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Abstract

I have greatly benefited reading a book of Serre [Ser73], and I have presented a detailed version of the

main results in this book.

One of the main interesting topic in algebra is to find the roots of non-zero polynomials and writing

down them explicitly over a given field K. The case which we consider in this project is the space of

quadratic forms, which are homogeneous polynomials of degree 2, over Q. If they arise over Z, then

we can study the zeros of these quadratic form by looking at them over Zp and study if that has zero in

Zp or not. By Hensels lemma, this studied over the reduction modulo p.

Then immediately question arise is to study if the quadratic form represents a value or not, over Qp.

By studying the structure of the group Q∗p/Q∗p
2, one can understand this question and bring it to a

finite representation problem.

The next question arise that when quadratic forms represents zero. Hasse-Minkowski principle

answers that question. Hasse-Minkowski principle says that quadratic forms Q has a global zero if and

only Q has everywhere a local zero. This means that if Q is a quadratic form over Q, Q represents

zero, it is necessary and sufficient that, for all v ∈ V , the form Qv represent zero Qv, where V is finite

set of primes including∞ and 2. For that we study non-degenerate quadratic module over field K and

by Hilbert symbol we give product formula which is the one most important invariant of the quadratic

form.

Generally, we are concentrating on equivalence of two quadratic forms, because two quadratic

forms are equivalent if and only if they have same rank and same discriminant and same invariant ε, so

that by equivalence we can consider one of them over Qp and can apply Hasse-Minkowski principle

on it. This invariants discriminant, rank and ε are called local invariants of Q. Similarly, we can do this

for any element a belong in to field Q∗, this means Q represents a, it is necessary and sufficient that it

does in each of the Qp. As an application of Hasse-Minkowski principle, we prove that a quadratic

form of rank greater or equal to 5 represents zero if and only if it is indefinite, which means if it

represents zero in R.
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Notation

N Set of all natural numbers

Z Set of all integers

Q Set of all rational numbers

R Set of all real numbers

C Set of all complex numbers

Z/pZ Ring of integers modulo p

Z/pnZ Ring of integers modulo pn

R∗ Set of all invertible elements in the ring R

F or K Fields

#A Cardinality of set A

char R Characteristic of R

kerϕ Kernel of homomorphism of ϕ

deg f(x) Degree of polynomial f(x)

F(a1, a2, . . . , an) Extension of F by {a1, a2, . . . , an}

[K : F] Degree of K over F

Fn n-copies of field F

dimFK Dimension of vector space K over F

Fq Field F with q elements, q is a power of prime

Zp Ring of p-adic integers

Qp Field of p-adic numbers

R[x] Polynomial ring of R

lim←− Inverse or projective limit of projective system

U Group of invertible elements of Zp
νp(x) p-adic valuation of x
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Chapter 1

Finite Fields

All rings considered below are to be commutative ring with unity. Ring homomorphism are always

assumed to take unit element to unit element.

1.1 Generalities

In this section we will see basic structural results of finite fields, and later we will prove that

multiplicative groups of finite field are cyclic.

1.1.1 Finite Fields

Definition 1 (Field). A commutative ring R with unity 1(6= 0) in which every non-zero element has an

inverse with respect to multiplication is called a field.

Definition 2 (Finite field). A field with finite number of elements is called a finite field.

Proposition 1.1.1. If R is a ring, then ∃! ring homomorphism ϕ : Z→ R.

Proof. Define ϕ : Z→ R by

ϕ(n) =


1R + 1R + · · ·+ 1R︸ ︷︷ ︸

n−times

if n > 0,

0 if n = 0,

−ϕ(−n) if n < 0.

Its clear that, for any m,n ∈ Z, ϕ(m+ n) = ϕ(m) + ϕ(n) and ϕ(mn) = ϕ(m)ϕ(n).

The proposition above allows us to identify the image of an integer in an arbitrary ring R. For ex. 4

can be interpreted by 1R + 1R + 1R + 1R of R.

3
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Proposition 1.1.2. Let K be a field and ϕ : Z→ K be homomorphism then ϕ(Z) is a subring of K.

Proof. ϕ(Z) = {ϕ(z) : z ∈ Z}. Let a, b ∈ K then ϕ(z1) = a and ϕ(z2) = b for some z1, z2 ∈ Z.

Then a− b = ϕ(z1)− ϕ(z2) = ϕ(z1 − z2) ∈ K, also ab = ϕ(z1)ϕ(z2) = ϕ(z1z2) ∈ K. So, ϕ(Z) is

subring of K.

Lemma 1.1.3. Z/nZ is integral domain if and only if n is prime number.

Proof. Let n is prime, consider x(6= 0) ∈ Z/nZ then we can choose a ∈ Z such that 2 ≤ a ≤ n− 1

with a = x. Since n is prime (a, n) = 1. Then ∃ r,m ∈ Z such that ar +mn = 1⇒ ra ≡ 1

(mod n). So r a = 1 in Z/nZ. Then a is unit in Z/nZ. So Z/nZ is field and every field is integral

domain. Now Z/nZ is integral domain. If n is not prime number, then n = ab with a, b ∈ Z, also

a 6= 0, b 6= 0 but a · b = n = 0 and Z/nZ is integral domain. So n has to be prime.

Definition 3 (Characteristic of field). Characteristic of field K is defined to be smallest positive

integer p such that p · 1K = 0. If such p exists otherwise it is zero. It is denoted by Char(K).

Proposition 1.1.4. Characteristic of a field F is either 0 or a prime number.

Proof. Suppose that the characteristic is not prime p 6= 0. So p is the smallest natural number such

that p.1 = 0 in F. Since p is not prime p = rs is composite, 1 < r, s < p for r, s ∈ Z, we have r.1 and

s.1 are non-zero in F but (r.1)(s.1) = (rs).1 = p.1 = 0. Hence, r.1 is a non-zero zero divisor in field

F, which is a contradiction. This implies that p is prime number.

Definition 4 (Field of fractions). The field of fractions of integral domain R, denoted

Q(R) = R×R∗ (where R∗ is non-zero elements of R) is the set of equivalence classes, under the

equivalence relation ∼ defined (a, b) ∼ (c, d) if and only if ad = bc . Given two elements [a, b] and

[c, d] define [a, b] + [c, d] = [ad+ bc, bd] and [a, b][c, d] = [ab, cd].

Proposition 1.1.5. Any field have only zero and unit ideals.

Proof. Since every field have zero ideal, and in field every non-zero element has multiplicative inverse.

So that ideal I contains unity 1. i.e., Field have only zero ideal and other one is whole ring R.

Proposition 1.1.6. Every homomorphism ϕ from field F to ring R is injective.

Proof. We know that kerϕ is an ideal of F. Then by previous proposition kerϕ is (1) or (0). If kerϕ

is (1) then map ϕ will zero map and zero map is not homomorphism when ring is not zero ring. So

kerϕ = {0}, but if kerϕ = {0} then ϕ is injective. Let kerϕ = {0} and

x, y ∈ F, ϕ(x) = ϕ(y)⇒ ϕ(x)−ϕ(y) = 0⇒ ϕ(x−y) = 0⇒ x−y ∈ kerϕ⇒ x−y = 0⇒ x = y.

Hence, ϕ is injective.
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Proposition 1.1.7. Every field F contains either a copy of Q or Z/pZ for some prime p.

Proof. Field F is a ring with unity and from Proposition 1.1.4 characteristic of F is either prime p > 0

or zero. From Proposition 1.1.2 map ϕ : Z→ F ring homomorphism. If characteristic is prime p, then

kerϕ = pZ. Since ϕ(Z) is subring of field F. By first isomorphism theorem of ring, ϕ(Z) ∼= Z/pZ,

but Z/pZ is field. Then ϕ(Z) is subfield of F. Hence field F contains isomorphic copy of Z/pZ. Now

assume that characteristic of field F is zero. We know that the intersection F0 of all subfields of F is

again a field-called the prime subfield of F. It is the smallest subfield of F. The prime subfield must

contain 1 and all its multiples n · 1. From Proposition 1.1.2 map ϕ : Z→ F is ring homomorphism. Its

image must be contained in F0. If the kernel of this homomorphism is {0}, then by first isomorphism

theorem of ring F0 contains a subring isomorphic to Z, and hence it contains a subfield isomorphic to

the field of fractions Q of Z. By minimality, F0
∼= Q. Hence, F contains isomorphic copy of Q.

Definition 5 (Subfield). A subset K of field F is subfield if K itself is field respect to the operations of

F.

Definition 6 (Finite field order). Number of elements in finite field is called its order.

Proposition 1.1.8. If characteristic of field K is p then σ : x→ xp is an isomorphism of K onto one

of its subfield Kp.

Proof. By definition, Kp := {kp|k ∈ K} is a field and #Kp = #K. We have

σ(xy) = (xy)p = xpyp = σ(x)σ(y) and σ(x+ y) = (x+ y)p

(x+ y)p = xp +

(
p

1

)
xp−1y +

(
p

2

)
xp−2y2 + . . .+

(
p

p− 1

)
xyp−1 + yp

Since
(
p
a

)
≡ 0 (mod p), if 0 < a < p. Say

(
p
r

)
= tp

(
p
r

)
xp−ryr = tpxp−ryr = t(0) = 0 for

0 < r < p⇒ σ(x+ y) = (x+ y)p = xp + yp = σ(x) + σ(y). So σ is homomorphism.

Now, let us show that σ is injective. If x, y ∈ K such that σ(x) = σ(y). This implies that xp = yp

= xp − yp = 0, but σ(x− y) = (x− y)p = xp − yp = σ(x)− σ(y) = xp − yp = 0⇒ x = y. So σ

is injective. Since, #K = #Kp. So σ is surjective also. σ : x→ xp is isomorphism of K onto one of

the subfield Kp . Here map σ is called Frobenius map when σ : Fp → Fp.

Definition 7 (Field extension). Let K and F be two fields. If F ⊆ K , then we call K is a field

extension of F and we call F is a subfield of K. We denote this by K/F.

The field of real numbers R is extension of Q, C is extension of R. Every field is vector space over

itself. If K is an extension field of F (F ⊆ K) then K is vector space over F. If K is an extension field

of F then degree of K over F is dimension of K as vector space over F. We denote it by f = [K : F] or

simply dimF K.
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Definition 8 (Algebraic extension). A field extension L/K is called algebraic extension if every

element if L is algebraic over K.

Definition 9 (Algebraically closed field). A field F is called algebraically closed field if for every

non-constant polynomial f ∈ F[X] has root in F.

Definition 10 (Algebraic closure). A field extension F of F is called an algebraic closure if F is an

algebraic extension of F and F is algebraically closed.

An extension F of K is finitely generated if there are elements r1, r2, . . . , rk in F such that

F = K(r1, r2, . . . , rk).

Definition 11 (Splitting fields). Let K be a field and f(x) = a0 + a1x+ a2x
2 + . . .+ anx

n be a

polynomial in K[X] of degree n > 0. An extension field F of K is called a splitting field for f(x) over

K if there exists elements r1, r2, . . . , rn in F such that f(x) = an(x− r1)(x− r2) . . . (x− rn) and

F = K(r1, r2, . . . , rn).

Theorem 1.1.9. 1. The characteristic of finite field K is prime number p 6= 0 ; if f = [K : Fp], the

number of elements of K is q = pf .

2. Let p be prime number and let q = pf (f ≥ 1) be a power of p. Let Ω be an algebraically closed

field of characteristic p. There exists a unique subfield Fq of q elements. It is the set of roots of

the polynomial Xq −X .

3. All finite field with q = pf elements are isomorphic to Fq.

Proof. 1. Here, f = [K : Fp] as vector space. Then basis of K have f number of elements over Fp.
Let K has basis B = {b1, b2, . . . , bf} over Fp. Every element of K can be written as in the form

of α1b1 +α2b2 + . . .+αfbf where αi ∈ Fp. #Fp = p , then each αi have exactly p possibilities

then there are pf distinct linear combination of the form
f∑
i=1

αibi. Hence the number of

elements in K is q = pf .

2. The mapping x 7→ xq is an isomorphism on Ω, because Ω is an algebraically closed field of

characteristic p. The elements {x ∈ Ω | xq = x} forms a subfield Fq of Ω. Derivative of given

polynomial Xq −X is

qXq−1 − 1 = p(pf−1Xq−1)− 1 = −1,

which means the polynomial has q distinct roots. Now if K is subfield of Ω with q elements.

Then K∗ forms multiplicative group with q − 1 elements. Then for every element x of K∗

satisfies xq−1 = 1 then xq = x, because apart from q − 1 elements, zero is root of Xq −X
gives q roots of Xq −X .
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3. Since Fq has q elements, we must have the factorization,

Xq −X =
∏
α∈Fq

(X − α).

It then follows from fact that both of the fields are splitting field of same polynomial Xq −X .

For isomorphism, we refer the reader to [Hun73, Corollary 5.7 in page 280].

1.1.2 The multiplicative group of a finite field

Let p be prime number and q = pf , where f ≥ 1.

Theorem 1.1.10. Let H be a group of order n. Then H = 〈xa〉 if and only if (a, n) = 1. In particular

the number of generators of H is ϕ(n).

Proof. Here 〈xa〉 generates a subgroup of order #(xa). This subgroup is equal to H if and only if

#(xa) = #(x).

#(xa) = #(x) if and only if
n

(a, n)
= n,

i.e., if and only if (a, n) = 1. Since by definition of Euler’s function ϕ(n) is number of

a ∈ {1, 2, 3, . . . , n} such that (a, n) = 1.

In short, only those elements whose image in Z/nZ is generator of this group. The number of

generators of cyclic group of order d is ϕ(n).

Proposition 1.1.11. If H is a cyclic group of order n, then for each positive integer a|n, there is a

unique cyclic subgroup 〈xn
a 〉 of H of order a.

Proof. For a proof this proposition, refer to Thm 7 in [DF, p. 58].

Lemma 1.1.12. If n ≥ 1, then n =
∑
d|n

ϕ(d).

Proof. For every d divides n, let Cd be the unique subgroup of Z/nZ of order d and Φd be set of

generators of Cd which gives by ϕ(d), then all elements of Z/nZ generate one of the Cd, the group

Z/nZ is the disjoint union of the Φd and

n = #Z/nZ =
∑
d|n

#Φd =
∑
d|n

ϕ(d).
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Lemma 1.1.13. Let F∗p be a finite group of order p− 1 . Suppose that for all divisors d of p− 1 , the

set of x ∈ F∗p such that xd = 1 has at most d elements. Then F∗p is cyclic.

Proof. Let d be divisors of n. If there exists x ∈ F∗p of order d, the subgroup

〈x〉 = {1, x, x2, . . . , xd−1} generated by x is cyclic of order d; in view of hypothesis, all elements

y ∈ F∗p such that yd = 1 belong to 〈x〉. In particular, all elements of F∗p of order d are generators of

〈x〉 and these are in number ϕ(d). Hence, the number of elements of F∗p of order d is either 0 or ϕ(d).

If it is zero for a value of d, the formula
∑
d|n

would show that the number of elements in F∗p is < n,

contrary to hypothesis. In particular, there exists an elements x ∈ F∗p of order n and F∗p coincides with

the cyclic group 〈x〉. The equation xd = 1, which has degree d, has at most d solutions in F∗p.

1.2 Equations over a finite field

In this section, we will define the power sum and then we will use it to prove Chevalley-Warning

theorem. Let q = pr for some r ≥ 1, and let K be a field with q elements.

1.2.1 Power sums

Lemma 1.2.1. Let K be a field with q elements. If f is a homomorphism of K, and y ∈ K∗ then∑
x∈K f(x) =

∑
x∈K f(x)f(y). Moreover, if f(y) 6= 1, then

∑
x∈K f(x) = 0.

Proof. Suppose K = {x1, x2, . . . , xq}. Since K is closed under multiplication by y, there is bijection

between {x1, x2, . . . , xq} and {x1y, x2y, . . . , xqy}. Since f is a homomorphism, we have∑
x∈K

f(x) =
∑
x∈K

f(x)f(y),

since every element xi of K can be written as xi = xjy, for an unique j. Equivalently, the above

equation is (f(y)− 1)
∑

x∈K f(x) = 0. So, if f(y) 6= 1, then
∑

x∈K f(x) = 0.

Lemma 1.2.2. Let K be a field with q = pf elements. Then the sum

S(Xu) =
∑
x∈K

xu =

{
−1 if u ≥ 0 and u is divisible by q − 1,

0 otherwise.

Proof. If u = 0 and x = 0 then xu = 1. If u = 0 then ∀x ∈ K, xu = 1 and #K = q = pf

S(Xu) =
∑
x∈K

(xu = 1) =
∑
x∈K

1,
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which implies that S(Xu) is divisible by p and Char(K) = p then S(Xu) = q.1 = 0. Now, if u ≥ 1

and divisible by q − 1, if x = 0 then 0u = 0 and if x 6= 0 then u = (q − 1)m for m ∈ Z and

S(Xu) =
∑
x∈K∗

x(q−1)m =
∑
x∈K∗

1 (we show that K∗ is cyclic group of order q − 1 and Char(K) = p )

S(Xu) =
∑
x∈K∗

1 = (q − 1) · 1 = −1.

If q − 1 - u, then ∃ y ∈ K∗ such that yu 6= 1. By the lemma above, with f(x) = xu and f(y) 6= 1 we

have S(Xu) = 0.

1.2.2 Chevalley-Warning Theorem

Recall that K is a finite field with q elements, where q = pr for some r ≥ 1.

Definition 12. For f ∈ K[X1, . . . , Xn], define

S(f) =
∑

(x1,...,xn)∈Kn

f(x1, . . . , xn).

Lemma 1.2.3. For any fi ∈ K[Xi], we have

S(f1f2 . . . fn) = S(f1)S(f2) . . . S(fn). (1.1)

Proof. We will prove it by induction. For n = 1, there is nothing to prove. Now for n = 2,

S(f1f2) =
∑

(x,y)∈K2

f1(x)f2(y) =
∑
x∈K

∑
y∈K

f1(x)f2(y)

=

( ∑
x∈K

f1(x)
)( ∑

y∈K

f2(y)
)

= S(f1)S(f2).

Now, assume that (1.1) is true for n = k and prove it for n = k + 1.

S(f1f2 . . . fkfk+1) =
∑

(x1,x2,...,xk,xk+1)∈Kn+1

f1(x1)f2(x2) . . . fk+1(xk+1)

=
∑
x1∈K

∑
x2∈K

. . .
∑
xk∈K

∑
xk+1∈K

f1(x1)f2(x2) . . . fk+1(xk+1)

=

( ∑
x1∈K

f1(x1)
)( ∑

x2∈K

f2(x2)
)
. . .

