
 
 
   

1 
 

EVALUATION OF MODELLING STRATEGIES FOR 

BEHAVIOR OF REINFORCED CONCRETE BRIDGE 

COLUMNS UNDER MONOTONIC AND CYCLIC LOADING 

 

 

TARUTAL GHOSH MONDAL 

CE13M1023 

 

 

 

A Dissertation Submitted to 

Indian Institute of Technology Hyderabad 

In Partial Fulfilment of the Requirements for 

The Degree of Master of Technology 

 

 

 

 

 

 

 

 

 

 

DEPARTMENT OF CIVIL ENGINEERING 

INDIAN INSTITUTE OF TECHNOLOGY HYDERABAD, INDIA 

JUNE, 2016 







 
 
   

1 
 

Acknowledgements 

I would like to express my highest appreciation to my supervisor, Dr. S. Suriya Prakash, 

who gave me the opportunity to work in this interesting area and for the patient guidance, 

encouragement and advice he has provided through my time as his student. His effort in 

supporting me throughout the work was invaluable.   

I have been lucky to be supervised by Dr. C. P. Vyasarayani who cared so much about my 

work and responded to my queries promptly. I also would like to thank Dr. Anil Agarwal for 

his precious guidance that represented a constant source of help and encouragement throughout 

the work. I really appreciate the discussions we have had. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 



 
 
   

2 
 

ABSTRACT 

Torsional loadings can significantly affect the flow of internal forces and deformation 

capacity of RC columns. This, if not considered in design, can influence the performance of 

vital components of bridges and consequently impact the daily operation of the transportation 

system. Moreover, presence of torsional loading increases the possibility of brittle shear 

dominated failure which may result in fatal catastrophe. However, a review of previously 

published studies indicates that the torsional behaviour of reinforced concrete members has not 

been studied in as much depth as the behaviour under flexure and shear. The present study 

focuses on filling this knowledge gap existing in this important area of research. A finite 

element study is conducted to understand the overall behaviour of reinforced concrete columns 

under monotonic torsional loading. Influence of different parameters like reinforcement ratio 

and level of axial compression, internal shear flow distribution in the cross section and 

sequence of failure progression for square and circular columns were investigated. On the other 

hand, recent bridge failures due to earthquakes around world have renewed interest in 

understanding the nonlinear dynamic behaviour of existing and new bridge structures. Analysis 

of reinforced concrete bridge columns under cyclic loading requires proper identification and 

calibration of suitable hysteresis models. Columns being the most critical components of a 

bridge structure, knowledge on the hysteresis behaviour of bridge columns are of primary 

importance in determining the earthquake response of bridges. This study aims at predicting 

the flexural hysteresis behaviour of RC bridge columns using Bouc - Wen type model. 

Experimental data from literature is used for validation of the proposed modelling approach. A 

good correlation was observed between the observed behaviour and the predicted values. A 

polygonal hysteresis model is also developed to predict the response of circular RC columns 

under cyclic torsional loading.  Unloading and reloading rules are proposed based on statistical 

analysis of experimental data. The prediction of the model compared favourably with measured 

values. 
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CHAPTER 1 

INTRODUCTION 
 

 

1.1 GENERAL 

The damages observed after earthquakes has indicated that torsional oscillations are 

often the cause of distress in buildings and bridges. Reinforced concrete (RC) bridge columns 

with irregular three-dimensional bridge configurations can result in significant torsional 

moments in addition to axial, bending, and shear forces during earthquake events.  The addition 

of torsion is more likely in skewed or horizontally curved bridges, bridges with unequal spans 

or column heights, and bridges with outrigger bents.  Torsion in bridges with outrigger bents 

occurs due to eccentricity of reaction force developed in the footing due to lateral movement 

of superstructure under seismic vibration (Fig. 1.1(a)). In skewed bridges, the collision between 

bridge deck and abutment may cause inplane rotation of superstructures and consequently 

induces torsion in the bridge columns (Fig. 1.1(b)).  
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(a) Outrigger Bent (b) Skew Bridge Deck 

Fig. 1.1  Torsion in Bridge Structures 

 

Torsion effects due to rotation of the superstructure can be significant when shear keys 

restrain the bridge superstructure at the abutment, and/or if there is a significant decrease in the 

torsion stiffness in relation to the bending stiffness of the column. Construction of bridges with 

these configurations is often unavoidable due to site constraints. The force produced in bridge 

columns due to dead and live loads is primarily axial.  Bridges near the earthquake epicentre 

can be subjected to a significant vertical load (Saadeghvaziri and Fouch 1990), which is 

typically neglected in design. Lateral seismic loads will cause the single-column bents to 

translate laterally and rotate slightly when the bridge abutment has significant stiffness.  Spread 

footings and pile footings have adequate torsional restraint to be considered when they are 

fixed against rotation. As such, the superstructure rotation will cause compatibility torsion in 

the columns. The load on the columns will, therefore, include axial compression, shear, flexure 
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and torsion. Axial loads can be considered constant in absence of a vertical component due to 

near field effects, while other loads act cyclically. 

 

The possibility of significant torsional loadings was illustrated in an analytical study 

carried out to investigate the seismic torsion response of skewed bridge piers by Tirasit and 

Kawashima (2006). The results from their analysis show that pounding between skewed bridge 

deck and abutments takes place which results in inplane deck rotation increasing seismic 

torsion in skewed bridge piers. Moreover, they found that the consideration of the locking of 

bearing movement after failure can extremely amplify the seismic torsion in skewed bridge 

piers. This necessitates a clear understanding of the effect of torsion combined with bending, 

shear and axial compression on the behaviour of bridge columns.  

 

 

1.2 LITERATURE REVIEW 

Seismic torsion in bridges in the past earthquakes has been documented (Goel and 

Chopra 1994), analytically investigated (Isakovic et al. 1998, Meng and Lui 2000, Hurtado 

2009, Tirasit and Kawashima 2005, Mondal and Prakash 2015c) and experimentally measured 

(Johnson et al. 2006, Nelson et al. 2007) by different researchers.  

 

Hsu (1968a) tested 53 beams under pure torsion. The major variables of his experiments 

were – i) Amount of reinforcement, ii) Solid section versus hollow section, iii) Ratio of volume 

of longitudinal bars to volume of hoop bars, iv) Grade of concrete, v) Scale effects, vi) Depth-

to-width ratio of cross section, vii) Spacing of longitudinal bars, and vii) Spacing of hoops. 

Some notable findings of his work are – 
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 Pre-cracking behaviour of reinforced concrete elements is identical to plain 

concrete elements. Saint – Venant theory cannot predict the post cracking 

response of RC sections. 

 An RC section is said to be under-reinforced if the reinforcement yields prior to 

crushing of concrete in compression. If crushing of concrete occurs before 

yielding of reinforcement, then the section is called over-reinforced. 

 The concrete in the core does not contribute to ultimate capacity of the section 

significantly.  

 Hoop spacing has minimal effect on the ultimate capacity of RC sections with 

identical volumetric ratio of hoops. 

 

Lampert and Collins (1972) showed through experimental and analytical studies that 

space truss model can accurately predict the torsional strength of RC sections with low 

reinforcement ratio. However, the model becomes unconservative for high reinforcement ratio. 

 

Mitchell and Collins (1974) introduced ‘diagonal compression field theory’ to deal with 

this unconservatism and suggested that prediction of the proposed model matches the post 

cracking experimental response accurately. In the same line, Hsu and Moy (1985) presented 

‘softened truss model’ which is equally competent in predicting the behaviour of RC sections 

subjected to torsional loading. The two theories are based on slightly different assumptions on 

concrete behaviour and thickness of shear flow zone. They are more accurate than space truss 

model but at the same time more complicated to implement.  

 

Most of the investigations in the past focused solely on the ultimate torsional strength 

of RC members ignoring the overall torque – twist behaviour. Hsu (1968a) observed that before 
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cracking the torsional behaviour of reinforced concrete members is similar to plain concrete 

members with small increase in strength with increasing reinforcement. After cracking 

torsional stiffness drops suddenly and follows a short plateau till peak and thereafter encounters 

a gradual fall in resistance till failure (Lampert 1973, Mitchell and Collins 1974, Rabbat and 

Collins 1978, Hsu and Moy 1985). Lampert (1973) derived a theoretical expression for post 

cracking secant stiffness based on space truss model. However, Lampert’s expression cannot 

follow the complete torque – twist curve as in case of diagonal compression field theory 

proposed by Mitchell and Collins or softened truss model proposed by Hsu. Few other models 

were proposed in the same line by Leung and Schnobrich (1987), Rahal and Collins (1996) and 

Cocchi and Volpi (1996) to predict the overall torsional behaviour of reinforced concrete 

sections. 

 

Investigations have revealed that cyclic torsional loading reduces the strength and 

stiffness of a reinforced concrete member based on the displacement history of the member. 

Jakobsen et al. (1984) tested six reduced scale RC box columns under cyclic torsion with and 

without constant axial compression. His key findings are summarised below. 

 Failure initiated by spalling of concrete in the corner.  

 Just after cracking significant stiffness degradation took place. 

 Load repetition at current maximum twist level caused stiffness reduction 

proceeding at decreasing rate. 

 Load repetition below current maximum twist level did not affect the stiffness 

perceptibly. 

 Axial compressive load and increased reinforcement ratio delayed the stiffness 

degradation. 
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Venkappa and Pandit (1987) conducted cyclic torsion tests on 16 reinforced concrete 

beams and made the following observations. 

 Pre-cracking response was linear and was marked by absence of residual strains. 

 The response after cracking was marked by nonlinearity of strains and 

progressive degradation of stiffness with successive loading cycle.  

 The number of cycle causing failure declines sharply with increasing peak 

torque. Faster loading rate also has a similar influence on the number of loading 

cycle. 

 Preloading under cyclic torsion significantly lowers the stiffness of an RC 

specimen. 

 

Besides, several investigations were focused on the response of square (Ogata et al. 

2000, Hsu and Wang 2000, Hsu and Liang 2003, Nagata et al. 2004, Otsuka et al. 2004, Tirasit 

and Kawashima 2005, Mondal and Prakash 2015b), oblong (McLean and Buckingham 1994, 

Hurtado 2009) and circular (Hurtado 2009, Prakash et al. 2012, Mondal and Prakash 2015a) 

columns subjected to cyclic and combined torsional loading. Nevertheless, information is 

scarce on several issues, such as, the effect of increasing the transverse reinforcement ratio, 

longitudinal reinforcement ratio, geometry of the cross section and the effect of axial 

compression on the torsional response of RC bridge columns.  

 

A review of previous studies indicates that, hysteresis modelling approaches adopted 

by different researchers in the past are predominantly of two types, namely – polygonal 

hysteresis models (PHM) and smooth differential models (SDM). In polygonal hysteresis 

models, the response of an entity is represented by a set of path defining piecewise linear or 

nonlinear functions. One of the best known polygonal hysteresis models available in literature 
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is Clough and Johnston (1966) model, which is characterized by a bilinear primary curve. It 

considers strain hardening in post yielding regime and takes into account stiffness degradation 

under load reversals. Takeda model (Takeda et al. (1970)) represents a tri-linear primary curve 

marked by a stiffness change at cracking point. It is governed by some loading – unloading 

rules formulated based on experimental observations. In the pivot hysteresis model developed 

by Dowell et al. (1998), the envelope curve under monotonic loading has four branches 

characterized by elastic stiffness, strain hardening, strength degradation and linearly decreasing 

residual strength. The loading and unloading are governed by two pivot points which determine 

the level of softening with increasing displacement and the degree of pinching on load reversal. 

Other notable works on PHM include Fukada (1969), Aoyama (1971), Atalay and Penzien 

(1975), Nakata et al. (1978), Mansur and Hsu (2005), and Tirasit and Kawashima (2007). The 

PHMs are governed by some empirical laws derived on the basis of experimental observations 

representing a certain range of the parameters that influence the behaviour under cyclic loading. 

Utility of the models beyond that range of guiding parameters requires careful verification. 

Therefore, the PHMs are not generic and they lack the versatility of being applied to different 

structural systems and loading protocols. This limitation of PHM led to the development of 

smooth differential models where the response of a member to a reversed cyclic loading is 

represented by a set of ordinary differential equations. Among all SDMs studied previously, 

the one proposed by Bouc (1967) and Wen (1976, 1980) is most widely used owing to its 

versatility and robustness. It is also computationally efficient and mathematically tractable. The 

model was subsequently modified by Baber and Noori (Baber and Wen 1981, Baber and Noori 

1985, 1986) to include the effect of system degradation and pinching and the improved model 

is popularly known as Bouc - Wen - Baber - Noori (BWBN) model. In the past, Bouc - Wen 

type models have been used to predict the cyclic response of different structural systems such 

as, masonry walls (Clarke 2005), torsional – shear buildings (Omrani et al. 2010), reinforced 
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concrete beams and beam-column joints (Kunnath et al. 1997, Sengupta and Li 2013), concrete 

piles (Lin et al. 2002) and base isolation devices (Ismail et al. 2010). However, only limited 

studies have focused on predicting the flexural hysteresis behaviour of RC bridge columns.  

