Further, if S(o)1, 2, ..., G, the continuous distribution is represented by a G-mixture

probability density function.
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3.2.2 Multi-space distribution HMM

The MSD-HMMs output probability in each state is given by the multi-space probability distribution

as in [33]. An N -state MSD-HMM λ is specified by initial state probability distribution π = {πj}Nj=1,

the state transition probability distribution A = {aij}Ni,j=1, and state output probability distribution

B = bi(·)Ni=1, where

bi(o) =
∑
gεS(o)

ωigNig(V (o)), i = 1, 2, · · · , N. (3.40)

As shown in Fig. 3.5, each state i has G probability density functions Ni1(·), Ni2(·), · · · , NiG(·), and

their weights wi1, wi2, · · · , wiG.

Figure 3.5: An HMM based on multi-space probability distribution.

Observation probability of O = o1, o2, · · · , oT is written as

P (O|λ) =
∑
all q

T∏
t=1

aqt−1qtbqt(ot)

P (O|λ) =
∑
all q

T∏
t=1

aqt−1qtwqtltNqtlt(V (ot)) (3.42)

where q = q1, q2, · · · , qT is a possible state sequence, l = l1, l2, · · · , lT εS(o1)× S(o2)× · · · × S(oT )

is a sequence of space indices which is possible for the observation sequence O, and aq0j denotes πj .

Now let us define the forward and backward variables

αt(i) = P (o1, o2, , oT , qt = i|λ) (3.43)
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βt(i) = P (ot+1, ot+2, , oT |qt = i, λ) (3.44)

Now Eq 3.42 can be calculated as

P (O|λ) =

N∑
i=1

αT (i) =

N∑
i=1

β1(i). (3.45)

We use forward and backward variables to calculate the reestimation formulas which will be derived

in the following section

3.2.3 MSD-HMM training using Reestimation algorithm

For a particular choice of MSD-HMM and a observation sequence O the objective in maximum

likelihood estimation is to maximize the observation likelihood P (O|λ) given by (3.42), over all pa-

rameters in λ. In a manner similar to [21], [22], we derive reestimation formulas for the maximum

likelihood estimation of MSD-HMM.

Q-function

An auxiliary function Q(λ
′
, λ) of current parameters λ

′
and new parameter λ is defined as follows:

Q(λ
′
, λ) =

∑
all q,l

P (O, q, l|λ
′
) logP (O, q, l|λ) (3.46)

Let us assume Nig(·) to be the Gaussian density with mean vector µig and covariance matrix Σig .

Q(λ
′
, λ) ≥ Q(λ

′
, λ
′
)→ P (O, λ) ≥ P (O, λ

′
)

Maximization of Q-function

For the given model parameter λ and observation sequence O, let us derive the parameters of λ

which maximize Q(λ
′
, λ). From Eq 3.42, logP (O, q, l|λ) can be written as

logP (O, q, l|λ) =

T∑
t=1

(log aqt−1qt + logωqtlt + logNqtlt(V (ot))) (3.47)

Hence Q-function (3.46) can be written as

Q(λ
′
, λ) =

N∑
i=1

P (O, q1 = i|λ
′
) log πi +

N∑
i,j=1

T−1∑
t=1

P (O, qt = i, qt+1 = j|λ
′
) log aij

+

N∑
i=1

G∑
g=1

∑
tεT (o,g)

P (O, qt = i, lt = g|λ
′
) logNij(V (ot))

(3.48)
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where

T (O, g) = {t|g ε S(ot)} (3.49)

The parameter set λ = (π,A,B) which used to maximize Eq.3.48, subjected to the following stochas-

tic constraints
∑N
i=1 πi = 1,

∑N
j=1 aij = 1 and

∑G
g=1 ωg = 1, can be derived as

πi =
∑

gεS(o1)

γ
′
(i, g) (3.50)

aij =

∑T−1
t=1 ξ

′
(i, j)∑T−1

t=1

∑
g ε S(ot)

γ′(i, g)
(3.51)