( ∑
xk∈K

fk(xk)
)( ∑

xk+1∈K

fk+1(xk+1)
)

S(f1f2 . . . fkfk+1) = S(f1)S(f2) . . . S(fk)S(fk+1)

Hence it is true for n ∈ N.
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Theorem 1.2.4 (Chevalley-Warning). Let fα ∈ K[X1, X2, . . . , Xn] be polynomials in n variables

such that
∑

α deg fα < n and let V be the set of all common zeros in Kn. Then #V ≡ 0 (mod p).

Proof. Consider the polynomial P =
∏

α(1− f q−1
α ) and x0 = (x1, x2, . . . , xn) ∈ Kn. If x0 ∈ V ,

then fα(x0) = 0 for all α, hence P (x0) =
∏

α(1− 0) = 1. If x0 /∈ V then ∃ α such that fα(x0) 6= 0.

This implies that, P (x0) = 0, because K∗ is group of order q − 1 and f q−1
α (x0) = 1. Hence,

P (x) =

{
1 if x ∈ V,
0 if x /∈ V.

S(P ) =
∑

(x1,x2,...,xn)∈Kn

P (x1, x2, . . . , xn)

=
∑

(x1,x2,...,xn)∈V

P (x1, x2, . . . , xn) +
∑

(x1,x2,...,xn)/∈V

P (x1, x2, . . . , xn)

Since P (x1, x2, . . . , xn) = 0 if (x1, x2, . . . , xn) /∈ V , then #S(P ) is same as #V . Now, it is enough

to show that S(P ) = 0. The polynomial P is linear combination of monomials Xu1
1 , Xu2

2 , . . . , Xun
n

and
∑

α deg fα < n then degP < (q − 1)n with
∑
ui < (q − 1)n and it is sufficient to prove that for

at least one ui < q − 1, since
∑
ui < (q − 1)n ∃ at least one ui such that ui < q − 1. Then by

Lemma 1.2.2, it is clear that one of the S(Xui) = 0. Further by Lemma 1.2.3, its easy to see that

S(Xu1
1 Xu2

2 . . . Xun
n ) = S(Xu1

1 )S(Xu2
2 ) . . . S(Xun

n ) = 0.

Corollary 1.2.5. Let fα ∈ K[X1, X2, . . . , Xn] be polynomials in n variables such that∑
α deg fα < n and if the fα have no constant term, then the {fα}α∈Λ have non-trivial common zeros.

Proof. If V is {0} then #V is not divisible by p. V has pm numbers of common zeros, where m is

positive integer. Then we assure that fα has pm− 1 non-trivial zeros.

For example, one can see that all quadratic forms in at least three variables over K have a non-trivial

zero. Let X, Y, Z be three variables in K and its quadratic form,

Q(X, Y, Z) = a1X
2 + a2Y

2 + a3Z
2 + a4XY + a5Y Z + a6XZ = 0,where ai ∈ K.

Its clear that Q has trivial zero (X, Y, Z) = (0, 0, 0). By Corollary 1.2.5, V has pm numbers of

common zeros, where m is positive integer. Then we assure that Q have pm− 1 non-trivial zeros.

1.3 Quadratic reciprocity law

In number theory, the law of quadratic reciprocity has several hundred number of proofs. We will

prove one of them, which is proved by Gauss. For that we need Legendre symbol, so first we will

introduce Legendre symbol.
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1.3.1 Squares in Fq

Theorem 1.3.1. Let q be a power of prime number p.

1. If p = 2, then all elements of Fq are squares.

2. If p 6= 2, then (F∗q)2 forms a subgroup of index 2 on F∗q . In fact, the subgroup (F∗q)2 is the kernel

of the homomorphism σ : x→ x
(q−1)

2 ∈ {±1}, where x ∈ F∗q .

Proof. 1. For p = 2, take map σ : Fq → Fq, then its clear that

σ(x+ y) = (x+ y)2 = x2 + y2 = σ(x) + σ(y) is homomorphism. Its easy to see that the

kernel of this homomorphism is {0}, then we have invectiveness. Since, we have map σ form

Fq to Fq, its surjective also. Then, σ is automorphism. Hence, all elements of Fq are squares.

2. For p 6= 2, define map δ : F∗q → {±1} as x 7→ x
(q−1)

2 . If x ∈ F∗q and y ∈ F̄q such that y2 = x,

then

yq−1 = x
(q−1)

2 = ±1, (∵ xq−1 = 1).

For x to square in Fq, it is necessary and sufficient that y ∈ F∗q , so that we have y(q − 1) = 1 So

y ∈ F∗q i.e yq−1 = 1, and F∗2q is kernel of x 7→ x
(q−1)

2 . Since F∗q is cyclic group of order q − 1,

index of F∗2q is 2.

1.3.2 Legendre symbol

The classical methods only apply to quadratic equations over C; efficiently solving quadratic

equations over a finite field is a much harder problem. For a typical integer a and an odd prime p, its

not even obvious a priori whether the congruence x2 ≡ a (mod p) has any solutions, much less what

they are. By Fermats Little Theorem and some thought, it can be seen that a a(p−1)/2 ≡ 1 (mod p) if

and only if a is not a perfect square in the finite field. Fp = Z/pZ; otherwise, it is congruent to 1 (or 0,

in the trivial case a ≡ 0). This provides a simple computational method of distinguishing squares from

non squares in Fp.

Definition 13. Let p be odd prime and let x ∈ F∗q . Then the Legendre symbol of x is defined by(
x
p

)
= x(p−1)/2 = ±1 ∈ F∗q , and if a ∈ Z and p be odd prime then

(
a
p

)
≡ a(p−1)/2 (mod p)

So congruent integers are of the same quadratic character. We can also define in terms of quadratic

residue as follows :(
x

p

)
= x(p−1)/2 =


0 if x is a multiple of p or x = 0,

1 if x is a quadratic residue of p,

−1 if x is a quadratic non-residue of p.
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Definition 14. An element x ∈ Z is said to be quadratic residue modulo p, if there exists an element

y ∈ Z such that y2 ≡ x (mod p). Otherwise, the element x is said to be quadratic non-residue of p.

Now, let us state some properties of the Legendre symbol.

1. If x ∈ Z and its image x′ ∈ Fp then
(
x
p

)
=
(
x′

p

)
.

Its clearly follows from quadratic character of congruent integers, because x′ ≡ x (mod p)

then y2 ≡ x′ (mod p) has a solution if and only if x2 ≡ x (mod p).

2.
(
x
p

)(
y
p

)
=
(
xy
p

)
.

Follows directly from the identity (ab)(p−1)/2 = a(p−1)/2 b(p−1)/2.

3. If
(
x
p

)
= 1 then x ∈ F∗2p .(

x
p

)
= x(p−1)/2 = 1⇒ x(p−1)/2 = 1 then x ∈ F∗2p . (∵ order of F∗2p is (p− 1)/2).

4. If x ∈ F∗p has y as a square root in F∗p then
(
x
p

)
= yp−1.

Easy to see that
(
x
p

)
= x(p−1)/2 = y2((p−1)/2) = yp−1.

Theorem 1.3.2. For any odd prime p, the following formulas hold:

1.
(
−1
p

)
= (−1)(p−1)/2,

2.
(
−1
p

)
= (−1)(p2−1)/8.

Proof. 1. If −1 is quadratic residue of p then it is 1, otherwise it is −1. Here note that if −1 is

square (mod p) then p can be written in the form 4k + 1 then it is 1, and −1 is not square

(mod p) then p is of the form then it is 4k − 1 then it is −1.

2. Let α ∈ Fp and it is 8th-root of unity with y = α + α−1 ∈ Fp.
then y = α + α−1 ⇒ y2 = α2 + 2 + α−2, but α is 8th root of unity that is why

α4 = −1andα2 + α−1 = 0. Hence, y2 = 2. Now yp = αp + α−p and if prime p is p ≡ ±1

(mod 8) then yp = α + α−1 which means yp = y ⇒ yp−1 = 1 thus
(

2
p

)
= 1. and if p is

p ≡ ±5 (mod 8) then yp = α5 + α−5 then

yp = α4α + α−4α−1(∵ α4 = −1)⇒ yp = −(α + α−1) = −y ⇒ yp−1 = −1 thus
(

2
p

)
= −1.
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1.3.3 Quadratic reciprocity law

Definition 15 (Gauss sum). Let p and ` be two different odd prime numbers. Let Fp, F` be two fields

and w ∈ Fp with w be primitive `th root of unity. If x ∈ F`, then wx is well defined because it is in one

of the equivalence class of F` and wx = 1. Then the “Gauss sum” is defined by

y =
∑
x∈F`

(x
`

)
wx.

From the above definition of y, it is not clear whether y is zero or not. The next lemma answers this

question.

Lemma 1.3.3. Let y be a Gauss sum defined as above, then one has y2 = (−1)(`−1)/2`.

Proof. y =
∑
x∈F`

(x
`

)
wx and y =

∑
z∈F`

(z
`

)
wz then,

y2 =
∑
x∈F`

(x
`

)
wx
∑
z∈F`

(z
`

)
wz.

y2 =
∑
x∈F`

∑
z∈F`

(x
`

)(z
`

)
wx+z =

∑
x,z∈F`

(xz
`

)
wx+z.

take x+ z = u and x = t then z = u− t, xz = t(u− t).∑
x,z∈F`

(xz
`

)
wx+z =

∑
u∈F`

wu

(∑
t∈F`

(
t(u− t)

`

))
.

Here we rearranging x, z in terms of t and u, because then whole sum convert in to just one variable u

instead of x and z, and it is easy to calculate. Now if t = 0 then y2 = 0 but we know that y can not be

zero. Then if t 6= 0 then(
t(u−t)
`

)
=
(

(−t2)(1−ut−1)
`

)
=
(
−t2
`

)(
1−ut−1

`

)
= (−1)(`−1)/2

(
1−ut−1

`

)
and

(−1)(`−1)/2y2 =
∑
u∈F`

Cuw
u,

where

Cu =
∑
t∈F∗`

(
1− ut−1

`

)

If u = 0 then C0 =
∑
t∈F∗`

(
1

`

)
=
∑
t∈F∗`

1 = `− 1 For u 6= 0,ut−1 = 1 then Cu = 0 that means

s = 1− ut−1 runs over F` − {1}, and then we have
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Cu =
∑
s∈F`

(s
`

)
−
(

1

`

)
= −

(
1

`

)
= −1.

In the above sum,
∑
s∈F∗`

(s
`

)
= 0, because of `−1

2
elements of F∗` are squares (resp., non-squares) ,

hence the Legendre symbol is +1 (resp., −1). Hence,∑
u∈F∗`

Cuw
u = −

∑
u∈F∗`

wu = +1⇒
∑
u∈F∗`

wu = −1

because w` = 1⇒ w` − 1 = 0; (w − 1)(1 + w + w2 + . . .+ w`−1) = 0

⇒ (1 + w + w2 + . . .+ w`−1) = 0 (∵ w 6= 1)∑
u∈F`

Cuw
u =

∑
u=0

Cuw
u +

∑
u∈F∗`

Cuw
u = `− 1 + 1 = `

y2 = (−1)(`−1)/2`.

The above lemma shows that the Gauss sum is non-zero, because of (`, p) = 1.

Lemma 1.3.4. Let ` and p be two different primes and by Gauss sum yp−1 =
(
p
`

)
Proof. Since, Char(Fp) = p, we have Gauss sum

y =
∑
x∈F`

(x
`

)
wx

then

yp =
∑
x∈F`

(x
`

)p
(wx)p =

∑
x∈F`

(x
`

)
wxp

say xp = z,

⇒
∑
x∈F`

(x
`

)
wxp =

∑
x∈F`

(
zp−1

`

)
wz =

(∑
z∈F`

(z
`

)
wz

)(
p−1

`

)
=
(p
`

)
y;

⇒ yp−1 =
(p
`

)
.

Theorem 1.3.5 (Quadratic reciprocity law by Gauss).(
`

p

)
= (−1)

`−1
2

p−1
2

(p
`

)
.
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Proof.

y2 = (−1)(`−1)/2`

Both sides raise to the power (p− 1)/2, then

yp−1 = (−1)
(`−1)

2
(p−1)

2 (`)(p−1)/2

by previous result,

yp−1 =
(p
`

)
= (−1)

(`−1)
2

(p−1)
2 (`)(p−1)/2 = (−1)

(`−1)
2

(p−1)
2

(
`

p

)
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Chapter 2

p-adic fields

2.1 The ring Zp and the field Qp

We will define p-adic integers Zp by projective or inverse limit. We will see that p-adic integers forms

ring and also subring of
∏

Z/pnZ. Exact sequence of Zp will give some properties of p-adic integers

and also gives relation with Z/pnZ. Then we define topology on Zp. At the end of this section we will

see p-adic numbers which is field of fraction of Zp.

2.1.1 Definitions

Let p ∈ P. For any n ≥ 1, Z/pnZ is ring of equivalence classes of integers modulo pn. We will denote

An := Z/pnZ. Define the map ϕn : Z/pnZ→ Z/pn−1Z such that

ϕn(x (mod pn)) = (x (mod pn−1)).

Then any element of Z/pnZ defines an element of Z/pn−1Z.

Lemma 2.1.1. Let map ϕn : An → An−1 defined by x (mod pn)→ x (mod pn−1) then for every

n ∈ N, the map ϕn is a homomorphism.

Proof. If xn, yn ∈ An, then ϕn(xn) = xn−1, where xn−1 ∈ An−1.

ϕn(xn + yn) = ϕn(xn + yn) = xn−1 + yn−1 = xn−1 + yn−1 = ϕn(xn) + ϕn(yn)

ϕn(xnyn) = ϕn(xnyn) = xn−1yn−1 = xn−1yn−1 = ϕn(xn)ϕn(yn)

Clearly, this map is surjective. because if pn+1Z ⊂ pnZ then Z/pn+1Z→ Z/pnZ is surjective.

It is clear that, kerϕn = {x ∈ An| ϕn(x) = 0} = pn−1Z/pnZ

17
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Definition 16 (Projective system). Let Xi, Xj and Xk are non-empty sets and mapping

ϕij : Xi → Xj and ϕjk : Xj → Xk with ϕik : Xi → Xk which is given by ϕik = (ϕij ◦ ϕjk) which is

true for any indexed by integer i, j, k ≥ 1 then (Xij, ϕij) is called projective system.

Definition 17 (Inverse/ Projective limit). An inverse system is a sequence of objects (e.g.

sets/groups/rings) (An) together with a sequence of morphisms (e.g. functions/homomorphisms) (fn),

. . . Ai
fi−→ Ai+1

fi+1−−→ Ai+2
fi+2−−→ Ai+3

fi+3−−→ . . .

The inverse limit,

A = lim←−An

is the subset of the direct product
∏

nAn consisting of those sequences a = (an) for which

fn(an+1) = an for all n ≥ 1. For each n ≥ 1 the projection map πn : A→ An sends a to an.

We have An = Z/pnZ then for sequence,

. . . An+1 → An → An−1 . . .→ A2 → A1

forms projective system with map ϕn : An → An−1. An element of Zp is sequence

(. . . , xn, . . . , x2, x1) such that xn ∈ An. We denote (x1, x2, . . . , xn, . . .) for element

(. . . , xn, . . . , x2, x1). Addition and multiplication of elements of Zp is component wise. So, Zp forms

ring.

The map that sends each integer x ∈ Z to the sequence (x̄, x̄, . . . , x̄, . . .) is a ring homomorphism,

where x̄nth is integer modulo pn belongs to Z/pnZ. Its kernel is clearly trivial, since 0 is the only

integer congruent to 0 modulo pn for all n. Thus the ring Zp has characteristic 0 and contains Z as a

subring, but Zp is a much bigger ring than Z. In subring of
∏
An. We give An discrete topology and∏

An product topology. Since each An is finite then it is compact and by Tychnoffs theorem
∏
An is

also compact.

Theorem 2.1.2 (Tychnoff’s theorem). Arbitrary product of compact spaces is also compact.

Lemma 2.1.3. The ring Zp is a compact space.

Proof. To prove the lemma, it is enough that Zp is a closed set in
∏
An. For every n ∈ N, define

Bn =

{
y ∈

∞∏
k=1

Ak | (ϕn ◦ πn − πn−1)(y) = 0

}
where πn : Zp → An denotes the n-th projection. The map (ϕn ◦ πn − πn−1) is a continuous map,

hence Bn is closed being the inverse image of zero in An. Since, Zp =
⋂∞
n=1Bn, hence Zp is a closed

subring of
∏
An, which is a compact space by Tychnoff’s theorem. Being a closed set of a compact

space, Zp is also compact.
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2.1.2 Properties of Zp

In this section we will talk about some useful relation between Zp and An by exact sequence.

Definition 18. (Exact sequence) : Consider functions fi and non-empty sets Ai for which

fi : Ai → Ai+1 forms homomorphisms then following sequence

· · · Ai
fi−−→ Ai+1

fi+1−−→ Ai+2
fi+2−−→ Ai+3

fi+3−−→ Ai+4 · · ·

is said to exact sequence if fi(Ai) = ker(fi+1) for all i ≥ 0.

In our case we have short exact sequence of abelian group as follows.

A0 = 0
f1−−→ A1

f2−→ A2
f3−→ A3

f4−→ 0 = A4

Proposition 2.1.4. The sequence 0→ Zp
fn−−→ Zp

εn−−→ An → 0 is a short exact sequence of

abelian groups. If x ∈ Zp, fn(x) = pnx and εn(x) = xn (n-th projection of x).

Proof.

0
η1−−→ Zp

fn−−→ Zp
εn−−→ An

η2−−→ 0

We prove this proposition with three steps as follows.

Step-I- fn is injective.

Here sequence start from zero and we have homomorphisms. So, η1(0) = 0. If we show ker fn = {0}
then we are done with our first step. Let x ∈ Zp and x ∈ ker fn then pnx = 0 take n = 1 then

px = 0⇒ pxn+1 = 0 then pxn+1 ∈ pn+1Z.

pxn+1 ≡ 0 (mod pn+1Z)

i.e., ∃ yn+1 ∈ Z/pn+1Z such that pxn+1 = pn+1yn+1 ⇒ xn+1 = pnyn+1, but according to our map,

ϕn+1(xn+1) = ϕn+1(pnyn+1) = pnyn = xn.

Then xn is multiple of pn, then it is 0. It is true for every n. So, ker fn = {0} = η1(0). Kernel of

homomorphism is zero means map is injective, then for each n, fn : Zp → Zp is injective.

Step-II- fn(Zp) = ker(εn).