 

On the other hand, all the PHMs mentioned above were developed for shear and flexure 

and are incapable of predicting the behaviour under torsion owing to high degree of pinching 

and degradation involved in torsional loading. Very few researchers have, in deed, focused on 

the analytical modelling of the hysteresis behaviour exhibited by RC members under cyclic 

torsion. Tirasit and Kawashima (2007) and Wang et al. (2014) have recently proposed some 

PHMs for RC columns under torsional loading. In both of the studies, a semi-empirical primary 

curve was used, where the yield torsional moment was estimated using space truss analogy and 

post-yield behaviour was obtained from empirical relations derived on the basis of 

experimental observations. However, application of these models is limited to specimens 

having similar geometric and reinforcement configurations as those used for formulation of the 

models. Validation of the models outside that range of test variables remained a scope of future 

work. 

 

1.3 MOTIVATION 

It is essential to expand the knowledge on the behaviour of RC members so that the 

effects of torsion can be clearly understood for developing rational design provisions. A few 

finite element studies in the recent years looked at the response of RC columns subjected to 

combined loading (Mullapudi and Ayoub 2009, Belarbi et al. 2009, Prakash et al. 2010). 

However, the existing FE models have the limitation of not predicting the post peak behaviour 

accurately. Moreover, the previously proposed models were validated with test data on global 

behaviour of the specimens alone, with complete disregard to local behaviours like strain in 
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the reinforcement. In addition to that, influence of different sectional parameters (e.g. 

reinforcement ratio and cross sectional shape), internal stress distribution and failure 

mechanism of the members were not adequately investigated from FE perspective. To fill this 

knowledge gap in this area, a FE model is generated in this study to accurately predict the 

global as well as local behaviour of RC columns under combined torsion and axial 

compression. A number of square and circular columns experimentally tested under torsion 

with various transverse reinforcement ratios and level of axial compression (Prakash 2009, 

Tirasit and Kawasima 2007a, 2007b) were analysed using full scale nonlinear finite element 

models. The finite element analysis results for overall torque – twist behaviour and localised 

values of strains in the rebar compared favourably with the test results. After calibration of the 

developed model, a parametric study was carried out to study the effect of cross sectional shape, 

transverse reinforcement ratio and increasing axial compression. Apart from that, the FE study 

presented in this thesis provides a valuable insight in to the progression of failure of columns 

under combined torsion and axial compression. Thickness of shear flow zone and shear stress 

distribution across the cross section are also investigated which are rather difficult to measure 

experimentally. This brings in an important contribution of this study as these parameters were 

not previously investigated in a detailed manner.  

 

On the other hand, collapse of many important bridges around the world caused by 

recent earthquakes has put forth the necessity to assess the seismic vulnerability of the existing 

bridge columns. Seismic analysis of reinforced concrete (RC) structures requires hysteresis 

models that can accurately predict strength, stiffness, and ductility characteristics of the 

members under cyclic loading. Bridge columns should be properly designed to adequately 

dissipate seismic energy through inelastic deformation under vibrations during earthquakes. 

The level of accuracy of seismic design depends on the accuracy of the hysteresis model. 
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Owing to all these reasons it is of utmost importance to have a proper hysteresis model which 

can accurately predict the cyclic behaviour of RC members considering strength and stiffness 

degradation along with the pinching effects. However, very few investigations in the past have 

focused on development of analytical model which can accurately predict the response of RC 

bridge columns under cyclic loading. The present study focuses on filling this knowledge gap 

existing in this field by proposing a hysteresis model which accurately predicts the cyclic 

behaviour of RC columns of any cross-section, reinforcement ratio, and aspect ratio. 

 

 

1.4 OBJECTIVE AND SCOPE 

The objectives of this study are – 

 To develop a FE model to predict the behaviour of RC columns under monotonic 

torsional loading.  

 To investigate the influence of transverse reinforcement ratio, axial compression on 

torsional strength and stiffness of RC members. 

 To determine the sectional distribution of shear stress and thereby to estimate the 

thickness of shear flow for square and circular sections at different stages of monotonic 

torsional loading. 

 To predict the damage distribution and failure progression in RC columns under 

torsional loading through FE study. 

 To develop an analytical model to accurately predict the hysteretic behaviour of RC 

columns of different cross sections, reinforcement ratio and level of axial compression 

under cyclic flexure and torsion. 
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The scopes of this study are summarised below – 

 Finite Element Analysis 

 The scope of this study is limited to square and circular columns only. Columns with 

other shapes of cross section are a scope of future study. 

 Longitudinal reinforcement ratio was not a variable in the specimen considered for this 

study. Future studies should focus on the influence of longitudinal reinforcement ratio 

on torsional behaviour of RC columns. 

 Columns specimens used in this study were tested under zero or low level of axial 

compression. So, column behaviour under torsional loading with high level of axial 

compression was not investigated. However, it may be investigated in details in a future 

study. 

 

 Bouc – Wen Based Hysteresis Modelling 

 The scope of this study is limited to circular columns only. Columns with other shapes 

of cross section are a scope of future study. 

 This study focused on columns failing in flexure alone. Future study should focus on 

columns failing in shear, torsion and combined loading. 

 

 Polygonal Hysteresis Modelling under Torsion  

 The scope of this study is limited to circular columns only. Columns with other shapes 

of cross section are a scope of future study. 

 Longitudinal reinforcement ratio was not a variable in the specimen considered for this 

study. Future studies should focus on validation of the developed model with specimens 

having different longitudinal reinforcement ratio 
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1.5 EXPERIMENTAL PROGRAM 

1.5.1 Specimen Details 

The specimens considered in this study for validation of the proposed finite element 

model include three columns (H/D(3)-T/M()-1.32%, H/D(6)-T/M()-0.73% and Missouri 

Square) tested at University of Missouri and another two columns (TP-91 and TP-92) tested in 

University of Tokyo. The details of the columns are listed in Table 1.1. The cross sectional 

details are shown in Fig. 1.2.  

 

For calibration of the BWBN model, experimental results of five columns tested by 

Lehman and Moehle (2000) and three other columns tested by Saatcioglu and Baingo (1999) 

were considered. The reinforcement and geometric characteristics of the specimen considered 

in this study have been summarised in Table 1.2. Previous studies have shown that the 

parameters which significantly influence the inelastic cyclic response of reinforcement 

concrete bridge columns are the longitudinal and spiral reinforcement ratio, the axial load ratio 

and the column aspect ratio. It can be observed from Table 1.2 that, the specimens considered 

in this study for validation of BWBN model represent a wide range of the parameters 

mentioned above.  

 

Table 1.1 Details of specimen used for validation of the proposed FE model 

Specimen Id/ 

Parameters 

H/D(3)-

T/M(∞) −

1.32% 

H/D(6)-

T/M()-0.73% 
TP-91 TP-92 

Missouri 

Square 

Section Shape Circular Circular Square Square Square 

Diameter/Width 

(mm) 
610 610 400 400 560 

Clear Cover (mm) 25 25 27.5 27.5 38 

Total Column Height 

(m) 
2.74 4.55 1.75 1.75 3.35 

Effective Column 

Height (m) 
1.83 3.65 1.35 1.35 3.35 
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Cylinder Strength of 

Concrete (MPa) 
27.97 37.90 28.3 28.4 34.6 

Longitudinal Steel 

Yield Strength (MPa) 
462 462 354 354 512 

Transverse Steel 

Yield Strength (MPa) 
457 457 328 328 454 

Transverse Steel 

Ratio (percentage) 
1.32 0.73 0.79 0.79 1.32 

Longitudinal Steel 

Ratio (percentage) 
2.1 2.1 1.27 1.27 2.13 

Axial Force (kN) 600.51 600.51 0 160 0 

 

 

Table 1.2 Details of specimen used for validation of BWBN model 

Specimen Name 

Axialtl PDHTest  /  
ρ

l 

(%) 

ρ
t 

(%) 
H 

(m) 

D 

(mm) 

Concrete 

Strength 

(MPa) 

H/D 
Axial 

(kN) 

Yield 

Strength of 

Long. Bar 

(MPa) 

Yield 

Strength 

of Transv. 

Bar (MPa) 

Leh-H/D(4)- 1.5%-

0.72%-7.2% 
1.5 0.72 2.4 610 31 4 654 462 607 

Leh-H/D(4)- 0.75%-

0.72%-7.2% 
0.75 0.72 2.4 610 31 4 654 462 607 

Leh-H/D(4)- 2.98%-

0.72%-7.2% 
2.98 0.72 2.4 610 31 4 654 462 607 

Leh-H/D(8)- 1.5%-

0.72%-7.2% 
1.5 0.72 4.8 610 31 8 654 462 607 

Leh-H/D(10)- 1.5%-

0.72%-7.2% 
1.5 0.72 6.1 610 31 10 654 462 607 

Saat-H/D(6.58)-

3.28%-1.54%-21% 
3.28 1.54 1.64 250 90 6.6 925 419 1000 

Saat-H/D(6.58)-

3.28%-1.75%-42% 
3.28 1.75 1.64 250 90 6.6 1850 419 580 

Saat-H/D(6.58)-

3.28%-3.43%-42% 
3.28 3.28 1.64 250 90 6.6 1850 419 420 
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(a) H/D(6)-T/M()-0.73% and H/D(3)-T/M()-1.32% 

 
 

(b) TP-91 and TP-92 (c) Missouri Square 

Fig. 1.2 Cross section of the specimens 

 

1.5.2 Test Setup and Loading Protocol 

Test data for the specimens tested in University of Missouri and University of Tokyo 

are obtained from Prakash (2009) and Tirasit and Kawasima (2007a, 2007b) respectively. As 

a part of these studies, several columns were tested under cyclic combined loading including 

torsion. The test setup for circular columns is shown in Fig. 1.3. Cyclic torsional loading was 

generated by controlling two horizontal servo-controlled hydraulic actuators.  The axial 

compressive load was applied by a hydraulic jack on top of the load stubs. This jack transferred 

the axial load to the column via seven un-bonded high-strength pre-stressed steel strands. A 

number of instruments were used to measure the applied loads, deformations, and internal 

13 mm diameter

longitudinal bars

6 mm diameter ,

square ties

@ 50mm c/c

25 mm diameter

longitudinal bars

9 mm diameter ,

square ties @ 82mm c/c

28 mm diameter

longitudinal bars

9 mm diameter ,

Octagonal ties

@ 82mm c/c
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strains. Electrical strain gages were attached to the surface of the longitudinal and transverse 

reinforcement to measure strains permitting study of the deformation of reinforcement under 

different loading conditions.  The square columns had a similar test setup for applying cyclic 

torsion. However, in case of square columns, time varying axial compressive load was applied 

with the help of a vertical actuator attached to the top of the columns.  

 

  

Fig. 1.3 Test set up Fig. 3 Test Set Up 

 

In the tests conducted by Lehman and Moehle (2000), the axial load was applied 

through a spreader beam using a post-tensioning rods placed on either side of the column. 

However, Saatcioglu and Baingo (1999) used two vertical actuators to apply constant level of 

axial compression throughout the test. The lateral displacement was applied using a servo-

controlled hydraulic actuator that was attached to the top of the column. For the specimens 

tested by Saatcioglu and Baingo (1999), the lateral displacement history consisted of 

incrementally increasing deformation reversals. On the other hand, for the specimens tested by 

Lehman and Moehle (2000), the imposed displacement history included three cycles at each 

displacement level. For the post-yield displacement levels, a small displacement cycle was 
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imposed following the three main cycles. However, in this study only one cycle of each 

displacement level was considered for validation of the analytical model.  
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CHAPTER 2 

BEHAVIOUR OF RC COLUMNS UNDER MONOTONIC 

TORSION: A FINITE ELEMENT STUDY 
 

 

2.1 GENERAL 

Finite element (FE) modelling of reinforced concrete structures under combined 

loading has received considerable attention in recent years. However, combination of torsion 

and axial compression is least studied until now in spite of its frequent occurrence in bridge 

columns under earthquake loading. This study aims at creating a nonlinear finite element model 

to predict the behaviour of reinforced concrete bridge columns under combined torsion and 

axial compression. A number of circular and square columns were analysed. The developed 

FE model was calibrated on local and global behaviour through comparison with test data. The 

overall torque–twist behaviour of the members was captured well by the developed FE models. 

The predicted values of strain in the longitudinal and transverse reinforcement matched closely 

with the experimental results. Increase in transverse steel ratio was found to increase the 

torsional capacity and limiting the damage of columns under torsion. It was further observed 

that at low level of axial compression the torsional capacity of columns is enhanced. In 

addition, the FE analysis showed a good agreement on the identification of the damage 

mechanism and the progression of failure. The shape of cross section is found to play a major 

role in distribution of torsional damage in the columns. Square columns exhibited a more 

localized damage due to presence of warping unlike in circular columns which exhibited a 

distributed damage along its length. 
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2.2 MATERIAL MODELS 

2.2.1 Concrete 

Concrete is a quasi-brittle material and has different behaviour in compression and 

tension. Smeared crack approach and damaged plasticity approach are generally used for 

nonlinear analysis of concrete. In the present study, damaged plasticity approach has been 

adopted as it offers a broad potential for matching the simulation results to experimental values 

(Fink et al. 2007). This is a continuum plasticity based isotropic damage model to represent the 

inelastic behaviour of concrete. This model is most suitable for the analysis of reinforced 

concrete structures subjected to monotonic or cyclic dynamic loading under low confining 

pressure. The details of this model can be found in Jankowiak and Lodygowski 2005, Kmiecik 

and Kaminski 2011 and ABAQUS Analysis User’s Manual 6.11. 

 

The values of Young’s modulus and Poisson’s ratio were provided as elastic properties. 