ωig =

∑
tεT (O,g) γ

′
(i, g)∑G

h=1

∑
t ε T (O,h) γ

′(i, h)
(3.52)

µig =

∑
t ε T (O,g) γ

′
(i, g)V (ot)∑

t ε T (O,g) γ
′(i, g)

, ng > 0 (3.53)

Σig =

∑
t ε T (O,g) γ

′
(i, g)(V (ot)− µig)(V (ot)− µig)T∑

t ε T (O,g) γ
′(i, g)

(3.54)

Now the forward variable αt(i) and backward variable βt(i) are used to calculate γt(i, h) and ξt(i, j)

as below

γt(i, h) = P (qt = i, lt = h|O, λ)

γt(i, h) =
αt(i)βt(i)∑N
j=1 αt(j)βt(j)

· ωihNih(V (ot))∑
g ε S(ot)

ωigNig(V (ot))
(3.55)

ξt(i, j) = P (qt = i, qt+1 = j|O, λ)

ξt(i, h) =
αt(i)aijbj(ot+1)βt+1(j)∑N

h=1

∑N
k=1 αt(h)ahkbk(ot+1)βt+1(k)

(3.56)

3.2.4 Application to F0 pattern modeling

The MSD-HMM contains both the continuous mixture HMM and the discrete HMM as special cases

because the multi-space probability distribution includes both discrete distribution and the contin-

uous distribution as in [33].

From the observation of F0, it has a continuous value in the voiced region, and there exist no value

for the unvoiced region. Hence we model this observation sequence assuming that the observed F0

value occurs from one-dimensional spaces for the voiced and the the zero-dimensional space defined

for ’unvoiced’ symbol as in section 3.2.1, that is by setting ng = 1 (g = 1, 2, · · · , G− 1),ng = 0 and

S(ot) =

{
{1, 2, · · · , G− 1}, (voiced);

{G} (unvoiced)
(3.57)
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the MSD-HMM can handle F0 patterns including the unvoiced region without anyassumption. In

this case, the observed F0 value is assumed to be drawn from a continuous (G−1)-mixture probability

density function.
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Chapter 4

Generation of Speech parameters

from HMM

Speech recognition systems performance imoroved by including the dynamic features of speech. If

there exists a technique for speech parameter generation from HMMs which integrates the dynamic

features also, will be very useful in speech synthesis. Here we derive a technique for speech parameter

generation from HMMs which integrates the dynamic features as in [33].

4.1 Speech parameter generation based on maximum likeli-

hood criterion

We derive an algorithm to determine speech parameter vector sequence for a given continuous

mixture HMM λ,

O = [oT1 , o
T
2 , · · · , oTT ]T (4.1)

in such a way that

P (O|λ) =
∑
all Q

P (O,Q|λ) (4.2)

is maximized with respect to O, where

Q = {(q1, i1), (q2, i2), · · · , (qT , iT )} (4.3)

is the state and mixture sequence, i.e.,(q, i) indicates the i-th mixture of state q. Let us con-

sider speech parameter vector ot contains the static feature ct = [ct(1), ct(2), · · · , ct(M)]T e.g.,

mel-generalized cepstral coefficients) and dynamic feature ∆ct,∆
2ct (e.g., delta and delta-delta cep-

stral coefficients, respectively), i.e., ot[c
T
t ,∆c

T
t ,∆

2cTt ]T Now we use following linear combination to

calculate the dynamic feature vectors

∆ct =

L
(1)
+∑

τ=−L(1)
−

ω(1)(τ)ct+τ (4.4)
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∆2ct =

L
(2)
+∑

τ=−L(2)
−

ω(2)(τ)ct+τ (4.5)

Let us consider the algorithms in [11], [12] to solve the following conditions

Case 1.

For given λ and Q, maximize P (O|Q,λ) with respect to O under the conditions (4.4),(4.5)

Case 2.

For given λ, maximize P (O,Q|λ) with respect to Q and O under the conditions (4.4),(4.5).

Case 3.

For given λ, maximize P (O|λ) with respect to O under the conditions (4.4),(4.5).