For that we know fn(Zp) = pnZp and ker(εn) = {x : εn(x) = 0} for x ∈ Zp.
First we show pnZp ⊂ ker(εn). Let x ∈ pnZp, then x = pny for y ∈ Zp,

xn = εn(x) = εn(pny) = pnεn(y) = pnyn = 0,
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so pnZp ⊂ ker(εn). Now ker(εn) ⊂ pnZp, x ∈ ker(εn) then εn(x) = xn = 0 i.e, xn ≡ 0 (mod pn)

and xm ≡ xn (mod pn) for m ≥ n then xm ≡ 0 (mod pn),

xm ≡ pnym−n (mod pm) for ym−n ∈ Am−n (∵ pnZ/pmZ ∼= Z/pm−nZ),

also,

xm ≡ xm−1 (mod pm−1) sopnym−n ≡ pnym−n−1 (mod pm−1),

then ym−n ≡ ym−n−1 (mod pm−n−1). i.e., two consecutive terms is congruent to modulo pi and

xm = pnym−n then we have (sequence) element y by above congruent relation pny = x. As we have

y = (y1, y2, . . . , yn, . . .) and x = (0, 0, . . . , 0(nthterm), xn+1, . . .) but pny = x and

x = pn(y1, y2, . . . , yn, . . .) = (0, 0, . . . , 0(nthterm), pnyn+1, . . .) we have to show that yn+1 ≡ y1

(mod p).

yn+1 ≡ yn (mod pn)

yn ≡ yn−1 (mod pn−1)

: :

y3 ≡ y2 (mod p2)

y2 ≡ y1 (mod p)

So, yn+1 ≡ y1 (mod p).

Step-III- εn is surjective.

By taking yn ∈ Z/nZ, and since we have inverse limit gets an element y ∈ Zp, by lim←−An = Zp as an

element x = pny. So εn is surjective.

Proposition 2.1.5. For an element of Zp (resp., of An) to be invertible if and only if it is not divisible

by p.

Proof. To show that x ∈ Zp is invertible if and only if it is not divisible by p, case of An will follow

for Zp invertible. Suppose x1 ∈ A1 is invertible then x1 ∈ A1 is not multiple of p. Now x2 6= 0,

because if x2 = 0 then by surjective map ϕ(A2) = A1, x1 = 0 but x1 6= 0 so x2 6= 0. Hence not

multiple of p2 and so on. Thus x ∈ Zp is invertible then it is not divisible by p. Conversely, x ∈ Zp is

not divisible by p. x 6= py for y ∈ Zp, but it is sufficient to show that any xn ∈ An is not divisible by p

then we are done. i.e., xn ∈ An but xn /∈ pAn then x1 /∈ pA1 ⇒ x1 6= 0 thus x1 is invertible then xn
is invertible. That means ∃ yn ∈ An such that xnyn = 1(pn) so that

xnyn − 1 ∈ pnZ ⇒ xnyn − 1 = pnan for an ∈ Z. Take pn−1an = zn then

xnyn = 1 + pnan ⇒ xnyn = (1− pnan) ⇒ xnyn(1− pzn) ⇒ xnyn(1 + pzn + p2z2
n + . . .) = 1,

because xnyn = 1. Applying ϕ we get ϕn(xn) = xn−1 but
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ϕn(xnyn) = ϕn(xn)ϕn(yn) = 1 ⇒ xn−1ϕn(yn) = 1 then ϕn(yn) = (xn−1)−1. i.e. ∃ yn−1 ∈ An−1,

which forces to be inverse of xn−1. Thus x is invertible.

Let U denote the group of all invertible elements of Zp, we call them as p-adic units.

Proposition 2.1.6. Every non-zero element of Zp can be written uniquely in the form pnu with u ∈ U
and n ≥ 0.

Proof. Take x 6= 0 then ∃ a largest positive integer n ≥ 0 such that xn = ϕn(x) is zero, so x = pnu

and u is not divisible by p, because if u is divisible by p then x = pn+1u1 and xn+1 = 0. Since its

contradict to our largest integer n, u is not divisible by p, thus it is invertible and then u ∈ U .

Uniqueness - Let x1 = pnu1 and x1 = pmu2 for m 6= n and u1 6= u2 then pnu1 = pmu2, (WLOG

m ≥ n) then u1 = pm−nu2 but u1 is invertible so it is not divisible by p. So m = n. Since, m = n we

can cancel it, and then we have u1 = u2, which means injective. We conclude that non-zero element

of Zp can be written uniquely pnu, u ∈ U .

By above proposition, we have that every non-zero element x ∈ Zp can be written uniquely as

x = pnu,

Definition 19 (p-adic valuation). Define the p- adic valuation of x to be n, which we denote by

νp(x) = n. If x = 0, then we define νp(0) =∞.

Next two proposition gives properties of valuation p-adic integers.

Proposition 2.1.7. x = pnu1 , y = pmu2 be two p-adic integers then νp(xy) = νp(x) + νp(y).

Proof. xy = pm+nu1u2. So by definition of p-adic valuation

νp(xy) = νp(p
m+nu1u2) = n+m = νp(x) + νp(y).

Proposition 2.1.8. νp(x+ y) ≥ inf{νp(x), νp(y)} for two p-adic integers x and y.

Proof. Let x = pnu1, y = pmu2 and WLOG m ≥ n then x+ y = pn(u1 + pm−nu2). p-adic valuation

of x+ y, νp(x+ y) = νp(p
n(u1 + pm−nu2)) ≥ n = inf{νp(x), νp(y)}.

Lemma 2.1.9. Zp is PID. (Ideals of ring Zp is pnZp).

Proof. Let I be a non-zero ideal of Zp. By well-ordering principle take a(6= 0) ∈ I such that a have

minimal valuation in I , say νp(a) = k > 0. Then a = pku,u ∈ Z×p . So aZp = pkZp ⊂ I . Now,

I ⊂ pkZp, If I 6⊂ pkZp then ∃ b ∈ I but b /∈ pkZp but then b must have smaller valuation than k,

which contradict to minimality of k.
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Proposition 2.1.10. The distance d(x, y) = eνp(x−y) satisfies something more than triangle inequality

which is “ultrametric” inequality,

d(x, z) ≤ sup{d(x, y), d(y, z)} ≤ d(x, y) + d(y, z).

Proof. Start with triangle inequality d(x, z) ≤ d(x, z) + d(y, z), We can write

x− z = (x− y) + (y − z). By taking valuation,

νp(x− z) = νp(x− y) + νp(y − z)

≥ inf{νp(x− y), νp(y − z)}

≥ inf{νp(x− y), νp(y − z)}

⇒ −νp(x− z) ≤ − inf{νp(x− y), νp(y − z)}

⇒ −νp(x− z) ≤ sup{−νp(x− y),−νp(y − z)},

by taking exponential both side we get,

e−νp(x−z) ≤ sup{e−νp(x−y), e−νp(y−z)} ⇒ d(x, z) ≤ sup{d(x, y), d(y, z)}.

Its, obvious that d(x, z) ≤ sup{d(x, y), d(y, z)} ≤ d(x, y) + d(y, z).

Proposition 2.1.11. p-adic integers is metric space with distance d(x, y) = e−νp(x−y).

Proof. Let x, y ∈ Zp, then we have distance d(x, y) = e−νp(x−y).

1. if x = y ⇐⇒ d(x, y) = e−νp(0) ⇐⇒ d(x, y) = 0 (∵ νp(0) =∞)

2. d(x, y) = e−νp(x−y) = e−νp(y−x) = d(y, x).

3. d(x, y) ≤ d(x, z) + d(z, y).

Triangle inequality clear from Proposition 2.1.10. Hence, d defines metric.

Proposition 2.1.12. The topology on Zp is defined by distance d(x, y) = e−νp(x−y). The ring Zp is

complete metric space and Z is dense in Zp.

Proof. Zp is metric space. So take N be neighborhood of zero, 0 ∈ N then ∃ ε > 0 such that

0 ∈ B(0, ε) ⊆ N . Now take radius to be e−pn then

B(0, e−p
n
) = {x : d(0, x) < e−p

n} = {x : e−νp(x) < e−p
n} ⇒ νp(x) > pn. It is clear that

B(0, e−p
n
) = pn+1Zp (∵ pn+2Zp ⊂ pn+1Zp). We know that compact implies complete and totally

bounded and we have already product topology which is compact. For denseness, let zn be an

arbitrary sequence in Z. If x = (xn) is an element of Zp such that zn ≡ xn (mod pn) then

lim zn = x, which proves that Z is dense in Zp.
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2.1.3 The field Qp

Definition 20. The field of fractions of the ring Zp is field of p-adic numbers which is Qp.

Every non-zero element of Qp can be written uniquely in the form of pnu where u is unit element of

Qp. Valuation of elements of Qp is same as elements of Zp but only thing to notice that is in Zp
valuation is from N ∪ {∞}, wheres in Qp it is from Z ∪ {∞}. Note that valuation of an element is

≥ 0 if and only if that element is in Zp.

Proposition 2.1.13. The topology defined on the field Qp with same distance d(x, y) = e−νp(x−y) is

locally compact. Since, Zp is an open subring of Qp, also field Q is dense in Qp.

Proof. Since, Zp is compact subspace of Qp and close unit ball in Qp. Let x be an element of Qp, then

x+ Zp is compact neighborhood of x. That means we have compact neighborhood for any arbitrary

element. Hence, Qp is locally compact, by neighborhood of zero and subspace of Qp.

Proposition 2.1.14. A sequence xn ∈ Zp has limit if and only if lim(un+1 − un) = 0.

Proof. Suppose xn has limit `, i.e., for every ε > 0 ∃ N > 0 such that n ≥ N then d(xn, `) < ε. Say

an = (xn+1 − xn) then

lim
n→∞

an = lim
n→∞

xn+1 − lim
n→∞

xn = `− ` = 0.

Now if lim
x→∞

(xn+1 − xn) = 0 i.e., ∀ ε > 0 ∃ N ≥ 0 such that n ≥ N, xn−1 − xn < ε. Here Zp is

complete, so its remain to show that it is Cauchy, ∀m,n ≥ N .

d(xm, xn) ≤ sup{d(xm, xm−1), d(xm−1, xm−2), . . . , d(xn−1, xn)} < ε.

Hence, we are done.

Proposition 2.1.15. A series in Zp is converges if and only if its general term tends to zero.

Proof. A Series is convergent if and only if the sequence of partial sums is convergent, i.e.,
∑
an is

convergent to s, if Sn =
∑n

k=1 ak converges to s. Suppose if series is convergent then

an = Sn − Sn−1 → 0 as n→∞.

lim
n→∞

Sn+1 − Sn = 0

Its similar case of sequence, here we have sequence of partial sum, and its Cauchy. Since, Zp is

complete space, it has limit. Then we have limit of sequence.
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2.2 p-adic equations

In this section we will see equivalent relation of zeros between p-adic numbers, p-adic integers and

An. Then prove one important result Hensel’s lemma in single variable, prove in several variable also.

2.2.1 Solutions

Lemma 2.2.1. Let . . .→ Dn → Dn−1 → . . .→ D2 → D1 be a projective system, and let

D = lim←−Dn be its projective limit. If the Dn are finite and nonempty, then D is nonempty.

Proof. case-1) If map ϕ : Dn → Dn−1 is surjective, D′ns(∀n) are nonempty and finite then D is

non-empty. Let x1 ∈ D1, and map is surjective so that we can find its inverse image in D2 and so on.

From this we get D = lim←−Dn. Or for any n > 1 look at Dn and we have surjective map, So this map

allows us to reach up to D1. By taking inverse limit D = lim←−Dn.

case-2) If ϕ : Dn → Dn−1 is not surjective, and D′ns(∀n) are nonempty and finite.

To prove this, denote Dn,p is image of Dp in Dn.(For ex. ϕ(D4) in D2 is D2,4 and ϕ(D2) in D1 is D1,2

). Note that here p is not prime number but p ∈ N. It is clear that Dn,p forms decreasing family of

finite nonempty subsets, also D′ns(∀n) are finite, so family of subsets is stationary. Let say for large p,

Dn,p is stationary.( i.e. There is no effect of ϕ after stationary point p and then Dn,p = Dn,m, where

∀m ≥ p). Denote this stationary level by En (∀ n). Now we want to show that the map

ϕ : En → En−1 is surjective and we will prove inductively. First we see for ϕ : E2 → E1. Let

E1 ⊆ D1 is stationary for D1. For this take any element x1 ∈ D1,p = E1 for p large enough. Then it

has inverse image in D2, because it is stationary so its allows us to take same element in D1,m where

∀m > p and by taking inverse image in that D2. D2 have also stationary level E2, by that we can see

that ϕ : E2 → E1 is surjective. By doing same process for n, Dn → Dn−1 carries En onto En−1.

Hence by taking inverse limit of E ′ns we get lim←−En = E 6= ∅ so that lim←−Dn = D.

If f ∈ Zp[X1, x2, . . . , Xm] is polynomial with coefficients in Zp and n ≥ 1 then fn is polynomial

with coefficients in An getting from taking reduction modulo pn of polynomial f , but by exact

sequence we know that Zp/pnZp ∼= An So, reduction modulo pn is in An.

Lemma 2.2.2. Let {fi}i∈Λ ∈ Zp[X1, X2, . . . , Xm] be polynomial with p-adic integer coefficients then

following are equivalent, where Λ is indexing set.

1. The polynomials {fi}i∈Λ have a common zero in (Zp)m.

2. The polynomials {(fi)n}i∈Λ have a common zero in (An)m, for all n > 1.
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Proof. If we can show that D = lim←−Dn then we are done, where D is set of all common zero of {fi},
and Dn be set of all common zero of polynomials {(fi)n}i∈Λ. We denote polynomials {f(i,n)}i∈Λ for

{(fi)n}i∈Λ. Let D be a set of all common zero of {fi}i∈Λ in (Zp)m. Take projection on any n > 1, i.e.,

by taking reduction modulo pn we have common zero Dn of polynomials {f(i,n)}i∈Λ in (An)m, for all

n > 1, where Dn is set of all common zero of polynomials {f(i,n)}i∈Λ in (An)m, for all n > 1. Any

zero of f(i,n) by taking modulo pn is in Dn, also taking modulo p of zero of f(i,n) will be zero of

f(i,n+1) in Dn+1 i.e., taking modulo p of zero of f(i,n) will be in Dn+1 is same as taking modulo pn+1

of zero of {fi} will be in Dn+1 and also both zeros are same, then we have map from Dn+1 to Dn.

Then by Lemma 2.2.1 we have D ⊆ lim←−Dn. Let Dn be set of all common zero of polynomials fi,n,

for all n > 1. Suppose zn = ((zn,1, zn,2, . . . , zn,m) be common zero in Dn, also zn ∈ (An)m. For

n = 1, z1 = (z1,1, z1,2, . . . , z1,m) then

f(i,1)(z1, z2, . . . , zm) = 0 = (01, 02, . . . , 0m) ∈ (A1)m ⇒ f(i,1)(z1, z2, . . . , zm) is common zero in

(A1)m which means multiple of p. Then if we take z to be common zero of {fi} as

z = ((z1,1, z2,1, . . .), (z2,1, z2,2, . . .), . . . , (z1,m, z2,m, . . .)) ∈ (Zp)m

Then fi(x) = 0⇒ lim←−Dn ⊆ D. Hence we have lim←−Dn = D.

Definition 21 (Primitive zero). A point x = (x1, x2, . . . , xm) ∈ (Zp)m is called a primitive solution,

if one of the xi is invertible, i.e., xi not divisible by p. A similar notion can be defined for primitive

elements of (An)m.

Lemma 2.2.3. Let {fi}i∈Λ ∈ Zp[X1, X2, . . . , Xm] be a set of homogeneous polynomials with

coefficients in Zp, then following are equivalent.

1. The polynomials {fi}i∈Λ have a non-trivial common zero in (Qp)
m.

2. The polynomials {fi}i∈Λ have a common primitive zero in (Zp)m.

3. The polynomials {f(i,n)}i∈Λ have common primitive zero in (An)m, for all n > 1.

Proof. 1 ⇒ 2) Let x = (x1, x2, . . . , xm) is non-trivial common zero of {fi} in (Qp)
m, then take

infimum of all valuations of x′is. Say h = inf{νp(x1), νp(x2), . . . , νp(xm)} then look at new element

y as y = p−hx. Then y is primitive element and we have homogeneous polynomial so that

f(y) = f(p−hx1, p
−hx2, . . . , p

−hxm) = pαf(x1, x2, . . . , xm) = 0

where α ∈ N. Conclude that y is common primitive zero of {fi} in (Zp)m.

2 ⇒ 1) Suppose {fi} have common primitive zero in (Zp)m. Let x = (x1, x2, . . . , xm) is common

primitive zero of {fi} in (Zp)m, then one of the xi is invertible, which means it is not multiple of p.
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Hence it is non-zero. Then same x is non-trivial common zero. Then {fi} have non-trivial common

zero in (Qp)
m.

2 ⇒ 3) Let y be common primitive zero of {fi} in (Zp)m. Then one of the yi is invertible from

y = (y1, y2, . . . , ym) which implies that particular yi is not multiple of p. Take

yn = (y1 (mod pn), y2 (mod pn), . . . , ym (mod pn))

is reduction modulo of y by pn for all n > 0. Then image of same yi with modulo pn is also invertible.

Hence yn = (y1 (mod pn), y2 (mod pn), . . . , ym (mod pn)) is {f(i,n)} is common primitive zero in

(An)m, for all n > 0.

3 ⇒ 2) Let xn ∈ (An) be common primitive zero of {f(i,n)}. For n = 1, x1 = (x1,1, x1,2, . . . , x1,m)

is common primitive zero of {f(i,1)}, then one of the x(1,j) where 1 ≤ j ≤ m is invertible in (A1)m.

This implies that x(1,j) is not multiple of p. We can get x2 ∈ (A2)m by taking modulo p of x1, one can

do for any xn by taking modulo pn−1. Then look at the new element

x = ((x1,1, x2,1, . . .), (x2,1, x2,2, . . .), . . . , (x1,m, x2,m, . . .)) ∈ (Zp)m

Hence it is common primitive zero of {fi}, because image of x(1,j) in any An is invertible.

2.2.2 Approximate solutions

We are concerned in passing from a solution (mod pn) to a solution in Zp.

Lemma 2.2.4 (Hensel’s lemma). Let f be a polynomial in Zp[X] and f ′ be its derivative. Let x ∈ Zp
and n, k ∈ Z such that 0 ≤ 2k < n, f(x) ≡ 0 (mod pn), ν(f

′
(x)) = k. Then there exists y ∈ Zp

such that f(y) ≡ 0 (mod pn+1), ν(f
′
(x)) = k and y ≡ x (mod pn−k).

Proof. Let f(x) = pnb and f ′(x) = pkc where b = piu1 ∈ Zp, c ∈ U . Take z ∈ Zp then z = pju2.

b+ zc = piu1 + pju2c = pi(u1 + pj−iu2c)

b+ zc ≡ 0 (mod p) ⇒ ∃ z such that we can choose b+ zc ≡ 0 (mod p) and then z ≡ −bc−1

(mod p). By applying Taylor’s formula with y = x− pn−kbc,

f(y) = f(x) + pn−kf
′
(x) + p2n−2kf

′′
(x) + . . .