For the nonlinear part, compressive stress data is provided as a tabular function of inelastic (or 

crushing) strain to define the hardening behaviour of concrete under compression. The tension 

stiffening option was used to define the strain softening behaviour of concrete after cracking. 

Tension stiffening can be specified by means of post cracking yield stress and cracking strain 

values. It helps in approximately modelling the bond behaviour between steel and concrete. 

Absence of tension stiffening may lead to local cracking failure which may introduce 

temporary instability in overall response of the model. Hence, it is important to define tension 

stiffening from the perspective of numerical stability also. The variation of the damage 

variables with stress states were also specified under tension and compression. Recovery of 

tensile and compressive stiffness upon load reversal was assumed to be 0 and 95% respectively 

(ABAQUS Analysis User’s Manual 6.11). 
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Compressive stress – strain model proposed by Vecchio and Collins (1986) was used 

for modelling concrete in this study. The behaviour is linearly elastic up to about 30% of the 

maximum compressive strength. Above this point, the stress increases gradually up to the 

maximum compressive strength. Once it reaches the maximum compressive strength, the curve 

descends into a softening region, and eventually crushing failure occurs when ultimate strain 

is reached.  

 

The stress–strain curve for concrete under tension is approximately linearly elastic up 

to the maximum tensile strength. After this point, the concrete cracks and the strength decreases 

gradually to zero. Several tension stiffening models are available to model the strain softening 

observed in cracked concrete. Exponential model proposed by Greene (2006) has been used in 

this study to include the tension stiffening effect. The default values of the failure ratios were 

taken from literature (Kmiecik and Kamiński 2011 and Chaudhari and Chakrabarti 2012). The 

dilation angle was assumed to be 36 degree. The ratio of the ultimate biaxial compressive stress 

to the ultimate uniaxial compressive stress was taken as 1.16. Absolute value of the ratio of 

uniaxial tensile stress at failure to the uniaxial compressive stress at failure was assumed to be 

0.1 though the default value is 0.09. A default value of 1/3 was considered for the ratio of the 

principal tensile stress value at cracking in plane stress, when the other non-zero principal stress 

component attains the ultimate compressive stress value, to the tensile cracking stress under 

uniaxial tension. The value of the viscosity parameter was assumed to be zero. 

 

2.2.2 Reinforcement Steel 

Stress – strain behaviour of steel was obtained from coupon tests. Results of coupon 

tests conducted on steel used for the circular columns are shown in Fig. 2.1. The same for other 
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specimens can be found in Tirasit (2006) and Prakash (2009). Behaviour under compression 

and tension were assumed to be identical. The yield strength of different steels has been shown 

in Table 1.1 (Chapter 1). Mass density was taken as 7800 kg/m3. Modulus of elasticity and 

Poisson’s ratio were assumed to be 200000 MPa and 0.3 respectively.   

 

 

Fig. 2.1 Coupon test results for steel used in the circular columns 

 

 

2.3 PROCEDURE: DYNAMIC EXPLICIT 

Any quasi static problem can be solved as a dynamic one with sufficiently slow load 

increments to produce negligible inertial force. An explicit integration scheme available is used 

in this study owing to its advantages for highly nonlinear problems (Zimmermann 2001). 

Robustness in convergence behaviour, numerical stability, low computation cost and suitability 

for calculation in post failure range are the advantages of the explicit integration method.  If 

dynamic analysis is adopted for static or quasi static procedure, the ratio of kinetic energy to 
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internal energy (ALLKE/ALLIE) must be less than 0.1 as recommended by Zimmermann 

(2001). This condition was satisfied for all the specimens considered in the present study.  

 

 

2.4 STEEL – CONCRETE INTERFACE 

The reinforcing steels were modelled as an embedded bar element. Separate truss 

elements can be used for modelling the reinforcement and they can be connected to the 

surrounding concrete elements via the interface elements. This approach is capable of 

representing the bond stress-slip relations between reinforcement and concrete. To improve the 

predictions, bond slip behaviour was modelled at the interface between longitudinal steel and 

concrete using a surfaced based contact interaction model.  This Penalty interaction algorithm 

uses Coulomb friction model (ABAQUS Analysis User’s Manual 6.11) for surface to surface 

interactions. The value of coefficient of friction was assumed to be 0.6 as suggested by Rabbat 

and Russell (1985). Shear stress limit was taken from Floros and Ingason (2013). Elastic slip 

stiffness was obtained from an equation proposed by Delso et al. (2011).  Number of parametric 

studies was carried out to study the influence of bond on torsional behaviour. Incorporation of 

bond slip model did not produce appreciable improvement in the results when compared to 

perfect bond model. Hurtado (2009) observed that there was negligible slip during the testing 

of RC columns under torsion unlike in flexure where the slip is considerable. Hence, a perfect 

bond was considered for modelling the steel concrete interface in all the models to reduce the 

computational time and improve the accuracy of the predictions. 
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2.5 LOAD AND BOUNDARY CONDITIONS 

One of the key aspects that influence a finite element solution significantly is the 

accurate estimation of load and boundary conditions. In the present study, all degrees of 

freedom were restrained at the bottom of the columns whereas the top was free to deform in 

any mode. The top surface was made rigid using rigid body constraint. Rigid body constraints 

allow to constrain the motion of regions of the assembly to the motion of a reference point. The 

relative positions of the regions that are part of the rigid body remain constant throughout the 

analysis. A reference point was created at the centre of the surface and was assigned as the 

rigid body reference point. Motion or constraints that are applied to the reference point are then 

applied to the entire rigid part. Angle of rotation was imposed monotonically at the reference 

point as a function of time in a tabular form. Constant magnitude of axial compressive load 

was also applied at the same reference point to simulate the test conditions of the experimental 

study. 

 

2.6 MESHING 

Accuracy of FE results greatly depend on the size of the mesh, kind of element used 

and order of approximation. Concrete was modelled with C3D8R element which is a 3 

dimensional 8 noded brick element with 3 translational degree of freedom at each node. 

Rotational degrees of freedom are expressed in terms of the translational degrees of freedom. 

Reduced integration was used to get rid of excess stiffness due to shear locking. Hourglass 

control was adopted to eliminate the spurious modes. On the other hand, T3D2 element was 

used to model the rebars. It is a 2 noded 3 dimensional truss element with three translational 

degree of freedom at each node. Linear elements used in this study require finer mesh leading 

to increase in demand of computer capacity. However, this rise in capacity requirement is offset 
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by explicit integration scheme which is compatible to larger size of mesh. In order to determine 

the optimum mesh size for the FE model, a mesh sensitivity analysis was carried out using 

element aspect ratio of one. Number of elements was increased keeping the aspect ratio 

constant which resulted in smaller mesh sizes. This process was repeated successively until 

convergence of results was achieved. 

 

2.7 RESULTS AND DISCUSSION 

2.7.1 Validation of the Developed Model 

Overall torque – twist behaviour of the test specimens are predicted by the developed 

finite element model and compared with experimental results in Fig. 2.1. The predictions of 

the FE model for overall torque – twist behaviour are found to be in good agreement with the 

experimental results. Efficacy of the model in predicting the cracking and ultimate torsional 

capacity of the tested columns is further illustrated in Table 2.1. FE model overestimates the 

cracking and ultimate torsional capacity, only to a limited extent. The overestimation can be 

attributed to size effect, material and geometric imperfections (Claeson and Johansson 1999) 

which are not considered in the FE model. The torsional stiffness predicted by the finite element 

model was close to the measured values, particularly in the pre-cracking and post-peak region. 

The predicted variation of longitudinal and transverse strain at the mid height of the columns 

with torsional moment showed a sound match with the experimental observations (Fig. 2.2).  

For both square and circular sections, the tie rebars was predicted to yield before the 

longitudinal rebars and the same was observed in the experiment. It demonstrates that the 

developed model is equally effective in predicting the local and the global behaviour of 

reinforced concrete members with fair accuracy. 
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(a) H/D(6)-T/M()-0.73% (b) H/D(3)-T/M()-1.32% 

 

(c) Missouri Square 

 

  

(d) TP-91 (e) TP-92 
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Fig. 2.1 Overall torque - twist behavior 

 

Table 2.1 - Comparison of Predicted Values with Test Data 

Specimen TP-91 TP-92 
H/D (6)-T/M 

()-0.73% 

H/D (3)-T/M 

()-1.32% 

Missouri-

Square 

Cracking 

Torque (kN-

m) 

FE Analysis (A) 62.9 58.0 190.7 224.1 212.3 

Experimental (B) 60.7 76.6 180.9 184.6 189.3 

A/B 1.04 0.76 1.05 1.21 1.12 

Ultimate 

Torque (kN-

m) 

FE Analysis (A) 82.0 84.1 287.7 338.8 283.7 

Experimental (B) 76.6 84.4 281.1 327.5 328.0 

A/B 1.07 0.99 1.02 1.03 0.86 

 

  

(a) TP-92 (b) H/D (3)-T/M ()-1.32% 

Fig. 2.2 Strain in the rebars 

 

2.7.2 Overall Torque – Twist Behaviour 

Overall torque – twist behaviour of the square and circular columns is plotted in Fig. 

2.1. The response is essentially linear in the pre-cracking range. After cracking, the torque – 

twist behaviour exhibits a short plateau followed by an increase in resistance at a tangential 

stiffness equal to a small fraction of the initial stiffness. Similar behaviour was observed in 

previous analytical studies using softened truss model (Hsu 1968a) and modified compression 

field theory (Mitchell and Collins 1974) which are used extensively for prediction of torsional 
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response of RC members. Failure of the columns subjected to torsion was governed by diagonal 

cracking leading to formation of torsional plastic hinge near the mid-height of the columns 

(Prakash et al. 2012). 

 

2.7.3 Effect of Axial Compression  

The tested square columns used for FE validation had an axial stress of 0 MPa and 1 

MPa and the circular columns had a constant axial stress of 2 MPa. Effect of axial compression 

on the torsional behaviour of square and circular reinforced concrete columns is shown in Fig. 

2.3.  Presence of axial compressive load delays the tensile stresses in concrete arising from 

torsion. Thus, the cracking of concrete under diagonal tension is delayed. Consequently, 

cracking torsional capacity of RC members increases significantly in presence of low axial 

compressive load. Increased torsional moment with axial compressive load causes shear cracks 

spiralling around the column. This results in concrete compression field in the form of diagonal 

struts that will induce uniform tensile stress in longitudinal and transverse reinforcements. If 

some axial compression is applied together with torsional moment, and assuming that the 

column section is cracked due to applied torsion, the tension in the longitudinal steel induced 

by torsion will be reduced by the axial compression. Thus, the axial compression loading will 

produce an effect similar to that of increasing the longitudinal steel content in resisting the 

applied torsion. This results in increased torsional capacity of the section as observed in Fig. 

2.4. A similar observation was recorded experimentally by Jakobsen et al. (1984) for box 

columns, Hurtado (2009) for circular columns and Bishara and Peir (1973) for square columns. 

More test results on columns with different sectional parameters in future studies should clarify 

the effect of axial compression on the torsional capacity of RC columns. 
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(a) Square Column (b) Circular Column 

Fig. 2.3 Effect of Axial Compression 

 

2.7.4 Effect of Transverse Reinforcement 

The effect of transverse reinforcement on the torsional moment - twist response of 

square and circular bridge columns was investigated and the results are shown in Fig. 2.4. The 

increase in transverse reinforcement ratio increased the peak torsional capacity of the columns 

as observed in Fig. 2.5. This is because, when an RC member is cracked due to applied torsion, 

apparent truss action is developed where the longitudinal and the transverse steel act as tensile 

links. In this way, the transverse reinforcements contribute to the torsional capacity of RC 

members. The twist at ultimate torsional moment was increased for square columns due to 

increased confinement and reduced softening by transverse reinforcement. However, the value 

of the same parameter was reduced for circular columns owing to the change in failure mode 

from ductile yield of reinforcement to brittle compressive failure of diagonal concrete strut. 

For square and circular columns, the variation in longitudinal and transverse strains with 

torsional moment for different transverse reinforcement ratio is compared in Fig. 2.6. It is 

observed that increase in transverse steel ratio increases the stiffness of the member thereby 
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limiting the strain levels in longitudinal as well as in transverse reinforcement which indicates 

less damage to the columns.  

 

  

(a) Circular Column 

(axial compression = 2 MPa) 

(b) Square Column 

(axial compression = 1 MPa) 

Fig. 2.4 Effect of Transverse Steel Ratio on Overall Torque – Twist Behavior 

 

 

  

(a) Square Column (b) Circular Column 

Fig. 2.5 Effect of transverse steel ratio on peak torsional capacity 
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(a) Circular Column 

(axial compression = 2 MPa) 

(b) Square Column 

(axial compression = 1 MPa) 

Fig. 2.6 Effect of Transverse Steel Ratio on Strain Level in Reinforcement 

 

2.7.5 Thickness of Shear Flow Zone 

The ultimate strength of reinforced concrete member under torsion can be predicted by 

the truss models, the modified compression field theory (MCFT) (Vecchio and Collins 1986), 

or the softened truss model (Hsu 1988; Pang and Hsu 1996; Hsu and Zhang 1997). These 

theories are based on Bredt’s thin tube theory (Bredt 1896) which assumes that the torque 

resisted by the section acts as shear stress that flows around the perimeter of the cross section.  

