Polyoxometalates for Nonvolatile Memory Applications

Poster · June 2016
DOI: 10.13140/RG.2.1.4464.8560

5 authors, including:

Debaprasad Shee
Indian Institute of Technology Hyderabad
32 PUBLICATIONS 131 CITATIONS

Sib Sankar Mal
University of Hamburg
49 PUBLICATIONS 1,255 CITATIONS
Polyoxometalates for Nonvolatile Memory Applications
Khandoji Chetana, Sterin N. S.a, Debaprasad Sheeb, Partha P. Das*a, Sib Sankar Malc

a Department of Physics, National Institute of Technology Karnataka (NITK), Surathkal, Mangalore, Karnataka- 575025.
b Department of Chemical Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy, Telangana- 502285.
c Department of Chemistry, National Institute of Technology Karnataka (NITK), Surathkal, Mangalore, Karnataka- 575025.

Proposed research effort:
- Fabrication of two terminal resistive random access memory (RRAM) device.
- Materials to be used as active switching layer: (a) conventional transition metal oxide (TMO) thin film (sputter deposited) and (b) polyoxometalates (spin-coated).
- To make typical charge transport measurements, both at room temperature and low temperature (down to 4.2 K) to study resistance switching phenomena.

Proposed device architecture:
- A thin film of TMO or polyoxometalate will be deposited using sputtering or spin-coating method on a conducting substrate which acts as bottom electrode. Top contacts (Au or Pt) will be deposited using dc sputtering method.
- I-V measurements will be carried out between top and bottom contacts.

Facilities needed:
- RF and DC sputtering, spin-coating unit.
- I-V measurement set-up.
- Low temperature charge transport measurements.
- Structural characterization: SEM, HRTEM, AFM, XPS, etc.

Facilities available at NITK:
- RF and DC sputtering chamber
- Spin-coating unit
- I-V measurement set-up

Fig. 1: Schematic diagram of a RRAM device.

Fig. 2: RF and DC sputtering chamber

Fig. 3: spin-coating unit.

Fig. 4: SEM image of POM.

Fig. 5: I-V plot showing resistive switching.

Preliminary results:
- POM (Na\textsubscript{6}V\textsubscript{10}O\textsubscript{28}) as switching layer:

*Correspondence: Partha P. Das, Low Dimensional Physics Laboratory, Physics Dept., NIT Karnataka