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Abstract

The objective behind the proposal studies around oversampling of Fourier
coefficients and their applications.

I intend to study how oversampling of Fourier coefficients can be used
for hiding messages. In the following report oversampling of Fourier co-
efficients has been discussed as providing room for storing or transmitting
hidden information.

The scheme aims at transmitting an arbitrary signal and, simultaneously,
embedding a hidden code. The most important feature of this scheme is
that without the knowledge of exact oversampling parameter the hidden
code cannot be retrieved. This parameter provide the key for retrieving
the code.



Chapter 1

Fourier Analysis

Fourier analysis is the most important tool in the construction of the wavelet theory.
This chapter relies on the well known theorems and formulas relating to Fourier series as
well as on the basic understanding of Fourier transform on R. In this chapter we give the
account of the fundamentals of the Fourier analysis which play decisive role in all works
of wavelets.

1.1 Fourier Series
Fourier series is mainly concerned with the periodic functions. Let the basic function

space be L2
o := L2(R/2π). The points in this space are measurable 2π- periodic functions

:
f(t+ 2π) = f(t) ∀t ∈ R,

for which the integral
1

2π

∫ 2π

0

|f(t)|2dt

is finite.The formula

< f, g > :=
1

2π

∫ 2π

0

f(t)g(t)dt

defines a scalar product on L2
o. To this scalar product belongs the norm

‖f‖ :=
√
< f, f > =

(
1

2π

∫ 2π

0

|f(t)|2dt
) 1

2

and the distance function d(f, g) := ‖f−g‖. With regard to this distance function, space
L2
o becomes a complete metric space, which means that Cauchy sequences of functions

fn ∈ L2
o are automatically convergent to some point f ∈ L2

o. L
2
o is also a vector space

over C and it is an example of a (complex) Hilbert space. Now define the functions

ek : t 7−→ eikt = cos(kt) + i sin(kt) (k ∈ Z)
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are 2π- periodic, and because of

< ej, ek >=
1

2π

∫ 2π

0

ei(j−k)dt =

{
1 (j = k)

1
2π(j−k)

ei(j−k)t
∣∣∣2π
0

(j 6= k)

The set ek forms an orthonormal system in L2
o and hence is linearly independent.

Any f ∈ L2
o has Fourier coefficients

ck := f̂(k) :=< f, ek >=
1

2π

∫ 2π

0

f(t)e−iktdt, (k ∈ Z) (1.1)

where ck is the k-th coordinate of f with respect to the orthonormal basis (ek|k ∈ Z).
The following so-called Riemann-Lebesgue lemma holds:

lim
k→±∞

ck = 0

Lemma 1 (Riemann-Lebesgue). If (f is L1 integrable) lebesgue integral of |f | is finite
then the Fourier transform of f satisfies

ck := f̂(k) =

∫ 2π

0

f(t)e−iktdt→ 0 as |k| → ∞.

But the central result of L2
o− theory is Parseval’s formula.

Parseval Formula:It says that the scalar product of any functions f and g ∈ L2
o coincides

with the“formal scalar product” of the corresponding coefficients vectors f̂ and ĝ:
For arbitrary f and g ∈ L2

o, the equality

∞∑
k=−∞

f̂(k)ĝ(k) = < f, g >

is valid; in particular , one has
∑∞

k=−∞ |ck|
2 = ‖f‖2

Proof: As we know that the Fourier coefficients can be given by (1.1) we have:

ck = f̂(k) = < f, ek >=
1

2π

∫ 2π

0

f(t)e−iktdt (k ∈ Z).

Simialrly:

c−k = ĝ(k) = < g, ek > =
1

2π

∫ 2π

0

g(t)eiktdt (k ∈ Z).

Now
∞∑

k=−∞

f̂(k)ĝ(k) =
∞∑

k=−∞

< f, ek > < g, ek >

= < f, g >
(
f, g ∈ L2

o

)
.
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Inparticular if f = g then we have,

∞∑
k=−∞

ckc−k = < f, f >

∞∑
k=−∞

|ck|2 = ‖f‖2 (proved) .