The analysis of any member (hollow or solid) under torsion can be modelled as a thin-tube as 

shown in Fig. 2.7(a). The concrete core of a solid member is assumed to not contribute to the 

torsional resistance. These theories commonly assume reinforced concrete member as 

assemblies of two-dimensional membrane elements, also called panels, subjected to in-plane 

shear and normal stresses (Fig. 2.7(b)). Therefore, the behaviour of a reinforced concrete 

member under pure torsion can be predicted via the behaviour of membrane elements including 

additional equilibrium and compatibility equations. FE analysis can help in improving the 

predictions of these models by accurate estimation of shear flow thickness. The variation of 

shear stress at ultimate loads depends on the shape of cross section. Typical distribution of 
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shear stress for circular and rectangular cross section is shown in Fig. 2.8. The predicted shear 

flow distribution for circular and square columns at the cracking and peak torsional resistance 

is shown in Fig 2.9 and Fig. 2.10, respectively.  The variation of shear stress was found to be 

highly nonlinear at peak torsional loading for both the circular and square cross sections. 

Higher shear stresses occur at the outer periphery of the cross section validating Bredt’s thin 

tube theory. The results show that the calibrated FE models can be used for parametric studies 

to establish accurate estimation of shear flow thickness for developing simple analytical models 

for design purpose. 

 

 

Fig. 2.7 Torsion of Thin Tube and Lever Arm Area Ao (Adapted from Hsu 1993) 
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Fig. 2.8 Variation of shear stress for square and circular cross sections 

 

 

Fig 2.9 Variation of shear stress due to torsion in radial direction for circular sections 

 



 
 
   

41 
 

  

(a) Variation of shear stress towards the 

edges   

(b) Variation of shear stress in diagonal 

direction 

Fig. 2.10 Variation of shear stress due to torsion in square sections  

 

2.7.6 Damage and Spalling of Cover  

Typically diagonal cracks start developing from near the mid-height of the column 

under applied torsion at lower levels of loading. The cracks spread and close in the form of 

inclined spiral as the loading is increased. Soon after the diagonal cracking, an apparent truss 

action is formed where the spirals act as tensile links. After significant yielding of spirals at a 

high level of torsional loading, a plastic zone forms near mid-height of the column. The 

progression of damage observed during testing is shown in Fig. 2.11 and 2.12. 
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(a) Transverse bar yield (b) Peak torsional moment (c) Overall failure 

Fig. 2.11 Damage in circular column under pure torsion  
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(a) Transverse bar yield (b) Peak torsional 

moment 

(c) Overall failure 

Fig. 2.12 Damage in circular column under pure torsion 

 

The damage state observed at ultimate load showed a good correlation with the finite 

element prediction as shown in Fig. 2.13. Tensile damage variable is used in this study to 

quantify degradation of the material. It is a non-decreasing quantity associated with the tensile 

failure of the material strength. The value of this variable is zero before any degradation of the 

material takes place and it reaches its maximum value of one at complete degradation of the 
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material.  At an intermediate level of damage it assumes a value in between zero and one 

depending upon the level of damage. In essence, this parameter represents failure of material 

in a structure under loading in a quantitative sense. It was further observed that the effect of 

cross sectional shape played a major role on distribution of damage in the columns. Square 

columns exhibited a more localized damage (Fig. 2.13) owing to warping deformation 

compared to that of circular columns where the damage was predominantly distributed over a 

greater height of the columns. 

 

 

Fig. 2.13 Damage Distribution in Columns under Pure Torsion at Final Failure 

 

 



 
 
   

45 
 

2.8 CONCLUDING REMARKS 

The results of nonlinear finite element analysis results for RC columns under combined 

torsion and axial compression are presented in this chapter. The generated FE model exhibited 

excellent convergence and numerical stability characteristics, requiring little computational 

time for analyses under torsional loading. The proposed model accurately simulated the overall 

experimental responses of columns under combined torsion and axial compression. Strength, 

stiffness, ductility, damage progression and failure modes are captured accurately. At low 

levels of axial compression, the cracking torsional moment increases significantly but ultimate 

torsional moment increases marginally. The increase in transverse reinforcement ratio 

increased the peak torsional strength. However, it reduced the twist component at the ultimate 

torsional moment. It also helps to limit the damage in columns under pure torsion. Effect of 

cross sectional shape plays a major role on distribution of damage in the columns. Square 

columns exhibited a more localized damage while the same in the circular columns was 

distributed over a larger length.  
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CHAPTER 3 

BOUC – WEN BASED HYSTERESIS MODELLING OF 

CIRCULAR RC COLUMNS FAILING IN FLEXURE 
 

 

3.1 GENERAL 

Earthquake events in recent years have led to the collapse of many important bridges 

around the world. In general, the primary cause behind the failure of most of the bridges is 

inadequate capacity of the bridge columns under lateral loads. This requires one to assess the 

seismic vulnerability of the existing bridge columns. Seismic analysis is typically required for 

assessing the degree of damage and designing retrofit solutions (He et al. 2015). Seismic 

analysis of reinforced concrete (RC) structures requires hysteresis models that can accurately 

predict strength, stiffness, and ductility characteristics of the members under cyclic loading. 

Bridge columns should be properly designed to dissipate seismic energy adequately through 

inelastic deformation under vibrations during earthquakes (Goodnight et al. 2013, Prakash and 

Belarbi, 2010). The level of accuracy of seismic design depends on the accuracy of the 

hysteresis model. Owing to all these reasons it is of utmost importance to have a proper 

hysteresis model which can accurately predict the cyclic flexural behaviour of RC members 

considering strength and stiffness degradation along with the pinching effects. 

Smooth differential models are a well-known modelling approach, where the response 

of a member to a reversed cyclic loading is represented by a set of linear ordinary differential 

equations. Among all SDMs studied previously, the one proposed by Bouc (1967) and Wen 

(1976, 1980) is most widely used owing to its versatility and robustness. The model was 

subsequently modified by Baber and Noori (Baber and Wen 1981, Baber and Noori 1985, 

1986) to include the effect of system degradation and pinching and the improved model is 
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popularly known as Bouc - Wen - Baber - Noori (BWBN) model. In the past, Bouc - Wen type 

models have been used to predict the cyclic response of different structural systems such as, 

masonry walls (Clarke 2005), torsional – shear buildings (Omrani et al. 2010), reinforced 

concrete beams and beam-column joints (Kunnath 1997, Sengupta and Li 2013), concrete piles 

(Lin et al. 2002) and base isolation devices (Ismail et al. 2010). However, only limited studies 

have focused on predicting the flexural hysteresis behaviour of RC bridge columns.  

Efficiency of BWBN model in predicting the response of a system greatly depends on 

accurate estimation of these unknown parameters. This requires adjusting the model parameters 

in such a way that the difference between the model output and the experimental measurements 

becomes minimal. Various system identification techniques can be applied to tune the model 

parameters so as to match the experimental measurements for proper approximation of the 

actual physical system. In the present study, a system identification tool box developed by Ortiz 

(2012) is used. This toolbox uses NSGA-II algorithm developed by Deb et al. (2002) for 

optimization. A good correlation is found between the predicted response and the experimental 

observation. The model was also able to capture the dissipated energy reasonably well. A 

sensitivity analysis was carried out to gauge the influence of different parameters to the 

accuracy of the model prediction. Each parameter was assigned a sensitivity ranking based on 

their relative sensitivity to model output. Finally, upper and lower bounds for each parameter 

were specified based on the range of their variation observed in this study. 

 

3.2 BOUC-WEN-BABER-NOORI HYSTERESIS MODEL  

3.2.1 Model Description 

The formulation of BWBN model is founded on a single degree of freedom system 

containing a mass ( m ) connected in parallel with a linear viscous damper and a nonlinear 

hysteretic spring element as shown in Fig. 3.1.  
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(a) Schematic Model 

 
 

(b) Linear Restoring Force (c) Hysteretic Restoring Force 

Fig. 3.1 SDF system representing BWBN Model 

 

The equation of motion of the mass under a time dependent forcing function, F(t), is 

given by - 

)());(),(( tFttztuRucum    (3.1) 

where, u  is relative displacement of the mass with respect to ground and c  is linear viscous 

damping coefficient. The restoring force acting on the mass comprises the inertial restoring 

force (m�̈�), the damping restoring force (c�̇�) and the non-damping restoring force, 
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(R(u(t),z(t);t)), which is composed of linear restoring force ku  and hysteretic (nonlinear) 

restoring force kz)1(   as shown in Eq. (3.2).  

kzkuFFttztuR hk )1());(),((    (3.2) 

where, k  is the initial stiffness of the nonlinear spring, α is known as the rigidity ratio which 

varies in the range 0 ≤ α ≤ 1).  

The mass-normalized equilibrium equation shown in Eq. (3.3) is obtained by dividing both 

sides of Eq. (3.2) by mass ( m ). 

)()1(2 2

0

2

000 tfzuuu     (3.3) 

where, 0  is linear damping ratio given by kmc 2 . 0  is pre-yield natural frequency of the 

single degree of freedom system defined by mk . tf  is mass-normalized forcing function 

which is synonymous to acceleration of the system. The hysteretic displacement ( z ) is 

expressed as a first-order nonlinear differential equation as shown by Eq. (3.4). 
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where, )(A ,  , and   are parameters which control the shape and size of the hysteresis loop. 

n  determines the smoothness of transition from elastic to the post-elastic part of hysteresis 

curve. Parameters )( and )(  which represent strength and stiffness degradation are 

functions of dissipated energy ( )(t ) as shown in Eqs. (3.6)-(3.7).  

)()( 0 tAA A   (3.5) 

)(1)( t   (3.6) 



 
 
   

50 
 

)(1)( t   (3.7) 

where,   and   define the rates of strength and stiffness degradation. The dissipated energy 

per unit mass, )(t , is a measure of the area under the hysteretic force (
hF ) and displacement 

(u ) curve as shown in Eq. (3.8). 
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The pinching function, )(zh  can be written as, 

 2

2

2

1 /))sgn((1)(  uqZuzezh    (3.9) 

where, 

  pe 1)( 01
 (3.10) 

))(()( 102     (3.11) 

 ,0  ,p  ,q  ,0    and   are pinching parameters constituting the pinching function. uZ is 

the ultimate value of z , given by 
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The equations discussed in this section is expressed in state vector form as shown in Eq. (3.13).  
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 (3.13) 

It follows from the above discussion that the BWBN model can be represented by a set of 

ordinary differential equations (ODE) as given by Eqs. (3.14) - (3.17). 



 
 
   

51 
 

21 yy   (3.14) 
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When 1)(  zhA   and Eq. (3.17d) is eliminated from the set of governing differential 

equations, the BWBN model is reduced to BW model comprising only 5 unknown parameters. 

Stiff ODEs like the ones presented above can be solved using various methods like Livermore 

solver (Sengupta 2014), semi implicit Rosenbrock method (Nithyadharan and Kalyanaraman 

2013) or 4th order Runge – Kutta method (Ortiz et al. (2013)). In this study, the latter has been 

used for solving the linear ODEs.  

 

3.3 OVERVIEW OF NSGA-II PROCEDURE 

Various techniques have been attempted in previous studies for parameter identification 

of Bouc – Wen type model as shown in Table 3.1. It may be mentioned here that, all the 

methods suggested by various researchers minimize only the mean square error between 

estimated and experimental displacements. Ortiz et al. (2013) proposed a multi-objective 

optimization function by using NSGA-II algorithm. The multi-objective optimization involves 

minimizing the differences between estimated and measured displacements and the estimated 

and measured values of dissipated energies. The author (Oriz et al. 2003) found that this 

technique offered higher precision than all other existing methods. In this study, the same 

NSGA-II technique was adopted for optimization and a reasonably good match was observed 

between the predicted response and test data. 
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Table 3.1: Overview of various optimization techniques used in literature 

Literature Optimization Technique 

Heine (2001) Genetic Algorithm 

Yang and Ma (2003) Constrained Kalman Filter 

Dimizas and Koumousis (2005) Levenberg - Marquardt algorithm 

Ye and Wang (2007) Particle Swarm Optimization 

Soeiro et al. (2007) 
Levenberg - Marquardt algorithm + Stochastic 

Simulated Annealing Approach 

Sengupta and Li (2013) Genetic Algorithm 

Nithyadharan and Kalyanaraman (2013) Nelder and Mead’s Simplex Algorithm 

Mueller (2014) Unscented Kalman Filter 

 

Non-dominated Sorting Genetic Algorithm (NSGA-II), proposed by Deb et al. (2002), 

is one of the most referred multi-objective evolutionary algorithms that has been successfully 

applied on various optimization problems appearing from different fields. Unlike classical 

algorithms, evolutionary algorithms exploit the concept of working with population of 

candidate solutions where from the best set of Pareto solutions are picked up intelligently by 

several genetic operators working over several iterations. In binary NSGA-II, each of these 

solutions is presented in the form of binary strings. One example of this string where 4 decision 

variables are involved could be “{(001)(110)(111)(000)}”, where the entire string within {} is 

one candidate solution and each of the decision variables is presented by the bits inside (). 