= pnb− pn−kbcpkc+ p2n−2k(−bc)2f
′′
(x) + . . .

= pnb− pnbc2 + p2n−2k(−bc)2f
′′
(x) + . . .

⇒ f(y) ≡ 0 (mod pn+1) (∵ 2n− 2k > n and b+ zc ≡ 0 (mod p))
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Now applying Taylor’s formula on f ′(x),

f ′(y) = f ′(x)− pn−kbcf ′′(x) + . . .

= pkc− pn−kbcf ′′(x) + . . .

f ′(y) ≡ pkc (mod pn−k),

but we have to see that in f ′(y) = pkc+ pn−kx, where x ∈ Zp, c+ pn−kx is also unit element in Zp.
If c+ pn−kx is not unit than p|c+ pn−kx, which implies p divides both c and pn−kx, but here c is unit

element, which says that c+ pn−kx is unit element in Zp. Hence we are done.

Now, we see the Hensel’s lemma in several variable.

Theorem 2.2.5. Let f ∈ Zp[X1, X2, . . . , Xm], x ∈ (Zp)m, n, k ∈ Z and j be an integer such that

0 < j ≤ m. Suppose that 0 ≤ 2k < n and that f(x) ≡ 0 (mod pn) and νp
(

∂f
∂Xj

(x)
)

= k. Then

there exists zero y of f in (Zp)m with y ≡ x (mod pn−k).

Proof. First we will prove theorem for m = 1, then we generalize in m variables. Let take m to be 1,

then by applying Lemma 2.2.4 to x0 = x. We get x1 ∈ Zp which is also satisfies x1 ≡ x0 (mod pn−k)

such that

f(x1) ≡ 0 (mod pn+1) and νp(f
′(x1)) = k.

Now if we apply same lemma on x1, then we get x2. By arguing inductively we can construct

sequence x0, x1, x2, . . . , xt, . . . such that

xt+1 ≡ xt (mod pn+t−k) and f(xt) ≡ 0 (mod pn+t)

Then νp(xt+1 − xt) is n+ t− k but it is goes to infinity as t→∞ and zero is the only element whose

valuation is infinity. Then we have Cauchy sequence. Suppose y is limit, i.e.,

lim
t→∞

(
f(xt) ≡ 0 (mod pn+t)

)
as n+ t→∞ we have f(y) = 0 and y ≡ x (mod pn−k), hence the theorem for m = 1. Now we will

see theorem for m variables. Here this case is also reduces to m = 1. First we have given zero

x = (x1, x2, . . . , xm). If we replacing Xi for all i 6= j by xi then the same polynomial f̃ ∈ Zp[Xj] be

polynomial in one variable. Now we can apply Lemma 2.2.4 on f̃ . Then we get yj ≡ xj (mod pn−k)

such that f̃(yj) = 0 by substituting yi = xi for all i 6= j, then

y = (x1, x2, . . . , yj, . . . , xm) = (y1, y2, . . . , yj, . . . , ym) will satisfies y ≡ x (mod pn−k) and

f(y) = 0.

Definition 22 (Simple zero). If f is polynomial in m > 1 variables over field F, then a zero x of f is

said to be simple if at least one of the partial derivatives ∂f
∂Xj

(x) 6= 0.
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Corollary 2.2.6. Every simple zero of the reduction modulo p of a polynomial f lifts to a zero of f in

Zp.

Proof. This is special case of Theorem 2.2.5 when n = 1, k = 0. f(x) ≡ 0 (mod p) and

νp

(
∂f
∂Xj

(x)
)

= 0, implies that ∂f
∂Xj

(x) is unit. Then there exists a zero y such that y ≡ x

(mod p).

Corollary 2.2.7. For p 6= 2 and f(X) =
∑
aijXiXj with aij = aji be quadratic form with

coefficients in Zp whose discriminant det(aij) is invertible. If a ∈ Zp then every primitive solution of

equation f(x) ≡ a (mod p) lifts to the solution in Zp.

Proof. We have primitive solution of f . f(X) =
∑
aijXiXj is quadratic form with coefficients in Zp.

Then ∂f
∂Xi

= 2
∑

j aijXj , also det(aij) 6≡ 0 (mod p) and x is primitive. Then for one of the

i, ∂f
∂Xi

= 2
∑

j aijXj is not multiple of p. i.e., ∂f
∂Xi
6≡ 0 (mod p). Indirectly we have one of the

partial derivative is non-zero means primitive zero is become simple zero f . Then by Corollary 2.2.6,

we have solution in Zp.

Note that det(aij) is invertible means any row of matrix is not divisible by p. Each entry aij in
∂f
∂Xi

= 2
∑

j aijXj is from ith row.

Corollary 2.2.8. For p = 2, f(X) =
∑
aijXiXj with aij = aji be quadratic form with coefficients

in Z2. Let x be primitive solution of f(x) ≡ a (mod 8) and det(aij) is invertible. If x does not

annihilate all the ∂f
∂Xj

modulo4, then x can lifted as a solution in Zp.

Proof. Here we have p = 2. By substituting n = 3, k = 1 in Theorem 2.2.5, we have solution

f(x) ≡ a (mod 8). f(X) =
∑
aijXiXj is quadratic form with coefficients in Z2. Then

∂f
∂Xi

= 2
∑

j aijXj , also det(aij) 6≡ 0 (mod p) and x is primitive. Then ∀ i, ∂f
∂Xi

= 2
∑

j aijXj is

multiple of 2 but not multiple of 4. i.e., ∂f
∂Xi
6≡ 0 (mod 4). Indirectly we have one of the partial

derivative is non-zero means primitive zero is become simple zero f . Then by Corollary 2.2.6, we

have solution in Zp.

2.3 The multiplicative group Qp

In this section, we will see that p-adic units can be defined as projective limit. Then exact sequence

give some relation between U and F∗p,and as consequences Qp contains (p− 1)th roots of unity. Then

further study for U1 = 1 + pZp, which is isomorphic to Zp if p 6= 2 and isomorphic to {±1} × U2. In

last see squares in Qp.
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2.3.1 Filtration of group of units

Let U = Z∗p be the group of p-adic units. Define map

fn : U → (Zp/pnZp)∗,

u 7→ u (mod pn)

fn is well defined, for any u1 = u2 ∈ U and u1(u2)−1 ∈ U then u1(u2)−1 (mod pn) ∈ (An)∗ and u1

(mod pn) = u2 (mod pn). Clearly, fn is homomorphism, because for any u1, u2 ∈ U ,

fn(u1u2) = u1u2 (mod pn) = (u1 (mod pn)) (u2 (mod pn)) = fn(u1)fn(u2)

One can see that kernel of fn is Un = 1 + pnZp, where n ∈ N. If we take n = 1, then U/U1 is gives

isomorphism with F∗p = (A1)∗. Note that . . . Un ⊂ Un−1 ⊂ . . . U2 ⊂ U1 ⊂ U . This means Un forms

decreasing sequence of subgroups of U . Now we want to show that projective limit of U/Un is U .

There are two ways to defining this, one is direct from projective limits of Zp and another is abstract

way by mapping U/Un → U/Un−1. First we see by direct way. For all n ∈ N, define the map

ξn : Un → Z/pZ = A1 as ξn(1 + pnx) := x (mod p).

Proposition 2.3.1. For all n ∈ N, the map ξn gives rise to an isomorphism of groups

Un/Un+1 → Z/pZ = A1.

Proof. Its easy to see that the map ξn is well-defined and surjective. Now we want to prove that this

map is homomorphism, We need to prove ξn(a · b) = ξn(a) + ξn(b), for a, b ∈ Un. Take a and b to be

1 + pnu1 and 1 + pnu2, respectively. Then

ξn(a · b) = ξn(1 + pn(u1 + u2 + pn(u1u2))

= (u1 + u2 + pn(u1u2)) (mod p)

= (u1 + u2) (mod p)

= u1 (mod p) + u2 (mod p)

= ξn(a) + ξn(b).

One can see that kernel is Un+1, because if a = 1 + pnu1 ∈ Un, and if u1 is multiple of p, then image

of a is zero in A1. Then one can conclude that Un/Un+1
∼= A1, for any n ∈ N.

Proposition 2.3.2. U/Un isomorphic to (An)∗, n ∈ N.

Proof. Above proposition says that Un/Un+1
∼= Z/pZ, which implies that order of Un/Un+1 is p.

Then its immediate that,

#U1/Un = #((U1/U2) · (U2/U3) · · · (Un−2/Un−1) · (Un−1/Un)) = pn−1.
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From this we have U/Un = (U/U1) · (U1/Un), but we know cardinality of both (U/U1) and (U1/Un).

Then

#U/Un = #(U/U1)#(U1/Un) = (p− 1)(pn−1) = pn − pn−1.

Interesting fact is that cardinality of (An)∗ is also pn − pn−1. Then recall that map fn, which is

injective and then become an isomorphism U/Un ∼= (An)∗.

Now we have all ingredients to define projective limits directly.

Theorem 2.3.3. The multiplicative group U is equal to lim←− (U/Un).

Proof. We know that Zp = lim←−Z/pnZ, and form above proposition,

lim←− (U/Un) ∼= lim←− (Z/pnZ)∗ =
(
lim←−Z/pnZ

)∗
= (Zp)∗ = U

Lemma 2.3.4. Let 0→ A→ E → B → 0 be an exact sequence of commutative groups, also

#A = a,#B = b such that (a, b) = 1 and C = {x ∈ E|bx = 0} is subgroup of E. Then show that

E = A⊕ C also, C is only subgroup of E which isomorphic to B.

Proof. We have given that (a, b) = 1 i.e., there exists r, s ∈ Z such that ar + bs = 1. If x ∈ A ∩ C
then ax = bx = 0 with x = (ar + bs)x = 0, which implies A ∩ C = {0}. Every x ∈ E can be

written as x = arx+ bsx, but bC = 0 and bE ⊂ A because bx = barx+ b(bsx) then

bx = 0 + b(bsx) with bsx ∈ A, also abE = 0 then arx ∈ C. Hence we are done with E = A⊕ C.

Now, if we restrict projection E → B on C then we know that bC = 0 and #B = b, which gives

isomorphism C onto B. If C ′ is other subgroup of E isomorphic to B, then bC ′ = 0. Hence C ′ ⊂ C

and by both groups having same order one can conclude that C ′ = C.

Proposition 2.3.5. p-adic units U = V × U1, where V = {x ∈ U |xp−1 = 1} is unique subgroup of

U which isomorphic to F∗p.

Proof. To prove this we apply Lemma 2.3.4 on sort exact sequence,

1→ U1/Un → U/Un → F∗p → 1,

because order of U1/Un is pn−1 and order of F∗p is p− 1. i.e,(pn−1, p− 1) = 1, also

U/Un = U/U1 × U1/Un = U/U1 ⊕ U1/Un.

So that we can apply above lemma as following,

1→ U1/Un → U/U1 ⊕ U1/Un → F∗p → 1.
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Since,

lim←−U/Un = U and lim←−U1/Un = U1,

also, U/U1
∼= F∗p and we can see that the projective limit of U/U1 is (F∗p)′ by identity map on

U/U1 → U/U1. Then one can think of map U/Un → U/Un−1 which carries Vn isomorphically onto

Vn−1. Finally,

lim←−Vn = lim←−U/U1 = U/U1 = (F∗p)′,

by above projective limit we can conclude that U/Un contains a unique subgroup Vn isomorphic to F∗p
with U = V × U1 = (F∗p)′ × U1.

Corollary 2.3.6. The field Qp contains (p− 1)th roots of unity.

Proof. Any non-zero element of Qp can be written in terms of pnu, where n ∈ Z and u ∈ U . From

Proposition 2.3.5 we know that U is isomorphic to V × U1, and V = {x ∈ U |xp−1 = 1}. i.e., Zp
itself contains (p− 1)th roots of unity, which implies Qp contains (p− 1)th roots of unity.

2.3.2 Structure of U1 in terms of Zp

Lemma 2.3.7. Let x be an element of Un r Un+1. If p 6= 2 then n ≥ 1 and if p = 2 then n ≥ 2. Then

xp ∈ Un+1 r Un+2.

Proof. Take x from Un r Un+1, then x = 1 + pnu where u ∈ Zp with u 6≡ 0 (mod p) implies u ∈ U .

From binomial formula by taking power p,

xp = (1 + pnu)p

= 1 + upn+1 + u2pn+2 + . . .+ uppnp

Here the exponents in terms not written are ≥ 2n+ 1, also np ≥ n+ 2. By taking modulo pn+2,

xp ≡ 1 + pn+1u (mod pn+2)

Hence, xp ∈ Un+1 r Un+2.

Proposition 2.3.8. U1 is isomorphic to Zp if p 6= 2, and when p = 2, U1 = {±1} × U2 where U2 is

isomorphic to Z2.

Proof. First we prove for p 6= 2. Let x be an element from U1 r U2. If x = 1 + p, then by

Lemma 2.3.7 xp ∈ U2 r U3 and then xpn ∈ Un+1 r Un+2. Take image of x in U1/Un as xn, then

xp
n−1

= (1 + p)p
n−1

= 1 + pn + . . .+ pp
n−1
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Then xpn−1

n = 1, but note that xpn−2

n 6= 1 because if power is n− 2 then second term of binomial

formula is exponent of pn−1 and that sum won’t give 1 in U1/Un. We know that U1/Un is group of

order pn−1, which implies that xn is generator of cyclic group U1/Un. Now define map,

λn,x : An−1 → U1/Un

zn−1 7→ xzn−1
n .

Its clear that map is well-defined, also forms homomorphism given by,

λn,x(zn−1 + yn−1) = xzn−1+yn−1
n = xz1,n−1

n · xyn−1
n = λn,x(zn−1)λn,x(yn−1).

Now recall map ϕn : An → An−1 in starting of this Chapter. Take zn ∈ An then by map ϕn we get,

ϕn(zn) = zn−1 ∈ An−1.

We defining map µn : U1/Un+1 → U1/Un. Now, we have all ingredients to prove this result. Now

applying,

λn+1,x : An → U1/Un+1,

which gives,

λn+1,x(zn) = xznn+1.

Further applying µn : U1/Un+1 → U1/Un on xznn+1, we get following,

µn(xznn+1) = xzn−1
n = µn(λn+1,x(zn)),

but by ϕn we got zn−1, then applying λn,x on zn−1 we get xzn−1
n = λn,x(ϕn(zn)). Its clear that

µn(λn+1,x(zn)) = xzn−1
n = λn,x(ϕn(zn)).

From this one can define isomorphism,

Zp = lim←−Z/pn−1Z onto U1 = lim←−U1/Un.

Hence we are done for p 6= 2. Now if p = 2 then one can chose x ∈ U2 r U3, with this we get x ≡ 5

(mod 8). By defining map,

λn,x : Z/2n−2Z→ U2/Un

by similar way one can see that,

Z2 = lim←−Z/pn−2Z onto U2 = lim←−U2/Un.

Also we have homomorphism ξ1 : U1 → U1/U2 but U1/U2
∼= Z/2Z, further an isomorphism of {±1}

onto Z/2Z gives U1 = {±1} × U2.
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Theorem 2.3.9. Prove that if p 6= 2 then multiplicative group Q∗p ∼= Z× Zp × Z (p− 1)Z, if p = 2

then isomorphic to Z× Z2 × Z/2Z.

Proof. We know that every non-zero element of Q∗p can be written uniquely as x = pnu, where n ∈ Z
and u ∈ U . Hence by map x 7→ (νp(x), u) gives isomorphism between Q∗p and Z× U . By

Proposition 2.3.5 we know that U = V × U1 and V is is cyclic group of order p− 1. From

Proposition 2.3.8 U1 is isomorphic to Zp. Then Q∗p ∼= Z× Zp × Z/(p− 1)Z. If p = 2 then first

U = U1 and Proposition 2.3.8 U1 = {±1} × U2 and U2
∼= Z2. Hence Q∗p ∼= Z× Z2 × Z/2Z.

2.3.3 Squares in multiplicative group Q∗p
Theorem 2.3.10. If p 6= 2 and let x = pnu be an element of Q∗p where n ∈ Z and u ∈ U . For x to be

square it is necessary and sufficient that n is even and image u of u in F∗p = U/U1 is square.

Proof. Its given that x = pnu. From Proposition 2.3.5 we know that U = V × U1, then by

decomposing u ∈ U to u = vu1 with v ∈ V and u1 ∈ U1. From Theorem 2.3.9, decomposing

Q∗p ∼= Z× V × U1, but U1
∼= Zp. By squaring Q∗p, we have Q∗p

2 ∼= 2Z× F∗p
2 × 2Zp (∵ Q∗P and F∗p

both multiplicative groups, also Z and Zp both additive group, but 2Zp = Zp, because 2 is invertible

in Zp. Hence by isomorphism Zp ∼= U1 all elements of U1 are squares, then we have

Q∗p
2 ∼= 2Z× F∗p

2 × U1. Now one can see that by map x 7→ (νp(x), u), x ∈ Qp is square if n even and

image u of u in F∗p = U/U1 is square. i.e, Legendre symbol
(
u
p

)
of u is equal to 1.

Corollary 2.3.11. If p 6= 2, then multiplicative group Q∗p/Q∗p
2 is group of type (2, 2). It has

representatives {1, p, u, up} where u ∈ U such that
(
u
p

)
= −1

Proof. From Theorem 2.3.10, its clear that Q∗p ∼= Z× F∗p × Zp and

Q∗p
2 ∼= 2Z× F∗p

2 × Zp(∵ 2Zp = Zp), but Zp ∼= U1,

Q∗p
Q∗p

2
∼=

Z
2Z︸︷︷︸
νp

×
F∗p
F∗p

2︸︷︷︸
u

×U1

U1

.

From that we get,

#
Q∗p
Q∗p

2 = #
Z
2Z
×#

F∗p
F∗p

2 ×#
U1

U1

.

To see representatives of Q∗p/Q∗p
2, consider map x 7→ (νp(x), u). From this take valuation such that an

element 1 which has valuation zero and other p which has non-zero valuation. i.e., we can take {1, p}.
Now, for squares consider an element 1 in F∗p which is square. i.e,

(
1
p

)
= 1 and other element as

non-square u such that
(
u
p

)
= −1, which implies we can take {1, u} Then one can see that of

Q∗p/Q∗p
2 is group of type (2, 2) and has representatives {1, p} × {1, u} = {1, p, u, pu}.
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Theorem 2.3.12. An element x = pnu of Q∗2 to be a square it is necessary and sufficient that n is

even and u ≡ 1 (mod 8).

Proof. We know that we can decomposing U = {±1} × U2, and from that u is square if and only if

u ∈ U2 with square in U2. From Proposition 2.3.8 isomorphism Z2
∼= U2 carries 2nZ2 onto Un+2.