Now the Fourier coefficients of f , form the series

∞∑
k=−∞

ckek (1.2)

called the (formal) Fourier series of f . Occassionally we write

f(t) 
∞∑

k=−∞

cke
ikt (1.3)

to express that the series(1.2) belongs to the given function f . The analogies between the
geometries of L2

o and of Rn lead one to conjecture that the series (1.2) “represent” the
function f in certain sense. In this regard we study the following:
The series (1.2) has sequence of partial sums:

sN :=
N∑

k=−N

ckek

and the partial sums be:

sN(t) :=
N∑

k=−N

cke
ikt

where sN is nothing but the orthogonal projection of f onto the (2N + 1)− dimensional
subspace

UN := span (eN , ., ., ., ., ., 1, ., ., ., ., ., eN) ⊂ L2
o.

formed by all linear combinations of the ek having |k| ≤ N . In particular sN is orthogo-
nal to f − sN then by Pythagoras theorem we have

‖f − sN‖2 = ‖f‖2 − ‖sN‖2 = ‖f‖2 −
N∑

k=−N

|ck|2.

On account of Parseval formula, we conclude that

lim
N→∞

‖f − sN‖2 = 0.

Thus the formal Foureir series of a function f ∈ L2
o converges to f in the sense of the
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L2
o− metric.

Pointwise Convergence : The pointwise convergence of sN(t) to f(t) is given by the
Carleson’s theorem(1966).

Carleson’s theorem : The partial sums sN(t) of a function f ∈ L2
o converge to f(t)

for almost all t.

Uniform Convergence : Let the function f : R/2π −→ C be continuous and of bounded
variation. Then the partial sums sN(t) of the Fourier series of f converge for n −→ ∞
uniformly on R/2π tof(t).

Generalization
Let f : R → C be a periodic function with period L > 0, and suppose

∫ L
0
|f(x)|2dx <

∞. Then the formal Fourier series of f is given by

f(x) 
∞∑

k=−∞

cke
2kπix/L,

ck :=
1

L

∫ L

0

f(x)e−2kπix/Ldx

and the Parseval’s formula appears as

∞∑
k=−∞

|ck|2 =
1

L

∫ L

0

|f(x)|2dx.

1.2 Fourier Transform
The Fourier transform f̂ of the function f ∈ L1 is given by

f̂(ξ) =
1√
2π

∫ ∞
−∞

f(t)e−iξtdt (ξ ∈ R).

Here we will use the properties of the Fourier transform which are as follows:
Now for any time signal f and arbitrary h ∈ R the is defined by

Thf(t) := f(t− h).

Let f ∈ L1 then the Fourier transform is given by
(R1)

ˆ(Thf)(ξ) = e−iξhf̂ ξ,

which may be expressed as follows: If f is translated by h to the right along the time
axis, then Fourier transform f̂ picks up a factor e−h.
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Consider an arbitrary signal f ∈ L1 and modulate f with a pure oscillation eω, ω ∈ R;
that is to say, cosider the function g(t) := eiωtf(t). Then the fourier transform of g is
given by
(R2)

ˆ(eωf)(ξ) = f̂(ξ − ω).

That is if the signal f is modulated with eω, then the graph of f̂ is translated by ω (to the
right, if ω > 0) on the ξ− axis.
Now for any time signal f and for arbitrary a ∈ R∗ the function Daf is defined by

Daf(t := f(
t

a
).

Then the Fourier transform is given by
(R3)

ˆ(Daf)(ξ) = |a|Daf̂(ξ) (a ∈ R∗).

If the graph of f is stretched horizontally by a factor a > 1, then the graph of f̂ is
compressed horizontally to the fraction 1

a
< 1 of its original width; moreover it is scaled

vertically by the factor |a|.
Let f be a C1 function and assume that f as well as f ′ are integrable, i.e., in L1 then the
Fourier transform of the derivative can be given by
(R4)

f̂ ′(ξ) = iξf̂(ξ).

Consider an f ∈ L1 decaying for |t| → ∞ at least fast enough to make the integral∫
|t||f(t)|dt convergent. Denote the function t → tf(t) by tf for short and assume

tf ∈ L1. then the Fourier transform is given by
(R5)

ˆ(tf)(ξ) = i(f̂)′(ξ).