Presenting decision variables by 3 bits creates 23 discrete values which can be mapped between 

the lower (presented as 000) and upper bounds (presented as 111) of the decision variable. This 

clearly shows that increasing the number of bits for representing each of these decision 

variables is going to increase the precision of the decision variables involved. The first iteration 

is composed of candidate solutions (say, 𝑁𝑃𝑜𝑝
𝑃  parent solutions) that are created within the 

given bounds of the optimizing variables (or decision variables). Creating candidate solutions 
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within the given bounds helps not to handle bound constraints separately. Evaluating each of 

these solutions for their corresponding function values (fitness / objective function), the entire 

population is undergone the process of reproduction, where better solutions are selected and a 

new set of solutions (say, 𝑁𝑃𝑜𝑝
𝐶  parent solutions) are generated from them using genetic 

operators such as crossover and mutation. The extent of generation of new candidates is 

controlled by the probabilities of crossover and mutation. In crossover, two of the candidate 

parent solutions are selected randomly and a set of two new children solutions are generated 

by merging information of the given two parent solutions. This can be achieved by selecting a 

random cross site after keeping the two parent solutions one above the other and swapping the 

information appearing on one side of the cross site between them. In case of mutation, one of 

the bits in an optimizing variable in a candidate solution is selected randomly and changed. In 

this way, crossover creates new solution using information of existing solutions, whereas 

mutation creates solution disruptively. With the new population in place, the parent and 

children populations (𝑁𝑃𝑜𝑝
𝑃 + 𝑁𝑃𝑜𝑝

𝐶 ) are merged and the entire set of population is evaluated 

for the fitness value. Using the fitness information, the population is next ranked on the basis 

of domination (termed as non-dominated sorting). In case of both objective minimization, a 

candidate solution “c” is asked to dominate solution “d”, when both the objective values of 

solution “c” is less than that of solution “d”. Following this definition, the set of solutions 

which dominates rest of the solutions are given a rank of 1 (𝑁𝑃𝑜𝑝
𝑅𝑎𝑛𝑘−1). Eliminating these 

𝑁𝑃𝑜𝑝
𝑅𝑎𝑛𝑘−1solutions from the set of (𝑁𝑃𝑜𝑝

𝑃 + 𝑁𝑃𝑜𝑝
𝐶 ) solutions, non-dominated sorting is carried 

over again on rest of the solutions to find out the solutions in the rank 2 (𝑁𝑃𝑜𝑝
𝑅𝑎𝑛𝑘−2). This way 

the entire population is classified into several ranks and finally, the parents for the next 

generation, 𝑁𝑃𝑜𝑝
𝑃  are populated by picking low ranking solutions one after another (rank-1 first, 

then rank -2 and so on). The metric of crowding distance is used for the rank where all the 

solutions cannot be accommodated to be carried over to the next generation. Crowding distance 
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is the distance of a solution from its neighbors in the objective function space. This completes 

one iteration of NSGA-II and the entire process is repeated till the generation count reaches the 

final count (NGen, max) specified. For a relatively large value of NGen, max, final solutions with 

rank-1 are generated and the algorithm is assumed to be converged. The exploration operations 

of crossover, mutation and selection mechanisms like ranking-based selection and use of 

crowding distance metric help to generate non-dominated solutions which are well spread as 

well as near global Pareto solutions. The overall NSGA-II procedure is summarized in Fig. 3.2.  

 

 

Fig. 3.2 Solution algorithm for NSGA-II 
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3.4 SYSTEM IDENTIFICATION WITH MULTI OBJECTIVE OPTIMIZATION 

Ortiz et al. (2013) for the first time introduced multi objective optimization as a tool for 

identification of the model parameters. The authors proposed a set of objective functions 

involving displacement and dissipated energy as shown in Eqs. (3.18) - (3.20) and (3.23). The 

present study adopts the same objective functions as proposed by Ortiz et al. (2013) without 

any alteration.  

1. The weighted difference between the experimental displacements ( )(tu ) and displacements 

predicted by the model ( )|(ˆ ptu ). 
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(3.18) 

 

where, )(tw  is a weighting function for normlaizing the displacements between  1,1  and 

it is calculated using the envelope that linearly interpolates between the peak absolute 

values of the displacements (Ortiz et al. 2003). l  is the number of elements in time series 

recorded in the laboratory. This objective function was widely used in the previous studies 

(Sengupta and Li (2013), Nithyadharan and Kalyanaraman (2013)) where parameters of 

BWBN model were identified using single objective optimization. 

 

2. The maximum difference between the experimental values of displacement ( )(tu ) and 

displacements predicted by the model ( )|(ˆ ptu ). 
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3. The difference between the total measured dissipated energy per unit mass ( )( ltot t ) in the 

experiments and the estimated total dissipated energy per unit mass ( )|(ˆ ptltot ) with 

BWBN model. 

)|(ˆ)()(3 pttpf ltotltot    (3.20) 

where )( ltot t  indicates the hysteresis curve area and can be expressed as the sum of elastic 

dissipated energy per unit mass ( )( lel t ) and hysteretic dissipated energy per unit mass (

)( lt ) as shown below. 

)()()( lellltot ttt    (3.21) 

)( lel t  is a measure of the area enclosed by elastic restoring force ( ))(( tuF e
) and 

displacement curve and can be written as: 
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4. The maximum difference between the total dissipated energy per unit mass ( )( ltot t ) 

calculated from load – displacement data, and the total dissipated energy per unit mass (

)|(ˆ ptltot ) estimated with BWBN model. 
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 (3.23) 

 

The parameter space D  was restricted by two limiting vectors minp  and maxp  such that

)()()( maxmin ipipip  , qi 1 , where q  is the number of parameters associated with the 

mathematical model. The stability of the differential equations was ensured by imposition of 

two linear inequalities such as 0   and 0 . It is very common in multi-objective 
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optimization to encounter situations where different objective functions have different optimal 

solutions which compete with each other. These set of trade-off solutions are popularly known 

as Pareto optimal. The criteria adopted in this study for selecting a unique solution out of the 

entire set of Pareto optimal solutions is the minimum Euclidean distance from the origin to a 

normalized Pareto front as illustrated by Ortiz et al. (2013). The algorithm used in this study 

for multi objective optimization is shown in Fig. 3.3. 

 

 

Fig. 3.3 Steps in multi objective optimization 
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3.5 RESULTS AND DISCUSSIONS 

3.5.1 Prediction of Load – Displacement Behaviour 

The load-displacement behaviour predicted by the analytical model are presented and 

compared with experimental data in Fig. 3.4. It is observed that, the model predicted the 

observed response of the tested specimens reasonably well. It can be also observed from the 

graphs that the model was able to capture the phenomena like strength and stiffness degradation 

along with pinching with a good accuracy. The converged values of the unknown parameters 

are summarised in Table 3.3 and 3.4.  

  

(a) Leh-H/D(4)- 1.5%-0.72%-7.2% (b) Leh-H/D(4)- 0.75%-0.72%-7.2% 

  

(c) Leh-H/D(4)- 2.98%-0.72%-7.2% (d) Leh-H/D(8)- 1.5%-0.72%-7.2% 
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(e) Leh-H/D(10)- 1.5%-0.72%-7.2% (f) Saat-H/D(6.58)-3.28%-1.54%-21% 

  

(g) Saat-H/D(6.58)-3.28%-1.75%-42% (h) Saat-H/D(6.58)-3.28%-3.43%-42% 

Fig. 3.4 Prediction of load – deformation behaviour 

 

Table 3.3 Obtained model parameters for the bridge columns tested by Lehman and Moehle (2000) 

 

Leh-H/D(4)- 

1.5%-0.72%-

7.2% 

Leh-H/D(4)- 

0.75%-0.72%-

7.2% 

Leh-H/D(4)- 

2.98%-0.72%-

7.2% 

Leh-H/D(8)- 

1.5%-0.72%-

7.2% 

Leh-H/D(10)- 

1.5%-0.72%-

7.2% 

  0.0407433 0.0964799 0.1191158 0.0286079 0.0130374 

  0.5095716 0.4627439 1.5016440 0.1315011 2.5675280 

  -0.4690061 -0.0758199 -0.0900127 -0.0937927 -1.9861380 

  0.1234275 0.1104669 0.2358382 0.1156080 0.0645147 

n  1.4426500 1.0033100 1.0671160 1.0006230 1.0104840 

0  0.1427614 0.2604299 0.0003359 0.3416125 0.0187557 

  0.2148782 0.2555180 0.0699940 0.0610115 0.0414266 
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0A  2.5040620 5.3920180 3.2052890 2.4223650 2.7493890 

A  0.0664819 -0.2998774 -0.6900749 -0.0764594 -3.0650290 

0  2.8164230 6.7927710 3.1466400 3.6640740 1.4726840 

  3.3640030 5.4694450 6.6712000 2.2407170 11.1306300 

p  4.3978310 0.0353988 8.1473140 3.1156360 2.0626950 

0  -0.7742132 -6.0687180 -3.6594970 -2.6291620 0.6172936 

0  -0.4146149 2.3848000 -7.5816870 1.1290900 -2.4245960 

  2.5409530 1.7116370 0.6027874 -1.1896050 -1.2574620 

  -0.7071068 2.1989540 1.9687790 1.5656850 1.9195990 

q  3.0042070 7.3344820 5.1716300 -2.3739610 -0.4537854 

 

 

Table 3.4 Obtained model parameters for the bridge columns tested by Saatcioglu and Baingo (1999) 

 
Saat-H/D(6.58)-3.28%-

1.54%-21% 

Saat-H/D(6.58)-3.28%-

1.75%-42% 

Saat-H/D(6.58)-3.28%-

3.43%-42% 

  0.0373 0.0984 0.0675 

  0.1001 0.1005 0.1496 

  -0.0032 0.1100 -0.0441 

  0.1716 0.1855 0.1338 

n  1.2942 1.0108 1.6555 

0  0.1001 0.2609 0.1623 

  0.0625 0.2210 0.1986 

0A  2.0406 2.9066 1.9758 

A  -1.8902 -0.4232 -0.7356 

0  3.6862 3.9791 5.7470 

  3.3995 1.4025 3.3444 

p  8.5244 5.0844 4.6596 

0  0.8573 -0.5928 1.1464 

0  3.4132 -0.8682 -2.5346 

  -0.0301 -1.1569 -0.2323 

  3.9872 3.4906 -1.0645 

q  3.8576 0.9099 4.2282 

 

 



 
 
   

61 
 

3.5.2 Predictions of Dissipated Energy 

Energy dissipation capacity is one of the most important parameters estimated from 

hysteresis curves. It is an important parameter for damage assessment and health monitoring 

of reinforced concrete structural members (Iranmanesh and Ansari 2013). Dissipated energy is 

a measure of the area under the load - deformation curve. The estimated and observed values 

of dissipated energy for all the columns are presented and compared in Fig. 3.5. Fig. 3.6 shows 

that, the analytical model used in this study can predict the energy dissipation capacity 

reinforced concrete bridge columns with reasonable accuracy.  

  

(a) Leh-H/D(4)- 1.5%-0.72%-7.2% (b) Leh-H/D(4)- 0.75%-0.72%-7.2% 

  

(c) Leh-H/D(4)- 2.98%-0.72%-7.2% (d) Leh-H/D(8)- 1.5%-0.72%-7.2% 
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(e) Leh-H/D(10)- 1.5%-0.72%-7.2% (f) Saat-H/D(6.58)-3.28%-1.54%-21% 

  

(g) Saat-H/D(6.58)-3.28%-1.75%-42% (h) Saat-H/D(6.58)-3.28%-3.43%-42% 

Fig. 3.5 Prediction of dissipated energy 
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Fig. 3.6 Experimental and analytical hysteretic energy 

 

3.5.3 Sensitivity Study on Parameters 

In order to estimate the sensitivity of the model to the variation of the constituent 

parameters, sensitivity analysis was carried out. The parameters were gradually varied from 

their original values one by one keeping other parameters constant and the change in the model 

output was recorded. Let [Y ] be the hysteretic displacement for a given input forcing function. 

Then each parameter was varied from -50% to 50% of its original value. Now, due to variation 

of a parameter, if, for the same input forcing function, output displacement becomes [Y  ], then 

the root mean square error ( e ) can be written as 

 
21

1

2








 



n

i

YYe  (3.24) 

In which, ‘ n ’ is the number of data point in the input forcing function. The root mean square 

error for each parameter within the range of its variation was plotted as shown in Fig. 3.7.  

 
Fig. 3.7 Model sensitivity to parameter variation 
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The maximum error corresponding to variation of a parameter ( e ) can be obtained from the 

expression shown in Eq. (3.25).  

 ee max  (3.25) 

The maximum root mean square error associated with each parameter variation is summarized 

in Table 3.5. The parameters are ranked based on the magnitude of maximum root mean square 

error corresponding to each parameter. Parameters securing high position in the sensitivity 

ranking when deviated from their original values will lead to considerable error in the model 

prediction. On the hand, fluctuation of parameters with low sensitivity ranking will not result 

in any significant change in the model output. This study will help in judicious choosing of the 

possible lower and upper bounds of different parameters. Based on the results obtained from 

this study, the upper bound and lower bound of each parameter can be estimated as shown in 

Table 3.6. 