4.1.1 Maximizing P (O|Q, λ) with respect to O

Now let us consider maximizing P (O|Q,λ) with respect to O for a fixed state and mixture sequence

Q. The logarithm of P (O|Q,λ) can be written as

logP (O|Q,λ) = −1

2
OTU−1O +OTU−1M +K (4.6)

where

U−1 = diag[U−1q1,i1 , U
−1
q2,i2

, · · · , U−1qT ,iT ] (4.7)

M = [UTq1,i1 , U
T
q2,i2 , · · · , U

T
qT ,iT ] (4.8)

µqt,it and Uqt,it are the 3M × 1 mean vector and the 3M × 3M covariance matrix, respectively,

associated with it -th mixture of state qt, and the constant K is independent of O.

It is evident that P (O|Q,λ) is maximized when O = M without the conditions (4.4), (4.5), i.e.,

the speech parameter vector sequence becomes a sequence of the mean vectors. Now arranege the

Conditions (4.4), (4.5) in a matrix form:

O = WC (4.9)

where

C = [c1, c2, · · · , cT ]T (4.10)

W = [ω1, ω2, · · · , ωT ]T (4.11)

ωt = [ω
(0)
t , ω

(1)
t , ω

(2)
t ] (4.12)

ω
(n)
t =

[OM×M1st
, · · · , OM×M , ω(n)(−L(n)

− )
t−L(n)

− −th
IM×M ,

· · · , ω(n)(0)IM×M , · · · , ω(n)(L
(n)
+ )

t+L
(n)
+ −th

IM×M ,

OM×M , · · · , OM×MT−th
]T , n = 0, 1, 2

(4.13)
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where L0
− = L0

+ =0, and ω(0)(0)=1.Under the condition (4.9), maximizing P (O|Q,λ) with respect

to O is equivalent to that with respect to C. By setting

∂ logP (WC|Q,λ)

∂C
= 0 (4.14)

we obtain a set of equations

WTU−1WC = WTU−1MT (4.15)

For the solution of Eq.4.15 direclty, we require O(T 3M3) operations because WTU−1W is a TM ×
TM matrix. By using the special structure of WU−1W , Eq.4.15 solved by using the Cholesky

decomposition with less operations [27].

4.1.2 Maximizing P (O,Q|λ) with respect to O and Q

This problem is solved by calculating maxc P (O,Q|λ) = maxc P (O|Q,λ)P (Q|λ)for all Q. But it is

not possible in practical because there are too many combinations of Q. Hence We use the algo-

rithms developed in [11], [12].

state duration densities are incorporated in HMMs to control temporal structure of speech pa-

rameter sequence . The probability P (O,Q|λ) can be written as P (O, i|q, λ)P (q|λ), where q =

{q1, q2, · · · , qT }, i = {i1, i2, · · · , iT }, and the state duration probability P (q|λ) is given by

logP (q|λ) =

N∑
n=1

log pqn(dqn) (4.16)

where the total number of states which have been visited during T frames is N , and pqn(dqn) is

the probability of dqn consecutive observations in state qn . If we determine the state sequence q

only by P (q|λ) independently of O, maximizing P (O,Q|λ) = P (O, i|q, λ)P (q|λ) with respect to O

and Q is equivalent to maximizing P (O, i|q, λ) with respect to O and i. Furthermore, if we assume

that state output probabilities are single-Gaussian, i is unique. Therefore, the solution is obtained

by solving (4.15) in the same way as the Case 1.