Now by taking n = 1 one can see that set of squares of U2 is same as to U3, because, squares in Z2 is

2Z2, but squares in U2 is U3. Note the fact that in Proposition2.3.8, we took x ∈ U2 r U3, then its

clear that x2 ∈ U3 r U4. By definition of U3 = 1 + 23Z2, its clear that if x ∈ U2 is square if and only

if x2 ≡ 1 (mod 8). Hence we proved.

Proposition 2.3.13. Prove that if p = 2, then U/U3 is isomorphic to Z/2Z× Z/2Z.

Proof. First, note that when p = 2 then U = U1, then one can see that we can define homomorphism

U1/U2 × U2/U3 onto Z/2Z× Z/2Z, which is same as saying U/U2 × U2/U3 onto Z/2Z× Z/2Z.

Finally, define homomorphism f1 : U/U2 → Z/2Z as follows,

f1(x) ≡ x− 1

2
(mod 2) =

{
0 if x ≡ 1 (mod 4)

1 if x ≡ −1 (mod 4)
(2.1)

and define another homomorphism f2 : U2/U3 → Z/2Z as follows,

f2(x) ≡ x2 − 1

8
(mod 2) =

{
0 if x ≡ ±1 (mod 8)

1 if x ≡ ±5 (mod 8)
(2.2)

Then the pair (f1, f2) defines isomorphism U/U2 × U2/U3 → Z/2Z× Z/2Z, which is U/U3 onto

Z/2Z× Z/2Z. i.e., A 2-adic unit x is square if and only if f1(x) and f2(x) both zero.

Corollary 2.3.14. The multiplicative group Q∗p/Q∗p
2 is of type (2, 2, 2). It has representatives

{±1,±2,±5,±10}.

Proof. For p = 2, Q∗2 ∼= Z× Z/2Z× Z2 and Z2
∼= U2. By squaring Q∗2, we get

Q∗2
2 ∼= 2Z× 2Z/2/Z× 2Z2. Then

Q∗2
Q∗2

2
∼=

Z
2Z︸︷︷︸
νp

× Z
2Z
× Z2

2Zp︸ ︷︷ ︸
∼=U/U3

. (2.3)

As in equation (2.3), recall map x 7→ (νp(x), u). Then Theorem 2.3.12 says that u ≡ 1 (mod 8) and

set of squares of U2 is equal to U3, then we consider U2/U3 which is isomorphic to Z2/2Z2, where

Z2/2Z2
∼= Z/2Z Also when p = 2 then U = U1, then U1/U2

∼= Z/2Z is same as U/U2
∼= Z/2Z.

From Proposition 2.3.13, U/U3
∼= Z/2Z× Z/2Z. To see representatives of U/U3, we take element 1,
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as square and −1 as non-square. Also, element 1 as unit in U , and 5 as element in U2 but not in U3.

Then we have {+1,−1} × {1, 5} = {±1,±5}. Finally, for valuation we can take element 1 which

has valuation zero, and take element 2 which has non-zero valuation. Then we can say that Q∗2/Q∗2
2 is

type of (2, 2, 2), which has for representatives {1, 2} × {±1,±5} = {±1,±2,±5,±10}.
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Chapter 3

Hilbert Symbol

In this chapter, we shall see some important properties of quadratic forms in 3 variables over R and

Qp, where p is prime number. Though out this chapter, we let K to denote either R or Qp.

3.1 Local properties

In this section, we shall first define the Hilbert symbol and later we produce some properties of it.

Definition 23. A function ( , ) : K×K→ {±1} is defined as, for any a, b ∈ K∗,

(a, b) =

{
1, if z2 − ax2 − by2 = 0 has a non-zero solution in K3,

−1 otherwise.

The number (a, b) = ±1 is called Hilbert Symbol of a and b relative to K.

Lemma 3.1.1. The Hilbert symbol (a, b) does not change if a and b are multiplied by squares.

Proof. If a quadratic form z2 − ax2 − by2 = 0 has a non-zero solution (z′, x′, y′), then the solution of

the quadratic form z2 − ac2x2 − bd2y2 = 0 is (z′, cx′, dy′), where c, d ∈ K.

Thus, it is suffices to consider the Hilbert symbol when neither a nor b is a square. By Lemma 3.1.1,

the Hilbert symbol is a function on K∗/K∗2, i.e..

( , ) : K∗/K∗2 ×K∗/K∗2 → {±1}.

Definition 24. Let K be any field, then for any
√
a 6∈ K∗, Ka = K(

√
a) is the quadratic extension of

K, where Ka is the smallest extension of K containing
√
a. Also, Ka = {x+

√
ay| x, y ∈ K}.

If Ka is quadratic extension and x+
√
ay = f ∈ Ka then we define norm of f as

N(f) = (x+
√
ay)(x−

√
ay) = x2 − ay2.

37
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Proposition 3.1.2. Let b be in K∗ with
√
b 6∈ K∗ and Kb = K(

√
b), then NK∗b forms group of norms

of elements of K∗b .

Proof. K∗b is multiplicative group and NK∗b = {N(x) | x = y +
√
bz & y, z ∈ K∗b}. Thus, it is

clear.

Proposition 3.1.3. Let a,b in K∗, and Kb = K(
√
b), then for Hilbert symbol (a, b) = 1, it is

necessary and sufficient that a ∈ NK∗b .

Proof. We have two cases, first when b is square and second is when b is non-square.

i) When b is square of an element c ∈ K∗. Now, quadratic form z2 − ax2 − by2 = 0 has (c, 0, 1)

is non-trivial solution. Hence, (a, b) = 1. Also, its easy to see that in this case Kb = K as well

as NK∗b = K∗.

ii) When b ∈ K∗ but b is not square of any element, then Kb is quadratic extension over K. Since,

every element of z ∈ Kb can be written as z = h+
√
bk with h, k ∈ K and N(z) = h2 − bk2.

If a ∈ NK∗b , there exists y, z ∈ K such that a = z2 − by2. This implies that quadratic form

z2 − ax2 − by2 = 0 has non trivial zero (z, 1, y). Thus, (a, b) = 1.

Conversely, if (a, b) = 1, implies that quadratic form z2 − ax2 − by2 = 0 has non-trivial solution. We

can say that x is non zero, otherwise b would be square. Then, its clear that N( z
x

+
√
b y
x
) = a.

3.1.1 Properties of Hilbert symbol

Lemma 3.1.4. Hilbert symbol satisfies following. Let a, b, c ∈ K∗.

i) (a, b) = (b, a).

ii) (a, c2) = 1.

iii) (a,−a) = 1.

iv) (a, 1− a) = 1, if a 6= 1.

v) (a, b) = 1⇒ (ac, b) = (c, b),

vi) (a, b) = (a,−ab) = (a, (1− a)b), if a 6= 1.

Proof. i) (a, b) = (b, a)

If a quadratic form z2 − ax2 − by2 = 0 has a non-zero solution (h, k, l), then

z2 − bx2 − ay2 = 0 has the non-zero solution (h, l, k). This implies that (a, b) = (b, a).



3.1. LOCAL PROPERTIES 39

ii) (a, c2) = 1

By first case of Proposition 3.1.3, quadratic form z2 − ax2 − by2 = z2 − ax2 − c2y2 = 0 has

solution (c, 0, 1) is solution. Thus, (a, b) = (a, c2) = 1. It is saying that, Hilbert symbol of a

and b relative to K is always 1 if any one of them is square.

iii) (a,−a) = 1

If b = −a then quadratic form z2 − ax2 − by2 = z2 − ax2 + ay2 = 0 has non trivial solution

(0, 1, 1), which implies that (a,−a) = 1.

iv) (a, 1− a) = 1, if a 6= 1.

If b = 1− a then quadratic form z2 − ax2 − by2 = z2 − ax2 − y2 + ay2 = 0 has non trivial

solution (1, 1, 1). Thus, (a, 1− a) = 1.

v) (a, b) = 1⇒ (ac, b) = (c, b),

It is given that (a, b) = 1, then by converse part of Proposition 3.1.3 its clear that a ∈ NK∗b . If

c ∈ NK∗b then ac ∈ NK∗b , because, we know that z1, z2 ∈ K∗b such that N(z1) = a and

N(z2) = c, then one can find z3 ∈ K∗b such that N(z3) = ac. Also, if ac ∈ K∗b , then for some

z4 ∈ K∗b , N(z4) = ac then N(z4/z1) = c, thus c ∈ NK∗b . This proves (ac, b) = (c, b).

vi) (a, b) = (a,−ab) = (a, (1− a)b), if a 6= 1.

It is quite easy to prove, because it is from above property only, We know that (a,−a) = 1 then

(a,−ab) = (a, b), also (a, 1− a) = 1 then (a, (1− a)b) = (a, b).

3.1.2 Computation of (a, b)

Theorem 3.1.5. If K = R, then,

(a, b) =

{
1, if a or b is > 0,

−1 if a and b both < 0.

Proof. Since K = R, the representatives for R∗/R∗2 are {1,−1}. Since 1 is a square, we see that

(1, 1) = (1,−1) = (−1, 1) = 1. The Hilbert symbol (−1,−1) is −1, since z2 + x2 + y2 cannot

represent zero non-trivially.

Lemma 3.1.6. Let b ∈ U be a p-adic unit. If the quadratic form z2 − px2 − by2 = 0 has a non-trivial

solution in Qp, then it has a solution (z, x, y) such that z, y ∈ U and x ∈ Zp.

Proof. By Proposition 2.2.3, the given equation has a primitive solution (z, x, y). We will show by

contradiction that this solution has the desired property.
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Suppose, it does not have such property, then we would have either y ≡ 0 (mod p) or z ≡ 0

(mod p). Let, z ≡ 0 (mod p), then by taking modulo p of the equation z2 − px2 − by2 = 0 gives

z2 − by2 ≡ 0 (mod p), but we know that b 6≡ 0 (mod p), which implies y and z both multiple of p.

This gives px2 ≡ 0 (mod p2). Then, x ≡ 0 (mod p). This means that any of z, x, y is not invertible

then it is not primitive solution, which contradicts to our assumption for y or z is congruent to modulo

p. Hence, if equation has non-trivial solution if there exists solution with y, z is invertible

(i.e. y, z ∈ U).

Theorem 3.1.7. If K = Qp, and let a, b ∈ Qp, such that a = phu, b = pkv, where u, v are p-adic

units. Then,

i) for p 6= 2:

(a, b) = (−1)hkε(p)
(
u

p

)k (
v

p

)h
, (3.1)

ii) for p = 2,

(a, b) = (−1)ε(u)ε(v)+hω(v)+kω(u). (3.2)

[Recall that
(
u
p

)
denotes the Legendre symbol

(
u
p

)
, where u is the image of u by the homomorphism

U → F∗p of reduction modulo p. As for ε(u) and ω(u) denote class modulo 2 of u−1
2

and u2−1
8

respectively.]

Proof. As we know that for prime p = 2, case differs everywhere. So we suppose first prove for

p 6= 2.

i) For p 6= 2:

In equation 3.1, exponents come in only by their residue modulo 2. Also, we are considering

Hilbert symbol only on Q∗p/Q∗p
2, which means, Hilbert symbol depends only on modulo Q∗p

2.

Since, representative of Q∗p/Q∗p
2 is {1, p, u, up}, where 0 < u ≤ p− 1 is any fixed non

square(i.e. Legendre symbol of u is not equal to 1). It is clear that by representatives we have

4× 4 = 16 cases, but from Lemma 3.1.4 it is reduces to only following three cases.

a) (u, u) = (u, v) b) (p, u) c) (pu, pu) = (pu, pv),

a) We know that a = phu, b = pkv. To consider case (u, u) take h = 0, k = 0, because then,

(a, b) = (u, v) = 1. By Corollary 1.2.5, it is clear that quadratic equation

z2 − ux2 − vy2 = 0 has non-trivial solution modulo p. By Corollary 3.1.6, it is easy to see

that one of the partial derivative is nonzero and discriminant of this quadratic equation is

p-adic unit. Finally, by Hensel’s lemma we can lift to the solution in Zp. Thus, (u, v) = 1.
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b) Now for (pu, v), by taking h = 1, k = 0 we get a = pu, b = v i.e. (a, b) = (pu, v). Since,

from above proof of a) it is clear that (u, v) = 1, and from fifth property Lemma 3.1.4,

one can see that (pu, v) = (p, u). So we have to prove that (p, v) =
(
v
p

)
. Take quadratic

equation f = z2 − px2 − vy2 = 0. It is easy to see that if v is square then

(p, v) = 1 =
(
v
p

)
, otherwise

(
v
p

)
= −1. Then Lemma 3.1.6, shows that equation

z2 − px2 − vy2 = 0 does not have non-trivial zero, which implies that (p, v) = −1.

c) In last case of p 6= 2, by taking h = k = 1, we get (a, b) = (pu, pv) and

(pu, pv) = (−1)(p−2)/2

(
u

p

)(
v

p

)
.

By fifth property of Lemma 3.1.4,

(pu, pv) = (pu,−p2uv) = (pu,−uv),

but just now we proved that (pu, v) = (p, v) =
(
v
p

)
, then (pu, pv) = (pu,−uv) =

(
−uv
p

)
and we know that u, v ∈ U , which means

(
−1
p

)
= (−1)(p−1)/2. Now it is easy to see that

if −1 is square modulo p, then (pu, pv) = 1, otherwise (pu, pv) = −1 .

Now we prove it for p = 2.

ii) For p = 2,

(a, b) = (−1)ε(u)ε(v)+hω(v)+kω(u). (3.3)

a) We know that a = 2hu, b = 2kv. To consider case (u, u) take h = k = 0, because then,

(a, b) = (u, v) =

{
1, if u or v ≡ 1 (mod 4)

−1, otherwise .

First case, u ≡ 1 (mod 4) and v ≡ −1 (mod 4), If u is square then u ≡ 1 (mod 8), we

already know that if one of them is square then (u, v) = 1. If u is non square, i.e. u ≡ 5

(mod 8) and v ≡ −1 (mod 4), then we have u+ 4v ≡ 1 (mod 8) which implies u+ 4v is

square. Then there is w ∈ U such that w2 = u+ 4v and (w, 1, 2) is solution of

z2 − ux2 − vy2 = 0⇒ (u, v) = 1.

In second case u ≡ v ≡ −1 (mod 4) and (z, x, y) is primitive solution of z2 − ux2 − vy2 = 0

then z2 + x2 + y2 ≡ 0 (mod 4). Since, 0̄ and 1̄ are only squares in Z/4Z⇒ z, x, y ≡ 0

(mod 2). This contradicts to primitivity. Thus, (u, v) = −1.
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b) Now, a = 2hu, b = 2kv. To consider case (2u, u) take h = 1, k = 0 then we have to check,

(a, b) = (−1)ε(u)ε(v)+hω(v),

First, let’s show that (2, v) = (−1)ω(v). i.e.(2, v) = 1 ⇐⇒ v ≡ ±1 (mod 8). If (2, v) = 1,

by above Lemma 3.1.6 there is x, y, z ∈ Z2 such that y, z ∈ Z2
∗ with,

z2 − 2x2vy2 = 0, y2, z2 ∈ Z2
∗2, ⇒ y2 ≡ z2 ≡ 1 (mod 8), (3.4)

⇒ 1− 2x2 − v ≡ 0 (mod 8) (3.5)

Since, 0̄, 1̄ and 4̄ are squares in Z/8Z, which means that v ≡ ±1 (mod 8). Conversely, if v ≡ 1

(mod 8) and v is square then (2, v) = 1. If v ≡ −1 (mod 8) then z2 − 2x2 − vy2 = 0 has

(1, 1, 1) solution for modulo 8. It is easy to see that by Hensel’s lemma we can lift solution in

Z2. Thus, (2, v) = 1. Next, (2u, v) = (2, v)(u, v). By one of the property of Hilbert symbol, its

clear that (2u, v) = (2, v)(u, v) is true if (2, v) = 1 or (u, v) = 1. The remaining case is

(2, v) = (u, v) = −1, i.e. v ≡ 3 (mod 8) and u ≡ 3 or − 1 (mod 8), after multiplying u and

v by squares, we can suppose that u = −1, v = 3 for equation z2 + 2x2 − 3y2 = 0 and

u = 3, v = −5 for equation z2 − 6x2 + 5y2 = 0, both equations have solution (1, 1, 1); thus we

have (2u, v) = 1.

c) Finally, take h = k = 1,

(a, b) = (2u, 2v) = (−1)ε(u)ε(v)+hω(v)+kω(u). (3.6)

Now, last property of Hilbert symbol shows that,

(2u, 2v) = (2u,−4uv) = (2u,−uv),

but, just now we have seen that,

(2u, 2v) = (−1)ε(u)ε(−uv)+ω(−uv)

Since, ε(−1) = 1, ω(−1) = 0 and ε(u)(1 + ε(u)) = 0. Also, ε(−uv) = ε(u) + ε(−1) + ε(v),

which proves the theorem.

Theorem 3.1.8. Hilbert symbol is a non-degenerate bilinear form on the vector space K∗/K∗2 over

F2.

Proof. We first prove for p 6= 2, then prove for p = 2.
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i) p 6= 2,

Its clear that formula itself giving Hilbert symbol (a, b) symbol is bilinear; to prove

non-degeneracy it is suffices exhibit, for all a ∈ K∗/K∗2 distinct form neutral element b such

that (a, b) = −1. We have four representatives for Q∗/Q∗2, then we can take a = p, u or up

with u ∈ U , such that
(
u
p

)
= −1; then we choose for b respectively, u, p and up.

ii) p = 2,

The bi-linearity of Hilbert symbol (a, b) follows from the formula giving this symbol (ε and ω

are homomorphisms). For non-degeneracy is checked on the representatives {u, 2u} with

u = 1, 5,−1 or 5. Indeed, we have following,

(5, 2u) = −1 and (−1,−1) = (−1,−5) = −1.

Corollary 3.1.9. If b is not a square, the group NK∗b is a group of index 2 in K∗.

Proof. Define map φb : K∗ → {±1}, by φb(a) = (a, b). It is easy to see that its a homomorphism and

it has kernel NK∗b . Since, (a, b) is non-degenerate, it is surjective. Hence, first isomorphism theorem,

map φb defines an isomorphism of K/NK∗b onto {±1}. Thus, index is equal to two follows.

3.2 Global properties

This section makes use of the embedding of Q into Qp, for all primes p. First, we see important

product formula of Hilbert symbol for almost all primes p. After that we will see the existence of

rational numbers with given Hilbert symbols. In last, two important theorems, first one is

Approximation theorem and second one is Dirichlet theorem. If a, b ∈ Q∗, then (a, b)p denotes the

Hilbert symbol of their images in Qp (also, (a, b)∞ for images in R). Let V be a set of all primes

union with symbol∞, and Q∞ is equal to R, hence, Q is dense in Qv for all v ∈ V .