 

 

Table 3.5: Sensitivity ranking of model parameters 

Parameter Maximum Root Mean Square Error Rank 

  1139.82 1 

  493.65 3 

  168.01 9 

  78.20 17 

n  610.71 2 

0  186.08 7 

  420.37 4 

0A
 415.07 5 

A  236.02 6 

0  121.42 13 

  182.31 8 

p
 125.92 12 
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0  119.09 14 

0
 78.36 16 

  127.45 11 


 

135.73 10 

q  88.59 15 

 

 

Table 3.6: Lower Bound and Upper Bound of Parameters 

Parameter Lower Bound Upper Bound 

  0.01 0.12 

  0.10 3.00 

  -2.00 0.00 

  0.00 0.30 

n  1.00 1.50 

0  0.00 0.50 

  0.00 0.30 

0A  2.00 6.00 

A  -3.00 0.10 

0  1.00 7.00 

  2.00 12.0 

p  0.00 9.00 

0  -7.00 1.00 

0  -8.00 3.00 

  -2.00 3.00 

  -1.00 3.00 

q  -3.00 8.00 

 

 

3.6 CONCLUDING REMARKS 

BWBN model was used in this study to predict the hysteresis behaviour of circular 

bridge columns failing in flexure. The model was found to predict the observed cyclic 

behaviour of tested specimen with reasonable accuracy. Complex phenomena like system 
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degradation and pinching are also captured well. Energy dissipated by the columns through 

hysteresis which is pivotal for determining seismic capacity of members also showed a good 

correlation with experimental data. Sensitivity analysis was carried out to estimate the 

sensitivity of model to variation of each parameter and sensitivity ranking was prepared based 

on maximum root mean square error associated with each parameter. Finally, an approximate 

upper bound and lower bound for each parameter was specified based on its range of variation 

observed in this study. 
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CHAPTER 4 

PARAMETER IDENTIFICATION OF BOUC-WEN TYPE 

MODELS USING HOMOTOPY OPTIMIZATION 

 

 

4.1 GENERAL 

Efficiency of Bouc – Wen type models in predicting the response of a system greatly 

depends on accurate estimation of the unknown parameters. This requires adjusting the model 

parameters in such a way that the difference between the model output and the experimental 

measurements is minimised. Various system identification techniques can be applied to tune 

the model parameters so as to match the experimental measurements following which the 

model can be presented as a good approximation of the actual physical system.  

Minimisation of an objective function with a single minimum can be achieved by 

classical optimisation theories like the steepest descent algorithm, Gauss - Newton algorithm, 

Levenberg - Marquardt algorithm etc. These non-stochastic algorithms are robust and they 

converge rapidly. However, the objective function of BW type models generally contains 

multiple local minima. If non-stochastic approach is used to minimise the objective function 

of BW type models, it will most likely converge to a local minimum rather than the global 

minimum. Owing to this limitation involved in non-stochastic approaches, previous studies on 

BW type models used stochastic methods such as genetic algorithm and simulated annealing 

for minimisation of the objective function. However, it was observed that stochastic approaches 

require a large number of iterations to converge and thus, are time-consuming. In recent times, 

particle swarm optimisation and constrained Kalman Filter have been used successfully to 

minimise the objective function of BW type models. Though they perform better than other 

stochastic approaches, they can hardly match the speed and robustness of non-stochastic 
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approaches. This study investigates the scope of extending the non-stochastic approaches to 

finding the global minimum of the objective function of BW type models.  

This study investigates the scope of minimising the objective function of BW type 

models using a non-stochastic algorithm which outperforms the stochastic algorithms in terms 

of computation speed and efficiency. It has been shown in this study that using a special 

technique called ‘homotopy’, it is possible to attain the global minimum of a function through 

non-stochastic approach in situations where usual deterministic methods fail. In general, the 

algorithm begins by finding the global minimum of a less complicated approximation of the 

original function and then deforming the function into the original function in a series of steps. 

Minimum of the deformed function at one step is found starting from the minimizers found at 

the previous step. It is particularly suitable for highly nonlinear problems for which initial 

solution estimates are difficult to obtain. However, application of this method may be 

inappropriate for mildly nonlinear problems or problems for which initial estimate of the 

solution is easily obtainable (Watson and Haftka 1989).  

Homotopy is used in several areas of mathematics, including optimization and 

nonlinear root finding. It is robust, accurate, numerically stable and almost universally 

applicable. It can converge from any arbitrary starting points almost assuredly (Watson and 

Haftka 1989). In the past, homotopy technique has been applied to complex optimisation 

problems involving protein structures (Dunlavy and O’Leary 2005) and to finding the 

equilibrium configuration of an elastica (Watson and Wang 1981). However, it has never been 

used in solving Bouc-Wen type models, which is a widely used as a mathematical tool for 

predicting hysteresis behaviour of any physical system. The study presented in this chapter 

shows that the application of homotopy can be successfully extended to parameter 
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identification of Bouc Wen type models. It makes the application of the model more viable and 

cost effective. 

 

4.2 INTRODUCTION TO HOMOTOPY 

Say the objective function of an optimization problem is )( pF  which has multiple local 

minima. The objective is to find parameters *p  which yield the global minimum of the 

objective function. As per homotopy optimization theory, the objective function is modified by 

addition of a simpler approximation of the original function )( pF  as shown in Eq. 4.1. 

     pGpFpH   )(1,  (4.1) 

  It should be noted that,  pG  should be convex in the unknown parameters, and, the 

arguments of the global minimum of  pG  should be easily obtainable or known a priory. 

Caution should be exercised while selecting  pG  as its choice affects the performance of this 

theory (Dunlavy and O’Leary 2005).  The morphing parameter   is varied gradually from 1 

to 0. Let *p  denote the arguments of global minimum corresponding to morphing parameter 

 . When  1 , the global minimum of the objective function  1,pH  is simply the global 

minimum of  pG , which is known. Once  1,pH  is minimised,   is reduced by a small 

amount  , and  1,pH  is minimised using *1 p  as initial guesses. Then   is further 

reduced by  , and  21, pH  is minimised using *1 p  as intial guesses. This process is 

continued until   is reduced to 0 and the objective function  ,pH  is morphed back to its 

original form  pF . As   is varied slowly, the objective function at any step is obtained by a 

slight modification of the objective function in the previous step, and the arguments of global 

minimum at any step are used as initial guesses for the next step, the iteration will most likely 

converge to the global minimum of the original objective function.  
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4.3 PARAMETER IDENTIFICATION USING HOMOTOPY OPTIMIZATION 

4.3.1 Theory 

Say an experimental system is governed by a set of ordinary differential equations given 

by 

),,( tpxfx eee   (4.2) 

where,       Tneeee txtxtxx ,, 21  is a vector containing the time series of n  independent 

coordinates, and,       Tkeeee tptptpp ,, 21  is a set of the parameters for the 

experimental system. Let the mathematical approximation of the experimental system, be 

represented as  

),,( tpxfx   (4.3) 

 

where,       Tm txtxtxx ,, 21 , nm  . The objective is to identify the model parameters 

      Tke tptptpp ,, 21  such that the difference between the predicted response,  tx1  

and the response measured during experiment,  tx e1  is minimised. The objective function can 

therefore be expressed as 

     dttpxtxpJ

T

e

2

0

11 ,
2

1
)(    

(4.4) 

Homotopy optimization generally converges to a local minimum. However, through 

proper selection of the coupling term )( pG  (Eq. 4.1), it is possible to enhance the probability 

of convergence to the global minimum. In case of optimization problems involving parameter 

identification, appropriate selection of )( pG  is difficult as the shape of the objective function 

( )( pF ) is not known a priori owing to its dependence on the solution of the differential 

equation (Eq. 4.3). Unlike algebraic problems, where the minimum value of the objective 
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function is not known, in case of parameter identification problems the minimum value of the 

objective function is zero provided the mathematical model accurately represents the physical 

system. However, in practice, mathematical models invariably involve some approximations 

rendering the final value of the objective function assuming a sufficiently small value rather 

than an absolute zero. Making use of this knowledge, the homotopy parameter is introduced 

implicitly in the objective function and explicitly in the governing differential equation as 

shown in Eqs. 4.5 and 4.6 (Vyasarayani et al. 2011).  

     dttpxtxpJ

T

e

2

0

11 ,,
2

1
),(     

(4.5) 

 tetpxfx  ),,(  (4.6) 

where,         Tn tetetete ,, 21  is the error vector, whose thk element is defined as 

)()()( txtxte kkek  . Since only one independent coordinate was measured during 

experiment, therefore, the error vector reduces to     Ttete 0,,0,1   in this study. For 

large value of  , the coupling term acts as a high gain observer (Khalil 1999; Vyasarayani et 

al. 2012) and the simulated response synchronizes with experimental data with a 

synchronization error ),( pJ . Irrespective of the initial parameter guess, by selecting 

appropriate   the error ),( pJ  can be made arbitrarily small. As we continue homotopy 

optimization the parameters get closer and closer to the actual values as   is decreased. At 

every step of the optimization problem we ensure that ),( pJ  remains small. Thereby when 

  becomes zero, i.e, during the last step of homotopy optimization, the value of ),( pJ  will 

remain small. 

The algorithm begins by assuming some initial guesses for the model parameters. The 

morphing parameter   is set to 1, and the differential equation of Eq. 4.6 is solved using 4th 

order Runge - Kutta method (Ortiz et al. 2013) to get the simulated model output. Then, the 
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objective function shown in Eq. 4.5 is minimised using `fmincon', which is an inbuilt 

optimization function in MATLAB environment. The arguments of minimum of )1,( pJ  are 

used to solve the differential equation of Eq. 4.6 with modified   which is obtained by 

reducing the initial value by a small amount  . Then, the modified objective function is 

optimized again to get the arguments of its minimum. This process is continued till   is 

reduced to 0, and the objective function gets rid of any coupling term. The arguments of 

minimum of the last step are reported as the global minimum of the original objective function. 

 

4.3.2 Numerical Example 

Application of homotopy method in parameter identification of a physical system can 

be illustrated with the help of a numerical example. Let a simple pendulum be set to free 

oscilation by displacing it from its initial static equilibrium position to a position where the 

string of the pendulum makes an angle of 30  with the vertical. The differential equations 

representing the experimental system can be written as 

ee xx 21   (4.7a) 

)sin( 12 eee xpx   (4.7b) 

where, ep  is a parameter that governs the behaviour of the experimental system. ex1  

and ex2  are experimental values of displacement and velocity of the simple pendulum which 

are obtained by solving Eq. 4.7 for time span  40,0t  assuming a value of 10 for parameter 

ep . The mathematical model depicting the free vibration of the simple pendulum is presented 

in Eq. 4.8. 

21 xx   (4.8a) 
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)sin( 12 xpx   (4.8b) 

The initial conditions are given by :   601 x  and   002 x . The objective is to 

identify the unknown system parameter p . This presents an optimization problem which is 

defined as follows.  

     dttpxtxp e

240

0

11
arg

* ,,min     
(4.9) 

 

 

Fig. 4.1 Normalized objective function for simple pendulum 

The shape of the objective function is estimated by a direct search as shown in Fig. 4.1. 

It can be observed that the objective function has multiple local minima. Any deterministic 

approach will fail to converge to the global minimum unless the initial guess for p  is close to 

10.  
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Fig. 4.2 Normalized objective function for simple pendulum for 10    

Solution of this problem using homotopy technique is presented in this section to 

demonstrate that this technique can ensure convergence starting from a remote initial guess in 

case of objective functions with multiple local minima. To apply this technique, the governing 

differential equations (Eq. 4.8) are modified by addition of coupling terms as shown in Eq. 

4.10. 

)( 11121 xxKxx e    (4.10a) 

)()sin( 11212 xxKxpx e    (4.10b) 

An initial value of 15 was assumed for parameter p . Coupling parameters 1K  and 2K

were equated to 10. It can be seen in Fig. 4.2 that, the modified objective function is convex at 

1 . As   is reduced slowly the objective function deforms and morphs backs to the original 

objective function at 0 . The final value of parameter p  was found to be 10.00 suggesting 

that the global minimum has been attained. On the hand, without homotopy technique and 

starting from the same initial value, parameter p  converges to a local minimum at p  = 14.74.  
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4.4 NUMERICAL EXPERIMENT: BW MODEL (5 PAREMETERS) 

A numerical example is presented to illustrate the role of homotopy in convergence of 

BW type models. The example is adopted from a previous study performed by Ortiz et al. 

(2013). Hysteresis of a system with mass, m = 500 kg and stiffness, k = 6 kN/mm is studied 

under a time-varying cyclic load given by )2(sin)( tttF   as shown in Fig. 4.3.   