1.3 The Heisenberg uncertainty principle
In context of signal processing and in particular time-frequency analysis one cannot

simultaneously sharply localize a signal (function f ) in both the time-domain and the
frequency-domain (f̂ , its Fourier transform). This plays an important role in quantum
mechanics, wherein the motion of particle is described by a certain function ψ ∈ S in the
following way:

fX(x) := |ψ(x)|2 as the probability density for the position X is taken as random
variable, fp(ξ) := | ˆψ(ξ)|2 is the corresponding density for its momemtum. Here we
have tacitly assumed ψ ∈ L2, and , for the probabilistic interpretation,

‖ψ‖2 =

∫
fX(x)dx = 1

. The quantity ∫
x2fX(x)dx =

∫
x2‖ψ(x)‖2dx =: ‖xψ‖2
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is the expectation of the random variable X2 and consequently a measure for the hori-
zontal spread of the function ψ. Similarly, the integral∫

ξ2fP (ξ)dξ =

∫
ξ2‖ψ̂2dξ =: ‖ξψ̂‖2

can be regarded as a measure of the spread of ψ̂ over the ξ−axis. In terms of these quan-
tities, the Heisenberg uncertainty principle can be formulated as follows:

Theorem : Let ψ be an arbitrary function in L2. Then

‖xψ‖.‖ξψ̂‖ ≥ 1

2
‖ψ‖2, (1.4)

the left-hand side is allowed to assume the value ∞. The equality sign is valid exactly
for the constant multiples of the functions x 7→ e−cx

2 , c > 0.

Proof : If ‖xψ‖ =∞ or ‖ξψ̂ =∞ then nothing to prove as

1

2
‖ψ‖2 ≤ ∞

which is true. In this case at least one of the two functions ψ and ψ̂ is definitely very
spread out which is to say that both cannot be greater than 1

2
‖ψ‖2, at least one has to

be greater. So we can assume that left-hand side of (1.4) is finite and we will prove this
inequality first for functions ψ ∈ S. With respect to this additional hypothesis all conver-
gence questions are moved out of the way; in particular, we have lim

x→±∞
x|ψ(x)|2 = 0.

The Fourier transform ψ̂ may be eliminated from (1.4) by means of rule(R4) which is:

f̂ ′(ξ) = iξf̂(ξ)

and the Parseval’s formula
‖f̂‖2 = ‖f‖2.

One has
‖ξψ̂‖ = ‖ψ̂′‖ = ‖ψ′‖

from which it follows that the stated inequality (1.4) is equivalent to

‖xψ‖.‖ψ′‖ ≥ 1

2
‖ψ‖2. (1.5)

Now by Schwarz’ inequality we have

‖xψ‖.‖ψ′‖ ≥ | < xψ, ψ′ > | ≥ |Re < xψ, ψ′ > . (1.6)

Now the right hand side can be computed as follows:

2Re < xψ, ψ′ > = < xψ, ψ′ > + < ψ′, xψ > =

∫
x
(
ψ(x)ψ′(x) + ψ′(x)ψ(x)

)
.
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= x|ψ(x)|2|∞−∞ −
∫ ∞
−∞
‖ψ(x)‖2dx = −‖ψ‖2.

If we insert this on the right side of (1.6), the inequality (1.5) follows.

To finish the proof we have to get rid of assumption ψ ∈ S. Since S is dense in L2,
we get a sequence ψn which converges to ψ ∈ L2. In (1.4) equality holds if and only if
both ≥ in (1.6) are in fact equalities. In the first place the two vectors xψ and ψ′ ∈ L2

are linearly independent. So there has to be a µ+ iν ∈ C with

ψ′(x) = (µ+ iν)xψ(x) (x ∈ R) . (1.7)

The solution of this differential equation are given by

ψ(x) := Ce(µ+iν)x2/2, C ∈ C.

and such a ψ is an element of L2 if and only if µ := −c is negative. For the second
inequality in (1.6) to be equality, < xψ, ψ′ > has to be real. Together with (1.7) we are
led to the condition

< xψ, ψ′ > = < xψ, (µ+ iν)xψ > = (µ− iν) ‖xψ‖2 ∈ R,

so ν has to be zero. (Proved)

According to this theorem, the two functions ψ, ψ̂ cannot simultaneously be sharply lo-
calized at x := 0, ξ := 0 : At least one of the numbers ‖xψ‖2 and ‖ξψ̂‖2 is ≥ ‖ψ‖2/2.
Of course the same is true for an arbitrary pair (xo, ξo) instead of (0,0) :

Theorem : For any ψ ∈ L2 and arbitrary xo ∈ R, ξo ∈ R one has

‖ (x− xo)ψ‖ . ‖ (ξ − ξo) ψ̂‖ ≥
1

2
‖ψ‖2.