3.2.1 Product formula of Hilbert symbol

Following theorem is computation of results of previous theorem for different cases.

Theorem 3.2.1. If a, b ∈ Q∗, then (a, b)p = 1 for all the elements of V except a finite number (i.e.

for almost all v ∈ V ) and ∏
v∈V

(a, b)v = 1.
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Proof. For any two a, b in the form phu, pkv respectively, where u and v are p-adic units we have the

following:

i) for p 6= 2,

(a, b) = (−1)hkε(p)
(
u

p

)k (
v

p

)h
, (3.7)

ii) for p = 2,

(a, b) = (−1)ε(u)ε(v)+hω(v)+kω(u). (3.8)

It suffices to prove the theorem for a, b equal to −1 or p a prime, by the bi-linearity of Hilbert symbol.

This can be done via following three cases,

1) a = −1, b = −1.

One can note form Theorem 3.1.5 that Hilbert symbol (−1,−1)∞ = −1 as well as

(a, b)2 = −1, also (a, b)v = 1, for all v 6= 2,∞. Thus the product is clear.

2) a = −1, b = q with q is prime.

If q = 2, then one has (−1, 2)v = 1 for all v ∈ V . If q 6= 2 then (−1, q)v = 1, finally if v 6= 2, q

and (−1, q)2 = (−1, q)q = (−1)ε(q). One can see that product is equal to 1.

3) a = p, b = q with p, q primes. To prove this we consider three cases as following:

case -1) If p = q,

(p, q) = (p, p) =

{
1, if − 1 is square modulo p,

−1, otherwise .

(p, p) = (p,−p)(p, p) = (p,−p2) = (p,−1).

case -2) Now, if p 6= q and q = 2 then (p, 2)v = 1,∀v 6= 2, p ,

(p, 2)2 = (−1)ω(p) and (p, 2)p =

(
2

p

)
= (−1)ω(p).

case -3) Now, if both p and q are different from 2,

(p, q)v =


1, if v 6= 2, p, q,

(−1)ε(p)ε(q), if v = 2,(
q
p

)
, if v = p,

−
(
p
q

)
, if v = q.

We know the quadratic reciprocity law which is,(
p

q

)(
q

p

)
= (−1)ε(p)ε(q).
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Thus, ∏
(a, b)v =

∏
(p, q)v = 1.

Remark 3.2.2. The product formula is essentially equivalent to the quadratic reciprocity law. It will

come when the set V being replaced by the set of places of the field. This means that when it extends

to all the algebraic number fields.

3.2.2 Existence of rational numbers with given Hilbert symbol

Theorem 3.2.3. Let (ai)i∈I be a finite family of elements in Q∗ and let (εi,v)i∈I,v∈V be a finite family

of numbers equals to ±1. There is x ∈ Q∗ such that (ai, x)v = εi,v for all i ∈ I and all v ∈ V , it is

necessary and sufficient that the following conditions be satisfied:

1) Almost all εi,v are equal to 1.

2) For all i ∈ I , we have
∏

v∈V εi,v = 1.

3) For all v ∈ V there exists xv ∈ Q∗v such that (ai, xv)v = εi,v for all i ∈ I .

The necessity of first and second condition is follows form previous theorem. For third condition take

xv to be x. To prove sufficiency of above conditions, we need the following three results, then we shall

prove this theorem.

Theorem 3.2.4 (Chinese remainder theorem). Let a1, . . . , an and m1, . . . ,mn be integers with the mi

being pairwise relatively prime. There exists an integer a such that a ≡ ai (mod m)i for all i.

Proof. Let’s take M = m1 . . .mn, and Mi = M/mi. Then, gcd(Mi,mi) = 1.

X ≡ a1M1y1 + . . .+ anMnyn (mod M).

This implies there is x, y ∈ Z such that yiMi + bimi = 1.

⇒Miyi ≡ 1 (mod mi)

⇒ aiMiyi ≡ ai (mod mi),

⇒ aiMiyi ≡ 0 (mod mj), for j 6= i,

⇒ X ≡ ai (mod mi),

and

X =
n∑
i=1

aiMiyi.
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Now, define map

F : Z→ Z/M1Z× Z/M2Z× · · · × Z/MnZ

by

z 7→ (z (mod M1), . . . , z (mod Mn)).

Kernel of F is M1m2 . . .MnZ. It is easy to see that it is homomorphism, which is injective and

surjective.

⇒ Z/M1M2 . . .MnZ ∼= Z/M1Z× Z/M2Z× · · · × Z/MnZ

Theorem 3.2.5 (Approximation theorem). Let S be the finite subset of V . Then the image of Q is

dense in product
∏

v∈S Qv.

Proof. This result basically states that for any finite set of places, that is a finite subset S of V .

Suppose that S = {p1, p2, . . . , pn,∞}, where all primes are distinct. Our claim is to show that Q is

dense in Qp1 × · · · ×Qpn × R. Let x = (x1, . . . , xn, x∞) be a point of this product and want to show

that this point is adherent to Q. Since, all xi ∈ Qpi , we can multiply by suitable integer and make

them into from Zpi (i.e. xi ∈ Zpi , for 1 ≤ i ≤ n). We let ε be any positive real number and N be any

natural number. By Chinese remainder theorem there exists some x0 ∈ Z such that νpi(x0 − xi) ≥ N

for all i. This follows from the existence of x0 ∈ Z such that x0 ≡ xi (mod pNi ). Now an integer

q ≥ 2 is chosen relatively prime to all the pi. Rational numbers of the form a/qm with a ∈ Z and m

some non-negative number are dense among the real numbers. This follows from the divergence of qm

as m goes to infinity. So we find a number u = a/qm such that,

|x0 − x∞ + upN1 . . . p
N
n | ≤ ε.

So if we set x = x0 + upN1 . . . p
N
n we have the desired result;

|x− x∞| ≤ ε, and νpi(x− xi) ≥ N.

Theorem 3.2.6 (Dirichlet theorem). If a and m are relatively prime integers greater than 1, there

exists infinitely many primes p such that p ≡ a (mod m)

Finally, come back to proof of Theorem 3.2.3, tie together these ideas to prove the sufficiency of the

conditions.
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Proof. Let (εi,v) be a family of numbers satisfying (1), (2), and (3). Via multiplication by square of

some integer (recall Hilbert symbol is trivial on squares) we may assume that the ai are integers. So

we let

S = {∞, 2} ∪ { prime factors of ai},

T = {v ∈ V : ∃i ∈ I such that εi,v = −1}.

Note that both sets above are clearly finite, because there are finitely prime factors in S and also there

are finitely many v for εi,v = −1. The argument now splits into two cases.

1) When S ∩ T = ∅, take,

a =
∏

l(6=∞)∈T

l and m = 8
∏

l( 6=2,∞)∈S

l.

Since, the intersection of S and T is empty, clearly a and m are relatively prime. By Dirichlet

theorem, there is a prime p /∈ S ∪ T such that p ≡ a (mod m). There are infinitely many such

primes, so we can choose one outside of any finite set of places, like S ∪ T . We want to show

that x = ap will have the desired property and satisfy Theorem 3.2.3. i.e.(ai, x)v = εi,v for all

i ∈ I and v ∈ V .

a) If v ∈ S, εi,v = 1, since S ∩ T = ∅ which implies that (ai, x)v = 1(∵ (u, v) = 1).

b) If v =∞, it is clear that (ai, x) = 1 because, x > 0.

c) If v = l, we have x ≡ a2 (mod m), hence x ≡ a2 (mod 8) for l = 2 and x ≡ a2

(mod l) for l 6= 2.

d) If v = l is not in S, ai is l−adic unit, and l 6= 2, we have

(ai, b)l =
(ai
l

)νl(b)
, ∀b ∈ Q∗l .

e) If l /∈ T ∪ {p}, and x is l−adic unit, implies its valuation is zero. Then by above formula,

(ai, x)l = 1 also, εi,l = 1 because l ∈ T .

f) If l ∈ T , and νl(x) = 1, by condition (3) of Theorem 3.2.3, there is xl ∈ Q∗l such that

(ai, xl)l = εi,l for all i ∈ I . Since, one of the εi,l = −1(∵ l ∈ T ), we have νl(xl) ≡ 1

(mod 2) hence,

(ai, x)l =
(ai
l

)
= (ai, xl)l = εi,l,∀i ∈ I.

g) Remaining case is l = p, which deduce from using product formula,

(ai, x)p =
∏
v 6=p

(ai, x)v =
∏
v 6=p

εi,v = εi,p.
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2) General case,

we know that squares of Q∗v is a subgroup of Q∗v. By Approximation theorem, there is a x′ ∈ Q∗

such that x′/xv is a square in Q∗v for all v ∈ S.

i.e.(ai, x
′)v = (ai, xv)v = εi,v∀v ∈ S.

Now, if we take βi,v = εi,v(ai, x
′)v, such that family (βi,v) verifies condition (1), (2) and (3)

and βi,v = 1, if v ∈ S. By first case(S ∩ T = ∅), there is y ∈ Q∗ such that (ai, y) = βi,v∀i ∈ I
and for all v ∈ V . Finally, if we take x = yx′, it is clear that x has desired properties.



Chapter 4

Quadratic forms

We are start working with quadratic forms over arbitrary commutative ring. If 2 is invertible in a

commutative ring R, then quadratic forms are essentially interchangeable with symmetric bilinear

forms, but if 2 is not invertible, then there is an important distinction. In this chapter we does not

consider the case where ring R is a field K of characteristic two.

Definition 25 (Bilinear form). A bilinear form on a vector space V is a bilinear map V × V → K,

where K is the field of scalars. In other words, a bilinear form is a function B : V × V → K which is

linear in each argument separately,

• B(u+ v, w) = B(u,w) +B(v, w), for all u, v, w ∈ V, and for all α ∈ K.
• B(u, v + w) = B(u, v) +B(u,w), for all u, v, w ∈ V, and for all α ∈ K.
• B(αu, v) = B(u, αv) = αB(u, v), for all u, v ∈ V, and for all α ∈ K.

Definition 26 (Quadratic form). A quadratic form over a field K is a homogeneous polynomial of

degree 2 in n variables with coefficients in K. In other words, let V be a module over a commutative

ring R. A function Q : V → R is called a quadratic form on V if Q satisfies,

1) Q(ax) = a2Q(x), for a ∈ R, x ∈ V,
2) The function (x, y) 7→ Q(x+ y)−Q(x)−Q(y) is bilinear form.

Such a pair (V,Q) is called a quadratic module. If a commutative ring R is any filed K, then V is

vector space over K, and we suppose that its dimension is finite.

Definition 27 (Symmetric bilinear form). A symmetric bilinear form is bilinear form of V over K
which has property, B(v, u) = B(u, v) for all u, v ∈ V .

If 2 is invertible in K, and (V,Q) is a quadratic module over K, we write BQ for the associated

symmetric bilinear form on V ,

BQ(x, y) =
1

2
(Q(x+ y)−Q(x)−Q(y)).

49
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This definition make sense of characteristic different from 2. Conversely, if B is a symmetric bilinear

form on a module V over K, we write QB(x) = B(x, x). One can see that

B(x, x) =
1

2
(Q(x+ x)−Q(x)−Q(x)) =

1

2
(4Q(x)− 2Q(x)) = Q(x).

The map (x, y) 7→ B(x, y) is symmetric bilinear form on V × V , also called the scalar product

associated with Q. If (V1, Q1) and (V2, Q2) are two quadratic modules, a linear map T : V1 → V2

such that Q2 ◦ T = Q1 is called a morphism or metric morphism of (V1, Q1) into (V2, Q2); then

T (x)T (y) = B(x, y), for all x, y ∈ V .

Matrix of quadratic forms- Let V be a vector space over K, and (ei), 1 ≤ i ≤ n be basis of V. The

matrix of Q with respect to this basis is the matrix A = (aij), where aij = B(ei, ej). It is symmetric.

If x =
∑
xiei is an element of V , then

Q(x) =
n∑
i,j

aijxixj,

which shows that Q(x) is a quadratic form in n variables (i.e. x1, . . . , xn). If we change basis such

that associated matrix B is invertible. The new matrix A′ of Q with respect to new basis is BABT ,

where BT is transpose of B. Also,

det(A′) = det(A) · det(B)2.

This shows that det(A) is determined up to multiplication by an element of K∗2. In particular, the

square-class of the determinant of A depends only on Q, and not on the choice of basis. This

square-class is called the discriminant and it is denoted by disc. Its easy to that either disc(Q) = 0 or

else, disc(Q) ∈ K∗/K∗2.

4.1 Orthogonality

Definition 28 (Orthogonal). Let (v,Q) be a quadratic module over K. We say two elements x, y of V

are orthogonal if B(x, y) = 0.

Let (v,Q) be a quadratic module over K and B be a subset of V , then the set of elements orthogonal

to B denoted by B⊥. It is vector subspace of V .

Remark 4.1.1. Let V1 and V2 be two vector subspace of V over K, then two subspace V1 and V2 are

said to be orthogonal if V1 ⊂ V ⊥2 or equivalently V2 ⊂ V ⊥1 . This means that if x ∈ V1 and y ∈ V2

then B(x, y) = 0.
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Definition 29 (Radical). Let (v,Q) be a quadratic module over K. The orthogonal complement of V

is V ⊥ itself called radical of V and its denoted by rad(V ).

Co-dimension of radical is called rank of Q. If rad(V ) = 0 then we say, Q is non-degenerate. This is

equivalent to saying that the discriminant of Q is nonzero, in which case we view it is an element of

the K∗/K∗2.

Definition 30 (Dual space). Given any finite dimensional vector space V over a field K, the dual

space V ∗ is defined as the set of all linear functionals(maps) φ : V → K.

Basis of dual space called dual basis, and as an important result, which we will be using is that a

finite-dimensional vector space V is isomorphic to its double dual V ∗∗, where double dual is dual of

V ∗.

Let V be finite dimensional vector space over K, and U is subspace of V , U∗ be a dual of U . Let

σU : V → U∗ be map defined by σy(x) = B(x, y) (where, y ∈ U and x ∈ V ), associated with each

x ∈ V the linear form. Its obvious that σU is homomorphism and kernel is U⊥. Now, its is easy to see

that Q is non-degenerate if map σV : V → V ∗ forms an isomorphism. By above discussion, we have

equivalent condition for non-degeneracy. Q is non-degenerate is equivalent to saying that disc(Q) 6= 0

is equivalent to saying that σV is an isomorphism.

Definition 31. Let U1, . . . , Un be a vector subspace of V . We say V is the orthogonal direct sum of

the Ui, if they are pairwise orthogonal and if V is direct sum of them. We denotes,

V = U1⊕̂ · · · ⊕̂Un.

If x ∈ V , has for components xi ∈ Ui then,

Q(x) = Q1(x1) + . . .+Qn(xn),

where, Qi = Q|Ui denotes the restriction of Q to Ui. Conversely, if (Ui, Qi) is a family of quadratic

modules, the formula above endows V =
⊕

Ui with a quadratic form Q, called the direct sum of the

Qi, then V = U1⊕̂ · · · ⊕̂Un.

Definition 32 (Supplementary subspace). Let U1 and U2 be two subspaces of the same vector space

V . The sum of these subspaces, denoted U1 + U2, is the set of all the sums u1 + u2, where u1 ∈ U1and

u2 ∈ U2. If U1 ∩ U2 = {0}, the sum is a direct sum and is denoted U1 ⊕ U2. If U1 ⊕ U2 = V , then U1

and U2 are supplementary subspaces.

Proposition 4.1.2. If V is a vector space and U is a supplementary subspace of rad(V ) = V ⊥, then

V = U⊕̂V ⊥.
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Proof. There is nothing to prove, its clear by definition of supplementary subspace and its because U

is subspace of V , which is orthogonal to rad(V ).

Proposition 4.1.3. Suppose (V,Q) is non-degenerate. Then,

i) All metric morphisms of V into quadratic module (V ′, Q′) are injective.

ii) For all vector subspaces U of V , we have

U⊥⊥ = U, dim(U) + dim(U⊥) = dim(V ), rad(U) =rad(U⊥) = U ∩ U⊥.

The quadratic module U is non-degenerate if and only if U⊥ is non-degenerate, in which case

V = U⊕̂U⊥.

iii) If V is the orthogonal direct sum of two subspaces, they are non-degenerate and each of them is

orthogonal to each other.

Proof. i) We know that function T : V → V ′ is linear such that Q′ ◦ T = Q, then

T (x)T (y) = B(x, y). If T (x) = 0, we have

B(x, y) = T (x)T (y) = 0, for all y ∈ V ;

which implies x = 0, because (V,Q) is non-degenerate.

ii) Recall map σU : V → U∗. We also know that kernel is U⊥,

dim(V ) = dim(U⊥) + dim(U∗) = dim(U) + dim(U⊥).

This shows that U and U⊥⊥ have same dimension, since U is contained in U⊥⊥ we have

U = U⊥⊥, rad(U) = U ∩ U⊥ is clear. If we apply rad(U) = U ∩ U⊥ to U⊥ then

rad(U⊥) = U⊥ ∩ U , because U⊥⊥ = U . Thus, rad(U) =rad(U⊥).

iii) If V = U1⊕̂U2, then rad(V ) =rad(U1)⊕rad(U2). Thus rad(V ) = 0 if and only if the same is

true of U1 and U2.

4.2 Isotropic vectors

Definition 33 (Isotropic). An isotropic vector in a quadratic module (V,Q) is simply a vector v

satisfying Q(v) = 0. Such vectors form a quadric hypersurface in V . More generally, a subspace

U ⊂ V is called isotropic if all of its vectors are isotropic.
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Lemma 4.2.1. Let (V,Q) be a quadratic module and U is a subspace of V ,then

U is isotropic ⇐⇒ U ⊂ U⊥ ⇐⇒ Q|U = 0.

Proof. Its clear from definition of isotropic subspace and orthogonal subset U⊥ of V .

Definition 34 (Hyperbolic plane). A hyperbolic plane is a quadratic module (V,Q) of rank two,

which has a basis of isotropic vectors v1, v2, satisfying BQ(v1, v2) 6= 0.

Discriminant of matrix with respect to v1, v2 is −1, because after multiplying v2 by 1/v1v2, we can

suppose that B(v1, v2) = 1. Then the matrix of quadratic form with respect to v1 and v2 is 2× 2

matrix, which opposite diagonal entries are one, that’s why discriminant is −1.

Proposition 4.2.2. Let (V,Q) be a non-degenerate quadratic module and x be an nonzero isotropic

element of V . Then there is a subspace U of V which contains x and which is a hyperbolic plane.

Proof. Since, V is non-degenerate, we can find an element y in V such that B(x, y) = 1 or we can

make it to one. Then the element z = 2y −B(y, y)x = 2y −Q(y)x is isotropic.