 

Fig. 4.3 External excitation force used in the simulation 

 

Response of the system under the given load was estimated with true values of the 

parameters as shown in Table 4.1. Then the model parameters were identified following the 

algorithm presented earlier in this chapter. Several trials were conducted starting from different 

initial guesses for the parameters which varied from 50% to 150% of the true values. The final 

values of parameter obtained from different simulations is summarised in Table 4.1.  
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Table 4.1 : Identified parameters for different initial guesses (BW model) 

Parameter α Β γ ξ n 

True Values 0.2000 2.0000 -1.0000 0.0500 1.2000 

In
it

ia
l 

g
u
es

se
s 

/ 
T

ru
e 

v
al

u
es

 0.5 0.2047 3.6553 -2.1526 0.0742 2.6867 

0.6 0.2035 1.0044 0.8198 0.0898 3.3651 

0.7 0.2088 1.4195 0.4020 0.1888 2.2971 

0.8 0.2040 0.7227 1.9156 0.1487 4.8216 

0.9 0.2064 3.0492 -1.0848 0.1428 3.4076 

1.1 0.2097 3.7867 -1.5037 0.1218 3.4488 

1.2 0.2023 2.1364 -0.9119 0.0500 1.6115 

1.3 0.2012 2.1051 -0.8465 0.0112 2.5199 

1.4 0.2001 0.8510 0.5822 0.0137 4.8806 

1.5 0.2065 2.0056 0.0955 0.1299 3.9351 

 

It is observed that different initial guesses resulted in to different final values suggesting 

that the global minimum was not achieved. However, the model output, namely displacement 

of the system, when compared with the estimated values, invariably showed a very good 

correlation for all cases of initial guesses. This leads to the conclusion that, that the objective 

function of this model has multiple local minima which overall produce same results as that of 

the global minima. In can also be inferred from the results that Homotopy can converge from 

far flung initial values which is unique for this optimisation technique. In this study the 

comparison of estimated and simulated values of displacement is presented only for initial 

guesses 50% and 150% of true values (Fig. 4.4). The results for other cases of initial cases are 

provided in the annexure. The simulated load – displacement behaviour is compared with 

estimated data and a reasonably good agreement was observed. The simulated values of 

dissipated energy also matched favourably with estimated behaviour.  
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(a) Displacements (0.5) (b) Displacements (1.5) 

  

(c) Hysteresis Cycles (0.5) (d) Hysteresis Cycles (1.5) 

  

(e) Dissipated Energy (0.5) (f) Dissipated Energy (1.5) 
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Fig. 4.4 Comparison of simulated and estimated behaviour (Numbers in the parenthesis denote 

the ratio of initial guesses to true values) 

 

  

Fig. 4.5 Convergence of model 

parameters (initial guesses = 0.5 

times the true values) 

Fig. 4.6 Variation of homotopy parameter 

and corresponding objective function 

during optimisation process (initial guesses 

= 0.5 times the true values) 

 

Variation in parameter values with iteration number is presented in Fig. 4.5. Values of 

the parameters at the onset of iteration indicate the initial guesses for the parameters. It was 

observed that, after certain number iterations all the parameters converged to their final values. 

The minimisation of the objective function and the homotopy parameter with respect to the 

iteration number is also plotted as shown in Fig. 4.6. It is observed that the value of the 

objective function at the end of the final iteration is trivial suggesting that the simulated values 

of displacement are sufficiently close to the estimated response. It may be noted further that 

the number of iterations required for convergence of the objective function at different stages 

of homotopic morphing is different. When the homotopy parameter is reduced to zero, the 

original objective function is retrieved, minimisation of which marks the end of the simulation. 

 



 
 
   

79 
 

4.5 NUMERICAL EXPERIMENT: BWBN MODEL (17 PARAMETERS) 

The second part of the numerical experiment comprised repeating the same exercise as 

presented in section 4.4 for 17 parameter BWBN model. Displacement values were estimated 

using the true values as presented in Table 4.2. Next, unknown model parameters were 

identified following algorithm explained in section 4.3.. The initial guesses were varied from 

50% to 150% of the true values and close correlation was observed between model output and 

simulated response (Fig. 4.7) for all cases. The variation of model parameters, objective 

function and homotopy parameter with respect to iteration number is presented Figs. 4.8 and 

4.9.  

 

Table 4.2 : Identified parameters for different initial guesses (BWBN model) 

Parameter         n  0A  

True Values 0.2 2 -1 0.05 1.2 1.1 

In
it

ia
l 

g
u
es

se
s 

/ 
T

ru
e 

v
al

u
es

 0.5 0.2131 2.3526 -1.5026 0.0202 1.0220 1.3385 

0.6 0.2165 1.5159 -0.3518 0.0200 1.0884 1.0717 

0.7 0.2176 2.1064 -1.3949 0.0200 1.0177 1.4657 

0.8 0.2143 1.7364 -0.7046 0.0200 1.0353 0.9206 

0.9 0.2178 2.2998 -1.2755 0.0211 1.1182 1.6017 

1.1 0.2136 2.3391 -1.1414 -0.0182 1.1005 1.2065 

1.2 0.2123 2.3885 -1.2649 0.0200 1.2143 1.3752 

1.3 0.2062 2.8952 -1.1447 0.0831 3.0802 1.6700 

1.4 0.2108 2.7195 -1.5710 0.0200 1.3595 1.5439 

1.5 0.2118 2.8898 -1.7366 0.0200 1.3761 1.6525 

Parameter 0    
A  0    p  

True Values 1.2 0.4 0.1 1.3 0.5 2 

In
it

ia
l 

g
u
es

se
s 

/ 
T

ru
e 

v
al

u
es

 0.5 1.8151 -0.0725 0.7229 1.4941 -0.9293 2.9559 

0.6 1.0760 0.0019 0.7848 1.1375 0.6776 1.2028 

0.7 2.4427 -0.8219 1.1927 1.3648 1.7722 3.2176 

0.8 1.0377 0.3970 0.2537 0.9812 0.4749 1.6483 

0.9 1.9076 -0.6803 1.3326 1.7206 -1.4294 2.3397 

1.1 1.1940 0.4900 0.1274 1.2854 0.4659 2.6372 

1.2 1.4839 0.6163 0.3101 1.4994 0.5863 2.3815 

1.3 1.6910 1.1307 0.6633 1.7428 1.6730 5.7418 

1.4 1.6327 0.7383 0.4516 1.7222 0.7118 2.7707 
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1.5 1.7520 0.8047 0.4686 1.8397 0.7421 2.9203 

Parameter 0  0      q   

True Values 1 0.5 0.6 0.9 1 

In
it

ia
l 

g
u
es

se
s 

/ 
T

ru
e 

v
al

u
es

 0.5 1.0543 0.2019 2.3729 1.4038 1.8052 

0.6 0.8564 0.3891 0.4972 0.6115 0.3726 

0.7 0.3992 1.3454 0.1547 1.2175 -0.3239 

0.8 1.2268 0.3951 0.5588 0.7354 0.7836 

0.9 1.0658 -0.1883 2.1266 1.3666 0.8466 

1.1 0.5812 0.6157 0.7249 1.6408 1.9290 

1.2 1.0990 0.4335 0.6554 1.0040 1.2859 

1.3 0.9928 -0.7029 -1.1638 1.1392 0.4665 

1.4 1.0645 0.4231 0.7636 1.1361 1.5110 

1.5 1.0701 0.3351 0.7784 1.1626 1.6646 

 

 

  

(a) Displacements (0.5) (b) Displacements (1.5) 
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(c) Hysteresis Cycles (0.5) (d) Hysteresis Cycles (1.5) 

  

(e) Dissipated Energy (0.5) (f) Dissipated Energy (1.5) 

Fig. 4.7 Comparison of simulated and estimated behaviour (Numbers in bracket denote the 

ratio of initial guesses to true values 
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Fig. 4.8 Convergence of model 

parameters (initial guesses = 0.5 

times the true values) 

Fig. 4.9 Variation of homotopy 

parameter and corresponding objective 

function during optimisation process 

(initial guesses = 0.5 times the true 

values) 

 

The estimated parameters were then used to predict the response of the system under 

Northridge earthquake (1994) ground motion data. The estimated response was reasonably 

close to the actual response as shown in Fig. 4.10. It leads to the conclusion that parameters 

obtained from certain loading protocol can predict the response under any other loading 

protocol. In other words, the model parameters are system properties and are not subjected to 

variation with change in loading pattern.  
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Fig. 4.10 Displacement under Northridge earthquake (1994) ground motion 

 

4.6 EXPERIMENTAL CORROBORATION: BWBN MODEL (17 PARAMETERS) 

Homotopy technique was employed to predict the hysteresis response of a circular 

reinforced reinforced concrete column (Leh-H/D(4)- 1.5%-0.72%-7.2%) tested by Lehman and 

Moehle (2000) under cyclic lateral load. The column was tested as a cantilever under a time 

varying lateral shown in Fig. 4.11. 

  

Fig. 4.11 Applied force on the tested column 

specimen 

Fig. 4.12 Comparison of analytical and 

experimental displacements 
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Table 4.3 : Identified model parameters for the tested column specimen 

Parameter         n  0A  

Final Value 0.0214 0.1206 -0.0829 0.2997 3.4631 0.0037 

Parameter 0    
A  0    p  

Final Value 0.0969 0.7096 0.0847 2.9577 3.8494 1.0608 

Parameter 0  0      q  
 

Final Value -1.2442 -6.5865 3.3767 0.1486 0.8921 

 

  

Fig. 4.13 Comparison of analytical and 

experimental hysteresis cycles 

Fig. 4.14 Comparison of analytical and 

experimental dissipated energy 

 

The response of the column was predicted using the algorithm presented in this chapter. 

The predicted behaviour compared favourably with the observed response (Fig. 4.12). Overall 

force displacement behaviour (Fig. 4.13) and dissipated energy (Fig. 4.14) were also captured 

accurately by the analytical model. The final values of model parameters are reported in Table 

4.3. Convergence of parameters and variation of objective function and homotopy parameter 

with respect to iteration number were estimated as mentioned in previous sections and are 

presented in Figs. 4.15 and 4.16.  
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Fig. 4.15 Convergence of model 

parameters 

Fig. 4.16 Variation of homotopy parameter 

and corresponding objective function during 

optimisation process 

 

4.7 CONCLUDING REMARKS 

In this study, the parameters of Bouc - Wen type models have been identified using 

homotopy optimization in combination with local search algorithms. Through numerical 

examples, it has been shown that homotopy technique can successfully identify the parameters 

of Bouc – Wen type models. In the numerical test cases considered in this study, the identified 

parameters did not match closely with the actual values. However, the objective function was 

adequately minimized and the simulated response compared favourably with estimated 

response. To investigate the correlation between model parameters and the loading protocol, 

the response of a system under Northridge earthquake ground motion was predicted using the 

parameters identified with a sinusoidal loading function. The predicted response closely 

matched the estimated one suggesting that the Bouc Wen type model parameters are insensitive 

to loading protocol. Experimental data of a reinforced concrete column tested under cyclic 

lateral loading was used for experimental validation of this optimization approach. The 

response of the column under given loading was estimated using BWBN model with the help 
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of homotopy optimization. The predicted behaviour matched the observed behaviour 

reasonably well. 
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CHAPTER 5 

DEVELOPMENT OF AN IMPROVED POLYGONAL 

HYSTERESIS MODEL FOR CIRCULAR RC COLUMNS 

UNDER TORSION 

 

5.1 GENERAL 

 

Reinforced concrete bridge columns are subjected to torsional loading under various 

conditions (Mondal and Prakash 2015d). Torsion in columns can be induced by skewed or 

horizontally curved bridges, bridges with unequal spans or column heights, and bridges with 

outrigger bents. Torsional moment needs special attention in design as it may otherwise trigger 

brittle shear dominated failure of members. Collapse of many important bridges around the 

world caused by recent earthquakes has put forth the necessity to assess the seismic 

vulnerability of the existing bridge columns. Seismic analysis of reinforced concrete (RC) 

structures requires hysteresis models that can accurately predict strength, stiffness, and ductility 

characteristics of the members under cyclic loading. Bridge columns should be properly 

designed to adequately dissipate seismic energy through inelastic deformation under vibrations 

during earthquakes (Prakash and Belarbi 2010; Goodnight et al. 2013). The level of accuracy 

of seismic design depends on the accuracy of the hysteresis model. Owing to all these reasons 

it is of utmost importance to have a proper hysteresis model which can accurately predict the 

cyclic flexural behavior of RC members considering strength and stiffness degradation along 

with the pinching effects.  

Polygonal hysteresis models are a well-established modeling approach, where the 

response of a member to cyclic loading is governed by a set of control points and paths defined 

by piecewise linear or nonlinear functions. One of the best known polygonal hysteresis models 
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available in literature is Clough and Johnston (1966) model, which is characterized by a bilinear 

primary curve. It considers strain hardening in post yielding regime and takes into account 

stiffness degradation under load reversals. Takeda model (Takeda et al. 1970) represents a tri-

linear primary curve marked by a stiffness change at cracking point. It is governed by some 

loading – unloading rules formulated based on experimental observations. In the pivot 

hysteresis model developed by Dowell et al. (1998), the envelope curve under monotonic 

loading has four branches characterized by elastic stiffness, strain hardening, strength 

degradation and linearly decreasing residual strength. The loading and unloading are governed 

by two pivot points which determine the level of softening with increasing displacement and 

the degree of pinching on load reversal. Other notable works on PHM include Fukada (1969), 

Aoyama (1971), Atalay and Penzien (1975), Nakata et al. (1978), and Mansur and Hsu (2005). 

However, all these models were developed for shear and flexure and are incapable of predicting 

the behavior under torsion (Wang et al. (2014) owing to high degree of pinching and 

degradation involved in torsional loading. Very few researchers have, in deed, focused on the 

analytical modeling of the hysteresis behavior exhibited by RC members under cyclic torsion. 

Tirasit and Kawashima (2007a) and Wang et al. (2014) have recently proposed some PHMs 

for RC columns under torsional loading. In both of the studies, a semi-empirical primary curve 

was used, where the yield torsional moment was estimated using space truss analogy ((Rahal 

and Collins 1995; Mo and Yang 1996) and post-yield behavior was obtained from empirical 

relations derived on the basis of experimental observations. In this study, an entirely mechanics 

based primary curve is proposed using SMMT (softened membrane model for torsion) (Hsu 

1993) which is more reliable than any empirical model. Moreover, the previous studies did not 

consider any slope change in the primary curve at the cracking point, in contrast to the actual 

behavior observed during experiments. The present study tends to eliminate this discrepancy 

by introducing a slope change at the cracking point. Loading - unloading rules are proposed 
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based on statistical analysis of experimental data which are at variance with the previous 

models. An additional control point has been introduced in the unloading branch to better 

predict the actual behavior. It was observed that the proposed model closely predicts the 

measured load – displacement behavior.  