Here ‖ (x− xo) ‖ resp. ‖ (ξ − ξo) ‖ denotes the following quantities:(∫
(x− xo))2 ‖ψ(x)‖2dx

) 1
2

respectively

(∫
(ξ − ξo))2 ‖ψ̂(ξ)‖2dx

) 1
2

Proof : We bring the auxiliary function

g(t) := e−iξotψ(t+ xo)

into play and compute

‖g‖2 =

∫
|ψ(t+ xo)|2dt = ‖ψ‖2,

‖tg‖2 =

∫
t2|ψ(t+ xo)|2dt =

∫
(x− xo))2 |ψ(x)|2dx

Writing g in the form

g(t) = e−iξoth(t), h(t) := f(t+ xo),
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and with the help of rules (R2) and (R1), we deduce that

ĝ(τ) = ĥ(τ + ξo) = eixo(τ+ξo)f̂(τ + ξo).

This implies

‖τg‖2 =

∫
τ 2|f̂(τ + ξo)|2dτ =

∫
(ξ − ξo)2|f̂(ξ)|2dξ.

If we now replace ‖xψ‖, ‖ξψ̂‖, and ‖ψ‖ with ‖tg‖, ‖τg‖, and ‖g‖, we arrive at the stated
formula. (Proved)

1.4 Shannon Sampling Theorem
Qns: Is it possible to reconstruct a time signal f from the discrete values (f(kT )|k ∈ Z)

completely, i.e for all values of the continuous variable t?

Ans: The Shannon sampling theorem gives the answer to this question.

Ω- bandlimited signal: A function f ∈ L1 is called Ω-bandlimited if its Fourier trans-
form f̂ vanishes identically for |ξ| > Ω :

f̂(ξ) ≡ 0 (|ξ| > Ω)

Shannon’s theorem states that an Ω-bandlimited function can be reconstructed completely
from its values

(f(kT )|k ∈ Z) , T := π/Ω (1)

sampled at the discrete points kT.

Theorem: Let the continuous function f : R → C be Ω-bandlimited and assume
that f satisfies an estimate of the form

f(t) = O

(
1

|t|1+ε

)
(t→ ±∞) (2)

Let T := π/Ω. Then

f(t) =
∞∑

k=−∞

f(kT )sinc(Ω(t− kT )) (t ∈ R) (3)

The formal series appearing in (3) is called the cardinal series.

Proof: As we know that sinc-function is bounded on R, the assumption (2) guar-
antees that the cardinal series is uniformly convergent on R and represents a function
f̃(t) =

∑∞
k=−∞ f(kT )sinc(Ω(t − kT )) that is continuous on all of R. Since f is

bandlimited, then f̃(t) = f(t) otherwise f 6= f̃ but f̃(kT ) = f(kT ) ∀k as
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sinc(kπ) = δ0k implies that the function f̃ automatically interpolates the given values
(f(kT )|k ∈ Z) even in cases where f is not bandlimited.

Now because of (2) the function f is in L1 ∩ L2 and has a continuous Fourier transform.
Since f̂ vanishes for |ξ| > Ω, it is in L1 as well as the right side of the inversion formula
produces a comtinuous function t 7−→ f̃(t) which coincides with f almost everywhere,
so is actually ≡ f :

f(t) =
1√
2π

∫
f̂(ξ)eiξtdξ =

1√
2π

∫ Ω

−Ω

f̂(ξ)eiξtdξ (t ∈ R) (4).

This equality in (4) is due to the assumption that f̂ vanishes identically outside of the in-
terval [−Ω,Ω]. If this assumption is not fulfilled then we no longer have equality and the
cardinal series will not represent f. Since f̂ is continuous, one has f̂(−Ω) = f̂(Ω) = 0
and may say that on the ξ−interval [−Ω,Ω] the function f̂ coincides with a certain peri-
odic function F of period 2Ω :

f̂(ξ) ≡ F (ξ) (−Ω ≤ ξ ≤ Ω). (5)

This function F ∈ L2 (R/(2Ω)) can be written into a Fourier series according to formula:

F (ξ) 
∞∑

k=−∞

cke
2kπiξ/(2Ω), (6)

and we know by Carleson’s theorem that series converges for almost all ξ to the true
function value F (ξ). The coefficients ck are computed as follows:

ck =
1

2Ω

∫ Ω

−Ω

F (ξ)e−2kπiξ/(2Ω)dξ =
1

2Ω

∫
f̂(ξ)e−2kπiξ/(2Ω)dξ. (7)

The equality in (7) is due to the same reason as on (4). On comparing this equality with
(4) the last integral can be interpreted as f−value, so we get

ck =

√
2π

2Ω
f(−kπ/Ω) =

√
2π

2Ω
f(−kT ),

and formula (6) becomes

F (ξ) =

√
2π

2Ω

∞∑
k=−∞

f(kT )e−ikTξ (almost all ξ ∈ R), (8)

using (5) we may replace (4) with

f(t) =
1

2Ω

∫ Ω

−Ω

(
∞∑

k=−∞

f(kT )e−ikTξ

)
eitξdξ.

Because of (2), the series under the integral sign converges uniformly, and hence can be
integrated term by term;

f(t) =
1

2Ω

∞∑
k=−∞

f(kT )

∫ Ω

−Ω

ei(t−kT )ξdξ.

9



The last integral is computed as follows:∫ Ω

−Ω

ei(t−kT )ξdξ =

∫ Ω

−Ω

cos((t− kT )ξ)dξ

=
2

(t− kT )
sin(Ω(t− kt)) (t 6= kt)

= 2Ωsinc(Ω(t− kT )) (t ∈ R),

so that we obtain the stated formula

f(t) =
∞∑

k=−∞

f(kT )sinc(Ω(t− kT )) (t ∈ R) (Proved)

The frequency Ω := π/T is called the Nyquist frequency for the chosen sampling inter-
val T.

The quantity T−1 represents the number of samples taken per unit of time and is called
Sampling rate. The sampling rate T−1 := Ω/π is called the Nyquist rate for the func-
tions of bandwidth Ω.

Qns: What can be said when the actual bandwidth Ω′ of the sampled function f is larger
than the Nyquist frequency Ω := π/T ?

Ans: It will create an aliasing. It will be clear in next topic.

1.4.1 Aliasing
Consider the function f that is only moderately undersampled. Take

Ω < Ω′ < 3Ω

and assume that f̂(ξ) ≡ 0 for |ξ| > Ω′. Then we have

f(kT ) =
1√
2π

∫ Ω′

−Ω′
f̂(ξ)eikTξdξ

=
1√
2π

(∫ −Ω

−3Ω

f̂(ξ)eikTξdξ +

∫ Ω

−Ω

f̂(ξ)eikTξdξ +

∫ 3Ω

Ω

f̂(ξ)eikTξdξ

)
.

If we take the substitution

ξ := ξ′ ± 2Ω (−Ω ≤ ξ′ ≤ Ω)

in the two exterior integrals on the right , then eiktξ = eikTξ
′ as (2ΩT = 2π), we obtain

f(kT ) =
1√
2π

∫ Ω

−Ω

(
f̂(ξ) + f̂(ξ − 2Ω) + f̂(ξ + 2Ω)

)
eikTξdξ. (9)
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This brings into the continuous function g ∈ L2 whose Fourier transform is given by

ĝ(ξ) :=

{
f̂(ξ) + f̂(ξ − 2Ω) + f̂(ξ + 2Ω) (−Ω ≤ ξ ≤ Ω)

0 (|ξ| > Ω)

Because of (9), the function g satisfies

g(kt) =
1√
2π

∫ Ω

−Ω

ĝ(ξ)eiktξdξ = f(kT ), (k ∈ Z)

We found that g has same cardinal series as f , but g is, contrary to f , truly Ω− ban-
dlimited. This implies that the common cardinal series of f and g represents not f but g.
Thus we conclude that if the true bandwidth Ω′ of f is larger than the Nyquist frequency
Ω := π/T then the high frequency parts of f are not simply filtered out by the cardinal
series, but they appear to be afflicted with a frequency shift. The cardinal series produces
an Ω−bandlimited function g whose Fourier transform ĝ is given by second last equation.

1.4.2 Order of Convergence
The order of convergence of the Shannon sampling can be improved by oversampling

the function f .