4.1.3 Maximizing P (O|λ) with respect to O

In this case we derive an algorithm based on an EM algorithm, which find a critical point of the

likelihood function P (O|λ). An auxiliary function of new parameter vector sequence O
′

and current

parameter vector sequence O is defined as

Q(O,O
′
) =

∑
all Q

P (O,Q|λ) logP (O
′
, Q|λ) (4.17)

It can be shown that by substituting O
′

which maximizes Q(O,O
′
) for O, the likelihood increases

unless O is a critical point of the likelihood. Equation (4.17) can be written as

Q(O,O
′
) = P (O|λ){−1

2
O
′T
U−1O

′
+O

′T
U−1M +K (4.18)
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where

U−1 = diag[U−11 , U−12 , · · · , U−1T ] (4.19)

U−1t =
∑
q,i

γt(q, i)U
−1
q,i (4.20)

U−1M = [U−11 µ1

T
, U−12 µ2

T
, · · · , U−1T µT

T
]T (4.21)

U−1t µt =
∑
q,i

γt(q, i)U
−1
q,i µq,i (4.22)

and the constant K is independent of O
′
. The occupancy probability γt(q, i) defined by

γt(q, i) = P (qt = (q, i)|O, λ) (4.23)

can be calculated with the forward-backward inductive procedure. Under the condition O
′

= WC
′
,

C
′

which maximizes Q(O,O
′
) is given by the following set of equations:

WTU−1WC
′

= WTU−1M (4.24)

The above set of equations has the same form as (4.15). Accordingly, it can be solved by the

algorithm for solving (4.15).

If we determine the state sequence q only by P (q|λ) independently of O in a manner similar to the

previous section, only the mixture sequence i is assumed to be unobservable. Further, we can also

assume that Q is unobservable but phoneme or syllable durations are given.

4.2 Dynamic features effect and Telugu Example

A simple experiment of synthesizing speech was carried out by using the parameter generation al-

gorithm.I used phonetically balanced 1000 sentences from Telugu speech database for training. The

HMMs used are continuous Gaussian model. All the HMM models were 3-state left-to-right models

with no skips. After the training the duration densities were calculated. Output feature vector con-

sists of 25 mel-generalized cepstral coefficients including the zeroth coefficient, and their delta and

delta-delta coefficients. Mel-generalized cepstral coefficients were calculated from the mel-cepstral

analysis which we discussed earlier. A 25-ms Blackman window is applied to the signal with a win-

dow shift of 5-ms.

I observed the parameter generation in the case 1, in which parameter sequence O maximizes

P (O|Q,λ). From the results of Viterbi alignment of natural speech we estimate the state se-

quence Q. The spectral parameters(mel-generalized cepstral coefficients) are calculated from the

mel-spectral analysis. If we don’t consider the dynamic features, the parameter sequence which

maximizes P (O|Q,λ) becomes a sequence of the mean vectors which results in glitches in the syn-

thesized speech. Hence we can see that integration of dynamic features improves smoothness of

generated speech spectra.
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Chapter 5

HMM-based Text-to-Speech

System for Construction

In this phonetic informations and prosodic informations are modeled simultaneously by HMM. In

this system, mel-generalized cepstral coefficients, fundamental frequency (F0) and state duration

are modeled by continuous density HMMs, multi-space probability distribution HMMs and multi-

dimensional Gaussian distributions, respectively. The distributions for mel-spectrum, fundamental

frequency (F0), and the state duration are clustered independently by using a decision-tree based

context clustering technique. In this chapter we discuss about the HMM modelling of th efeature

vector, HMM structure and how to train context-dependent HMM as discussed in [33].

5.1 Dynamic feature calculation

Here spectral parameters are Mel-cepstral coefficients. These Mel-cepstral coefficient vectors c are

obtained by a mel-cepstral analysis technique [16]. Their dynamic features ∆c and ∆2c are calculated

as linear combination of present and previous cofficients

∆ct = −1

2
ct−1 +

1

2
ct+1 (5.1)

∆2ct =
1

4
ct−1 −

1

2
ct +

1

4
ct+1 (5.2)

We follow the same to calculate dynamic features F0

δpt = −1

2
pt−1 +

1

2
pt+1 (5.3)

δ2pt =
1

4
pt−1 −

1

2
pt +

1

4
pt+1 (5.4)
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5.2 Modeling of spectrum and F0

The sequence of mel-cepstral coefficient vector and F0 pattern were modeled by a continuous density

HMM and multi-space probability distribution HMM, respectively.