Q(z) = 4Q(y)− 4Q(y)B(x, y) +Q(y)2Q(x) = 4Q(y)− 4Q(y) · 1 + 0 = 0,

which implies that z is isotropic. Also,

B(x, z) = 2B(y, x)−Q(y)Q(x) = 2(1) = 2 6= 0.

If we take subspace Z which is span of x and z, then Z satisfies both of the conditions.

Next corollary saying that if we have non-degenerate quadratic module over a field which contains an

isotropic element then quadratic form with respect to V represents all elements of field.

Corollary 4.2.3. If (V,Q) is non-degenerate quadratic module over K and contains a nonzero

isotropic element x, then one has Q(V ) = K.

Proof. It is suffices to give proof when V is a hyperbolic plane with basis x, y, both isotropic and

B(x, y) = 1. Now, if a ∈ K then

Q
(
x+

a

2
y
)

= Q(x) + a ·B(x, y) +
a2

4
Q(y) = a.
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4.3 Orthogonal basis

A basis (e1, e2, . . . , en) of a quadratic module (V,Q) is called orthogonal if its elements are pairwise

orthogonal, which means, if V = Ke1⊕̂ · · · ⊕̂Ken. If we see this as matrix of quadratic form Q with

respect to above basis then we get diagonal matrix or we can say that the matrix with respect to

orthogonal basis is diagonal. If x =
∑
xiei, then quadratic form Q(x1, . . . , xn) = a1x

2
1 + . . .+ a2x

2
n

over Kn.

Theorem 4.3.1. Every quadratic module (V,Q) has an orthogonal basis.

Proof. We will give proof by induction on dim(V ), the theorem being trivial if dimension is zero. If

V is itself isotropic, every element of V is orthogonal to every other element of V . Hence, all bases of

V are orthogonal. Otherwise, choose an element e1 ∈ V , with Q(e1) 6= 0. Let H = (e1K)⊥, it is

hyperplane and since e1 /∈ H , it is clear that V = Ke1⊕̂H . By induction on dimension of H , we may

find an orthogonal basis of H , say e2, . . . , en, yielding an orthogonal basis e1, . . . , en of V .

Definition 35 (Contiguous bases). Two orthogonal bases e = (e1, . . . , en) and f = (f1, . . . , fn) of V

are said to be contiguous if there is i and j such that ei = fj , or if they have an element in common.

Lemma 4.3.2. Let (V,Q) be a non-degenerate quadratic module of dimension ≥ 3, and let

e = (e1, . . . , en) and e′ = (e′1, . . . , e
′
n) be two orthogonal bases of V . Then there is x ∈ K such that

ex = e′1 + xe′2 is anisotropic and generates with e1 a non-degenerate plane.

Theorem 4.3.3. Let (V,Q) be a non-degenerate quadratic module of dimension ≥ 3, and let

e = (e1, . . . , en) and e′ = (e′1, . . . , e
′
n) be two orthogonal bases of V . Then there exists a finite

sequence e(0), . . . , e(m) of orthogonal bases of V such that e(0) = e,e′ = e(m) and e(i) is contiguous

with e(i+1) with 0 ≤ i ≤ m− 1.

Proof. To prove this, we separate proof in three cases.

i) Q(e1)Q(e′1)−B(e1, e
′
1)2 6= 0

We can find chain for two e and e′ such that P = Ke1⊕̂Ke′1, with Q|P is non-degenerate. Then

there is ε and ε′ such that P = Ke1⊕̂Kε = Kε′⊕̂Ke′1. Now, let (e′′3, . . . , e
′′
n) be orthogonal basis

of P⊥, then V = P ⊕̂P⊥, hence it is non-degenerate.

e→ (e1, ε, e
′′
3, . . . , e

′′
n)→ (e′1, ε

′, e′′3, . . . , e
′′
n)→ e′.

We are done with this case.

ii) Q(e1)Q(e′2)−B(e1, e
′
2)2 6= 0

Same proof works by replacing e′1 by e′2.
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iii) Q(e1)Q(e′i)−B(e1, e
′
i) = 0 for i = 1, 2. In particular, Ke1 ⊕Ke′1 is degenerate, and

Ke1 ⊕Ke′2 is degenerate, but in this case, the previous Lemma 4.3.2 implies that there exists

x ∈ K such that e′x = e′1 + xe′2 generates a non-degenerate plane with e1, and is anisotropic.

Indeed, to have e′x be anisotropic, we must have,

Q(e′x) = Q(e′1) + x2Q(e′2) 6= 0 since e′1 ⊥ e′2.

Thus as long as x2 6= −Q(e′1)/Q(e′2), this will be satisfied. For e1 and e′x to generate a

non-degenerate plane, we must have;

0 6= Q(e1)Q(e′x)−B(e1, e
′
x)

2

= Q(e1)Q(e′1) + x2Q(e1)Q(e′2)− (B(e1, e
′
1) + xB(e1, e

′
2))2

= Q(e1)Q(e′1) + x2Q(e1)Q(e′2)−B(e1, e
′
1)2 − 2xB(e1, e

′
1)B(e1, e

′
2)− x2B(e1, e

′
2)2

= Q(e1)Q(e′1) + x2Q(e1)Q(e′2)Q(e1)Q(e′1)− 2xB(e1, e
′
1)B(e1, e

′
2)−

x2Q(e1)Q(e′2)

= −2xB(e1, e
′
1)B(e1, e

′
2).

Non-degeneracy, together with the fact that B(e1, e
′
1)2 = Q(e1)Q(e′1) and

B(e1, e
′
2)2 = Q(e1)Q(e′2) implies that for x 6= 0, the above condition is satisfied. The existence

of e′x such that e′x is non-degenerate, and with e1 it generates a non-degenerate plane, follows

from finding x ∈ K with,

0 6= x, and x2 6= Q(e′1)/Q(e′2).

This eliminates at most three values of x. We dont consider K = F2, because we assume

char(K) 6= 2. In F3, all squares are 0 or 1, and the condition Q(e1)Q(e′1) = B(e1, e
′
1)2 and

Q(e1)Q(e′2) = B(e1, e
′
2)2 implies that Q(e′1)/Q(e′2) = 1. Thus, choosing x2 6= 1 does not place

any condition on x. Such an x exists. Now, in order to make the transition from e to e′, we use

the intermediate basis e′x given by, e′x = (e′x, e
′
2, e
′
3, . . . , e

′
n). This basis is contiguous to e′. By

the previous case, we can find a chain linking e to e′x.

4.4 Witt’s theorem

In this section, we consider metric morphisms between quadratic modules and when they can be

extended. Specifically, given two non-degenerate quadratic modules (V1, Q1) and (V2, Q2), an

injective morphism s : U → V2 between U ⊂ V1, a submodule, and V2 which preserves the associated

bilinear form, we try to extend s to all of V1. An extension of s is a morphism from a larger space,

containing U as a subspace, which is equal to s when restricted to U . Our main result is Witt’s

theorem which says that such an extension exists if V1 and V2 are isomorphic.
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Lemma 4.4.1. If U is degenerate, we can extend s to an injective metric morphism s1 : U1 → V2,

where U1 contains U as hyperplane.

Proof. Since U is degenerate, we can choose a nonzero x ∈ rad(U). Furthermore, since V is

non-degenerate we can find a y ∈ V such that l1(x) := [σy](x) = 1(recall[σy](u) = B(y, u)). We

can also assume that y is isotropic (if not replace y by y − 1
2
Q1(y)x, which is clearly isotropic). We

then set U1 = U ⊕Ky. Let U ′ = s(U). Since s is injective we can form a linear functional l2 on U ′ by

l2 = l1(y) ◦ s−1. As we have seen, V2 being non-degenerate implies that there exists y2 such that

l2 = σQ2(y2). Thus if we define the map s1 : U1 → V2 by letting s1 equal s on U and s1(y) = y2 and

extend linearly, then s1 is a metric morphism.

Theorem 4.4.2 (Witt’s theorem). If (V1, Q1) and (V2, Q2) are isomorphic and non-degenerate, every

injective metric morphism s : U → V ′ of subspace U of V can be extended to V onto V ′.

Proof. We construct our extension inductively on the dimension of U . If U is degenerate, we can

apply the above Lemma 4.4.1 repeatedly until we arrive at a non-degenerate submodule, thus we can

make the simplifying assumption that U is non-degenerate. Furthermore, since V1 and V2 are

isomorphic, we can assume that V = V1 = V2. dimU = 1; Since U is non-degenerate and

one-dimensional, it is generated by a non-isotropic element x. Let y = s(x), then we have

Q(x) = Q(y) and we can choose an ε = ±1 such that x+ εy is not isotropic; if not we would have:

Q(x+ y) = 0

Q(x− y) = 0

expanding the left hand side:

B(x, x) +B(x, y) +B(y, x) +B(y, y) = 0

B(x, x)B(x, y)B(y, x) +B(y, y) = 0

Since B(x, x) = B(y, y) and B(x, y) = B(y, x) we have:

2B(x, x) + 2B(x, y) = 0

2B(x, x)− 2B(x, y) = 0

which implies that Q(x) = 0. Given such an ε, we let H be the orthogonal complement of z = x+ εy;

we have V = Kz ⊕H . Define σ to be the automorphism of V which is the identity on H and which

sends z to −z. Thus,

σ(x+ εy) = −x− εy
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σ(x− εy) = x− εy

since x− εy ∈ H implying σ(x) = −εy, thus −εσ extends s. If dimU > 1: We can decompose U as

U1⊕̂U2 both not zero; restricting s to U1 and extending by induction we get an automorphism, σ1, of V

which extends s when restricted to U1. By substituting s with σ−1
1 ◦ s we can suppose s is the identity

on U1. Since s is the identity on U1 and injective we have that U2 is contained in the orthogonal

complement of U1, U⊥ , and thus it suffices to extend s|U2 to a σ2 : U⊥1 → U⊥1 which we can do by

the induction hypothesis. Thus our desired extension is σ which is σ2 on U⊥1 and σ−1
1 ◦ s on U1.

As an application of above theorem, we see that isomorphic subspaces of a non-degenerate quadratic

module have isomorphic orthogonal complements.

Corollary 4.4.3. Two isomorphic subspaces of a non-degenerate quadratic module have isomorphic

orthogonal complements.

Proof. Essentially, if we have a non-degenerate quadratic module (V,Q) with subspaces U1 and U2

such that U1
∼= U2 then we extend the isomorphisms of the subspaces to an automorphism of V , since

V ∼= U1⊕̂U⊥1 ∼= U2⊕̂U⊥2 when we restrict the automorphism to the orthogonal complements and get

U⊥1
∼= U⊥2

4.5 Equivalence of quadratic forms

Let X ∈ Kn we consider a quadratic form

f(X) =
n∑
i=1

aiiX
2
i + 2

∑
i>j

aijXiXj

in n variables over K. Set aij = aji for i > j, the matrix A = (aij) is symmetric and the pair (Kn, A)

is a quadratic module, associated to f .

Definition 36. Two quadratic forms f and f ′, in n variables, are equivalent, if there is a an invertible

matrix M such that f(MX) = f ′(X) or A and B are matrix of f and f ′,if there is an invertible

matrix C such that B = CACT .

Definition 37. Let f(X1, . . . , Xn) and g(X1, . . . , Xm) be two quadratic forms. The translation of a

one quadratic form by another, denoted f + g, is defined to be the quadratic form given by;

f + g = f(X1, . . . , Xn) + g(Xn+1, . . . , Xn+m).
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In terms of the associated modules, this operation corresponds to the orthogonal sum. We similarly

define f − g for f + (−g). We now translate several of our definitions and theorems in terms of

translations. First notice that our hyperbolic plane has associated form f(X) = X1X2
∼= X2

2 −X2
2

which is clearly a translation of two one variable forms.

Definition 38. Let Q be a quadratic form over K. We say that a quadratic form represents an element

a ∈ K if there exists a vector x ∈ Kn such that f(x) = a.

Remark 4.5.1. f represents zero if and only if corresponding quadratic module contains nonzero

isotropic element.

Proposition 4.5.2. If f1 represents zero and is non-degenerate, then f1 ∼ f2 + g where f2 is

hyperbolic. Moreover, f represents all elements of K.

Proof. If 0 6= x ∈ V is isotropic of non-degenerate, which implies there is subspace U of V which

contains x and which is hyperbolic plane. Now, by finding orthogonal complement U⊥ of U , that is f2

with respect to U is hyperbolic and g with respect to U⊥. Thus, it is clear that f1 ∼ f2 + g. We know

that if we have non-degenerate and contains an isotropic element then Q(V ) = K

Following corollary shows importance of above theorem.

Corollary 4.5.3. Let g = g(X1, . . . , Xn) be a non-degenerate quadratic form and let a ∈ K∗. Then

the following are equivalent.

1) g represents a.

2) One has g ∼ h+ aZ2 where h is a form in n− 1 variables.

3) The form f = g − aZ2 represents 0.

Proof. 1)⇒ 2) If g generates a, quadratic module V corresponding to g contains an elements x such

that B(x, x) = a. Then, find orthogonal complement of x, let say it is H , then V = H⊕̂Kx. Finally,

g ∼ h+ aZ2, where h is form denotes the quadratic form attached to a basis of H .

2)⇒ 1) g ∼ h+ aZ2, h is in n− 1 variables then,

g ∼ h(0, 0, . . . , 0) + aZ2 = h(0, 0, . . . , 0) + a(1) = a. Thus, g represents a.

2)⇒ 3) We know that g ∼ h+ aZ2 represents a, because g represents a with (y1, . . . , yn), then the

form f = g(y1, . . . , yn)− a(1) = a− a = 0 represents zero.

3)⇒ 1) f has non-trivial zero (x1, . . . , xn−1, z) then z = 0 when g represents zero. Thus, it

represents a also. Now, if z 6= 0 then,

f(x1/z, x2/z, . . . , xn−1/z, 1) = g(x1/z, x2/z, . . . , xn−1/z)− a = 0,

thus, g represents a.
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Corollary 4.5.4. Let g and h be two non-degenerate forms of rank greater or equal to 1, and

f = g − h then the following are equivalent.

1) f represents zero.

2) There is a ∈ K∗, which is represented by g and h.

3) There is a ∈ K∗ such that g − aZ2 and h− aZ2 represents zero.

Proof. 1)⇒ 2) Nontrivial zero of f can be written as (x, y) such that g(x) = h(y). If

a = g(x) = h(y) 6= 0 implies (2) is done. If a = 0, then g(x) = 0, also g represents all elements of K.

g also represents any nonzero values taken by h.

2)⇒ 1) This is trivial, because both g and h represents a, but f = g − h then it is clear that f

represents zero.

2) ⇐⇒ 3) Equivalence of (2) and (3) is follows from previous corollary.

Next theorem translates into the classical decomposition of quadratic forms.

Theorem 4.5.5. Let f be a quadratic form with n variables. Then there is a1, . . . , an ∈ K such that

f ∼ a1X
2
1 + . . .+ anX

2
n.

The rank of f is the number of indices i such that ai 6= 0. It is equal to n if and only if the

discriminant a1, . . . , an of f is 6= 0, equivalently to saying if f is non-degenerate. Finally, corollary to

Witt’s theorem gives cancellation theorem.

Theorem 4.5.6 (Cancellation theorem). Let f = g + h and f ′ = g′ + h′ be two non-degenerate

quadratic forms. If f ∼ f ′ and g ∼ g′ then h ∼ h′.

Corollary 4.5.7. If f is non-degenerate, then

f ∼ g1 + . . .+ gn + h,

where, g1, . . . , gn are hyperbolic and h does not represents zero. This decomposition is unique up to

equivalence.

Proof. By Proposition 4.5.2, f ∼ g1 + h1 with both non-degenerate, we can repeat and get up to n.

For uniqueness, f ∼ g1 + . . .+ gn + h ∼ g′1 + . . .+ g′k + h′. Then by cancellation theorem h ∼ h′

and n = k and h is called an isotropic part of f .
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4.6 Quadratic forms over Fq
In this section we completely classify the quadratic forms over the finite fields of characteristic

different from two. We let p be prime 6= 2 and q = pf . Let Fq be the field with q elements.

Proposition 4.6.1. A quadratic form over Fq of rank ≥ 2 (respectively of rank ≥ 3) represents all

elements of F∗q (respectively of Fq).

Proof. In view of corollary 4.5.3 it is sufficient to prove that all quadratic forms in 3 variables

represent zero and this we have already proved in Chevalley-Warning Theorem 1.2.4. We can prove it

in other way also, One has to show that , if a, b ∈ Fq are not zero, the equation

ax2 + by2 = c

has a solution. Let A = {m ∈ Fq : m = ax2} and B = {z ∈ Fq : z = c− by2} where, x, y ∈ Fq.
One can see that A and B both have each (q + 1)/2 elements; thus A∩B 6= ∅, then it is clear that one

can get solution of equation ax2 + by2 = c.

Recall that group F∗q/F∗2q has two elements. Let a denote an element of F∗q which is not a square.

Proposition 4.6.2. Every non-degenerate quadratic form of rank n over Fq is equivalent to

X2
1 + . . .+X2

n

or

X2
1 + . . .+X2

n−1 + aX2
n,

depending on whether its discriminant is a square or not.

Proof. If n = 1 this is clear. If n ≥ 2, Proposition 4.6.1 shows that the form f represents 1. Thus, it is

equivalent to X2
1 + g where g is form in n− 1 and then by inductive hypothesis on g.

Corollary 4.6.3. For two quadratic forms over Fq to be equivalent it is necessary and sufficient that

they have same rank and same discriminant.

Finally, we can see that quadratic forms over Fq are completely determined (up to equivalence) by

their rank and their discriminant.



Chapter 5

Quadratic forms over Qp

Conventions for the chapter include that p is a prime number, K is the p-adic number field and

quadratic modules and forms over K are assumed to be non-degenerate.

5.1 Invariants

Here we let (V,Q) be a quadratic module of rank n and d(Q) ∈ K∗/K∗2 its discriminant. If

e = (e1, . . . , en) is an orthogonal basis of V and we set ai = B(ei, ei) = Q(ei), then

d(Q) =
n∏
i

ai.

Recall for a, b ∈ K∗, the Hilbert symbol (a, b) ∈ {±1} is already defined. We define

ε(e) :=
∏
i<j

(ai, aj) ∈ {±1}.

We shall show that this ε(e) is an invariant of (V,Q), that is, it does not depend on the choice of

orthogonal basis e.

Theorem 5.1.1. The number ε(e) does not depend on the choice of the orthogonal basis e.