Let a sampling rate T−1 be given and let Ω := π/T be the corresponding Nyquist
frequency. We assume that the signals f taken into consideration are Ω′−bandlimited
for some Ω′ < Ω. Let the auxiliary function q ∈ L2 be defined by giving its Fourier
transform:

q̂(ξ) :=


1 (|ξ| ≤ Ω′)

1
2

(
1− sinπ(2|ξ|−Ω−Ω′)

2(Ω−Ω′)

)
(Ω′ ≤ |ξ| ≤ Ω)

0 (|ξ| ≥ Ω)

Note that q is, apart from the parameter values Ω and Ω′, independent of f .

The signal f satisfies the assumptions of the Shannon sampling theorem, therefore (8)
is valid and we may write

f̂(ξ) =

√
2π

2Ω

∞∑
k=−∞

f(kT )e−iktξ (−Ω ≤ ξ ≤ Ω)

Furthermore we know that f̂(ξ) is identically zero for (−Ω′ ≤ |ξ| ≤ Ω). In the interval
|ξ| ≤ Ω′ we have q̂(ξ) ≡ 1. Then we have

f(t) =
1√
2π

∫ Ω

−Ω

f̂(ξ)eitξdξ =
1√
2π

∫ Ω

−Ω

f̂(ξ)q̂(ξ)eitξdξ

=
1√
2π

∫ Ω

−Ω

(
∞∑

k=−∞

f(kT )e−iktξ

)
q̂(ξ)eitξdξ
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=
1√
2π

∞∑
k=−∞

f(kT )

∫ Ω

−Ω

q̂(ξ)ei(t−kT )ξdξ .

Using the abbreviation

1

2Ω

∫ Ω

−Ω

q̂(ξ)eisξ =: Q(s) (10)

we rewrite the cardinal series as

f(t) =
∞∑

k=−∞

f(kT )Q((t− kT )). (11)

In order to judge the improvement in convergence we need a function Q independent of
f in the explicit form. Since q̂ is even function, the integral (10) can be computed as:

Q(s) =
1

2Ω

∫ Ω

−Ω

q̂(ξ)cos(sξ)dξ

=
1

Ω

(∫ Ω′

0

cos(sξ)dξ +

∫ Ω

Ω′

1

2

(
1− sinπ(2|ξ| − Ω− Ω′)

2(Ω− Ω′)

)
cos(sξ)dξ

)

=
π2

2Ωs

sin(Ω′s) + sinΩs()

(π2)− (Ω− Ω′)2s2
.

from this, we deduce that

Q(s) = O

(
1

|t|1+ε

)
(|s| → ∞).

For the comparison of (11) and (3) we have to estimate the order of magnitude of the
factor Q(t− kt) in (11) when |k| → ∞. It is given by

2π2

(2Ω).(|k|T ).(Ω/2)2(kT )2
=

4

π

1

|k|3
(Ω′ =

1

2
Ω).

Here we used the relation ΩT = π. The order of magnitude of the corresponding factor
sinc(Ω(t− kT )) when |k| → ∞ is much larger, namly

1

π

1

|k|

It follows that, using (3), we have to take several more terms into account as compared
to (11) in order to guarantee the same level of precision.
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Chapter 2

Frame Theory

2.1 Frame
Def : A family of vectors (φi)

M
i=1 in HN is called a frame for HN , if there exist

constants 0 < A ≤ B <∞ such that

A||x||2 ≤
M∑
i=1

|〈x, φi〉|2 ≤ B||x||2 for all x ∈ HN . (2.1)

where the constants A and B are called the lower and upper bounds of the frame. If A =
B, then (φi)

M
i=1 is called an A-tight frame .

2.2 Analysis Operator
Def : Let (φi)

M
i=1 be a family of vectors inHN . Then the associated analysis operator

T : HN 7→ lM2 is defined by

Tx := (〈x, φi〉)Mi=1, x ∈ HN .

The following lemma gives the basic property of the analysis operator.

Lemma 1 : Let (φi)
M
i=1 be a sequence of vectors in HN with associated analysis op-

erator T .

We have

||Tx||2 =
M∑
i=1

|〈x, φi〉|2 forall x ∈ HN .

Hence, (φi)
M
i=1 is a frame for HN if and only if T is injective.

Proof : This is the immediate consequence of the definition of T and the frame prop-
erty in (2.1).