By using embedded traing we construct spectrum and F0 models because the embedded training

does not need label boundaries when appropriate initial models are available. Speech segmentations

may be discrepant if spectrum models and F0 models are embedded and trained separately.

Hence context dependent HMMs are trained with feature vector which consists of spectrum, F0 and

their dynamic features as in Fig.5.2. Which results in HMM which has four streams as shown in

Fig.5.3.

Figure 5.1: Output feature vector.

5.3 Modeling of Durations

5.3.1 Overview

There exists many proposed techniques for training HMMs and their state duration densities simul-

taneously (e.g.,[28]). But these technique require large computations. so, state duration densities

are estimated by using state occupancy probabilities which are obtained in the last iteration of em-

bedded re-estimation as in [29].

In the HMM-based speech synthesis system described above, state duration densities were modeled

by single Gaussian distributions estimated from histograms of state durations which were obtained

by the Viterbi segmentation of training data[33]. In this procedure, however, it is impossible to
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Figure 5.2: Structure of HMM.

obtain variances of distributions for phonemes which appear only once in the training data.

To overcome it Gaussian distributions of state durations are calculated on the trellis(Section 3.1.2)

which is made in the embedded training stage. State durations of each phoneme HMM are regarded

as a multi-dimensional observation, and the set of state durations of each phoneme HMM is mod-

eled by a multi-dimensional Gaussian distribution. Dimension of state duration densities is equal

to number of state of HMMs, and nth dimension of state duration densities is corresponding to nth

state of HMMs.

5.3.2 State duration models training

From the trellis structure which are obtained in embedded training state duration densities are

estimated. The mean ξ(i) and the variance σ2(i) of duration density of state i are determined by

ξ(i) =

∑T
t0=1

∑T
t1=t0

χt0,t1(i)(t1 − t0 + 1)∑T
t0=1

∑T
t1=t0

χt0,t1(i)
(5.5)

σ2(i) =

∑T
t0=1

∑T
t1=t0

χt0,t1(i)(t1 − t0 + 1)2∑T
t0=1

∑T
t1=t0

χt0,t1(i)
− ξ2(i) (5.6)

respectively, where χt0,t1(i) is the probability of occupying state i from time t0 to t1 and can be

written as

χt0,t1 = (1− γt0−1(i)) ·
t1∏
t=t0

γt(i) · (1− γt1+1(i)) (5.7)
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where γt(i) is the occupation probability of state i at time t, and we define γ−1(i) = γT+1(i) = 0

5.4 Context dependent model

5.4.1 Contextual factors

In this we consider the relation between phonemes. Context is nothing but the factor of speech

variations. There are many contextual factors which affect spectrum, F0 and duration. In this

report following contextual factors are taken into account:

Phoneme

• {preceding, succeeding} two phonemes

• current phoneme

Syllable

• no. of phonemes at {preceding, current, succeeding} syllable

• {accent, stress} of preceding, current, succeeding syllable

• Position of current syllable in current word

• no. of {preceding, succeeding} {accented, stressed} syllable in current phrase

• no. of syllables {from previous, to next} {accented, stressed} syllable

• Vowel within current syllable

Word

• Part of speech of {preceding, current, succeeding} word

• no. of syllables in {preceding, current, succeeding} word

• Position of current word in current phrase

• no. of {preceding, succeeding} content words in current phrase

• no. of words {from previous, to next} content word

Phrase

• no. of of syllables in {preceding, current, succeeding} phrase

Note that a context dependent HMM corresponds to a phoneme.

5.4.2 Context clustering

We build context dependent models considering many possible combinations of the above mentioned

contextual factors, and we expect that we able to obtain appropriate models. But, as contextual

factors increase,then their possible combinations also increase exponentially. Therefore, model pa-

rameters with sufficient accuracy cannot estimated with the given limited training data. And it is

very difficult to prepare speech database with all these possible combinations of contextual factors
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Introduction to context clustering

So as to overcome the above problem, we apply a decision-tree based context clustering technique

as in [32] for distributions for spectrum, F0 and state duration.