Proof. We prove this theorem through induction on the rank of V . If n = 1 then ε(e) = 1. If n = 2

then we have that

ε(e) = 1 ⇐⇒ Z2a1X
2 − a2Y

2 represents 0 ⇐⇒ a1X
2 + a2Y

2 represents 1

Then v ∈ V such that Q(v) = 1 and such a v is independent of any choice of basis. For n ≥ 3,

induction is used. By Theorem 4.3.3 and transitivity it is enough to show that ε(e) = ε(e′) when e and

61
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e′ are contiguous. Moreover the symmetry of the Hilbert symbol implies that we can assume that

e′ = (e′1, . . . , e
′
n) with e1 = e′1. So with a′i = Q(e′i) it follows that a1 = a′1. We then write

ε(e) =
n∏
k=2

(a1, ak)
∏

2≤i≤j

(ai, aj)

= (a1, a2 . . . an)
∏

2≤i≤j

(ai, aj)

= (a1, d(Q)a1)
∏

2≤i≤j

(ai, aj).

Similarly we have ε(e′) = (a1, d(Q)a1)
∏

2≤i≤j(a
′
i, a
′
j) and so the proof is done by induction. So

given a quadratic form we immediately have two invariants, the discriminant and the epsilon sign

invariant. By inductive hypothesis applied to orthogonal complement of e1 shows that∏
2≤i≤j

(ai, aj) =
∏

2≤i≤j

(a′i, a
′
j),

from the desired result follows.

5.2 Representation of an element

Let a ∈ K∗/K∗2 , ε = ±1, then define

Hε
a = {x ∈ K∗/K∗2 |(x, a) = ε}.

Lemma 5.2.1. Representation of an element of K by Qf

1) Let Hε
a be defined as above.

If a = 1 , #(H1
a) = 2r and Ha−1 = φ

If a 6= 1 , #(Hε
a) = 2r−1

2) Let a, a′ ∈ K∗/K∗2 , ε, ε′ = ±1 , Hε
a, H

ε′

a′ 6= φ , Hε
a ∩Hε′

a′ = φ. It is necessary and sufficient

condition that a = a′ and ε = −ε′

Proof. 1) a = 1, then it is a square. This implies H1
a = 2r, thus, H−1

a = φ.

If a 6= 1 , Define φ : K∗/K∗2 � ±1 by b 7→ (a, b). ker(φ) = Hk
a , which is a hyperplane with

cardinality 2r−1. Thus, #(H−1
a ) = 2r−1.

2) Hε
a ∩Hε′

a′ = ∅
#(Hε

a) = #Hε′
′a = 2r−1, because 2r−1 + 2r−1 = 2r. This implies H1

a = H1
a′ then (x, a) = (x, a′) for

all x ∈ K∗/K∗2 .
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Theorem 5.2.2. For f to represent zero it is necessary and sufficient that

1. n = 2 and d = −1 ∈ K∗/K∗2

2. n = 3 and (−1,−d) = ε

3. n = 4 and either d 6= 1 and (−1,−1) = ε

4. n ≥ 5, all forms in at least 5 variables represents zero.

Before proving this theorem, let us indicate a consequence of it. Let a ∈ K∗/K∗2 and fa = f − aZ2.

We already know that if f represent zero if and only if it represent a. Other hand,

d(fa) = −ad, ε(fa) = (−a, d)ε.

as one can check right away.

Corollary 5.2.3. Let a ∈ K∗/K∗2. Quadratic form f represent a it is necessary and sufficient that :

1. n = 1 and a = d

2. n = 2 and (a,−d) = ε,

3. n = 3 either a 6= d or a = −d and (−1,−d) = ε,

4. n ≥ 4.

Note that, in this statement as in above theorem, a and d are viewed as elements of K∗/K∗2, the

inequality a 6= −d means that a is not equal to the product of −d by a square. Now, go back to prove

above theorem.

Proof. 1. n = 2:

The form represents zero if and only if −a1/a2 is a square, but

−a1/a2 = −a1a2 = −d ∈ K∗/K∗2. Hence this means that d = −1.

2. n = 3:

The form f represents zero if and only if the form

−a3f ∼ −a− 3a1X
2
1 − a3a2X

2
2 −X2

3

represents zero. Now by very definition of the Hilbert symbol, this last form represents zero if

and only if we have

(−a3a1,−a3a2) = 1
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. because,

(−1, 1)(−1,−a1)(−1,−a2)(a3, a3)(a1, a2)(a1, a3)(a2, a3) = 1

and,

(−1, 1)(−1, a1a2a3)(a1, a2)(a1, a3)(a2, a3) = 1

3. n = 4:

From Corollary 4.5.4, f represents zero if and only if there exists an element x ∈ K∗/K∗2,

which is represented by two forms.

a1X
2
1 + a2X

2
2 and − a3X

2
3 − a4X

2
4

By above corollary, such as x characterized by the conditions,

(x,−a1a2) = (a1, a2) and (x,−a3a4) = −a3,−a4).

Let A be the subset of K∗/K∗2 defined by the first condition, and let B be the subset defined by

the second. f does not represent zero, it is necessary and sufficient the A ∩B = ∅ Now, A and

B are clearly non-empty, and the relation A ∩B = ∅ is thus equivalent to

a1a2 = a3a4 and (a1, a2) = −(−a3,−a− 4)

The first condition means that d = 1. If it is fulfilled one has,

ε = (a1, a2)(a3, a4)(a3a4, a3a4),

by using the relation(x, x) = (−1, x), we get,

ε = (a1, a2)(a3, a4)(−1, a3a4),

= (a1, a2)(−a3, a4)(−1, 1),

Hence, second condition can be written ε = −(−1,−1), form which the result follows.

4. n ≥ 5:

It is sufficient to treat that n = 5, by using 3rd condition of above corollary, we see that form of

rank 2 reprsents at least 2r−1 elements if K∗/K∗2 and the same is true for the form of rank ≥ 2.

Since, 2r−1 ≥ 2 represents at least one element a ∈ K∗/K∗2 distinct form d. Then one has,

f ∼ aX2 + g,

where g is form of rank 4. The discriminant of g is equal to d/a, it is thus different from 1, and

form 3, the form represents zero. The same is then true for f and the proof of theorem is

complete.
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5.3 Classification

Theorem 5.3.1. Two quadratic forms over K are equivalent if and only if they have same rank, same

discriminant, and same invariant.

Proof. That two equivalent forms have same invariants follows from the definitions. The converse

part is proved by induction on the rank n of two forms f and g considered. The case n = 0 is trivial. If

we let f and g be two quadratic forms of rank n, discriminant d and invariant ε, both f and g represent

the exact same elements from K∗/K∗2 and so we can find some a that is represented by both which

implies that f ∼ aZ2 + f ′ and g ∼ aZ2 + g′ with f ′, g′ quadratic forms of rank n− 1,

d(f ′) = ad(f) = ad(g) = d(g′)

and

ε(f) = ε(f)(a, d(f ′)) = ε(g)(a, d(g′)) = ε(g′),

which shows that f ′ and g′ have same invariants. This implies f ′ ∼ g′, thus f ∼ g.

Proposition 5.3.2. Let n ≥ 1, d ∈ K∗/K∗2 and ε = ±1. There exists a quadratic form f of rank n

such that d(f) = d and ε(f) = ε, it is necessary and sufficient that n = 1, ε = 1, or n = 2, d 6= 1 or

n = 2, ε or n ≥ 3.

Proof. Case n = 1 is trivial. If n = 2 one has f ∼ aX2 + bY 2 and,

if d(f) = −1, then ε(f) = (a, b) = (a,−ab) = 1;

thus we can not have simultaneously d(f) = −1 and ε(f) = −1. Conversely, if d = −1, ε = 1, we

take f = X2 − Y 2; if d 6= −1, there exists a ∈ K, such that (a,−d) = ε and f = aX2 + adY 2. If

n = 3 we choose a ∈ K∗/K∗2 distinct from −d, y what we have just seen, there exists a form g of

rank 2 such that d(g) = ad, ε(g) = ε(a,−d), then the form aZ2 + g works. The case n ≥ 4 is reduced

to the case n = 3 by taking f = g(X1, X2, X3) +X2
4 + . . . X2

n where g has required invariants.

We let f be a quadratic form of rank n over the real numbers. We know f is equivalent to

X2
1 + . . .+X2

r − Y 2
1 − . . .− Y 2

s where r, s are two non-negative integers whose sum is n. The pair

r, s depend only on f and is called the signature of the form f . The form f is positive or negative

definite if s = 0 or r = 0 and otherwise f is indefinite (f represents 0 in that case and only in that

case). The invariant ε(f) is defined as before and due to (−1,−1) = −1 we have the following;

ε(f) = (−1)s(s−1)/2 and d(f) = (−1)s. So if n is less than or equal to three, these two invariants

determine f up to equivalence!
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Chapter 6

Quadratic forms over Q

In this chapter, all quadratic forms have coefficients in Q, and are non-degenerate. The quadratic form

Q(X1, . . . , Xn) = a1X
2
1 + . . .+ anX

2
n. Every quadratic module has an orthogonal basis, and thus is

equivalent to a1X
2
1 + . . .+ anX

2
n. We always assume that 0 6= ai ∈ Q for all 1 ≤ i ≤ n.

6.1 Invariants

Recall that V is the set of places of Q, and∞ ∈ V is the real place, with Q∞ = R. Two invariants of

a non-degenerate quadratic form, over any field K of characteristic not equal to 2, are the discriminant

d =
∏n

i=1 ai. It is interpreted in K∗/K∗2, the ε-invariant is defined by

ε =
∏

1≤i≤j≤n

(ai, aj) ∈ {±1},

where (ai, aj) denotes the Hilbert symbol. If f is a quadratic form over Q, we write εv = ±1 for the

invariant of f , viewed as a quadratic form over Qv, and we write dv ∈ Q∗v/Q∗2v for the discriminant of

f viewed as a quadratic form over Qv. Product formula of Hilbert symbol gives one,

i.e.
∏
v∈V

εv(f) = 1.

We write r, s for the number of ones and negative ones, as invariants of f over R.

6.2 Hasse-Minkowski theorem

Next theorem says that f has a global zero if and only f has everywhere a local zero.

Theorem 6.2.1 (Hasse-Minkowski). Let f be a quadratic form over Q. f represents zero, it is

necessary and sufficient that, for all v ∈ V , the form fv represent zero.

67
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Proof. We write quadratic form,

f = a1X
2
1 + . . .+ anX

2
n, ai ∈ Q∗.

Replacing f by a1f , one can suppose that a1 = 1. We consider separately the cases n = 2, 3, 4 and

≥ 5.

• n = 2 :

Suppose that f = X2 + aY 2 over Q and f represents zero over Qp, for every prime p. Since f

represents zero over R, we have a < 0. Thus it suffices to consider f = X2 − aY 2 with

0 < a ∈ Q. This represents zero if and only if a ∈ Q∗2 . Since f represents 0 over Qp, for every

p, we have a ∈ Q∗2p . Thus, νp(a) is even for all p; recall that νp(a) is the exponent of p in the

prime factorization of a. Since a is positive, we see that a =
∏

p p
νp(a), for even integers νp(a).

Hence, a ∈ Q∗2 as desired.

• n = 3 :

we have f = X2
1 − aX2 − bX2

3 . We can assume that a and b are square free integers, which

means νp(a), νp(b) are equal to zero or one for all prime number p. Also, we can assume that

|a| ≤ |b|. We use induction on m = |a|+ |b|. If m = 2, we have

f = X2
1 ±X2

2 ±X2
3 ;

the case of X2
1 +X2

2 +X2
3 is excluded because finf represents zero. Suppose m > 2, this means

|b| ≥ 2 and write b in the form

b = ±p1 . . . pk,

where the pi are distinct primes. Let p be one of the pi; we are going to prove that a is a square

modulo p. This is obvious if a ≡ 0 (mod p). Otherwise a is a p-adic unit, by hypothesis there

is (x, y, z) ∈ Q3
p such that z2 − ax2 − by2 = 0 and we can suppose that (x, y, z) is primitive.

We have z2 − ax2 ≡ 0 (mod p). From this follows that, if x ≡ 0 (mod p), the same is true

also for z, and by2 is divisible by p2. Since, νp(b) = 1 this implies y ≡ 0 (mod p) contrary to

the fact that (x, y, z) is primitive. Thus we have x 6≡ 0 (mod p), which shows that a is square

modulo p. Now,

Z/bZ =
∏

Z/piZ,

we say that a square modulo b. There exists thus integers t, b′ such that

t2 = a+ bb′
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and we can choose t in such a way that |t| ≤ |b|/2. The formula bb′ = t2 − a shows that bb′ is

norm of extension K(
√
a)/K where K = QorQv; from this we conclude that f represents zero

in K if and only if the same is true for

f ′ = x2
1 − aX2

2 − b′X2
3 .

In particular, f ′ represents zero in each of the Qv, but we have;

|b| =
∣∣∣∣t2 − ab

∣∣∣∣ ≤ |b|4 + 1 < |b|,

because |b| ≥ 2. Write b′ in the form of b′′, u2 integers and b′′ square free; we a |b′′| < |b|. The

induction hypothesis applies thus to the form

f ′′ = X2
1 − aX2

2 − b′′X2
3

which is equivalent to f ′, hence this form represents zero in Q and the same is true for f .

• n = 4 :

f = aX2
1 + bX2

2 − (cX2
3 + dX2

4 ). Let v ∈ V . Since fv represents zero, there exists xv ∈ Q∗v
which represented both by aX2

1 + bX2
2 and cX2

3 + dX2
4 . This is equivalent to saying that

(xv,−ab)v = (a, b)v and (xv,−cd)v = (c, d)v for all v ∈ V.

Since,
∏

(a, b)v =
∏

(c, d)v = 1, by Theorem 4.6.1 and obtain from it the existence of x ∈ Q∗

such that

(x,−ab)v = (a, b)v and (x,−cd)v = (c, d)v for all v ∈ V.

The form aX2
1 + bX2

2 − xZ2 represents zero in each of the Qv, hence in Q. Hence x is

represented in Q by aX2
1 + bX2

2 and same for cX2
3 + dX2

4 . The fact that f represents zero is

follows from this.

• n = 5 :

We use induction on n. We write f in the form of f = h− g with

h = a1X
2
1 + a2X

2
2 , g = −(a3X

2
3 + . . .+ anX

2
n) Let S be the subset of V consisting of∞, 2

and the number p such that νp(ai) 6= 0 for one i ≥ 3; it is finite set. Let v ∈ S. Since fv
represents zero there is av ∈ Q∗v which is represented in Qv by h and g, there exists xvi ∈ Qv,

i = 1 . . . n such that

h(xv1, x
v
2) = av = g(xv3, . . . , x

v
n).

The squares of Q∗v forms an open set. Using the approximation theorem this implies existence of

x1, x2 in Q such that if a = h(x1, x2), one has a/av ∈ Q∗v for all v ∈ S. Now, consider the form
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f1 = aZ2 − g. If v ∈ S, g represents av in Q∗v thus also a/av ∈ Q∗v
2; hence f1 represents zero

in Qv. If v /∈ S, the coefficients −a3, . . . ,−an of g are v-adic units; the same is true for dv(g)

and because v 6= 2 we have εv(g) = 1. In all cases we see that f1 represents zero in Q∗v, since

the rank of f1 is n− 1, the inductive hypothesis shows that f1 represents zero in Q, that is g

represents a in Q, since h represents a, f represents zero, and the proof is complete.

Corollary 6.2.2. Let a ∈ Q∗. A quadratic form Q over Q represents a in Q it is necessary and

sufficient that it represents zero in each of the Qv, where v ∈ V .

Proof. This follows from the above Theorem6.2.1 to the quadratic form aZ2 −Q.

Corollary 6.2.3. A quadratic form of rank greater or equal to 5 represents zero if and only if it is

indefinite. i.e. it represents zero in R.

Proof. Indeed, by Theorem 6.2.1 represents zero in each of the Qp.

6.3 Classification

Theorem 6.3.1. Let f and f ′ be two quadratic forms over Q. For f and f ′ to be equivalent over Q, it

is necessary and sufficient that they are equivalent over each Qv.

Proof. Necessity being trivial, we must show that if f and f ′ are equivalent over Qv for all v, then

they are equivalent over Q. The proof is inductive, via Witt’s cancellation theorem. The base step, in

rank 0, is trivial. So suppose that f, f ′ have rank n > 0, and are equivalent over every Qv. Choose

some a ∈ Q∗ represented by f . Then a is represented by f ′ (by a previous corollary to the

Hasse-Minkowski Theorem). Thus we may write f ∼ aZ2 + g and f ′ ∼ aZ2 + g′, for some quadratic

forms g, g′ over Q. By Witt’s cancellation theorem, this implies that g ∼ g′ over every Qv, since

f ∼ f ′ over every Qv. By induction, g ∼ g′ over Q. Hence f ∼ f ′ over Q as well.

Corollary 6.3.2. Let (r, s) and (r′, s′) be the signatures of f and f ′. For f and f ′ to be equivalent it

is necessary and sufficient that one has;

rank(f) = rank(f ′), d(f) = d(f ′), (r, s) = (r′, s′) and εv(f) = εv(f
′).

Proof. f and f ′ are equivalent over each Qv. Also, these invariants are not arbitrary but we can say

they have restriction over them and all verifies following relations.
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1) εv = 1 for almost all v ∈ V and
∏

v∈V εv = 1,

2) εv = 1 if n = 1 or if n = 2 and if image dv of d in Q∗v/Q∗2v is equal to −1,

3) r, s ≥ 0 and r + s = n,

4) d∞ = (−1)s,

5) ε∞ = (−1)s(s−1)/2.

Proposition 6.3.3. Let d, (εv)v∈V and (r, s) satisfy the relations above. Then exists a quadratic form

of rank of n over Q having for invariants d, (εv)v∈V and (r, s).

Proof. For n = 1, proposition is trivial.

Suppose that n = 2. Let v ∈ V . The non-degeneracy of Hilbert symbol with 2nd condition, shows that

there is xv ∈ Q∗v such that (xv,−d)n = εv. Also, form first condition existence of x ∈ Q∗ such that

(x,−d)v = εv for all v ∈ V , then xY 2 + xdZ2 works.

Suppose n = 3. Let S = {v ∈ V : (−d,−1)v = −εv}. It is easy to see that the set S is finite. If

v ∈ V , choose in Q∗v/Q∗2v an element cv from distinct from the image −dv of −d in this group. By

using approximation theorem 3.2.5, it is easy to see that there exists c ∈ Q∗ whose image in each of

the Q∗v/Q∗2v , v ∈ S, is cv. Just now we proved proved existence of a from form of rank 2 such that

d(g) = cd, εv(g) = (c,−d)vεv, for all v ∈ V.

Then quadratic form f = cZ2 + g works.

When n ≥ 4 we use induction on n. Suppose first that r ≥ 1. By using inductive hypothesis, we

obtain a form g of rank n− 1 which has invariants d, (εv)v∈V and (r − 1, s). Then quadratic form

X2 + g will works. When r = 0, we use a form h of rank n− 1 having for invariants

−d, εv(−1,−d)v and (0, n− 1) the form −X2 + h works.
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