13



2.3 Adjoint Operator
Def : The adjoint operator T ∗ : lM2 7→ HN of T is given by

T ∗(ai)
M
i=1 =

M∑
i=1

aiφi.

Proof : For x = (ai)
M
i=1 and y ∈ HN , we have

〈T ∗x, y〉 = 〈x, Ty〉 = 〈(ai)Mi=1, (〈y, φi〉)Mi=1〉 =
M∑
i=1

ai〈y, φi〉 = 〈
M∑
i=1

aiφi, y〉.

Thus, T ∗ is as claimed.

2.4 Frame Operator
Def : Let (φi)

M
i=1 be a sequence of vectors in HN with associated analysis operator T

. Then the associated frame operator S : HN 7→ HN is defined by

Sx := T ∗Tx =
M∑
i=1

〈x, φi〉φi, x ∈ HN .

Lemma 2 : Let (φi)
M
i=1 be a sequence of vectors in HN with associated frame operator

S. Then, for all x ∈ HN ,

〈Sx, x〉 =
m∑
i=1

| < x, φi > |2.

Proof : The proof follows directly from 〈Sx, x〉 = 〈T ∗Tx, x〉 = ||Tx||2 and Lemma 1.

Clearly, the frame operator S = T ∗T is self adjoint and positive.
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Chapter 3

Oversampling of fourier coefficients
using frames

Let us represent a signal f(t), which is defined for t ∈ [−T, T ], through its
discrete Fourier expansion, i.e.,

f(t) =
1√
2T

∞∑
n=−∞

cne
inπt
T . (3.1)

Since for t ∈ [−T, T ] the complex exponentials in (3.1) constitute an orthonormal basis,
the coefficients cn in (3.1) are obtained as:

cn =
1√
2T

∫ T

−T
f(t)e−i

nπt
T dt. (3.2)

Let us consider now the rescaling operation : t → at, with a positive real number
less than 1, and construct the function ((XT (t))

√
2T )ei

anπt
T , with χT (t) is defined as :

χT (t) = 1 if t ∈ [−T, T ] and zero otherwise. The new functions ((XT (t))
√

2T )ei
anπt
T , are

no longer a basis but a ”tight frame” for the space of time limited signal with time-width
2T (corresponding frame-bound begin a−1). Here, “a” is the over sampling parameter
and is the key for retrieving the hidden data. {eianπtT } ⊂ L2[−T, T ] is a frame for some
a ∈ (0, 1). Then the coefficient cn of the linear expansion,

f(t) =
XT (t)√

2T

∞∑
n=−∞

cne
ianπt
T (3.3)

are not unique which means there exist infinitely many different sets of coefficients cn
which can produce an identical signal f by above linear super-position. A particular set
of coefficients cn is obtained as:
we have dilation function

Daf(t) = f(t/a)

then Fourier coefficients

cn =
1√
2T

∫ T

−T
f(t/a)e−i

nπt
T dt.
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By suitable change of variables we get

cn =
a√
2T

∫ T

−T
f(t)e−i

anπt
T dt. (3.4)

Out of all possible sets of coefficients, the ones given by the above equation constitute
the coefficients of minimum 2-norm .
Let us stress the cause for the nonuniqueness of the coefficients in the tight frame expan-
sion. For a < 1, with the restriction t ∈ [−T, T ], the exponentials ( 1√

2T
)ei

anπt
T are not

linearly independent, i.e., we can have the situation

1√
2T

∞∑
n=−∞

c
′

ne
ianπt
T = 0 for

∞∑
n=−∞

|c′n|2 6= 0

or, taking inner product of both sides with every ( 1√
2T

)ei
anπt
T ,

1√
2T

∞∑
n=−∞

c
′

n

∫ T

−T
e−i

amπt
T ei

anπt
T dt = 0 for

∞∑
n=−∞

|c′n|2 6= 0

which can be recast as:

G
−→
c
′

= 0 for ||
−→
c
′ ||2 =

∞∑
n=−∞

|c′n|2 6= 0.