The decision-tree based context clustering algorithm have been extended for MSD-HMMs in [31].Be-

cause each of spectrum, F0 and duration have its own influencing contextual factors, the distributions

for spectral parameter and F0 parameter and the state duration are clustered independently

5.4.3 Databese Desctiption

We used phonetically balanced 1000 sentences from Telugu speech database for training. Given

speech database were sampled at 16 kHz sampling frequency and a Blackman window of 25-ms id

applied with a windowshift of 5 ms. Then mel-generalized cepstral coefficients were calculated by the

mel-cepstral analysis which is presented in chapter 2. Output feature vector consists of spectral(mel-

generalized spectral coeffecients) and excitation(F0 parameter) vectors. Spectral parameter vector

consists of 25 mel-generalized cepstral coefficients including the zeroth coefficient, their delta and

delta-delta coefficients. F0 parameter vector consists of log F0, its delta and delta-delta. We used 3-

state left-to-right HMM models with no skip and with single diagonal Gaussian output distributions.

Decision trees for spectrum, F0 and duration models were constructed.
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Chapter 6

HMM-based Text-to-Speech

Synthesis

Speech waveform was generated by using an speech parameter generation algorithm from HMM and

a source-filter based vocoding technique. By listening tests, I confirmed that the proposed system

successfully synthesizes natural-sounding speech which resembles the speaker in the training databas

6.1 Overview

HMM-based text-to-speech synthesis systems synthesis part is shown in Fig. 6.1. In the synthesis,

we convert the given text as context based label sequence. Then,from these context dependent

label sequence, a sentence HMM is constructed by concatenating context dependent HMMs. and

the state durations of the sentence HMM are determined as in [31]. By considering the obtained

state durations, a sequence of mel-cepstral coefficients and F0 values are generated by using speech

parameter generation algorithm. Which also includes voiced and unvoiced decisions . Finally, speech

is synthesized directly from the generated mel-cepstral coefficients and F0 values by using the MLSA

filter [16], [19].

6.2 Text analysis

Phonetic transcription is done for the given text input which is in Telugu. Now for the trancscripted

text we form a context dependent label sequence.

6.3 Duration determination

For a given speech length T , the goal is to obtain a state sequence q = q1, q2, · · · , qT which maximize

logP (q|λ, T ) =

K∑
k=1

log pk(dk) (6.1)
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under the constraint

T =

K∑
k=1

dk (6.2)

where pk(dk) is the probability of duration dk in state k, and K is the number of states in HMM λ.

Since each duration density pk(dk) is modeled by a single Gaussian distribution, state durations

{dk}Kk=1 which maximize (6.1) are given by

dk = ξ(k) + ρ · σ2(k) (6.3)

ρ =
T −

∑K
k=1 ξ(k)∑K

k=1 σ
2(k)

(6.4)

where ξ(k) and σ2(k) are the mean and variance of the duration density of state k, respectively.

6.4 Results

According to the estimated state duration, spectral and excitation parameters are generated from

a sentence HMM constructed by concatenating context dependent HMMs. Fig. 6.2 shows spectra

of natural speech and synthesized speech for a Telugu phrase ”aayanabhaarya”. Fig. 6.4 shows F0

pattern of natural speech and synthesized speech for a Telugu sentence ”aayanabhaarya”.

Figure 6.1: Spectrogram of the original phrase ”aayanabhaarya”

Figure 6.2: Spectrogram of the synthesized phrase ”aayanabhaarya”
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Figure 6.3: Pitch contour for the original phrase ”aayanabhaarya”

Figure 6.4: Pitch contour for the synthesized phrase ”aayanabhaarya”

31



Chapter 7

Conclusions

This thesis deals with HMM-Based Text to speech synthesis system for Telugu language.A working

Telugu HTS is built. Source-filter model is discussed. How to model the speech parameters based on

HMM is presented in this thesis. Spectral Parameter modelling and excitation (F0) parameter mod-

elling is dealt in this thesis. Generation of speech parameter vector from the HMM and construction

of HMM Based Text-to-Speech Synthesis system for Telugu is presented. Effects of dynamic features

are also discussed.
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