 

5.2 MODEL DESCRIPTION  

Any PHM is governed by primary (backbone) curve (Fig. 5.1 and 5.2) and 

loading/unloading rules (Fig. 5.3). A number of control points (Figs. 5.3(b) and 5.3(d)) are 

fixed which regulate the hysteresis loops. Paths joining successive control points are called 

branches ((Figs. 5.3(a) and 5.3(c))). Transition from one control point to another is governed 

by a set of rules which are determined empirically from experimental data (Figs. 5.4-5.10). The 

details of the model are described below. 

 

  

(a) H/D(6)-T/M(∞)-0.73% (b) H/D(3)-T/M(∞)-1.32% 

Fig. 5.1 - Primary Curve under Torsion (Anand et al. 2016) 
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Fig. 5.2 - Idealized Primary Curve 

 

 

  

(a) Definition of parameters ( ) (b) Hysteresis paths ( ) ymc 
~~~

 ymc 
~~~


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(c) Definition of parameters ( ) (d) Hysteresis paths ( ) 

Fig. 5.3 Characteristics of hysteresis loops 

 

5.2.1. Primary Curve 

Primary curve is the envelope of the cyclic load – displacement behavior. It is assumed 

to be identical to the behavior under monotonic loading. In previous studies (Tirasit and 

Kawashima 2007a and Wang et al. 2014), the primary curve was estimated using a semi-

empirical model, where the yield torsional moment was calculated using space truss analogy. 

However, in the present study, a more rational analytical model, known as SMMT (Softened 

Membrane Model for Torsion), was used to obtain the backbone curve. The details of SMMT 

are nicely explained by Anand et al. 2016. The authors used the same specimens as used in this 

study to show that SMMT can accurately predict backbone curve under cyclic torsion. 

Therefore, the backbone curves (Fig. 5.1) are directly adopted from the aforementioned study 

without any alteration. A change in slope in primary curve at the cracking point has been 

introduced in this model which was ignored by the previous researchers (Tirasit and 

Kawashima 2007a and Wang et al. 2014). The primary curve obtained from SMMT is idealized 

ym 
~~

 ym 
~~


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as piecewise linear functions representing elastic stiffness, strain hardening, yield plateau, and 

strength deterioration as shown in Fig. 5.2. 

 

5.2.2 Unloading Rules 

1. The unloading path follows the initial stiffness of the primary curve (path 01 , 05

) if torsion at the beginning of the unloading is less than the cracking torsion ( cm TT
~~

 ), 

and cT
~

 has not been previously exceeded in either direction.  

2. After cracking, the unloading path becomes a function of internal variables such as 

displacement (rotational) ductility (
cm 

~~
 for ymc 

~~~
 , 

ym 
~~

 for ym 
~~

 ) and 

current deformation level. From a given unloading point on the primary curve ( mm T
~

,
~
 ), 

the hysteresis path is directed towards ( 11

~
,

~
urur T ) (path 32 , 76 , 1211 , 1615

, ba  , gf  , nm , ut  ) which is estimated using the expressions shown in Eq. 

1 (Figs. 5.4 and 5.5).  

 for  (1a) 

  0047.1
~~

0004.0 
ym   for  (1b) 

  8527.0
~~

0009.0
~~

1 
cmmur TT   for  (1c) 

 for  (1d) 

3. In case of unloading beyond the yield point ( ym 
~~

 ), from ( 11

~
,

~
urur T ), the unloading 

path leads to ( 22

~
,

~
urur T ) (path cb  , hg  , on , vu  ), which is given by Eq. 2 

(Fig. 5.6). 

 (2a) 

 (2b) 

  0498.1
~~

0028.0
~~

1 
cmmur  ymc 

~~~


ym 
~~



ymc 
~~~



  8623.0
~~

0006.0 
ym 

ym 
~~



  7101.0
~~

0363.0
~~

2 
cmmur 

  3243.0
~~

0126.0
~~

2 
cmmur TT 
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4. Next, the hysteresis loop proceeds straight towards ( 0,
~

su ) on the zero load axis (path 

43 , 87 , 1312 , 1716 , dc  , ih , po , wv ). The reloading point 

( 0,
~

su ) can be calculated as shown in Eq. 3 (Fig. 5.7). 

 for  (3a) 

 for  (3b) 

 

  

(a) ymc 
~~~

  (b) ym 
~~

  

Fig. 5.4 - Dependence of mur 
~~

1  on ductility ratio 

 

 
 

(a)  (b)  

Fig. 5.5 - Dependence of  on ductility ratio 

 

 

 

  2358.0
~~

0015.0
~~


cmmsu  ymc 

~~~


  0848.0
~~

1012.0 
ym 

ym 
~~



ymc 
~~~

 ym 
~~



mur TT
~~

1
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Fig. 5.6 - Dependence of  and  on  

 

 

  

(a) ymc 
~~~

  (b) ym 
~~

  

Fig. 5.7 - Dependence of msu 
~~

 on ductility ratio 

 

 

5.2.3. Loading/reloading Rules 

1. Initial loading and reloading follow the primary curve (path 01 , 05 ) until the load 

is reversed at a level higher than the cracking load.  

2. After cracking, the first loading in the opposite direction is directed towards the cracking 

load in the opposite direction (path 54  ).  

3. When cracking load on both directions has been reached, the reloading path, till yielding, 

follows a straight line (path 98 , 1413 ) having a slope given by Eq. 4 (Fig. 5.8). 

mur 
~~

2 mur TT
~~

2 ym 
~~
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(4) 

4. After yielding, reloading path up to cr
~

 ( ji  , qp  ) follows a straight line passing 

through ( pm T
~

,
~
 ), which is estimated using Eq. 5 (Fig. 5.9). 

 (5a) 

1)
~~

)(9425.00783.0(
~~ )3943.11155.0(  n

ymmp nTT   (5b) 

where, n  is counter indicating number of cycles repeated at unloading point m
~

. n  is 

assigned a value of 1 when first unloading takes place at a given deformation level ( m
~

) 

and incremented every time load is reversed from any deformation level falling within 

the range of m
~

)05.01(  . n  is computed separately for each direction of loading. 

5. After ( crcr T
~

,
~
 ), the loading path heads towards ( mm T

~
,

~
 ) (path kj  , rq  ). 

Calculation of mT
~
  is governed by Eq. 6 (Fig. 5.10). 

 (6) 

6. Beyond the intersection of reloading branch with primary curve, the loading path follow 

the primary curve (path ml  , ts  ). 

 

Fig. 5.8 - Dependence of  on  

 

  786.0

11

~~
7513.0

~~ 

 cmTTr kk 

)0037.00782.0()
~~

)(0766.00067.0(
~~

 nn ymmcr 

)9842.00177.0()
~~

(05557.0
~~

 nTT ymmm 

11

~~
TTr kk cm 

~~
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Fig. 5.9 - Dependence of  and  on  

 

 

Fig. 5.10 - Dependence of  on  

 

 

5.3 RESULTS 

5.3.1. Predictions of Load – Displacement Behavior 

The torque-twist behavior predicted by the analytical model are presented and 

compared with experimental data in Fig. 5.11. It is observed that, the model predicted the 

experimental response of the columns reasonably well. It can also be seen from the graphs that 

the model was able to capture complex phenomena like strength and stiffness degradation along 

with pinching with appreciable accuracy.  

mcr 
~~

mp TT
~~

ym 
~~

mm TT
~~


ym 

~~
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(a) H/D(6)-T/M(∞)-0.73% (b) H/D(3)-T/M(∞)-1.32% 

Fig. 5.11 Prediction of Torsional Hysteresis 

 

 

5.4 CONCLUDING REMARKS 

In this study, an improved PHM is proposed for reinforced concrete circular columns 

subjected to torsion. Unloading and reloading rules are derived based on experimental 

observations. Primary curve is proposed to be estimated from SMMT. A slope change has been 

suggested at the cracking point unlike in the previous models. An additional point is also 

introduced in the unloading branch for more accurate prediction of the hysteresis loops. The 

analytical torque – twist behavior showed close correlation with experimental data. The 

proposed model can be extended in future to predict the hysteretic response of bridge columns 

under combined loading including torsion.  
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CHAPTER 6 

CONCLUSIONS 
 

6.1 GENERAL 

This study evaluated existing modeling strategies and proposed new models for 

analysis of RC columns under monotonic and cyclic loading. A finite element study was carried 

out to predict the behavior of columns under monotonic torsional loading. Behavior of columns 

under cyclic lateral loading was predicted using BWBN model. A homotopy based 

optimization technique is proposed to identify the parameters of Bouc – Wen type models using 

local search algorithms. Finally, a polygonal hysteresis model is developed to estimate 

behavior circular columns under cyclic torsion. 

 

6.2 CONCLUSIONS  

6.2.1 Finite Element Analysis 

The results of nonlinear finite element analysis for RC columns under combined torsion 

and axial compression are presented Chapter 2. It discussed the effects of increasing the 

transverse reinforcement ratio and axial compression on strength, stiffness, and damage 

characteristics for both square and circular columns. The effect of cross sectional shape on 

torsional behaviour of RC columns was also discussed. The generated FE model exhibited 

excellent convergence and numerical stability characteristics, requiring little computational 

time for analyses under torsional loading. Within the scope of parameters considered in this 

study, the results lead to the following major conclusions:  

 The FE model generated in this study accurately simulates the overall experimental 

responses of columns under combined torsion and axial compression. Strength, 

stiffness, ductility, damage progression and failure modes are captured accurately. 
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Computed parameters, such as reinforcement strains and member deformations are also 

simulated well. 

 At low levels of axial compression, the cracking torsional moment increases 

significantly but ultimate torsional moment increases marginally. Future studies should 

focus on experimentally investigating the influence of higher levels of axial 

compression on the torsional capacity of RC bridge columns for further validation. 

 The increase in transverse reinforcement ratio increased the peak torsional strength. 

However, it reduced the twist component at the ultimate torsional moment. It also helps 

to limit the damage in columns under pure torsion.  

 Effect of cross sectional shape plays a major role on distribution of damage in the 

columns. Square columns exhibited a more localized damage while the same in the 

circular columns was distributed over a larger length. 

 FE analysis can help to rationally estimate the shear flow thickness for developing 

simple analytical models from design point of view. This is scope for further work. 

 

 

6.2.2 Prediction of Flexural Hysteresis using BWBN Model 

BWBN model was used in this study to predict the hysteresis behaviour of circular 

bridge columns failing in flexure. The model was found to predict the observed cyclic 

behaviour of tested specimen with reasonable accuracy. Complex phenomena like system 

degradation and pinching are also captured well. Energy dissipated by the columns through 

hysteresis which is pivotal for determining seismic capacity of members also showed a good 

correlation with experimental data. Sensitivity analysis was carried out to estimate the 

sensitivity of model to variation of each parameter and sensitivity ranking was prepared based 

on maximum root mean square error associated with each parameter. Finally, an approximate 
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upper bound and lower bound for each parameter was specified based on its range of variation 

observed in this study. 

The scope of this study was limited to circular columns failing predominantly in 

flexure. Circular columns showing other modes of failure were not considered in this study and 

are a scope of future study. Future investigations should also focus on extension of this model 

to other shapes of cross section. A regression analysis can be carried out to propose a simplistic 

relation between the model parameters and various loading as well as sectional parameters such 

as aspect ratio, longitudinal and transverse reinforcement ratio, level of axial compression etc. 

This will enable the user to estimate the model parameters and thereby predict the cyclic 

behaviour of any reinforced concrete columns without any system identification tool or an 

efficient solver. 

 

6.2.3 Parameter Identification of Bouc – Wen Type Models using Homotopy 

Optimization 

This study addresses the problem of high computational time associated with stochastic 

algorithms that are generally used to solve the Bouc – Wen model. It invokes the theory of 

homotopy to solve this problem using non-stochastic algorithm without compromising with 

the accuracy of final results. Through numerical examples and experimental data, it is shown 

that BW type model can also be solved using non-stochastic algorithms such as homotopy 

techniques. It is advantageous than the former in the sense that it saves time and thereby reduces 

the cost of computation. The key findings of this study within the range of parameters 

investigated are as follows:   

1) Stochastic algorithms, which are iterative and time consuming, can be replaced by a 

homotopy based non-stochastic algorithm which is fast and computationally efficient. 
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2) Homotopy ensures convergence even with initial guesses far from the true values of the 

parameters. 

3) Homotopy can produce accurate results even in case of objective function with multiple 

local minima. 

Homotopy technique presented in this chapter can possibly be extended to other civil 

engineering problems such as identification of material properties of a medium, detection of 

vibration signatures such as frequency, mode shape and damping ratio. It can also be used in 

health monitoring of civil infrastructures through identification of damage in structural 

elements.  Active and semi-active control of smart structures may also be benefitted by the 

application of this technique. 

 

6.2.4 Polygonal Hysteresis Model for Torsion  

In this study, an improved PHM is proposed for reinforced concrete circular columns 

subjected to torsion. Unloading and reloading rules are derived based on experimental 

observations. Primary curve is proposed to be estimated from SMMT. A slope change has been 

suggested at the cracking point unlike in the previous models. An additional point is also 

introduced in the unloading branch for more accurate prediction of the hysteresis loops. The 

analytical torque – twist behavior showed close correlation with experimental data. The 

proposed model can be extended in future to predict the hysteretic response of bridge columns 

under combined loading including torsion. Future studies should also focus on computer 

implementation of this hysteresis model to realize its utility fully. 
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