The elements of G are given by

gm,n =
1√
2T

∫ T

−T
e−i

amπt
T ei

anπt
T dt =

sin a(m− n)π

a(m− n)π
. (3.5)

Notice that all vectors
−→
c
′ satisfying G

−→
c
′

= 0 belong, by definition to Null(G), the null
space of G. All such vectors satisfy

f(t) =
XT (t)√

2T

∞∑
n=−∞

cne
ianπt
T +

XT (t)√
2T

∞∑
n=−∞

c
′

ne
ianπt
T =

XT (t)√
2T

∞∑
n=−∞

c
′′

ne
ianπt
T , (3.6)

where we have defined c′′n = cn + c
′
n with cn as in (3.4) and c′n the components of an

arbitrary vector
−→
c
′ ∈ Null(G). Vectors −→c and

−→
c
′ will, hereafter, be referred to as signal

components and hidden code coefficients, respectively. The fact that all coefficients
−→
c
′′

=
−→c +

−→
c
′ reproduce an ideal signal as the coefficient −→c provides us with the foundation to

construct an encoding/decoding scheme for transmitting hidden information.
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Chapter 4

Encoding-decoding system

Let f be the signal transmitted and we wish to transmit hidden code
−→
h consisting of

k numbers where k depends on the number of eigenvalues of G close to zero. Let a be
fixed and consider that G is an M ×M matrix of elements given by

gm,n =
1

2T

∫ T

−T
e−i

amπt
T ei

anπt
T dt =

sin(a(m− n)π)

a(m− n)π
.

Select k-eigenvectors of G corresponding to the zero (close) eigenvalues which are as-
sumed to be orthonormal and construct vector −→c ∈ Null(G) as follows:

−→
c′ = U

−→
h ,

where U is an M ×K matrix, the columns of which are the k-selected eigenvectors.

Claim : Null(G) 6= 0.

Proof : Suppose Null(G) = 0 then, G
−→
c′ = 0 ∀

−→
c′ ⇒

−→
c′ = 0 =⇒ ||

−→
c′ || = 0 which is a

contradiction and we will not be able to transmit hidden code. Thus, Null(G)6= 0.

4.1 Encoding
(i) f is given, compute −→c signal coefficients by

−→c =
a√
2T

∫ T

−T
f(t)e−i

anπt
T dt.

(ii) Compute
−→
c′ (hidden code) by

−→
c′ = U

−→
h .

(iii) Add the coefficients −→c and
−→
c′ to construct

−→
c′′ = −→c +

−→
c′ .
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4.2 Decoding

(i) Use the coefficients
−→
c′′ to recover the signal f(t) by

f(t) =
χT (t)√

2T

∞∑
n=−∞

−→
c′′ei

anπt
T .

(ii) Use the signal f to compute signal coefficients by

−→c =
a√
2T

∫ T

−T
f(t)e−i

anπt
T dt.

(iii) Now compute
−→
c′ by

−→
c′ =

−→
c′′ −−→c .

(iv) Compute matrix U using all eigenvectors of matrix G corresponding to eigen-
values less than previously specified tolerence parameter. Then the code is retrieved by

−→
h = U∗

−→
c′

where U∗ is the transpose conjugate of U .

4.3 Example

Figure 4.1: Table 1

Consider the signal f(t) = t3sinc(t− 2), t ∈ [−4, 4].

1. Corresponding to a = 1, 81 Fourier coefficients are used for good representation
of the signal in the nonoversampling case.

2. If we consider a = 0.5 a null space is created and K = 64 eigenvectors corre-
sponding to 64 smallest eigenvalues of matrix G are used to construct a code of 64
numbers.
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3. The numbers, consisting of 15 digits, are taken randomly from (0, 1) interval.Table
1 gives three such numbers. The second column shows the corresponding recon-
structed numbers. In order to assess the recontruction of all numbers, let us de-
note as hr the reconstructed code and define the error of reconstruction as δr =
||
−→
h −
−→
hr ||. At the reconstruction stage the exact value of the oversampling param-

eter a is known, the error of the reconstruction is small (δr = 5.1× 10−11).

4. Reconstruction is not possible if the exact value of a is not known. To show this,
let us distort the value of a upto a very small number: 1× 10−13. this perturbation
does not produce any detectable effect in the signal coefficients. But it produces
enormous distortion to the eigenvectors of Null(G). When we reconstruct the code,
what we obtain has no relation with true code (see 3rd column of Table 1). The
error of reconstruction in this case is δr = 6.36.

5. Therefore the recovery of the code is only possible if the value of a is known
to double precision, the key number for recovering the code is the value of the
parameter.
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